CN112433294B - Terahertz waveguide based on double negative curvature cladding structures - Google Patents
Terahertz waveguide based on double negative curvature cladding structures Download PDFInfo
- Publication number
- CN112433294B CN112433294B CN202011348057.2A CN202011348057A CN112433294B CN 112433294 B CN112433294 B CN 112433294B CN 202011348057 A CN202011348057 A CN 202011348057A CN 112433294 B CN112433294 B CN 112433294B
- Authority
- CN
- China
- Prior art keywords
- cladding
- circular
- waveguide
- elliptical
- negative curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Waveguides (AREA)
Abstract
本发明公开了一种基于双负曲率包层结构的太赫兹波导,它包括椭圆形包层管区域,圆形包层管区域,聚合物包覆层,纤芯区域;椭圆形包层管区域由6个间隔60°等间距环形排列的聚合物结构单元组成;圆形包层管区域由6个间隔60°等间距环形排列的聚合物结构单元组成;椭圆形管与圆形管单元结构相互连接构成波导的双负曲率包层区域。聚合物包覆层作为波导的包覆层实现了整个波导结构的几何完整性。太赫兹波从波导中心空芯输入,经过椭圆形包层管区域和圆形包层管区域的相互作用,特定频率的太赫兹波可以被有效束缚在波导纤芯内部,实现传输功能。本发明具有结构简单,性能高,损耗低,易于加工等优点。
The invention discloses a terahertz waveguide based on a double negative curvature cladding structure, which comprises an elliptical cladding tube area, a circular cladding tube area, a polymer cladding layer, a fiber core area; It is composed of 6 polymer structural units arranged in a ring at an equal interval of 60°; the circular cladding tube area is composed of 6 polymer structural units arranged in a ring at an equal interval of 60°; the oval tube and the circular tube unit are mutually structured. Connect the double negative curvature cladding regions that make up the waveguide. The polymer cladding layer acts as the cladding layer of the waveguide to achieve the geometric integrity of the entire waveguide structure. The terahertz wave is input from the hollow core of the waveguide, and through the interaction between the elliptical cladding tube area and the circular cladding tube area, the terahertz wave of a specific frequency can be effectively bound inside the waveguide core to realize the transmission function. The invention has the advantages of simple structure, high performance, low loss, easy processing and the like.
Description
技术领域technical field
本发明涉及高传输性能太赫兹波导,尤其涉及基于双负曲率包层结构的太赫兹波导。The present invention relates to a terahertz waveguide with high transmission performance, in particular to a terahertz waveguide based on a double negative curvature cladding structure.
背景技术Background technique
太赫兹波是指频率在0.1~10THz(波长为3000~30μm)范围内的电磁波,在长波段与毫米波相重合,在短波段与红外光相重合,是宏观经典理论向微观量子理论的过渡区,也是电子学向光子学的过渡区,称为电磁波谱的“太赫兹空隙”。太赫兹波的波段能够覆盖半导体、等离子体,有机体和生物大分子等物质的特征谱;利用该频段可以加深和拓展人类对物理学、化学、天文学、信息学和生命科学中一些基本科学问题的认识。太赫兹技术可广泛应用于雷达、遥感、国土安全与反恐、高保密的数据通讯与传输、大气与环境监测、实时生物信息提取以及医学诊断等领域。因此,THz研究对国民经济和国家安全有重大的应用价值。Terahertz waves refer to electromagnetic waves with frequencies in the range of 0.1 to 10 THz (wavelength of 3000 to 30 μm), which overlap with millimeter waves in the long waveband and infrared light in the short waveband. It is the transition from macroscopic classical theory to microscopic quantum theory. The region is also the transition region from electronics to photonics, known as the "terahertz gap" of the electromagnetic spectrum. The band of terahertz waves can cover the characteristic spectrum of substances such as semiconductors, plasmas, organisms and biological macromolecules; using this band can deepen and expand human understanding of some basic scientific problems in physics, chemistry, astronomy, informatics and life sciences. know. Terahertz technology can be widely used in radar, remote sensing, homeland security and anti-terrorism, high-security data communication and transmission, atmospheric and environmental monitoring, real-time biological information extraction, and medical diagnosis. Therefore, THz research has great application value to the national economy and national security.
随着通信技术的发展,目前对于各种波导的需求也越来愈大,相对于传统波导,负曲率空芯波导具有灵活的色散、较低的损耗、高非线性、高双折射等优良特性和设计自由度,被广泛用于通信、传感、非线性光学及新型波导功能器件等领域。负曲率太赫兹波导是目前的一个研究热点,设计具有更佳优异传输特性的负曲率太赫兹波导对波导的相关应用具有重要意义。负曲率是指包层管围成的纤芯边界弯曲方向与圆形纤芯的弯曲方向正好相反,由于负曲率波导在传导太赫兹波时会引发包层管模和纤芯模的耦合作用,从而增加波导的传输损耗,因此负曲率太赫兹波导的包层管尺寸需要被严格设计。With the development of communication technology, the demand for various waveguides is also increasing. Compared with traditional waveguides, negative-curvature hollow-core waveguides have excellent characteristics such as flexible dispersion, lower loss, high nonlinearity, and high birefringence. It is widely used in the fields of communication, sensing, nonlinear optics and novel waveguide functional devices. Negative-curvature terahertz waveguides are currently a research hotspot, and designing negative-curvature terahertz waveguides with better transmission characteristics is of great significance for related applications of waveguides. Negative curvature means that the bending direction of the core boundary surrounded by the cladding tube is exactly opposite to the bending direction of the circular core. Since the negative curvature waveguide will cause the coupling effect of the cladding tube mode and the core mode when conducting terahertz waves, Therefore, the transmission loss of the waveguide is increased, so the size of the cladding tube of the negative-curvature terahertz waveguide needs to be strictly designed.
负曲率太赫兹波导通常可以通过增加嵌套环或者增减包层管的数量来降低相应的传输损耗,然而这些方法很难对波导的传输损耗在数量级上产生改变。增加负曲率波导的包层管层数是降低传输损耗的有效方法之一,两层包层管的设计即可降低两个数量级的损耗。此外,已公开的研究结果表明椭圆形包层管比圆形包层管更有利于抑制波导的包层管模和纤芯模式的耦合,从而进一步降低损耗。Negative curvature terahertz waveguides can usually reduce the corresponding transmission loss by increasing the number of nested rings or increasing or decreasing the number of cladding tubes. However, these methods are difficult to change the transmission loss of the waveguide in order of magnitude. Increasing the number of layers of cladding tubes in negative curvature waveguides is one of the effective ways to reduce transmission loss, and the design of two-layer cladding tubes can reduce losses by two orders of magnitude. In addition, published research results show that elliptical cladding tubes are more beneficial than circular cladding tubes to suppress the coupling of the waveguide's cladding-tube mode and the core mode, thereby further reducing losses.
在负曲率空芯波导中,小曲率半径的纤芯边界可降低负曲率空芯波导的损耗,目前的负曲率空芯波导的包层结构大量为圆型空心管环,但管环尺寸并没有一味追求小曲率半径的纤芯边界,负曲率空芯波导的小曲率半径纤芯边界优势未充分发挥。在现有公开的设计方案[CN110333571A]中,设计了一种使用两层圆形空心管作为包层的结构,该方案使用玻璃作为波导的基底,并且尺寸较小,只能在中红外波段使用,无法在太赫兹波段使用。并且使用玻璃材料或者硅材料作为基底,增加了拉制难度和成本,不利于实际应用。当前在太赫兹波段需要一种制备难度较小,传播带宽大以及低传输损耗的高性能双层包层管负曲率太赫兹空芯波导。In negative-curvature hollow-core waveguides, the core boundary with a small radius of curvature can reduce the loss of the negative-curvature hollow-core waveguides. The cladding structures of the current negative-curvature hollow-core waveguides are mostly circular hollow tube rings, but the size of the tube ring is not large. Blindly pursuing the core boundary with a small curvature radius, the advantages of the small curvature radius core boundary of the negative curvature hollow-core waveguide are not fully exerted. In the existing disclosed design scheme [CN110333571A], a structure using two layers of circular hollow tubes as the cladding is designed. This scheme uses glass as the substrate of the waveguide, and the size is small and can only be used in the mid-infrared band , cannot be used in the terahertz band. Moreover, using glass material or silicon material as the substrate increases the difficulty and cost of drawing, which is not conducive to practical application. Currently, there is a need for a high-performance double-clad tube negative-curvature terahertz hollow-core waveguide with low fabrication difficulty, large propagation bandwidth and low transmission loss in the terahertz band.
发明内容SUMMARY OF THE INVENTION
本发明为了克服现有技术不足,公开了一种结构简单,传输性能高的基于双负曲率包层结构的太赫兹波导,其目的在于通过椭圆形管与圆形管的双反谐振作用降低传输损耗,抑制高阶模的产生,同时解决小曲率半径纤芯边界优势未充分发挥的问题。并且本发明使用有机聚合物作为材料,易于实现波导的加工制作,降低难度,节约成本。In order to overcome the deficiencies of the prior art, the present invention discloses a terahertz waveguide based on a double negative curvature cladding structure with a simple structure and high transmission performance. loss, suppress the generation of high-order modes, and at the same time solve the problem that the advantages of the small curvature radius of the core boundary are not fully utilized. In addition, the invention uses the organic polymer as the material, which is easy to realize the processing and manufacture of the waveguide, reduces the difficulty and saves the cost.
为了达到上述目的,本发明的技术方案如下:In order to achieve the above object, technical scheme of the present invention is as follows:
一种基于双负曲率包层结构的太赫兹波导,其包括椭圆形包层管、圆形包层管、聚合物包覆层和波导纤芯区域;在太赫兹波导的横截面中,6个椭圆形包层管通过间隔60°环形等间距排列的方式组成椭圆形包层管区域,6个圆形包层管通过间隔60°环形等间距排列的方式组成圆形包层管区域,且6个椭圆形包层管与6个圆形包层管沿环向交错布置,相互连接首尾围合成波导的双负曲率包层区域;所述波导纤芯区域位于双负曲率包层区域内部;所述聚合物包覆层作为波导的外包覆层,包裹于椭圆形包层管区域外侧;太赫兹波从波导纤芯区域输入,经过椭圆形包层管区域和圆形包层管区域的相互作用,特定频率的太赫兹波被束缚在纤芯区域中,实现传输功能。A terahertz waveguide based on a double negative curvature cladding structure, which includes an elliptical cladding tube, a circular cladding tube, a polymer cladding layer and a waveguide core region; in the cross section of the terahertz waveguide, 6 The elliptical cladding tubes are arranged in a circular equidistant space at 60° intervals to form an elliptical cladding tube area. One elliptical cladding tube and six circular cladding tubes are arranged staggered along the circumferential direction, and are connected to each other in the double negative curvature cladding area surrounding the synthetic waveguide; the waveguide core area is located inside the double negative curvature cladding area; The polymer cladding layer, as the outer cladding layer of the waveguide, is wrapped around the outside of the elliptical cladding tube area; the terahertz wave is input from the waveguide core area, and passes through the mutual interaction between the elliptical cladding tube area and the circular cladding tube area. As a result, the terahertz wave of a specific frequency is bound in the core region to realize the transmission function.
上述技术方案可采用如下优选方式:The above-mentioned technical scheme can adopt the following preferred ways:
作为优选,所述的椭圆形包层管长轴为1.6~2.0mm,短轴为0.96~1.2mm,管壁厚度为0.1mm。Preferably, the long axis of the elliptical cladding tube is 1.6-2.0 mm, the short axis is 0.96-1.2 mm, and the tube wall thickness is 0.1 mm.
作为优选,所述的圆形包层管直径为0.428~0.788mm,管壁厚度为0.1mm。Preferably, the diameter of the circular cladding tube is 0.428-0.788 mm, and the thickness of the tube wall is 0.1 mm.
作为优选,所述的纤芯区域直径为1.172~1.4mm。Preferably, the diameter of the core region is 1.172-1.4 mm.
作为优选,所述的椭圆形包层管、圆形包层管和聚合物包覆层所使用的衬底材料均为聚合物材料。Preferably, the substrate materials used for the elliptical cladding tube, the circular cladding tube and the polymer cladding layer are all polymer materials.
进一步的,所述聚合物材料为Topas COC聚合物材料。Further, the polymer material is Topas COC polymer material.
进一步的,所述的椭圆形包层管、圆形包层管和聚合物包覆层所使用的衬底材料的折射率是1.5258。Further, the refractive index of the substrate material used in the elliptical cladding tube, the circular cladding tube and the polymer cladding layer is 1.5258.
作为优选,所述的双负曲率包层区域中,相邻椭圆形包层管和圆形包层管之间以外周相切的方式相互连接,间距为0。Preferably, in the double negative curvature cladding region, adjacent elliptical cladding tubes and circular cladding tubes are connected to each other in such a manner that the outer circumference is tangent, and the spacing is zero.
作为优选,所述太赫兹波导的横截面中,聚合物包覆层的内圆周、6个椭圆形包层管的圆心以及6个圆形包层管的圆心分别位于3个同心圆上,6个椭圆形包层管的长轴均沿所述同心圆的径向。Preferably, in the cross section of the terahertz waveguide, the inner circumference of the polymer cladding layer, the centers of the six elliptical cladding tubes, and the centers of the six circular cladding tubes are respectively located on three concentric circles, and the six The long axes of the elliptical cladding tubes are all along the radial direction of the concentric circles.
作为优选,所述的整个太赫兹波导结构通过3D打印技术加工制作。Preferably, the entire terahertz waveguide structure is fabricated by 3D printing technology.
由于采用了上述技术方案,本发明取得的技术进步是:Owing to having adopted the above-mentioned technical scheme, the technical progress that the present invention obtains is:
1.本发明结构简单,仅由6个椭圆形管和6个圆形管组成,并首次在太赫兹频段提出了双负曲率包层结构的负曲率波导。1. The present invention has a simple structure, consisting of only 6 elliptical tubes and 6 circular tubes, and proposes a negative curvature waveguide with a double negative curvature cladding structure for the first time in the terahertz frequency band.
2.本发明在工作频段传输性能优异,材料单一,制作效率高。2. The invention has excellent transmission performance in the working frequency band, single material and high production efficiency.
3.本发明结构中,利用椭圆形管和圆形管的双重反谐振作用,太赫兹波被限制在纤芯区域中,大大降低了太赫兹波导的限制损耗。利用椭圆形管的第一次反谐振作用,将太赫兹波束缚在纤芯区域;而通过圆形管的第二次反谐振作用进一步减少太赫兹波能量的泄露。3. In the structure of the present invention, using the double anti-resonance effect of the elliptical tube and the circular tube, the terahertz wave is confined in the core region, which greatly reduces the confinement loss of the terahertz waveguide. The first anti-resonance effect of the elliptical tube is used to confine the terahertz wave to the core region; while the second anti-resonance effect of the circular tube further reduces the leakage of the terahertz wave energy.
附图说明Description of drawings
图1是基于双负曲率包层的太赫兹波导的横截面结构示意图;Figure 1 is a schematic diagram of the cross-sectional structure of a terahertz waveguide based on a double negative curvature cladding;
图2是基于双负曲率包层的太赫兹波导的椭圆形包层管与圆形包层管的结构单元;Fig. 2 is the structural unit of the elliptical cladding tube and the circular cladding tube of the terahertz waveguide based on the double negative curvature cladding;
图3是基于双负曲率包层结构的太赫兹波导的损耗谱;Fig. 3 is the loss spectrum of the terahertz waveguide based on the double negative curvature cladding structure;
具体实施方式Detailed ways
为了使本发明的技术方案,优点以及目的更加清楚明白,以下结合附图及实施例对本发明作进一步详细说明。In order to make the technical solutions, advantages and purposes of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
如图1~2所示,本发明的一个实施例中提供了一种基于双负曲率包层的太赫兹波导结构,它包括椭圆形包层管1、圆形包层管2、聚合物包覆层3和波导纤芯区域4。在图1所示太赫兹波导的横截面中,6个椭圆形包层管1通过间隔60°(即圆心角60°)环形等间距排列的方式组成椭圆形包层管区域,6个圆形包层管2通过间隔60°(即圆心角60°)环形等间距排列的方式组成圆形包层管区域,且6个椭圆形包层管1与6个圆形包层管2沿环向交错布置,即每个椭圆形包层管1两侧均为圆形包层管2,每个圆形包层管2的两侧也均为椭圆形包层管1。因此,从横截面上看,12个包层管相互连接首尾封闭式围合成波导的双负曲率包层区域。波导纤芯区域4位于双负曲率包层区域内部的中心,可以等效视为图1中的圆形虚线区域。聚合物包覆层3作为整个波导的外包覆层,贴合包裹于椭圆形包层管区域外侧,实现了整个波导结构的几何完整性。该波导在使用时,太赫兹波从波导纤芯区域4输入,经过椭圆形包层管区域和圆形包层管区域的相互作用,使得特定频率的太赫兹波被束缚在纤芯区域4中,实现传输功能。As shown in Figures 1-2, an embodiment of the present invention provides a terahertz waveguide structure based on double negative curvature cladding, which includes an
上述太赫兹波导结构中,各结构组成部分的设计参数和材质可选择如下:椭圆形包层管1长轴为1.6~2.0mm,短轴为0.96~1.2mm,管壁厚度为0.1mm。In the above terahertz waveguide structure, the design parameters and materials of each structural component can be selected as follows: the long axis of the
圆形包层管2直径为0.428~0.788mm,管壁厚度为0.1mm。纤芯区域4直径为1.172~1.4mm。椭圆形包层管1、圆形包层管2和聚合物包覆层3所使用的衬底材料均为聚合物材料,其中包括但不限于Topas COC聚合物材料,其他的类似的聚合物材料也适用于此技术。椭圆形包层管1、圆形包层管2和聚合物包覆层3所使用的衬底材料的折射率是1.5258。双负曲率包层区域中,相邻椭圆形包层管1和圆形包层管2之间以外周相切的方式相互连接,间距为0,如图2所示。另外,太赫兹波导的横截面中,6个椭圆形包层管1的6个圆心位于一个圆上,6个圆形包层管2的6个圆心也位于一个圆上,因此聚合物包覆层3的内圆周、6个椭圆形包层管1的圆心以及6个圆形包层管2的圆心分别位于3个同心圆上,6个椭圆形包层管1的长轴均沿该同心圆的径向,即长轴所在直线穿过同心圆的圆心。The diameter of the
整个太赫兹波导结构通过3D打印技术加工制作,因此本发明具有结构简单,传输性能高,损耗低,具有易于加工等优点。The entire terahertz waveguide structure is processed and fabricated by 3D printing technology, so the present invention has the advantages of simple structure, high transmission performance, low loss, and easy processing.
实施例1Example 1
本实施例中,基于双负曲率包层的太赫兹波导结构的各部件形状如上所述,即图1和图2,因此不再赘述。但各结构组成部分的设计参数和材质如下:In this embodiment, the shapes of the components of the terahertz waveguide structure based on the double negative curvature cladding are as described above, that is, FIG. 1 and FIG. 2 , and thus will not be repeated here. However, the design parameters and materials of each structural component are as follows:
椭圆形包层管长轴为1.8mm,短轴为0.96mm,管壁厚度为0.1mm,即椭圆型包层管的长轴与短轴的比值近似于1.9。圆形包层管直径为0.6mm,管壁厚度为0.1mm。波导空芯纤芯区域的直径为1.4mm。椭圆形包层管,圆形包层管和聚合物包覆层所使用的衬底材料是Topas COC聚合物,折射率n为1.5258。双负曲率包层区域中,相邻椭圆形包层管1和圆形包层管2之间以外周相切的方式相互连接,间距为0。太赫兹波导的横截面中,6个椭圆形包层管1的6个圆心位于一个圆上,6个圆形包层管2的6个圆心也位于一个圆上,因此聚合物包覆层3的内圆周、6个椭圆形包层管1的圆心以及6个圆形包层管2的圆心分别位于3个直径逐渐缩小的同心圆上,6个椭圆形包层管1的长轴均沿该同心圆的径向,即长轴所在直线穿过同心圆的圆心。特定频率的太赫兹波从纤芯区域输入,在椭圆形包层管和圆形包层管的相互作用下,特定频率的太赫兹波被有效束缚在纤芯区域中。本实施例的波导结构可通过现有的3D打印技术加工制造。The long axis of the elliptical cladding tube is 1.8mm, the short axis is 0.96mm, and the wall thickness is 0.1mm, that is, the ratio of the long axis to the short axis of the elliptical cladding tube is approximately 1.9. The diameter of the circular cladding tube is 0.6 mm, and the thickness of the tube wall is 0.1 mm. The diameter of the waveguide hollow core region is 1.4 mm. The substrate material used for the elliptical cladding tube, the circular cladding tube and the polymer cladding layer was Topas COC polymer with a refractive index n of 1.5258. In the double negative curvature cladding area, the adjacent
如图3所示,本实施例中提供的基于双负曲率包层结构的太赫兹波导在2.0THz、2.1THz、2.2THz、2.3THz和2.44THz处的限制损耗分别为3.2×10-3dB/cm、1.8×10-3dB/cm、1.4×10-4dB/cm、1.8×10-5dB/cm以及3.2×10-6dB/cm。由此表明,本发明利用椭圆形管和圆形管的双重反谐振作用,太赫兹波被限制在纤芯区域中,可以大大降低了太赫兹波导的限制损耗。As shown in Fig. 3, the confinement losses of the terahertz waveguide based on the double negative curvature cladding structure provided in this embodiment are 3.2× 10-3 dB at 2.0THz, 2.1THz, 2.2THz, 2.3THz and 2.44THz, respectively /cm, 1.8 x 10 -3 dB/cm, 1.4 x 10 -4 dB/cm, 1.8 x 10 -5 dB/cm, and 3.2 x 10 -6 dB/cm. Therefore, it is shown that the present invention utilizes the double anti-resonance effect of the elliptical tube and the circular tube, so that the terahertz wave is confined in the core region, which can greatly reduce the confinement loss of the terahertz waveguide.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011348057.2A CN112433294B (en) | 2020-11-26 | 2020-11-26 | Terahertz waveguide based on double negative curvature cladding structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011348057.2A CN112433294B (en) | 2020-11-26 | 2020-11-26 | Terahertz waveguide based on double negative curvature cladding structures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112433294A CN112433294A (en) | 2021-03-02 |
CN112433294B true CN112433294B (en) | 2022-08-23 |
Family
ID=74698305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011348057.2A Active CN112433294B (en) | 2020-11-26 | 2020-11-26 | Terahertz waveguide based on double negative curvature cladding structures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112433294B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113050218B (en) * | 2021-03-25 | 2022-06-24 | 中国计量大学 | Negative curvature terahertz optical fiber supporting 52 orbital angular momentum modes |
CN115951447A (en) * | 2022-12-06 | 2023-04-11 | 武汉大学 | Terahertz special pipe hollow optical fiber |
CN117369046B (en) * | 2023-12-08 | 2024-02-09 | 南京信息工程大学 | Hollow anti-resonance optical fiber with flat mid-infrared dispersion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3199991A1 (en) * | 2016-01-27 | 2017-08-02 | Danmarks Tekniske Universitet | Optical fiber |
CN108351465A (en) * | 2015-08-26 | 2018-07-31 | 马克斯-普朗克科学促进学会 | Hollow-core fiber and its manufacturing method |
CN110333571A (en) * | 2019-07-01 | 2019-10-15 | 华中科技大学鄂州工业技术研究院 | Double negative curvature antiresonance hollow core fiber and its preparation method |
CN111095059A (en) * | 2017-09-13 | 2020-05-01 | 南安普敦大学 | Anti-resonant hollow core preform and optical fiber, and method of manufacture |
-
2020
- 2020-11-26 CN CN202011348057.2A patent/CN112433294B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108351465A (en) * | 2015-08-26 | 2018-07-31 | 马克斯-普朗克科学促进学会 | Hollow-core fiber and its manufacturing method |
EP3199991A1 (en) * | 2016-01-27 | 2017-08-02 | Danmarks Tekniske Universitet | Optical fiber |
CN111095059A (en) * | 2017-09-13 | 2020-05-01 | 南安普敦大学 | Anti-resonant hollow core preform and optical fiber, and method of manufacture |
CN110333571A (en) * | 2019-07-01 | 2019-10-15 | 华中科技大学鄂州工业技术研究院 | Double negative curvature antiresonance hollow core fiber and its preparation method |
Non-Patent Citations (1)
Title |
---|
"Effect of the second ring of antiresonant tubes in negative-curvature fibers";YUXI WANG, et al.;《Optics Express》;20200120;第28卷(第2期);1168-1176 * |
Also Published As
Publication number | Publication date |
---|---|
CN112433294A (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112433294B (en) | Terahertz waveguide based on double negative curvature cladding structures | |
Huang et al. | Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide | |
Ahmed et al. | Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance | |
CN103698843B (en) | A kind of Low-degeneracy few-mode fiber | |
Liu et al. | High‐selective triple‐mode SIW bandpass filter using higher‐order resonant modes | |
CN119001952A (en) | Hollow anti-resonance optical fiber for wide-working-band long-distance large-energy transmission | |
Zhou et al. | Multi-band terahertz absorber exploiting graphene metamaterial | |
Cui et al. | Reconfigurable Mach–Zehnder interferometer for dynamic modulations of spoof surface plasmon polaritons | |
CN115728864A (en) | A terahertz anti-resonant hollow-core fiber | |
CN103487876A (en) | Hollow core photonic band gap optical fiber for 3-5-micrometer wave band optical wave broadband low-loss transmission | |
CN105044841B (en) | Terahertz polarization beam splitter based on medium rod structure | |
Zhang et al. | Light funneling by spin-orbit-coupled chiral particles on an arbitrary order exceptional surface | |
CN103048730A (en) | Microstructural terahertz (THz) optical fiber | |
CN106054311B (en) | High-birefringence composite photonic crystal fiber | |
CN203103468U (en) | Terahertz wave filter with periodic double-loop double-slit resonant square-ring structure | |
WO2016095847A1 (en) | High-contrast photonic crystal "or," "not," and "xor" logic gate | |
Qian et al. | Low-loss flexible terahertz photonic crystal fiber | |
CN213814022U (en) | Low-loss terahertz optical fiber | |
CN103645534A (en) | Terahertz optical fiber | |
Hui et al. | Mid-infrared high birefringence As2Se3-based PCF with large nonlinearity and distinctive dispersion by using asymmetric elliptical air hole cladding | |
CN103645535B (en) | A kind of high birefringence Hz optical fiber | |
Sun et al. | Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding | |
Peng et al. | Polarization-insensitive ultra-wideband tunable perfect absorber based on a vanadium dioxide metasurface | |
Xu et al. | Thermally tunable narrow band filter achieved by connecting two opaque terahertz waveguides | |
Ali et al. | Ultra-low loss THz waveguide with flat EML and near zero flat dispersion properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |