CN112442596A - 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 - Google Patents
一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 Download PDFInfo
- Publication number
- CN112442596A CN112442596A CN202011131786.2A CN202011131786A CN112442596A CN 112442596 A CN112442596 A CN 112442596A CN 202011131786 A CN202011131786 A CN 202011131786A CN 112442596 A CN112442596 A CN 112442596A
- Authority
- CN
- China
- Prior art keywords
- extraction
- extractant
- nickel
- cobalt
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 claims abstract description 237
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 191
- 229910001868 water Inorganic materials 0.000 claims abstract description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 106
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 96
- 239000012071 phase Substances 0.000 claims abstract description 96
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 81
- 239000010941 cobalt Substances 0.000 claims abstract description 81
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000012074 organic phase Substances 0.000 claims abstract description 77
- 239000011572 manganese Substances 0.000 claims abstract description 75
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 72
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000007788 liquid Substances 0.000 claims abstract description 59
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 36
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 20
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 19
- 229910052938 sodium sulfate Inorganic materials 0.000 claims abstract description 19
- 235000011152 sodium sulphate Nutrition 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002893 slag Substances 0.000 claims abstract description 10
- 239000002351 wastewater Substances 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 238000007599 discharging Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 59
- 238000005406 washing Methods 0.000 claims description 58
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 33
- 238000002156 mixing Methods 0.000 claims description 30
- 238000007127 saponification reaction Methods 0.000 claims description 28
- 239000008346 aqueous phase Substances 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 18
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 17
- 239000003085 diluting agent Substances 0.000 claims description 16
- 239000011777 magnesium Substances 0.000 claims description 16
- 150000007522 mineralic acids Chemical class 0.000 claims description 16
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 16
- 239000011575 calcium Substances 0.000 claims description 15
- 239000003350 kerosene Substances 0.000 claims description 15
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 14
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 13
- 239000000395 magnesium oxide Substances 0.000 claims description 12
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 12
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 12
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 11
- 229940044175 cobalt sulfate Drugs 0.000 claims description 11
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 11
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 11
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 8
- 238000002425 crystallisation Methods 0.000 claims description 7
- 230000008025 crystallization Effects 0.000 claims description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- -1 Escaid110 Substances 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 150000002923 oximes Chemical class 0.000 claims description 4
- 239000012527 feed solution Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims 15
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims 10
- 239000000945 filler Substances 0.000 claims 3
- 239000005416 organic matter Substances 0.000 claims 1
- 239000000344 soap Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 7
- 239000003513 alkali Substances 0.000 abstract description 3
- 229910052791 calcium Inorganic materials 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000004064 recycling Methods 0.000 description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 229910021645 metal ion Inorganic materials 0.000 description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 229910015853 MSO4 Inorganic materials 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940094933 n-dodecane Drugs 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B47/00—Obtaining manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种从含镍钴锰的电池中间料液中分离镍钴锰的方法,所述方法包括如下步骤:(1)对所述料液进行化学除杂,得到水相1和含铁铝渣;(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2;(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3;(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4;(5)对步骤(4)得到的水相4进行硫酸钠晶体富集分离,得到硫酸钠产品,废水经过处理后达标排放,其中,所述镍萃取中使用的萃取剂B包括一种羧酸萃取剂。通过本发明提供的方法,可以将含镍钴锰的电池中间料液中的镍钴锰实现分离萃取回收,且萃取剂B对镍的萃取高效,酸碱耗量少,运行成本低。
Description
技术领域
本发明涉及资源回收领域,一种从含镍钴锰的电池中间料液中分离镍钴锰的方法。
背景技术
镍钴锰三元正极材料循环性能好、结构稳定、性价比高,是新型锂离子电池正极材料,广泛应用于新能源汽车行业,锂离子电池的需求规模也不断扩大,于此同时带来的是废旧锂离子电池的数量也是与日剧增。若废旧锂电池被随意丢弃,不仅严重污染环境,而且还会造成有价金属资源大量浪费,而解决这一问题的最佳途径就是实现镍钴锰锂回收再利用,应此对废旧锂电池的回收再利用有环境效应和市场效应的双重效应。
湿法冶金是利用浸出剂将矿石、精矿、废电池正极材料及其他物料中有价金属组分溶解在溶液中或以新的固相析出,进行金属分离、富集和提取的科学技术,具有能耗低,污染小、资源利用率高等特点,一直以来被众多研究者持续关注并不断发展。
CN110066925A公开了一种废旧镍钴锰三元锂电池中有价金属的回收方法,其采用P204对电池料液进行萃取除杂,反萃获得含有硫酸锰的反萃液,以及含有Co、Ni、Li离子的萃余液,将反萃液除Cu后进行蒸发浓缩、结晶获得硫酸锰;采用皂化后的P507萃取萃余液中的Co,反萃后获得硫酸钴溶液;再采用C272除萃余液中的Mg,最后采用P507萃取该萃余液中Ni,反萃获得硫酸镍溶液;去除浸出液中Fe、Al、Ca、Mg的方法,检测浸出液中二价Fe浓度,加入氧化剂将二价Fe氧化为三价Fe,加入碳酸钠调浸出液pH值=4.5~5.0将Fe、Al沉淀除去;检测Ca和Mg含量,加入氟化钠或氟化钾将Ca和Mg沉淀析出过滤。该工艺流程复杂,分别回收镍钴锰元素的分离成本高,采用沉淀法将Ca、Mg等杂质金属离子除去,易造成有价金属夹带损失。
发明内容
鉴于现有技术中存在的问题,一种从含镍钴锰的电池中间料液中分离镍钴锰的方法,本发明采用的羧酸类萃取剂B能将镍高效萃取,萃,与杂质离子分离效果好;环境效应好;有机相可循环使用,运营成本低,具有良好的经济效益。
为达此目的,本发明采用以下技术方案:
本发明的目的在于提供一种从含镍钴锰的电池中间料液中分离镍钴锰的方法,所述方法包括如下步骤:
(1)对所述料液进行化学除杂,得到水相1和含铁铝渣;
(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2;
(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3;
(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4;
(5)对步骤(4)得到的水相4进行硫酸钠晶体富集分离,得到硫酸钠产品,废水经过处理后达标排放,
其中,所述中使用的萃取剂B包括一种羧酸类萃取剂;所述羧酸类萃取剂结构式如式Ⅰ,命名为CPH88:
其中,-C8H17均为直链烷基。
通过本发明提供的方法,将将含镍钴锰电池中间料液中的镍钴锰实现分离萃取回收,同时浓缩回收副产品硫酸钠,萃镍过程不受钙、镁等杂质金属离子的影响,且萃取pH值较低,可以减少碱消耗量,整个工艺操作简单,工艺运行稳定,同时,羧酸类萃取剂对Ni提取率大于99.5%,硫酸反萃率大于99.9%。
本发明中,步骤(1)中化学除杂使用的铁铝去除剂为硫酸钠和/或碳酸钠溶液浓度在10~100g/L,例如可以是10g/L、15g/L、20g/L、23g/L、27g/L、30g/L、33g/L、45g/L、50g/L、65g/L、70g/L、80g/L、90g/L或99g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取的萃余水相平衡pH值为1~4,例如可以是1、1.2、1.5、1.9、2.0、2.5、2.8、3.0、3.1、3.6、3.7或3.9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取的所述萃取剂A中高纯萃取剂的体积分数为5~30%,例如可以是5%、10%、15%、20%、25%或30%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取的萃取剂A和所述料液的流比为(0.1~10):1,例如可以是0.1:1、0.5:1、1.5:1、3.5:1、5.5:1、7:1或9.8:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取的搅拌速度为100~800r/min,例如可以是100r/min、200r/min、220r/min、300r/min、350r/min、380r/min、400r/min、500r/min、600r/min、700r/min、780r/min或790r/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取的混合时间为5~30min,例如可以是5min、7min、8min、10min、13min、15min、16min、18min、21min、22min、25min、28min或29min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(2)中锰萃取所述多级逆流分馏萃取的级数为2~30级,例如可以是2、3、5、7、9、10、11、13、15、17、18、20、22、24、26、28或29等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(2)所述除杂萃取中使用的萃取剂A包括磷型萃取剂、羧酸类萃取剂或肟类萃取剂中的1种或至少2种的组合。
本发明中,所述磷型萃取剂包括P204、P507或C272中的1种或至少2种的组合。
本发明中,所述羧酸萃取剂包括BC191、BC192、BC194或BC196中的1种或至少2种的组合。
本发明中,所述肟类萃取剂包括Mextral 984H、Lix63或CP50中的任意1种或至少2种的组合。
本发明中,若料液中含有铜离子,则除杂萃取中优先选用肟类萃取剂来除去料液中的铜。
本发明中,步骤(2)所述锰负载有机相经多级逆流洗涤后进行反萃,得到含锰金属离子溶液和再生有机相。
优选地,所述再生有机相返回作为萃取剂使用。
本发明中,步骤(3)中镍萃取得到的水相2的pH值为1.9~5,例如可以是1.9、2.0、2.1、2.3、2.4、2.7、3.0、3.1、3.4、3.6、3.8、4.0、4.2、4.6、4.8或4.9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,优选为2.0~3.5。
作为本发明优选的技术方案,所述料液中的金属元素包括Ni 1~60g/L,Co 1~50g/L,Mn 1~50g/L,Fe≤10g/L,Al≤1g/L,Cu≤10g/L,Zn≤5g/L,Ca约0.1~0.5g/L,Mg0.1~50g/L。
本发明中,所述料液中Ni的浓度为1~60g/L,例如可以是1g/L、10g/L、20g/L、30g/L、40g/L、41g/L、42g/L、43g/L、44g/L、45g/L、46g/L、47g/L、48g/L、49g/L50g/L、52g/L、55g/L、58g/L或59g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Co的浓度为1~50g/L,例如可以是1g/L、5g/L、15g/L、16g/L、17g/L、18g/L、19g/L、20g/L、21g/L、32g/L、35g/L、37g/L、40g/L、43/L、45g/L、47g/L或49g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Mn的浓度为1~50g/L,例如可以是1g/L、5g/L、15g/L、16g/L、17g/L、18g/L、20g/L、23g/L、27g/L、32g/L、35g/L、37g/L、40g/L、43/L、45g/L、47g/L或49g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Fe浓度≤10g/L,例如可以是10g/L、9g/L、8g/L、7g/L、6g/L、5g/L、4g/L或3g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Al浓度≤1g/L,例如可以是1g/L、0.8g/L、0.6g/L、0.4g/L或0.2g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Cu浓度≤10g/L,例如可以是10g/L、9.5g/L、8.7g/L、7.4g/L、6.6g/L、5.6g/L、4.3g/L或3g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Zn浓度≤5g/L,例如可以是5g/L、4.3g/L、3.5g/L、2g/L或1g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Ca浓度为0.1~0.5g/L,例如可以是0.1g/L、0.2g/L、0.33g/L、0.45g/L或0.5g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述料液中Mg浓度为0.1~50g/L,例如可以是0.1g/L、10g/L、20g/L、30g/L、40g/L或50g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(3)中镍镍的萃取剂为一种羧酸类萃取剂,所述羧酸类萃取剂结构式如式Ⅰ:
其中,-C8H17均为直链烷基。
本发明中,步骤(3)所述萃取剂B中羧酸的体积分数为5~30%,例如可以是5%、10%、15%、20%、25%或30%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述萃取剂B的稀释剂包括煤油、Escaid 110、溶剂油、十二烷中的1种或至少2种的组合。
本发明中,所述溶剂可以是200号溶剂油和/或260号溶剂油。
本发明中,所述十二烷可以是正十二烷等。
优选地,所述萃取剂B使用前进行皂化。
优选地,所述皂化采用6~14mol/L的碱性皂化剂进行,例如可以是6mol/L、7mol/L、8mol/L、9mol/L、10mol/L、11mol/L、12mol/L、13mol/L或14mol/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合。
所述组合可以是氢氧化钠溶液和氢氧化钾溶液的组合或氢氧化钾溶液和氨水的组合等,但不限于所列举的组合,该范围内其他未列举的组合同样适用。
优选地,步骤(3)所述镍萃取为多级逆流分馏萃取,所述多级逆流分馏萃取的级数为2~30级,例如可以是2、3、5、10、15、20、25或30等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(3)所述镍萃取中所述萃取剂B与所述水相1的流比为(0.1~20):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、13:1、15:1、17:1、19:1或20:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(3)所述镍萃取中的搅拌速度为100~800r/min,例如可以是100r/min、150r/min、220r/min、300r/min、350r/min、370r/min、400r/min、500r/min、600r/min、700r/min、780r/min或790r/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(3)所述镍萃取的混合时间为5~30min,例如可以是5min、10min、15min、20min、25min或30min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(3)所述镍负载有机相经多级逆流洗涤后进行反萃,得到含金属离子溶液和再生有机相。
作为本发明优选的技术方案,步骤(3)所述洗涤为多级逆流洗涤。
优选地,所述洗涤的级数为2~20级,例如可以是2、3、4、5、6、7、8、9、10、12、13、15、16、18或19等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述再生有机相返回作为萃取剂使用。
本发明中,镍负载有机相的洗涤采用无机酸和/或酸化水、硫酸镍溶液洗涤进行;所述镍负载有机相和洗涤的流比为(0.1~10):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述无机酸和/或酸化水的pH值为0.1~2,例如可以是0.1、0.2、0.4、0.5、0.7、0.9、1.0、1.2、1.5、1.7、1.8或1.9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述的硫酸镍溶液为0.5~20g/L,例如可以是0.5g/L、1g/L、1.5g/L、5g/L、6g/L、7g/L、10g/L、12g/L、13g/L、15g/L、17g/L、18g/L、19g/L或20g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,负载镍有机相采用洗涤剂多级逆流洗涤后,再采用酸溶液反萃,反萃中负载镍钴锰有机相和酸的流比为(0.1~10):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述反萃剂中无机酸的浓度为0.5~4mol/L,例如可以是0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L或4mol/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,进一步优选地,所述的反萃剂的浓度为2mol/L。
本发明中,所述反萃级级数为3~10级,例如可以是3、4、5、6、7、8或9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,所述萃取剂C可以是膦类萃取剂和羧酸类萃取剂。
本发明中,所述膦类萃取剂为P507,所述羧酸类萃取剂为BC191、BC193、BC196等。
本发明中,所述萃取剂C的体积分数为5~30%,例如可以是5%、10%、15%、20%、25%或30%等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述钴萃取使用膦类萃取中的水相平衡pH为3~5,例如可以是3.1、3.4、3.5、3.7、4.0、4.3、4.6、4.8或4.9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述钴萃取使用羧酸类萃取中的水相平衡pH为5~7.8,例如可以是5.1、5.4、5.5、5.7、6.0、6.3、7.0、7.4或7.8等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述萃取剂C使用前进行皂化,皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合,所述组合可以是氢氧化钠溶液和氢氧化钾溶液的组合或氢氧化钾溶液和氨水的组合等,但不限于所列举的组合,该范围内其他未列举的组合同样适用。
优选地,所述皂化采用6~14mol/L的碱性皂化剂进行,例如可以是6mol/L、7mol/L、8mol/L、9mol/L、10mol/L、11mol/L、12mol/L、13mol/L或14mol/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述钴萃取为多级逆流分馏萃取,所述多级逆流萃取的级数为2~30级,例如可以是2、3、5、10、15、20、25或30等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述镍萃取中所述萃取剂C与所述水相3的流比为(0.1~20):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、13:1、15:1、17:1、19:1或20:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述钴萃取中的搅拌速度为100~800r/min,例如可以是100r/min、150r/min、220r/min、300r/min、350r/min、370r/min、400r/min、500r/min、600r/min、700r/min、780r/min或790r/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,步骤(4)所述钴萃取的混合时间为5~30min,例如可以是5min、10min、15min、20min、25min或30min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(4)所述钴负载有机相经多级逆流洗涤后进行反萃,得到含金属离子溶液和再生有机相。
作为本发明优选的技术方案,步骤(4)所述洗涤为多级逆流洗涤。
优选地,所述洗涤的级数为2~20级,例如可以是2、3、4、5、6、7、8、9、10、12、13、15、16、18或19等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述再生有机相返回作为萃取剂使用。
本发明中,钴负载有机相的洗涤采用无机酸和/或酸化水、硫酸钴溶液洗涤进行;所述镍负载有机相和洗涤的流比为(0.1~10):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述无机酸和/或酸化水的pH值为0.1~2,例如可以是0.1、0.2、0.4、0.5、0.7、0.9、1.0、1.2、1.5、1.7、1.8或1.9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述的硫酸钴溶液为0.5~20g/L,例如可以是0.5g/L、1g/L、1.5g/L、5g/L、6g/L、7g/L、10g/L、12g/L、13g/L、15g/L、17g/L、18g/L、19g/L或20g/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,负载镍有机相采用洗涤剂多级逆流洗涤后,再采用酸溶液反萃,反萃中负载钴有机相和酸的流比为(0.1~10):1,例如可以是0.1:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明中,所述反萃剂中无机酸的浓度为0.5~4mol/L,例如可以是0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L或4mol/L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,进一步优选地,所述的反萃剂的浓度为2mol/L。
本发明中,所述反萃级级数为3~10级,例如可以是3、4、5、6、7、8或9等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,锰萃取、镍萃取、钴萃取的反应设备为混合澄清槽。
作为本发明优选的技术方案,步骤(5)所述水相4经依次进行的除油及结晶,得到硫酸钠晶体。
优选地,所述结晶的方式为MVR蒸发。
本发明中,所述除油为采用现有技术常规的除油方法即可,实现油水分离就可以。
作为本发明优选的技术方案,所述方法包括如下步骤:
其特征在于,所述方法包括如下步骤:
(1)对所述料液使用硫酸钠和/或碳酸钠进行化学除杂,得到水相1和含铁铝渣液、对渣液进行压滤后得到含铁铝渣;
(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2,其中,萃取剂A包括磷型萃取剂、羧酸类萃取剂或肟类萃取剂中的1种或至少2种的组合;所述萃取剂A的体积分数为5~30%;所述锰萃取包括单级萃取或多级逆流萃取;所述锰萃取中使用的萃取剂A和所述料液的流比为(0.1~10):1;所述锰萃取中的搅拌速度为100~800r/min;所述锰萃取中的混合时间为5~30min;所述除杂萃取的设备为混合澄清槽;所述的锰萃取为多级逆流分馏萃取,级数为2~30级,锰负载有机经过洗涤后使用反萃剂反萃后,得到富锰溶液和再生有机,再生有机循环使用,减少成本。
(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3,其中,所述中使用的萃取剂B包括一种羧酸类萃取剂;所述羧酸类萃取剂结构式如式Ⅰ,命名为CPH88:
其中,-C8H17均为直链烷基。所述萃取剂B的体积分数为5~30%,所述萃取剂B的稀释剂包括溶剂油、煤油、Escaid110、十二烷中的1种或至少2种的组合,所述萃取剂B使用前使用6~14mol/L碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合进行皂化,所述镍萃取中所述萃取剂B与所述水相1的体积比为(0.1~20):1,所述镍萃取中的搅拌速度为100~800r/min,步骤(3)所述镍萃取中的混合时间为5~30min,所述镍萃取中使用的萃取设备为混合澄清槽,所述镍萃取的水相平衡pH值在1.9~5,所述多级逆流分馏萃取的级数为2~30级,所述反萃使用0.5~4mol/L无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合,所述反萃级级数为3~10级,所述反萃剂和镍负载有机相的体积比为1:(0.1~10),所述反萃取之前还包括对步骤(3)得到的镍负载有机相进行洗涤的步骤,所述洗涤的级数为2~20级,所述洗涤包括无机酸和/或酸化水、硫酸镍溶液洗涤,镍负载有机经过洗涤后使用反萃剂反萃后,得到硫酸溶液和再生有机,再生有机循环使用,减少成本。
(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4,其中,所述中使用的萃取剂可以是羧酸类萃取剂BC191、BC193、BC196,也可以是磷类萃取剂为P507,所述钴萃取使用的设备混合澄清槽,在萃取前,对萃取剂C使用碱性化合物进行皂化,所述碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合,所述碱性皂化剂的浓度范围为6~14mol/L,皂化后有机和水相逐级接触,所述钴萃取中所述萃取剂C与所述水相1的体积比为(0.1~20):1,搅拌速度控制在100~800r/min,所述钴萃取混合时间为5~30min,得到负载钴萃取经过洗涤和反萃后,得到硫酸钴溶液和再生有机,再生有机循环使用,减少成本。
本步骤中,萃取剂C因使用不同类型萃取剂所需要控制的水相平衡pH而有所不同,例如钴萃取当使用膦类萃取剂时,水相平衡pH为3~5,所述钴萃取使用羧酸类萃取中的水相平衡pH为5~7.8。
(5)对步骤(4)得到的水相4经依次进行的除油及结晶,得到硫酸钠晶体,废水经过处理后达标排放,所述结晶的方式为MVR蒸发。
本发明中,所述多级逆流分馏萃取是萃取分离操作法之一,含有被萃取物的水相及有机相分别从萃取器的两端流入,以相反方向流动,进行连续多级搅拌接触分层而达到分离的目的。
本发明中,相关工序的反应方程式如下:
羧酸类萃取剂皂化:HA(org)+NaOH→NaA(org)+H2O
羧酸类萃取剂萃取:2NaA(org)+MSO4→MA2(org)+Na2SO4
硫酸反萃:MA2(org)+H2SO4→2HA(org)+MSO4
其中:M为Fe3+、Cu2+、Al3+、Zn2+、Ni2+、Co2+、Mn2+等金属。
与现有技术方案相比,本发明具有以下有益效果:
(1)本发明提供的方法,利用羧酸类萃取剂CPH88,对金属镍进行前置萃取,该萃取剂对镍金属离子分离效果好,可以减少钙、镁等杂质金属离子的影响,同时低皂化率下萃取,减少酸碱耗量。
附图说明
图1是本发明实施例1中回收方法的示意图。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
本实施例提供一种含镍钴锰的料液中镍钴锰的回收方法,如图1所示。
本实施例中的料液为含镍钴锰的电池中间料液,料液的pH值为3.0,成分如下:
元素 | Fe | Al | Zn | Cu | Ni | Co | Mn | Ca | Mg |
含量(g/L) | 0.001 | 0.001 | 0.34 | 0.3 | 42 | 27 | 23 | 0.4 | 0.2 |
本实施例中,锰萃取选择P204作萃取剂,体积分数为25%,稀释剂为磺化煤油,使用10mol/L的NaOH溶液进行皂化,皂化度为42%,皂化有机相和水相的流比为2.5:1,反应设备使用混合澄清槽,混合时间为5min,搅拌速度为200r/min,设计萃取级数为10级,洗涤6级,洗去所夹带的镍钴等金属元素,洗涤余液并入水相2中,反萃4级,反萃剂选用2.5mol/L的硫酸。得到富锰溶液和再生有机相,再生有机循环使用,所得水相2进行下一步镍萃取。
对水相2进行镍萃取,本实施例中,使用CPH88作萃取剂,CPH88体积分数为25%,以Escaid110为稀释剂,使用10mol/L的NaOH溶液进行皂化,皂化度为30%,皂化有机相和水相2的流比为4:1,设定混合室混合时间为10min,搅拌速度为200r/min,反应设备使用混合澄清槽,设计萃取级数为5级,控制萃取水相平衡pH值在2~4之间,洗涤6级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相3中,反萃6级,反萃剂选用2.0mol/L的硫酸。得到硫酸镍溶液和再生有机相,再生有机循环使用,所得水相3进行下一步钴萃取。
对水相3进行钴萃取,本实施例中,使用BC191作萃取剂,BC191体积分数为25%,以Escaid110为稀释剂,使用10mol/L的NaOH溶液进行皂化,皂化度为40%,皂化有机相和水相2的流比为2:1,设定混合室混合时间为8min,搅拌速度为200r/min,反应设备使用混合澄清槽,设计萃取级数为7级,控制萃取水相平衡pH值在5~6.5之间,洗涤10级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相4中,反萃6级,反萃剂选用2.0mol/L的硫酸,钴负载有机与洗涤液或反萃液的体积为10:1,得到硫酸钴溶液和再生有机相,再生有机循环使用,所得水相3进行下一步硫酸钠析出。
对水相4除油后,使用MVR蒸发结晶。
本实施例中的锰萃取后水相中铁、铝、锌、铜含量<0.001g/L,Ni、Co、Mn的提取率分别为99.8%、99.7%及99.6%,反萃率为99.8%、99.8%及99.6%。
实施例2
本实施例中的料液为含镍钴锰的电池中间料液,料液的pH值为2.0,成分如下:
元素 | Fe | Al | Zn | Cu | Ni | Co | Mn | Ca | Mg |
含量(g/L) | 1.2 | 1.0 | 0.20 | 0.01 | 48 | 22 | 27 | 0.36 | 0.48 |
本实施例中,先使用20g/L的碳酸钠进行化学除杂、除去铁铝杂质,得到水相1用于锰萃取和含铁铝渣。
本实施例中,选择P204作萃取剂对水相1进行锰萃取,体积分数为25%,稀释剂为磺化煤油,使用26%的氨水溶液进行皂化,皂化度为30%,皂化有机相和水相的流比为2:1,反应设备使用混合澄清槽,混合时间为5min,搅拌速度为300r/min,设计萃取级数为8级,洗涤6级,洗去所夹带的镍钴等金属元素,洗涤余液并入水相2中,反萃4级,反萃剂选用2.5mol/L的硫酸。得到富锰溶液和再生有机相,再生有机循环使用,所得水相2进行下一步镍萃取。
对水相2进行镍萃取,本实施例中,使用CPH88作萃取剂,CPH88体积分数为25%,以磺化煤油为稀释剂,使用26%的氨水溶液进行皂化,皂化度为45%,皂化有机相和水相2的流比为5:1,设定混合室混合时间为10min,搅拌速度为300r/min,反应设备使用混合澄清槽,设计萃取级数为7级,控制萃取水相平衡pH值在2~4之间,洗涤8级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相3中,反萃6级,反萃剂选用2.0mol/L的硫酸。得到硫酸镍溶液和再生有机相,再生有机循环使用,所得水相3进行下一步钴萃取。
对水相3进行钴萃取,本实施例中,使用BC196作萃取剂,BC196体积分数为25%,以磺化煤油为稀释剂,使用26%的氨水溶液进行皂化,皂化度为30%,皂化有机相和水相2的流比为2:1,设定混合室混合时间为8min,搅拌速度为200r/min,反应设备使用混合澄清槽,设计萃取级数为7级,控制萃取水相平衡pH值在6~7之间,洗涤10级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相4中,反萃6级,反萃剂选用2.0mol/L的硫酸,钴负载有机与洗涤液或反萃液的体积为10:1,得到硫酸钴溶液和再生有机相,再生有机循环使用,所得水相3进行下一步硫酸钠析出。
对水相4除油后,使用MVR蒸发结晶。
本实施例中的化学除杂后的水相铁、铝含量<0.3g/L,锰萃取后水相中铁、铝、锌、铜含量<0.001g/L,Ni、Co、Mn的提取率分别为99.6%、99.7%及99.9%,反萃率为99.8%、99.8%及99.9%。
实施例3
本实施例提供一种含镍钴锰的料液中镍钴锰的回收方法,本实施例中的料液为含镍钴锰的电池中间料液,料液的pH值为5.2,成分如下:
元素 | Fe | Al | Zn | Cu | Ni | Co | Mn | Ca | Mg |
含量(g/L) | 0.001 | 0.001 | 0.001 | 0.001 | 40 | 27 | 23 | 0.30 | 0.56 |
本实施例中,选择P204作萃取剂对水相1进行锰萃取,体积分数为25%,稀释剂为260号溶剂油,使用浆状的氧化镁溶液进行皂化,皂化度为34%,皂化有机相和水相的流比为2:1,反应设备使用混合澄清槽,混合时间为10min,搅拌速度为500r/min,设计萃取级数为10级,洗涤12级,洗去所夹带的镍钴等金属元素,洗涤余液并入水相2中,反萃4级,反萃剂选用2.0mol/L的硫酸。得到富锰溶液和再生有机相,再生有机循环使用,所得水相2进行下一步镍萃取。
对水相2进行镍萃取,本实施例中,使用CPH88作萃取剂,CPH88体积分数为25%,以260号溶剂油为稀释剂,使用浆状的氧化镁溶液进行皂化,皂化度为30%,皂化有机相和水相2的流比为4:1,设定混合室混合时间为5min,搅拌速度为500r/min,反应设备使用混合澄清槽,设计萃取级数为10级,控制萃取水相平衡pH值在2~3之间,洗涤12级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相3中,反萃6级,反萃剂选用2.0mol/L的硫酸。得到硫酸镍溶液和再生有机相,再生有机循环使用,所得水相3进行下一步钴萃取。
对水相3进行钴萃取,本实施例中,使用BC196作萃取剂,BC196体积分数为25%,以260号溶剂油为稀释剂,使用浆状的氧化镁溶液进行皂化,,皂化度为25%,皂化有机相和水相2的流比为3:1,设定混合室混合时间为7min,搅拌速度为500r/min,反应设备使用混合澄清槽,设计萃取级数为10级,控制萃取水相平衡pH值在6~7之间,洗涤16级,洗去所夹带的钴钙镁等金属元素,洗涤余液并入水相4中,反萃6级,反萃剂选用2.0mol/L的硫酸,钴负载有机与洗涤液或反萃液的体积为10:1,得到硫酸钴溶液和再生有机相,再生有机循环使用,所得水相3进行下一步硫酸钠析出。
对水相4除油后,使用MVR蒸发结晶。
本实施例中的水相中铁、铝、锌、铜含量在0.001g/L左右,锰萃取的纯度>97%,Ni、Co、Mn的提取率分别为99.4%、99.2%及99.8%,反萃率为99.8%、99.8%及99.9%。
实施例4
与实施例2的区别在于控制水相3的平均pH为1.9,Ni、Co及Mn的提取率分别为99.9%、99.7%及99.9%,反萃率>99.5%,减少了萃取级数和碱耗量,实现了CPH88低pH高效萃取镍的优势。
实施例5
与实施例1的区别在于对将锰萃取的萃取剂由P204改为C272,Ni、Co及Mn的提取率分别为99.9%、99.9%及99.9%,反萃率>99.5%。
对比例1
与实施例1的区别仅在于控制钴萃取的水相平衡pH值7.6,Co的杂质含量达不到标准。
对比例2
与实施例3的区别仅在于镍萃取中的萃取剂CPH88替换为等量的P507,镍无法实现萃取分离。
通过上述实施例和对比例的结果可知,本发明提供的方法,通过利用萃取剂CPH88在低酸萃取镍的优点,可以实现前置高效分离镍,萃镍过程钙、镁等杂质金属离子的影响,在钴萃取过程中使用了羧酸类萃取BC196、BC191等,降低了分别回收镍、钴、锰的分离成本及杂质金属离子的提取净化成本。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (13)
1.一种从含镍钴锰的电池中间料液中分离镍钴锰的方法,其特征在于,所述方法包括如下步骤:
(1)对所述料液进行化学除杂,得到水相1和含铁铝渣;
(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2;
(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3;
(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4;
(5)对步骤(4)得到的水相4进行硫酸钠晶体富集分离,得到硫酸钠产品,废水经过处理后达标排放,
其中,所述中使用的萃取剂B包括一种羧酸类萃取剂;所述羧酸类萃取剂结构式如式Ⅰ,命名为CPH88:
其中,-C8H17均为直链烷基。
2.如权利要求1所述的方法,其特征在于,所述料液中的金属元素包括:Ni 1~60g/L,Co 1~50g/L,Mn 1~50g/L,Fe≤10g/L,Al≤1g/L,Cu≤10g/L,Zn≤5g/L,Ca约0.1~0.5g/L,Mg 0.1~50g/L。
3.如权利要求1或2所述的方法,铁铝去除剂为硫酸钠和/或碳酸钠溶液,优选地,铁铝去除剂为碳酸钠溶液,进一步优选地,碳酸钠的浓度在10~100g/L。
4.如权利要求1~3所述的方法,其特征在于,步骤(2)所述锰萃取中使用的萃取剂A包括磷型萃取剂、羧酸类萃取剂或肟类萃取剂中的1种或至少2种的组合;
优选地,所述羧酸萃取剂包括BC191、BC192、BC194或BC196中的1种或至少2种的组合;
优选地,所述的磷型萃取剂包括P204或C272中的1种或至少2种的组合;
优选地,所述萃取剂A的体积分数为5~30%;
优选地,所述萃取剂A的稀释剂包括溶剂油、煤油、Escaid110、己烷、庚烷、十二烷中的1种或至少2种的组合;
优选地,所述萃取剂A使用前进行皂化;
优选地,所述皂化采用6~14mol/L的碱性皂化剂进行;
优选地,所述碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合。
5.如权利1~4任一项所述的方法,其特征在于,步骤(2)所述锰萃取中使用的萃取剂A和所述料液的流比为(0.1~10):1;
优选地,步骤(2)所述锰萃取方式包括单级萃取或多级逆流分馏萃取;
优选地,步骤(2)所述多级逆流分馏萃取的级数为2~30级;
优选地,步骤(2)所述锰萃取中的搅拌速度为100~800r/min;
优选地,步骤(2)所述搅拌混合时间为5~30min;
优选地,步骤(2)所述锰萃取中使用的萃取设备为混合澄清槽、塔式填料萃取器,进一步优选地,步骤(2)所述除杂萃取中使用的萃取设备为混合澄清槽。
6.如权利要求1~5任一项所述的方法,其特征在于,所述萃取剂B的体积分数为5~30%;
优选地,所述萃取剂B的稀释剂包括溶剂油、煤油、Escaid110、己烷、庚烷、十二烷中的1种或至少2种的组合,进一步优化地煤油为磺化煤油;
优选地,所述萃取剂B使用前进行皂化;
优选地,所述皂化采用的碱性皂化剂进行;
优选地,所述碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合;
优选地,所述碱性皂化剂的浓度范围为6~14mol/L;
优选地,对萃取剂B的皂化度为5~60%。
7.如权利要求1~6任一项所述的方法,其特征在于,步骤(3)所述镍萃取中所述萃取剂B与所述水相1的体积比为(0.1~20):1;
优选地,步骤(3)所述镍萃取为多级逆流分馏萃取;
优选地,步骤(3)所述多级逆流分馏萃取的级数为2~30级;
优选地,步骤(3)所述镍萃取中的搅拌速度为100~800r/min;
优选地,步骤(3)所述镍萃取中的混合时间为5~30min;
优选地,步骤(3)所述镍萃取中的水相平衡pH为1.9~5;
优选地,步骤(3)所述镍萃取中使用的萃取设备为混合澄清槽、塔式填料萃取器,进一步优选地,步骤(3)所述镍萃取中使用的萃取设备为混合澄清槽。
8.如权利要求1~7任一项所述的方法,其特征在于,步骤(4)所述钴萃取使用萃取剂C进行多级逆流分馏萃取;
优选地,所述萃取剂C包括磷型萃取剂或羧酸类萃取剂;
优选地,所述磷类萃取剂包括P507;
优选地,所述羧酸类萃取剂包括BC191、BC193或BC196中的1种或至少2种的组合。
9.如权利要求1~8任一项所述的方法,其特征在于,所述萃取剂C的体积分数为5~30%;
优选地,所述萃取剂C的稀释剂包括溶剂油、煤油、Escaid110、己烷、庚烷、十二烷中的1种或至少2种的组合,进一步优化地,煤油为磺化煤油;
优选地,所述萃取剂C使用前进行皂化;
优选地,所述皂化采用的碱性皂化剂进行;
优选地,所述碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合;
优选地,所述碱性皂化剂的浓度范围为6~14mol/L;
优选地,对萃取剂C的皂化度为5~60%;
优选地,碱性皂化剂为10mol/L的氢氧化钠;
优选地,步骤(4)所述钴萃取中所述萃取剂C与所述水相1的体积比为(0.1~20):1;
优选地,步骤(4)所述钴萃取中的搅拌速度为100~800r/min;
优选地,步骤(4)所述钴萃取中的混合时间为5~30min;
优选地,步骤(4)所述钴萃取使用磷型萃取中的水相平衡pH为3~5;
优选地,步骤(4)所述钴萃取使用羧酸类萃取中的水相平衡pH为5~7.8;
优选地,步骤(4)所述钴萃取中使用的萃取设备为混合澄清槽、塔式填料萃取器,进一步优选地,步骤(4)所述镍萃取中使用的萃取设备为混合澄清槽;
优选地,步骤(4)所述多级逆流分馏萃取的级数为2~30级。
10.根据权利要求1~9任一项所述的分离方法,其特征在于,所述负载有机相反萃所用反萃剂包括无机酸;
优选地,所述无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合;
优选地,所述反萃剂中无机酸的浓度为0.5~4mol/L,进一步优选地,所述的反萃剂的浓度为2mol/L。
11.根据权利要求1~10任一项所述的分离方法,其特征在于,反萃级数为3~10级;
优选地,所述反萃剂和负载有机相的流比为1:(0.1~15);
优选地,所述负载有机相反萃取之前还包括对得到的负载有机相进行洗涤的步骤;
优选地,所述洗涤的级数为2~20级;
优选地,所述洗涤包括无机酸和/或酸化水、硫酸镍、硫酸钴溶液洗涤;
优选地,所述无机酸和/或酸化水的pH值为0.1~2;
优选地,所述的硫酸镍、硫酸钴溶液为0.5~20g/L。
12.如权利要求1~11任一项所述的方法,其特征在于,步骤(5)所述水相4经依次进行的除油及结晶,得到硫酸钠产品;
优选地,所述结晶的方式为MVR蒸发。
13.如权利要求1~12任一项所述的方法,其特征在于,所述方法包括如下步骤:
(1)对所述料液使用硫酸钠和/或碳酸钠进行化学除杂,得到水相1和含铁铝渣液、对渣液进行压滤后得到含铁铝渣;
(2)将步骤(1)得到的水相1使用萃取剂A进行锰萃取,得到锰负载有机相和水相2,其中,萃取剂A包括磷型萃取剂、羧酸类萃取剂或肟类萃取剂中的1种或至少2种的组合;所述萃取剂A的体积分数为5~30%;所述锰萃取包括单级萃取或多级逆流萃取;所述锰萃取中使用的萃取剂A和所述料液的流比为(0.1~10):1;所述锰萃取中的搅拌速度为100~800r/min;所述锰萃取中的混合时间为5~30min;所述锰萃取的设备优化为混合澄清槽;所述的锰萃取为多级逆流分馏萃取,级数为2~30级,锰负载有机经过反萃后得到粗制锰液;
(3)将步骤(2)得到的水相2使用萃取剂B进行镍萃取,得到镍负载有机相和水相3,对镍负载有机相进行洗涤和反萃后,获得硫酸镍溶液,其中,所述中使用的萃取剂B包括一种羧酸类萃取剂;所述羧酸类萃取剂结构式如式Ⅰ,命名为CHP88:
其中,-C8H17均为直链烷基,所述萃取剂B的体积分数为5~30%,所述萃取剂B的稀释剂包括溶剂油、煤油、Escaid110、己烷、庚烷、十二烷中的1种或至少2种的组合,所述萃取剂B使用前使用6~14mol/L碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合进行皂化,所述镍萃取中所述萃取剂B与所述水相2的体积比为(0.1~20):1,所述镍萃取中的搅拌速度为100~800r/min,步骤(3)所述镍萃取中的混合时间为5~30min,所述镍萃取中使用的萃取设备为混合澄清槽,所述多级逆流分馏萃取的级数为2~30级,所述反萃使用0.5~4mol/L无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合,所述反萃级级数为3~10级,所述反萃剂和负载有机相的体积比为1:(0.1~15);所述反萃取之前还包括对步骤(3)得到的负载有机相进行洗涤的步骤,所述洗涤的级数为2~20级,所述洗涤包括无机酸和/或酸化水、硫酸镍溶液洗涤;
(4)将步骤(3)得到的水相3使用萃取剂C进行钴萃取,得到钴负载有机相和水相4,对钴负载有机相进行洗涤和反萃后,获得硫酸钴溶液,所述萃取剂C包括磷型萃取剂或羧酸类萃取剂,所述萃取剂C在萃取有机相的体积浓度为5~30%,所述萃取剂C的稀释剂包括溶剂油、煤油、Escaid110、己烷、庚烷、十二烷中的1种或至少2种的组合,所述萃取剂C使用前使用6~14mol/L碱性皂化剂包括氢氧化钠溶液、氧化镁、氢氧化钾溶液或氨水中的1种或至少2种的组合,所述钴萃取中所述萃取剂C与所述水相3的体积比为(0.1~20):1,所述钴萃取中的搅拌速度为100~800r/min,所述萃取中的混合时间为5~30min,所述钴萃取中使用的萃取设备为混合澄清槽,所述多级逆流分馏萃取的级数为2~30级,所述反萃使用0.5~4mol/L无机酸包括盐酸、硝酸或硫酸中的任意一种或至少两种的组合,所述反萃级级数为3~10级,所述反萃剂和负载有机相的体积比为1:(0.1~15);所述反萃取之前还包括对步骤(3)得到的负载有机相进行洗涤的步骤,所述洗涤的级数为2~20级,所述洗涤包括无机酸和/或酸化水、硫酸钴溶液洗涤;
(5)对步骤(4)得到的水相4经依次进行的除油及结晶,得到硫酸钠晶体,废水经过处理后达标排放,所述结晶的方式为MVR蒸发。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011131786.2A CN112442596B (zh) | 2020-10-21 | 2020-10-21 | 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011131786.2A CN112442596B (zh) | 2020-10-21 | 2020-10-21 | 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112442596A true CN112442596A (zh) | 2021-03-05 |
CN112442596B CN112442596B (zh) | 2022-11-08 |
Family
ID=74735992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011131786.2A Active CN112442596B (zh) | 2020-10-21 | 2020-10-21 | 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112442596B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113122725A (zh) * | 2021-04-09 | 2021-07-16 | 上海电气集团股份有限公司 | 一种提升废旧锂电池金属回收率及纯度的方法 |
CN113621831A (zh) * | 2021-08-12 | 2021-11-09 | 材料科学姑苏实验室 | 一种从红土镍矿中提取镍的方法 |
CN114085994A (zh) * | 2021-11-09 | 2022-02-25 | 苏州博萃循环科技有限公司 | 一种从废镍氢电池中回收有价金属的方法 |
CN117295833A (zh) * | 2023-07-26 | 2023-12-26 | 青美邦新能源材料有限公司 | 一种低冰镍混合红土镍矿的氧压浸出方法 |
WO2024130854A1 (zh) * | 2022-12-21 | 2024-06-27 | 广东邦普循环科技有限公司 | 分离试剂及含钴铁锌钙硅的硫酸镁溶液资源化利用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140294703A1 (en) * | 2011-10-24 | 2014-10-02 | Sumitomo Metal Mining Co., Ltd. | Method for producing high-purity cobalt sulfate aqueous solution |
CN106319228A (zh) * | 2016-08-26 | 2017-01-11 | 荆门市格林美新材料有限公司 | 一种从含镍钴锰废渣中同步回收镍钴锰的方法 |
US20190152797A1 (en) * | 2016-10-31 | 2019-05-23 | Hunan Jinyuan New Materials Co., Ltd. | Method for preparing nickel/manganese/lithium/cobalt sulfate and tricobalt tetraoxide from battery wastes |
CN111519031A (zh) * | 2020-04-29 | 2020-08-11 | 江苏北矿金属循环利用科技有限公司 | 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法 |
CN111592459A (zh) * | 2020-06-28 | 2020-08-28 | 北京博萃循环科技有限公司 | 羧酸类化合物、其制备方法及应用 |
-
2020
- 2020-10-21 CN CN202011131786.2A patent/CN112442596B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140294703A1 (en) * | 2011-10-24 | 2014-10-02 | Sumitomo Metal Mining Co., Ltd. | Method for producing high-purity cobalt sulfate aqueous solution |
CN106319228A (zh) * | 2016-08-26 | 2017-01-11 | 荆门市格林美新材料有限公司 | 一种从含镍钴锰废渣中同步回收镍钴锰的方法 |
US20190152797A1 (en) * | 2016-10-31 | 2019-05-23 | Hunan Jinyuan New Materials Co., Ltd. | Method for preparing nickel/manganese/lithium/cobalt sulfate and tricobalt tetraoxide from battery wastes |
CN111519031A (zh) * | 2020-04-29 | 2020-08-11 | 江苏北矿金属循环利用科技有限公司 | 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法 |
CN111592459A (zh) * | 2020-06-28 | 2020-08-28 | 北京博萃循环科技有限公司 | 羧酸类化合物、其制备方法及应用 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113122725A (zh) * | 2021-04-09 | 2021-07-16 | 上海电气集团股份有限公司 | 一种提升废旧锂电池金属回收率及纯度的方法 |
CN113621831A (zh) * | 2021-08-12 | 2021-11-09 | 材料科学姑苏实验室 | 一种从红土镍矿中提取镍的方法 |
CN114085994A (zh) * | 2021-11-09 | 2022-02-25 | 苏州博萃循环科技有限公司 | 一种从废镍氢电池中回收有价金属的方法 |
WO2024130854A1 (zh) * | 2022-12-21 | 2024-06-27 | 广东邦普循环科技有限公司 | 分离试剂及含钴铁锌钙硅的硫酸镁溶液资源化利用方法 |
CN117295833A (zh) * | 2023-07-26 | 2023-12-26 | 青美邦新能源材料有限公司 | 一种低冰镍混合红土镍矿的氧压浸出方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112442596B (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112442596B (zh) | 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法 | |
CN114134341B (zh) | 一种含镍钴锰的料液中镍钴锰的回收方法 | |
CN106319228B (zh) | 一种从含镍钴锰废渣中同步回收镍钴锰的方法 | |
CN112538569B (zh) | 一种从含镍钴锰的料液中分离镍钴锰的方法 | |
CN112522517A (zh) | 一种回收镍钴锰锂的方法 | |
WO2022110822A1 (zh) | 一种铜和锰的分离方法及其应用 | |
CN112281001B (zh) | 一种利用含锰废液制备锰盐的方法 | |
CN114085996B (zh) | 一种含镍钴料协同处理回收镍钴的方法 | |
CN111850302B (zh) | 一种从锂电池中萃取金属离子的方法 | |
WO2022089203A1 (zh) | 采用萃取法除三元电池材料浸出液中铝的方法 | |
CN114250362A (zh) | 一种分离净化并回收废旧锂离子电池正极材料的方法及得到的正极材料 | |
CN114085994A (zh) | 一种从废镍氢电池中回收有价金属的方法 | |
CN115215368B (zh) | 一种基于溶剂萃取的废镉镍电池再生原料的方法 | |
CN114561541A (zh) | 一种电池正极片浸出液中同步回收镍钴锰的方法 | |
CN112342387A (zh) | 一种镍和镁的分离方法及其应用 | |
CN112501445B (zh) | 一种制备电池级镍钴锰的方法 | |
CN114134322A (zh) | 一种从含铜锰钙锌混合溶液中分离铜锰的方法 | |
CN114381619B (zh) | 一种制备高纯四氧化三锰和高纯氧化镁的方法 | |
CN114150152B (zh) | 一种镍钴锰酸锂及其制备方法 | |
CN112725626B (zh) | 一种萃取有机进料制备电池级镍钴锰的方法 | |
CN114645143B (zh) | 一种红土镍矿中镍钴铜锰的分离方法 | |
CN114107672A (zh) | 一种膦酸酯萃取剂及其对废锂电池浸出液中有价金属萃取分离的方法 | |
US20230332265A1 (en) | Method for separating nickel from lithium, and application thereof | |
CN111363919A (zh) | 一种锂矿石浸出液深度净化用复配萃取剂及净化工艺 | |
US20240274906A1 (en) | Method for Regenerated Raw Materials from Waste Cadmium Nickel Battery Based on Solvent Extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |