CN112442038B - Industrial preparation method of pemetrexed disodium - Google Patents
Industrial preparation method of pemetrexed disodium Download PDFInfo
- Publication number
- CN112442038B CN112442038B CN202011287095.1A CN202011287095A CN112442038B CN 112442038 B CN112442038 B CN 112442038B CN 202011287095 A CN202011287095 A CN 202011287095A CN 112442038 B CN112442038 B CN 112442038B
- Authority
- CN
- China
- Prior art keywords
- reaction
- stirring
- ethanol
- ethyl
- oxo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- NYDXNILOWQXUOF-UHFFFAOYSA-L disodium;2-[[4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]amino]pentanedioate Chemical compound [Na+].[Na+].C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)NC(CCC([O-])=O)C([O-])=O)C=C1 NYDXNILOWQXUOF-UHFFFAOYSA-L 0.000 title claims abstract description 41
- 229960003349 pemetrexed disodium Drugs 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 84
- 238000006243 chemical reaction Methods 0.000 claims abstract description 59
- 239000003054 catalyst Substances 0.000 claims abstract description 58
- 239000003513 alkali Substances 0.000 claims abstract description 49
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002808 molecular sieve Substances 0.000 claims abstract description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 109
- 238000003756 stirring Methods 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 28
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 27
- 239000007787 solid Substances 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 25
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 23
- 238000003786 synthesis reaction Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 20
- 238000005406 washing Methods 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- UANBXQTVHOIGGQ-LMOVPXPDSA-N diethyl (2s)-2-[[4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]amino]pentanedioate;4-methylbenzenesulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1.C1=CC(C(=O)N[C@@H](CCC(=O)OCC)C(=O)OCC)=CC=C1CCC1=CNC2=C1C(=O)N=C(N)N2 UANBXQTVHOIGGQ-LMOVPXPDSA-N 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 239000010703 silicon Substances 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 17
- AIZPFZIKHIJCQX-UHFFFAOYSA-N 4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoic acid Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(O)=O)C=C1 AIZPFZIKHIJCQX-UHFFFAOYSA-N 0.000 claims description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 15
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 claims description 15
- 239000012046 mixed solvent Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- -1 trialkoxysilyl ethylamine Chemical compound 0.000 claims description 10
- 150000007530 organic bases Chemical class 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000012044 organic layer Substances 0.000 claims description 8
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- GDEKSBCRJKAARB-UHFFFAOYSA-N methyl 4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1CCC1=CNC2=C1C(=O)N=C(N)N2 GDEKSBCRJKAARB-UHFFFAOYSA-N 0.000 claims description 6
- 238000004809 thin layer chromatography Methods 0.000 claims description 6
- GPIQOFWTZXXOOV-UHFFFAOYSA-N 2-chloro-4,6-dimethoxy-1,3,5-triazine Chemical compound COC1=NC(Cl)=NC(OC)=N1 GPIQOFWTZXXOOV-UHFFFAOYSA-N 0.000 claims description 5
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002585 base Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 4
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 230000000593 degrading effect Effects 0.000 claims description 3
- WSEQLMQNPBNMSL-FJXQXJEOSA-N diethyl (2s)-2-aminopentanedioate;hydron;chloride Chemical compound Cl.CCOC(=O)CC[C@H](N)C(=O)OCC WSEQLMQNPBNMSL-FJXQXJEOSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 229960005079 pemetrexed Drugs 0.000 claims description 3
- QPJVMBTYPHYUOC-UHFFFAOYSA-N Methyl benzoate Natural products COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 230000008034 disappearance Effects 0.000 claims description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 2
- 229940095102 methyl benzoate Drugs 0.000 claims description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N mono-n-propyl amine Natural products CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N monoethyl amine Natural products CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims 2
- 238000001704 evaporation Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 239000007809 chemical reaction catalyst Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 239000012467 final product Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000010189 synthetic method Methods 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000009776 industrial production Methods 0.000 description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229960002989 glutamic acid Drugs 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXBCPOWAVFMNQD-UHFFFAOYSA-N N-silylethanamine Chemical compound CCN[SiH3] PXBCPOWAVFMNQD-UHFFFAOYSA-N 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N benzoic acid ethyl ester Natural products CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229940014144 folate Drugs 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- AXNCVDQWNPJQOM-UHFFFAOYSA-N n-triethoxysilylpropan-1-amine Chemical compound CCCN[Si](OCC)(OCC)OCC AXNCVDQWNPJQOM-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 description 2
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- GIIOUWKWXHCKDV-UHFFFAOYSA-N 3-ethyl-2H-1,3-benzothiazole hydrobromide Chemical compound Br.C1=CC=C2N(CC)CSC2=C1 GIIOUWKWXHCKDV-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- VQIZOMXUBZSZBE-UHFFFAOYSA-N CCOC(CN([SiH3])[SiH3])OCC Chemical compound CCOC(CN([SiH3])[SiH3])OCC VQIZOMXUBZSZBE-UHFFFAOYSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 102000006933 Hydroxymethyl and Formyl Transferases Human genes 0.000 description 1
- 108010072462 Hydroxymethyl and Formyl Transferases Proteins 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000005497 Thymidylate Synthase Human genes 0.000 description 1
- 229940122149 Thymidylate synthase inhibitor Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 1
- KCWYOFZQRFCIIE-UHFFFAOYSA-N ethylsilane Chemical compound CC[SiH3] KCWYOFZQRFCIIE-UHFFFAOYSA-N 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 201000005282 malignant pleural mesothelioma Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000003734 thymidylate synthase inhibitor Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- WPPGURUIRLDHAB-UHFFFAOYSA-M triethyl(hexadecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CC WPPGURUIRLDHAB-UHFFFAOYSA-M 0.000 description 1
- OWGHQYPQNSZTFQ-UHFFFAOYSA-M triethyl(octadecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](CC)(CC)CC OWGHQYPQNSZTFQ-UHFFFAOYSA-M 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
The invention relates to a preparation method of pemetrexed disodium, which is characterized in that an alkali modified mesoporous molecular sieve catalyst is adopted as a catalyst to replace NaOH as a reaction catalyst, so that good yield and product purity can be obtained under the condition of reaction scale expansion.
Description
Technical Field
The invention relates to a preparation method of a raw material medicine, in particular to a preparation method of a pemetrexed disodium raw material medicine.
Background
Pemetrexed disodium (Pemetrexed disodium), chemically known as N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid disodium salt bishemihydrate. It is a novel pyrimidine analog, a thymidylate synthase inhibitor. It has antitumor effect by interfering with folate-dependent metabolic process in cell replication process, is a multi-target folate blocker, and can block multiple enzymes required in cancer cell division and proliferation process, including thymidylate synthase, dihydrofolate reductase, glycine ribonucleoside formyltransferase, etc.
Pemetrexed disodium was developed by elillilly in the united states and first marketed in 2004 in the united states for the treatment of malignant pleural mesothelioma and non-small cell lung cancer. It can also be used for treating head and neck cancer, colon cancer, breast cancer, etc. The pemetrexed disodium is also combined with other anti-cancer drugs, particularly cisplatin, so that a better effect on treating mesothelioma can be achieved.
Methods for the preparation of pemetrexed disodium are disclosed in, for example, US5248775, US6066732, CN1038415, CN1778798 and the like.
The preparation method of pemetrexed disodium mainly adopts the following route:
4- (2-formyl ethyl) ethyl benzoate (21) and paraformaldehyde react under the action of N-ethylbenzothiazole bromide and triethylamine to obtain 4-hydroxy-3-oxo butyl derivatives (22), the condensation reaction of the 4-hydroxy-3-oxo butyl derivatives (22) and ethyl cyanoacetate generates an intermediate (23), the intermediate and guanidine generate cyclization to generate 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] ethyl benzoate (24), the saponification reaction generates free acid (25) under the action of sodium hydroxide, the intermediate is condensed with L-diethyl glutamate to obtain an intermediate (26), and the intermediate is hydrolyzed to obtain N- (4- [2- (2-amino-4), 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid, and finally reacting with sodium hydroxide to obtain pemetrexed disodium hydrate (1).
The specific route is shown in the following chart:
however, in this method, there are some drawbacks. For example, in CN1406238, for example, it is disclosed that in the process of preparing pemetrexed disodium from pemetrexed, an acetone solvent is employed, and in the subsequent purification process, an acetone solvent is also used. However, this results in acetone solvent residue. For example, WO0114379 proposes crystallization by heating to 60 to 70 ℃ using a 3A ethanol/water mixed solvent, CN10778802, CN1778797 and the like disclose crystallization by heating to 45 to 50 ℃ using an ethanol/water mixed solvent, and WO0114379 also discloses crystallization by heating to 60 to 65 ℃ using an isopropanol/water mixed solvent.
However, these purification methods all involve a process of thermal crystallization from a mixed solvent. Because pemetrexed disodium are easily oxidized, oxidation of pemetrexed disodium is easily accelerated under heating, and product quality is reduced.
CN101417998 also discloses a method for the salting out purification of pemetrexed disodium by adding a water soluble salt solid to an aqueous solution of pemetrexed disodium without heating. However, this method still has a problem that only a part of water-soluble impurities having a relatively high polarity can be removed because of crystallization in an aqueous system, and it is difficult to remove organic impurities having a polarity less than that of pemetrexed disodium. Therefore, the pemetrexed disodium raw material purified by the method still has partial impurity content exceeding the impurity limit of the drug registration requirement. Due to the possible introduction of salt impurities, not only the actual yield of the product is reduced, but also the stability of the product may be affected.
CN102206218 discloses a purification method of pemetrexed disodium, which removes impurities by combining a crystallization operation of salting out a mixed solvent of organic solvent/water at normal temperature. However, this method has many steps, resulting in an increase in product cost.
In CN102911176A filed by the applicant itself, although the yield reaches 80% or more, in this method, the use of an aqueous sodium hydroxide solution as a catalyst is disadvantageous for industrial mass production because of the problem of environmental pollution caused by waste water discharge, and the yield is rapidly reduced after the reaction scale is enlarged to an industrial level, which cannot meet the demand of industrial production. In addition, the use of ethanol and dimethyl sulfoxide in the purification process is not recommended in industrial production because of its toxicity.
Therefore, it is desirable to provide a method for preparing pemetrexed disodium, which can be produced on an industrial scale.
Disclosure of Invention
In view of the above-mentioned problems, the present application aims to provide an industrial preparation method of pemetrexed disodium, which can obtain a final product in high yield without using sodium hydroxide and can improve purity, thereby avoiding the use of organic solvents in subsequent refining procedures.
In the technical scheme of the application, on the basis of the technical scheme disclosed in CN102911176A, by selecting a specific catalyst to replace sodium hydroxide, the environmental pollution caused by strong alkaline waste water can be effectively avoided, the reaction yield is improved, and the generation of impurities is reduced.
Molecular sieve catalysts are currently widely used in the industrial field due to their excellent catalyst properties. However, since there are many acid sites, the alkali modification is difficult, the activity is low, and the stability is insufficient, there are few studies on the alkali modification in the early stage.
However, the alkali-modified molecular sieve catalyst has a proper amount of mesoporous channels, can be used for catalyzing macromolecular reactions, improving the service life of the catalyst and improving the stability of the catalyst, and therefore, the attention to the alkali-modified molecular sieve catalyst is increasing in the last decade.
At present, there are many methods for preparing alkali-modified mesoporous molecular sieves, such as a framework removal method and a single template method. Among them, the soft template method is superior to the simple preparation process, and thus receives much attention. For example, the synthesis, characterization and catalytic performance research of novel acid-base bifunctional mesoporous materials of chenying et al, and the base modification and catalytic performance of the surface of the mesoporous organosilicon molecular sieve of Yuanxindong et al are all mentioned.
The applicant has surprisingly found, after a large number of experiments, that by using an alkali-modified mesoporous molecular sieve, the mass production of pemetrexed disodium can be effectively realized, and even under the condition of scale-up production, the yield can still be kept good, and meanwhile, the by-products are less, so that the effective control of the product quality can be realized.
The technical scheme of the application is as follows: the method comprises the following steps:
hydrolyzing methyl 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoate (S1) in the presence of an alkali modified mesoporous molecular sieve to generate acid (S2), condensing with L-diethyl glutamate to obtain an intermediate (S3), finally degrading in the presence of the alkali modified mesoporous molecular sieve, performing saponification to obtain a crude pemetrexed disodium disesquihydrate (S4), and purifying at normal temperature to obtain a final product.
In the technical scheme of the application, the mesoporous molecular sieve mentioned in Yuanxingdong et al 'alkali modification of mesoporous organosilicone molecular sieve surface and catalytic performance thereof' is adopted, the applicant researches the relationship between the components, preparation conditions and the like of the catalyst and the yield and absence of pemetrexed disodium, improves the composition and the like of the catalyst, and thus determines the optimal catalyst suitable for preparing pemetrexed disodium.
Specifically, the synthesis method of the alkali-modified mesoporous molecular sieve catalyst used in the application uses 1, 2-bis-trialkoxysilyl ethane as a silicon source, amine substances as a modified organic base raw material, and quaternary ammonium substances as a template agent.
The specific preparation method comprises the following steps: putting a template agent into water, heating to 40-60 ℃, adding alkali after the template agent is dissolved, adding a silicon source and a modified organic alkali raw material, cooling to room temperature, stirring to obtain an aged gel liquid, crystallizing and drying at 80-120 ℃, and performing post-treatment to obtain the alkali modified mesoporous molecular sieve catalyst.
The amine substance is trialkoxysilylamine or dialkoxyl disilazane, and preferably trialkoxysilylethylamine, trialkoxysilylpropylamine, dialkoxyl disilazane or dialkoxyl disilazane. The alkoxy is preferably ethoxy or propoxy.
The quaternary ammonium substances are high-carbon alkyl trialkyl ammonium chlorides, preferably octadecyl trimethyl ammonium chloride, octadecyl triethyl ammonium chloride, hexadecyl trimethyl ammonium chloride and hexadecyl triethyl ammonium chloride.
The alkali is sodium hydroxide or potassium hydroxide.
The molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.5-1: 0.1-1: 2-4, wherein the mass ratio of the template agent to water is 1: 200-300.
The applicant found that when the specific molecular sieve is used as a catalyst for pemetrexed disodium reaction, the catalytic performance is excellent, side reactions are few, and the reaction yield is not significantly reduced even if the reaction is scaled up to an industrial scale.
Specifically, the method of the invention comprises the following steps:
(1) synthesis of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2)
Firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidine-5-yl) ethyl ] methyl benzoate (S1), stirring for reaction, and detecting the basic disappearance of the raw material points by TLC to be the reaction end point. Ethanol was added, the pH of the reaction solution was adjusted to 4 with hydrochloric acid, and a yellow solid was precipitated, washed with ethanol, and dried in vacuo to obtain the target product (S-2).
(2) Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3)
Stirring S-2 and DMF under the protection of nitrogen, adding N-methylmorpholine, keeping the temperature at 10 ℃, adding 6-chloro-2, 4-dimethoxy-1, 3, 5-triazine, stirring uniformly, adding L-glutamic acid diethyl ester hydrochloride, heating the mixture to room temperature, continuing stirring for reaction, detecting the end point of a raw material point by TLC (thin layer chromatography), adding deionized water and dichloromethane, stirring, taking out an organic layer, extracting a water layer for 1 time by using dichloromethane, combining the organic layers, washing by using the deionized water, concentrating the organic layer to evaporate the dichloromethane, adding ethanol, slowly adding a solution consisting of p-toluenesulfonic acid and ethanol under heating, reacting at 40-60 ℃, cooling a reaction solution, filtering, and heating and drying the obtained solid to obtain a target product (S-3).
(3) Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4):
firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding an S-3 solution, heating to 65 ℃, and reacting under stirring. After the reaction is finished, cooling to room temperature, filtering, and washing the solid with deionized water to obtain the target product (S-4).
(4) Synthetic pemetrexed disodium
Firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding an S-4 solution, heating to 50 ℃, reacting under stirring, cooling to room temperature after the reaction is finished, adding an ethanol/water mixed solvent for recrystallization, filtering, washing with cold ethanol, and drying in vacuum to obtain the crystal of the disodium pemetrexed hemihydrate.
Wherein the ratio of ethanol to water is 1-5: 1-5.
Wherein the vacuum drying is carried out under heating at a temperature of 30-50 deg.C, preferably 40 deg.C, for a period of 3-10 hours.
The invention has the beneficial effects that:
by the technical scheme, NaOH solution is not used, the discharge of alkaline wastewater can be avoided in industrial production, the problem of yield reduction after production amplification can be solved, fewer byproducts are produced, and the purity of the final product is high, so that the method meets the national requirements on the purity of related chemical medicaments.
Detailed Description
The present invention will be further described with reference to the following examples. In the following examples, various procedures and methods not described in detail are conventional methods well known in the art. It should be understood that: the examples of the present invention are given for the purpose of illustration and not for the purpose of limitation, and therefore, the present invention is susceptible to modification in the form of a method of the present invention.
In the following description, unless otherwise specified, "%" and "part" are both expressed by weight.
Catalyst preparation example 1: preparation of catalyst A (see Yuanxingdong et al alkali modification and catalytic Properties of mesoporous organosilicate molecular sieves)
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: placing a template agent of octadecyl trimethyl ammonium chloride into water, heating to 40 ℃, stirring for 30 minutes until the solution is dissolved, adding NaOH, stirring until the solution is transparent, cooling to room temperature, adding a silicon source of 1, 2-bis (trialkoxysilyl) ethane and a modified organic base raw material of triethoxysilylpropylamine, stirring for 10 hours at room temperature to obtain an aged gel liquid, transferring the gel liquid into a stainless steel thermal synthesis reaction kettle, sealing, crystallizing for 48 hours at 100 ℃, centrifuging, washing and drying a solid with water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.7: 0.25: 3, the mass ratio of the template agent to the water is 1: 200.
catalyst preparation example 2: preparation of catalyst B
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: placing a template agent of octadecyl trimethyl ammonium chloride into water, heating to 40 ℃, stirring for 30 minutes until the solution is dissolved, adding NaOH, stirring until the solution is transparent, cooling to room temperature, adding silicon source 1, 2-bis (trialkoxysilyl) ethane and modified organic base raw material of triethoxy silyl ethylamine, stirring for 12 hours at room temperature to obtain aged gel liquid, transferring the gel liquid into a stainless steel thermal synthesis reaction kettle for sealing, crystallizing for 72 hours at 100 ℃, centrifuging, washing and drying a solid by water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.6: 0.3: 3, the mass ratio of the template agent to the water is 1: 200.
catalyst preparation example 3: preparation of catalyst C
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: placing a template agent of octadecyl trimethyl ammonium chloride into water, heating to 40 ℃, stirring for 30 minutes until the solution is dissolved, adding NaOH, stirring until the solution is transparent, cooling to room temperature, adding a silicon source of 1, 2-bis (trialkoxysilyl) ethane and a modified organic base raw material of diethoxydiallypropylamine, stirring for 16 hours at room temperature to obtain an aged gel liquid, transferring the gel liquid into a stainless steel thermal synthesis reaction kettle, sealing, crystallizing for 48 hours at 100 ℃, centrifuging, washing and drying a solid by water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.8: 0.4: 3, the mass ratio of the template agent to the water is 1: 250.
catalyst preparation example 4: preparation of catalyst D
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: placing a template agent, namely hexadecyltrimethylammonium chloride into water, stirring for 30 minutes at room temperature until the hexadecyltrimethylammonium chloride is dissolved, adding NaOH, stirring until the solution is transparent, cooling to the room temperature, then adding a silicon source, namely 1, 2-bis (trialkoxysilyl ethane), and a modified organic base raw material, namely triethoxysilylpropylamine, stirring for 12 hours at the room temperature to obtain an aged gel liquid, transferring the gel liquid into a stainless steel hydrothermal synthesis reaction kettle for sealing, crystallizing for 60 hours at 90 ℃, centrifuging, washing and drying a solid with water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material to the alkali is 1: 0.8: 0.5: 3, the mass ratio of the template agent to the water is 1: 300.
catalyst preparation example 5: preparation of catalyst E
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: placing a template agent of hexadecyl trimethyl ammonium chloride into water, stirring for 30 minutes at room temperature until the solution is dissolved, adding NaOH, stirring until the solution is transparent, cooling to the room temperature, then adding silicon source 1, 2-bis (trialkoxy silicon-based ethane and modified organic base raw material of diethoxy disilyl ethylamine, stirring for 12 hours at the room temperature to obtain aged gel liquid, transferring the gel liquid into a stainless steel hydrothermal synthesis reaction kettle for sealing, crystallizing for 60 hours at 90 ℃, centrifuging, washing and drying a solid by water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.5: 0.7: 3, the mass ratio of the template agent to the water is 1: 300.
catalyst preparation example 5: preparation of catalyst F
A synthetic method of an alkali modified molecular sieve catalyst comprises the following steps: putting a template agent of hexadecyltrimethylammonium chloride into water, stirring for 30 minutes at room temperature until the hexadecyltrimethylammonium chloride is dissolved, adding NaOH, stirring until the solution is transparent, cooling to the room temperature, then adding silicon source 1, 2-bis (trialkoxy) silyl ethane and modified organic base raw material of triethoxy silyl ethylamine, stirring for 12 hours at the room temperature to obtain aged gel liquid, transferring the aged gel liquid into a stainless steel hydrothermal synthesis reaction kettle, sealing, crystallizing for 60 hours at 90 ℃, centrifuging, washing and drying a solid by using water, and calcining for 6 hours at 550 ℃ to obtain an alkali modified molecular sieve catalyst;
the molar ratio of the silicon source, the template agent, the modified organic alkali raw material and the alkali is 1: 0.6: 0.8: 3, the mass ratio of the template agent to the water is 1: 200.
comparative example 1 (see CN102911176A example 1):
(I) synthesis of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2)
The reaction formula is as follows:
feeding:
methyl 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoate (S-1) 58.4g
2mol/L sodium hydroxide 200ml
Ethanol 200ml
58.4g S-1 and 200ml2mol/l sodium hydroxide were added to a three-necked flask, and when the reaction was stirred at 45 ℃ for 3 hours, the starting point substantially disappeared as the end point of the reaction by TLC (developing solvent: ethyl acetate: cyclohexane: 4: 1). 200ml of ethanol was added thereto, the reaction solution was adjusted to pH 4 with 5mol/L hydrochloric acid under cooling with water, and a yellow solid was precipitated, filtered, washed with 50% ethanol, and vacuum-dried at 50 ℃ for 5 hours to obtain 40.6g of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2) as a pale yellow solid, with a yield of 76.0%.
(II) Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3)
The reaction formula is as follows:
feeding:
adding 40g S-2 and 200ml DMF into a four-mouth bottle, stirring for 30 minutes under the protection of nitrogen, adding 31.2g of N-methylmorpholine, cooling to less than 5 ℃ in an ice bath, adding 24g of 6-chloro-2, 4-dimethoxy-1, 3, 5-triazine, stirring for 1 hour, adding 33.6g of L-diethyl glutamate hydrochloride, heating the mixture to room temperature, continuing stirring for 3 hours, detecting that the raw material point basically disappears as the reaction end point by TLC (developing agent: ethyl acetate: cyclohexane 4: 1), adding 300ml of deionized water and 300ml of dichloromethane, stirring for 15 minutes, separating an organic layer, extracting 1 time by using 200ml of dichloromethane for a water layer, combining the organic layer, washing twice by using 400ml of deionized water, concentrating and distilling the dichloromethane by adding 500ml of ethanol, diluting until no solvent is distilled out, adding 500ml of ethanol, heating to 75 ℃, dropwise adding a solution consisting of 56g of p-toluenesulfonic acid and 200ml of ethanol, refluxing for 2 hours after dropwise adding, cooling the reaction solution to about 5 ℃, filtering, and drying the solid at 50 ℃ in vacuum to obtain 63g of white-like solid, namely N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonic acid salt (S-3), wherein the yield is 71.0%.
(III) Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4)
The reaction formula is as follows:
feeding proportion:
S-3 52.4g
2mol/L sodium hydroxide 200ml
52.4g S-3 and 200ml of 2mol/L sodium hydroxide solution are added into a three-neck flask, the mixture is stirred for 1 hour, the pH value is adjusted to 3 by 0.5mol/L hydrochloric acid solution, and the obtained suspension is heated to 65 ℃ and the temperature is controlled for reaction for 2.5 hours. Cooling to room temperature, filtering, washing the solid with deionized water to obtain N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidine-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4).
(IV) Synthesis of Pemetrexed disodium
The reaction formula is as follows:
feeding:
s-4 all of the previous step
0.5mol/L sodium hydroxide 200ml
Acetone 300ml
Adding the S-4 obtained in the previous step and 200ml of 0.5mol/L sodium hydroxide into a three-neck flask, stirring for 1 hour, filtering to remove insoluble substances to obtain a transparent solution, adjusting the pH to 8 by using 0.5mol/L hydrochloric acid, heating the obtained solution to 50 ℃, stirring for 30 minutes, cooling to room temperature, adding 300ml of a mixed solvent of ethanol and dimethyl sulfoxide (the volume ratio is 10: 1.8), stirring for 10 minutes, stirring for 2 hours at 0 ℃, filtering, washing a solid by using 60ml of a mixed solvent of ethanol and dimethyl sulfoxide (the volume ratio is 10: 1.8), and drying in vacuum at 50 ℃ for 5 hours to obtain 27.2g of crude pemetrexed disodium, wherein the yield of the third step and the fourth step is 65.9% (based on S-3).
(V) refining pemetrexed disodium:
27.2g of crude pemetrexed disodium is taken and added into 200ml of water for dissolving, filtration is carried out, 280ml of mixed solvent of ethanol and dimethyl sulfoxide (volume ratio is 10: 2.0) is added into filtrate, stirring is carried out for 15 minutes, the mixture is placed at minus 6 ℃ for 2 hours, filtration is carried out, cold ethanol washing is carried out, vacuum drying is carried out at 50 ℃ for 5 hours, 21.6g of crystal of the disesquihydrate of pemetrexed disodium is obtained, the yield is 79.4%, and the HPLC purity of the product is 99.3%.
Comparative example 2 (amplified experiment of comparative example 1)
(I) Synthesis of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2)
Feeding:
6.2kg of methyl 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoate (S-1)
2mol/L sodium hydroxide 30L
30l of ethanol
6.2kgS-1 and 30l of 2mol/l sodium hydroxide were added to a reaction vessel, and the mixture was stirred at 40 ℃ for reaction for 3 hours, 30l of ethanol was added after the reaction was completed, the reaction solution was taken out, the pH of the reaction solution was adjusted to 4 with dilute hydrochloric acid, a yellow solid was precipitated, and the yellow solid was filtered, washed with 50% ethanol, and vacuum-dried at 50 ℃ for 5 hours to obtain 3.81kg of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2) as a pale yellow solid with a yield of 64.0%.
Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3)
Adding the S-2 and 6000ml of DMF into a reaction kettle, adding 200g of N-methylmorpholine, stirring uniformly under the protection of nitrogen, adding 150g of 6-chloro-2, 4-dimethoxy-1, 3, 5-triazine, stirring uniformly, slowly adding 3kg of L-diethyl glutamate hydrochloride, heating the mixture to room temperature, continuing stirring for 3 hours, adding a solution consisting of 1.4kg of p-toluenesulfonic acid and 2L of ethanol after the reaction is finished, heating to 70 ℃ for reaction, reducing the temperature to room temperature after the reaction is finished, taking out the reaction solution, filtering, and drying the solid in vacuum at 50 ℃ to obtain 5.5kg of white-like solid, namely N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2 ], 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3) in 68.5% yield.
(III) Synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4)
The above S-3 and 20L of a 2mol/L sodium hydroxide solution were added to the reaction vessel, stirred for 1 hour, adjusted to pH 3 with 0.5mol/L hydrochloric acid solution, and reacted at 65 ℃ for 3 hours. Cooling to room temperature, taking out the reaction liquid, filtering, and washing the solid with deionized water to obtain N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidine-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4).
(IV) Synthesis of Pemetrexed disodium
Adding the S-4 and 20L of 0.5mol/L sodium hydroxide into a reaction kettle, stirring for 1 hour, taking out reaction liquid, filtering to remove insoluble substances to obtain transparent solution, adjusting the pH to 8 by using 0.5mol/L hydrochloric acid, heating the obtained solution to 50 ℃, stirring for 30 minutes, adding 10L of mixed solvent of ethanol and dimethyl sulfoxide (the volume ratio is 10: 1.8), stirring for 2 hours, filtering, washing a solid by using the mixed solvent of the ethanol and the dimethyl sulfoxide (the volume ratio is 10: 1.8), and drying in vacuum for 5 hours at 50 ℃ to obtain 2.4kg of crude pemetrexed disodium, wherein the yield of the third step and the fourth step is 58.1 percent (based on S-3).
(V) refining pemetrexed disodium:
and (2) adding the crude pemetrexed disodium product into 10l of water for dissolving, filtering, adding 5l of mixed solvent (the volume ratio is 10: 2.0) of ethanol and dimethyl sulfoxide into the filtrate, stirring for 15 minutes, standing for 2 hours, filtering, washing with cold ethanol, and vacuum-drying at 50 ℃ for 5 hours to obtain crystals of the dimeric hemihydrate of the pemetrexed disodium, wherein the HPLC purity of the product is 99.3%.
As can be seen by comparing comparative example 1 and comparative example 2 above, the yield is significantly reduced upon direct scale-up of the protocol of CN 102911176A.
Example 1
The same procedure as in comparative example 2 was followed, except that 150g of catalyst A was fixed in the reaction vessel and the reaction was carried out by adding the reaction materials without using NaOH solution in step 1 and step 3, and recrystallization purification was carried out using a solvent of ethanol and water (volume ratio 1: 1) in steps 4 and 5.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 82.1 percent
Step 2: the yield is 67.6%
And 3, step 4: the yield is 68 percent
And 5: and (3) product purity: 99.1 percent
Example 2
The same procedure as in example 1 was repeated, except that 150g of catalyst B was used in step 1 and step 3, as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 80.6 percent
Step 2: the yield is 69.1 percent
And 3, step 4: the yield is 69.1 percent
And 5: and (3) product purity: 99.3 percent of
Example 3
The same procedure as in example 1 was repeated, except that 150g of catalyst C was used in steps 1 and 3, as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 83.2 percent
Step 2: the yield is 67.9%
And 3, step 4: the yield is 70.2 percent
And 5: and (3) product purity: 99.4 percent
Example 4
The procedure of example 1 was repeated, except that 150g of catalyst D was used in step 1 and step 3, as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 80.9%
Step 2: the yield is 67.6%
And 3, step 4: the yield is 69.3 percent
And 5: and (3) product purity: 99.1 percent
Example 5
The procedure of example 1 was repeated, except that 150g of catalyst E was used in step 1 and step 3, as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 81.1%
Step 2: the yield is 67.6%
And 3, step 4: the yield is 68 percent
And 5: the product purity is as follows: 99.1 percent
From the above examples it can be seen that when using the base modified mesoporous molecular sieve specified in the present application, the yield of steps 1,3 is not reduced after the reaction is scaled up to industrial scale, maintaining a yield comparable to that at laboratory scale. When the mixed solvent of ethanol and water is used for recrystallization, the purity is basically equivalent to that of the mixed solvent of ethanol and dimethyl sulfoxide.
Example 6
The procedure was carried out in the same manner as in example 1 except that 100g of catalyst A was used in step 1 and step 3 as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 79.9 percent
Step 2: the yield is 69.1 percent
And 3, step 4: the yield is 68.7 percent
And 5: the product purity is as follows: 99.4 percent
Example 7
The procedure was carried out in the same manner as in example 1 except that 200g of catalyst A was used in step 1 and step 3 as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 81.1%
Step 2: the yield is 68.1 percent
And 3, step 4: the yield is 69 percent
And 5: and (3) product purity: 99.5 percent
Example 8
The procedure was carried out in the same manner as in example 1 except that 250g of catalyst A was used in step 1 and step 3 as compared with example 1.
The yields and final product purities for the various steps were as follows:
step 1: the yield is 81.8 percent
Step 2: the yield is 67.1 percent
And 3, step 4: the yield is 70.5 percent
And 5: the product purity is as follows: 99.4 percent
It can be seen from the above examples that the amount of molecular sieve used does not have much influence on the reaction yield, and that the yield is slightly increased only when the amount is increased in step 3. And has no obvious influence on the purity of the final product.
According to the data, the technical scheme of the application can effectively ensure the relevant indexes such as product yield, product purity and the like even if the reaction scale is enlarged to industrial production. Is obviously superior to the prior art in all aspects. And the molecular sieve is used for replacing NaOH, so that the environmental problem caused by wastewater discharge in industrial production can be avoided, and the current environmental protection requirement is better met.
Claims (6)
1. A preparation method of pemetrexed disodium is characterized in that,
the method comprises the following steps:
(1) synthesis of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2)
In the presence of an alkali modified mesoporous molecular sieve catalyst, degrading methyl 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoate (S-1) to obtain a target product (S-2);
(2) synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3)
Mixing S-2, N-methylmorpholine and 6-chloro-2, 4-dimethoxy-1, 3, 5-triazine in a solvent under the protection of nitrogen, adding L-glutamic acid diethyl ester hydrochloride after uniformly stirring, reacting under stirring, adding a solution consisting of p-toluenesulfonic acid and ethanol, and continuously reacting to obtain a target product (S-3);
(3) synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4):
in the presence of an alkali modified mesoporous molecular sieve catalyst, degrading the (S-3) to obtain a target product (S-4);
(4) synthetic pemetrexed disodium
Reacting (S-4) with NaOH to obtain pemetrexed disodium;
the preparation method of the alkali modified mesoporous molecular sieve catalyst comprises the following steps: putting a template agent into water, heating to 40-60 ℃, adding alkali after the template agent is dissolved, adding a silicon source and a modified organic alkali raw material, cooling to room temperature, stirring to obtain an aged gel liquid, crystallizing and drying at 80-120 ℃, and performing post-treatment to obtain an alkali modified mesoporous molecular sieve catalyst;
the 1, 2-bis-trialkoxysilyl ethane is a silicon source, and the modified organic base raw material is trialkoxysilyl ethylamine, trialkoxysilyl propylamine, dialkoxyl disilanyl ethylamine or dialkoxyl disilanyl propylamine, wherein the alkoxy is ethoxy and propoxy;
quaternary ammonium substances are used as template agents, and the quaternary ammonium substances are octadecyl trimethyl ammonium chloride and hexadecyl trimethyl ammonium chloride.
2. The production method according to claim 1,
the method comprises the following steps:
(1) synthesis of 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoic acid (S-2)
Firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding 4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidine-5-yl) ethyl ] methyl benzoate (S-1), stirring for reaction, and detecting the basic disappearance of a raw material point by TLC to be a reaction end point; adding ethanol, adjusting the pH value of the reaction solution to be 4 by hydrochloric acid, separating out yellow solid, washing by the ethanol, and drying in vacuum to obtain a target product (S-2);
(2) synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid diethyl ester p-toluenesulfonate (S-3)
Stirring S-2 and DMF under the protection of nitrogen, adding N-methylmorpholine, keeping the temperature at 10 ℃, adding 6-chloro-2, 4-dimethoxy-1, 3, 5-triazine, stirring uniformly, adding L-glutamic acid diethyl ester hydrochloride, heating the mixture to room temperature, continuing stirring for reaction, detecting the end point of a raw material by TLC (thin layer chromatography), adding deionized water and dichloromethane, stirring, taking out an organic layer, extracting a water layer for 1 time by using dichloromethane, combining the organic layers, washing by using the deionized water, concentrating and evaporating the dichloromethane of the organic layer, adding ethanol, slowly adding a solution consisting of p-toluenesulfonic acid and ethanol under heating, reacting at 40-60 ℃, cooling a reaction solution, filtering, and heating and drying the obtained solid to obtain a target product (S-3);
(3) synthesis of N- (4- [2- (2-amino-4, 7-dihydro-4-oxo-3H-pyrrolo [2, 3-d ] pyrimidin-5-yl) ethyl ] benzoyl) -L-glutamic acid (S-4):
firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding an S-3 solution, heating to 65 ℃, and reacting under stirring. After the reaction is finished, cooling to room temperature, filtering, and washing the solid with deionized water to obtain a target product (S-4);
(4) synthetic pemetrexed disodium
Firstly fixing the prepared alkali modified mesoporous molecular sieve catalyst in a reaction kettle, then adding an S-4 solution and NaOH, heating to 50 ℃, reacting under stirring, cooling to room temperature after the reaction is finished, adding an ethanol/water mixed solvent for recrystallization, filtering, washing with cold ethanol, and drying in vacuum to obtain crystals of the disodium pemetrexed dihydrate;
3. the method of claim 2, wherein the molar ratio of the silicon source, the templating agent, the modified organic base starting material, and the base is 1: 0.5-1: 0.1-1: 2-4, wherein the mass ratio of the template agent to water is 1: 200-300.
4. The method according to claim 2, wherein the ratio of ethanol to water in the reaction is 1 to 5: 1-5.
5. The method according to claim 2, wherein the vacuum drying is carried out under heating at a temperature of 30 to 50 ℃ for 3 to 10 hours.
6. The method of claim 5, wherein the temperature is 40 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011287095.1A CN112442038B (en) | 2020-11-17 | 2020-11-17 | Industrial preparation method of pemetrexed disodium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011287095.1A CN112442038B (en) | 2020-11-17 | 2020-11-17 | Industrial preparation method of pemetrexed disodium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112442038A CN112442038A (en) | 2021-03-05 |
CN112442038B true CN112442038B (en) | 2022-09-02 |
Family
ID=74738615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011287095.1A Active CN112442038B (en) | 2020-11-17 | 2020-11-17 | Industrial preparation method of pemetrexed disodium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112442038B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102911176B (en) * | 2012-10-10 | 2015-07-22 | 德州德药制药有限公司 | Preparation method of pemetrexed disodium |
CN111333658A (en) * | 2020-05-06 | 2020-06-26 | 贵州联科中贝制药科技有限公司 | Preparation method of pemetrexed disodium hydrate |
-
2020
- 2020-11-17 CN CN202011287095.1A patent/CN112442038B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112442038A (en) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100355983B1 (en) | Chloropyrimidine Intermediates | |
JP5581401B2 (en) | Synthesis method of dasatinib and its intermediate | |
US6586576B2 (en) | Preparation method of azithromycin hydrates | |
CN102911176B (en) | Preparation method of pemetrexed disodium | |
CN113087712B (en) | L-amino acid-6-gliotoxin ester trifluoroacetate and preparation method thereof | |
EP3322704B1 (en) | Crystalline form of n-[(3-amino-3-oxetanyl)methyl]-2-(2,3-dihydro-1,1-dioxido-1,4-benzothiazepin-4(5h)-yl)-6-methyl-4-quinazolinamine for the treatment of respiratory syncytial virus (rsv) infections | |
CN112442038B (en) | Industrial preparation method of pemetrexed disodium | |
CN107739400A (en) | A kind of synthetic method of lysine dipeptides | |
CN112979544B (en) | Preparation method of cabozitinib or salt thereof | |
CN104341435B (en) | The process for purification of ceftriaxone sodium | |
CN112174970B (en) | Method for preparing pemetrexed disodium with high yield | |
JP2503056B2 (en) | Method for producing 1,6-di (Nup3) -cyano-Nup1) -guanidino) hexane | |
EP4455156A1 (en) | Preparation method for oxidized glutathione and crystal form and impurity thereof | |
CN102199132A (en) | Method for preparing 2-(2-amino-4-thiazole)-2(Z)-[[(tertbutyloxycarbonyl) methoxyl] imido] acetic acid and salt thereof | |
WO2021135891A1 (en) | Praziquantel synthesis method | |
AU9547698A (en) | Process for the synthesis of chloropurine intermediates | |
US20190112298A1 (en) | Process for the preparation of 1-(arylmethyl)quinazoline-2,4(1h,3h)-diones | |
CN106957296B (en) | 5- ((alkoxymethylene) amino) thienyl-2-formyl) -L-glutamic acid dialkyl ester and preparation method thereof | |
CN1314685C (en) | Production method of 2,6-dihalopurine | |
CN114736162B (en) | Decarboxylated carnosine crystal form and preparation method thereof | |
CN113045491B (en) | Preparation method of lenvatinib and intermediate | |
CN120157673A (en) | Methano butterfly New method for purifying the same | |
US6593475B1 (en) | Preparation of derivative of 3-sulfonamido-4-phenylaminopyridine | |
CN118994050A (en) | Dasatinib intermediate Synthesis method of intermediate | |
WO2017029584A1 (en) | Amorphous form of bosutinib |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |