CN112415634B - Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information - Google Patents
Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information Download PDFInfo
- Publication number
- CN112415634B CN112415634B CN202011161400.2A CN202011161400A CN112415634B CN 112415634 B CN112415634 B CN 112415634B CN 202011161400 A CN202011161400 A CN 202011161400A CN 112415634 B CN112415634 B CN 112415634B
- Authority
- CN
- China
- Prior art keywords
- gravity
- satellite
- information
- measurement
- anomaly information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005484 gravity Effects 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 45
- 238000004458 analytical method Methods 0.000 claims abstract description 3
- 238000012937 correction Methods 0.000 claims description 21
- 239000013598 vector Substances 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000013214 routine measurement Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000035939 shock Effects 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V13/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开一种基于卫星重力异常信息的动态相对重力仪零位漂移补偿方法,包括:(1)按照作业规程基于动态相对重力仪进行测量作业并处理数据,得到测线上的重力异常信息
(2)分析得到单条测线上动态相对重力仪输出重力异常的平均值(3)利用卫星重力信息通过插值的方法得到测线不同位置上卫星重力输出的重力异常信息并求其平均值(4)利用卫星重力输出的重力异常信息对近地表相对重力仪输出的重力异常信息进行校准,即得本方案针对动态相对重力敏感器的零位存在非线性漂移的问题,利用测线上卫星重力异常信息对动态相对重力仪的零位进行校准,减小系统差,并有效提高动态重力测量精度。The invention discloses a method for compensating the zero position drift of a dynamic relative gravimeter based on satellite gravity anomaly information.
(2) The average value of the output gravity anomaly of the dynamic relative gravimeter on a single survey line is obtained by analysis (3) Using the satellite gravity information to obtain the gravity anomaly information of the satellite gravity output at different positions of the survey line by means of interpolation and find the average (4) Using the gravity anomaly information output by satellite gravity The gravity anomaly information output by the near-surface relative gravimeter is calibrated to obtain Aiming at the problem of nonlinear drift in the zero position of the dynamic relative gravity sensor, this scheme uses the satellite gravity anomaly information on the survey line to calibrate the zero position of the dynamic relative gravimeter, reduces the system error, and effectively improves the dynamic gravity measurement accuracy.Description
技术领域technical field
本发明涉及动态相对重力仪补偿领域,具体涉及一种基于卫星重力异常信息的动态相对重力仪零位漂移补偿方法。The invention relates to the field of dynamic relative gravimeter compensation, in particular to a dynamic relative gravimeter zero-position drift compensation method based on satellite gravity anomaly information.
背景技术Background technique
重力异常是地球物理场信息的重要组成部分,是重力场环境信息的核心要素,在资源勘探、地球物理研究、战场环境建设、水下自主导航、武器精密打击等领域具有重要意义。重力场测量的手段多样,但相比之下,获得高精度、高空间分辨率、大范围重力场信息的主要方式依然是近地表动态相对重力测量。Gravity anomaly is an important part of geophysical field information and the core element of gravity field environmental information. It is of great significance in the fields of resource exploration, geophysical research, battlefield environment construction, underwater autonomous navigation, and weapon precision strike. There are various means of gravity field measurement, but in contrast, the main way to obtain high-precision, high spatial resolution, and large-scale gravity field information is still near-surface dynamic relative gravity measurement.
现有技术中,动态相对重力仪,自由空间重力异常δg可通过对惯导比力方程变形得到:In the prior art, the dynamic relative gravimeter, the free space gravity anomaly δg can be obtained by deforming the inertial navigation specific force equation:
式中,表示原始重力,单位10-5m/s2;γ表示正常重力,单位10-5m/s2;表示载体垂向加速度,也可表示为单位10-5m/s2;表示厄特弗斯改正,通过外部导航信息计算,单位10-5m/s2。数据处理过程中借助GNSS卫导信息进行垂向加速度改正、厄特弗斯改正和正常重力场改正;另外,船载重力测量中一般认为通过低通滤波可消除垂向加速度的影响。In the formula, Indicates the original gravity, in units of 10 -5 m/s 2 ; γ represents normal gravity in units of 10 -5 m/s 2 ; represents the vertical acceleration of the carrier, which can also be expressed as Unit 10 -5 m/s 2 ; Indicates the Utevers correction, calculated from external navigation information, in units of 10 -5 m/s 2 . In the process of data processing, the vertical acceleration correction, the Utevers correction and the normal gravity field correction are carried out with the help of GNSS satellite navigation information; in addition, it is generally believed that the vertical acceleration can be eliminated by low-pass filtering in the shipborne gravity measurement. Impact.
在测量过程中,重力敏感器的零位漂移会使得测量数据出现整体偏差,形成系统差。为抑制重力敏感器的零位漂移,传统的方法是通过提高敏感器输出信号稳定性、温度控制精度、减震器减震效率等措施,但上述方法会使得系统更加复杂、可靠性降低,同时增加系统体积、成本,且抑制效果不能完全满足应用需求。During the measurement process, the zero drift of the gravity sensor will cause the overall deviation of the measurement data, resulting in a systematic difference. In order to suppress the zero drift of the gravity sensor, the traditional method is to improve the stability of the output signal of the sensor, the temperature control accuracy, and the shock absorption efficiency of the shock absorber. However, the above method will make the system more complicated and reduce the reliability. The system volume and cost are increased, and the suppression effect cannot fully meet the application requirements.
考虑到目前动态相对重力仪受限于工艺水平和电子线路技术,无法从原理上解决零位漂移问题,只能尽可能的提高温度控制精度、减震器减震效率等措施抑制其零位漂移。为此,亟待设计一种新的方法,对相对重力仪的零位漂移进行抑制,减小系统差,以达到提高动态重力测量精度的目的。Considering that the current dynamic relative gravimeter is limited by the technological level and electronic circuit technology, it is impossible to solve the problem of zero drift in principle, and we can only improve the temperature control accuracy and the shock absorption efficiency of shock absorbers as much as possible to suppress its zero drift. . Therefore, it is urgent to design a new method to suppress the zero drift of the relative gravimeter and reduce the system error, so as to achieve the purpose of improving the accuracy of dynamic gravity measurement.
发明内容SUMMARY OF THE INVENTION
本发明针对动态相对重力敏感器的零位存在非线性漂移的问题,利用测线上卫星重力异常信息对动态相对重力仪的零位进行校准,提出一种基于卫星重力异常信息的动态相对重力仪零位漂移补偿方法,可有效减小系统差,提高动态重力测量精度。Aiming at the problem of nonlinear drift in the zero position of the dynamic relative gravity sensor, the invention uses the satellite gravity anomaly information on the survey line to calibrate the zero position of the dynamic relative gravimeter, and proposes a dynamic relative gravimeter based on the satellite gravity anomaly information. The zero drift compensation method can effectively reduce the system error and improve the dynamic gravity measurement accuracy.
本发明是采用以下的技术方案实现的:一种基于卫星重力异常信息的动态相对重力仪零位漂移补偿方法,包括以下步骤:The present invention adopts the following technical scheme to realize: a kind of dynamic relative gravimeter zero drift compensation method based on satellite gravity anomaly information, comprises the following steps:
步骤A、按照作业规程基于动态相对重力仪进行测量作业并处理数据,得到测线上的重力异常信息δgi,i=1,2,3,……,N,N表示测量点的数量;Step A. Carry out the measurement operation and process the data based on the dynamic relative gravimeter according to the operation rules, and obtain the gravity anomaly information δg i on the measurement line, i=1, 2, 3, ..., N, N represents the number of measurement points;
步骤B、分析得到单条测线上动态相对重力仪输出重力异常的平均值δg0;Step B, analysis obtains the average value δg 0 of the abnormal gravity output of the dynamic relative gravimeter on a single survey line;
步骤C、利用卫星重力信息通过插值的方法得到测线不同位置上卫星重力输出的重力异常信息并求其平均值 Step C, using the satellite gravity information to obtain the gravity anomaly information output by the satellite gravity at different positions of the survey line by means of interpolation and find the average
步骤D、利用卫星重力输出的重力异常信息对近地表相对重力仪输出的重力异常信息进行校准,即得: 为经过卫星重力校正后相对重力测量值。Step D. Use the gravity anomaly information output by satellite gravity By calibrating the gravity anomaly information output by the near-surface relative gravimeter, we get: It is the relative gravity measurement value after satellite gravity correction.
进一步的,所述步骤A具体通过以下方式实现:Further, the step A is specifically realized in the following ways:
步骤A1、利用移动平台搭载动态相对重力仪进行常规测量作业,得到测量过程中各个时间点的载体位置信息矢量Pi,i=1,2,3,……,N,以及同步重力敏感器输出信息 Step A1, use the mobile platform to carry the dynamic relative gravimeter to carry out the routine measurement operation, obtain the carrier position information vector P i at each time point in the measurement process, i=1, 2, 3, ..., N, and the output of the synchronous gravity sensor information
其中位置信息矢量为:where the location information vector is:
式中:为第i个测量点的纬度;λi为第i个测量点的经度;hi为第i个测量点的高度;where: is the latitude of the i-th measurement point; λ i is the longitude of the i -th measurement point; hi is the height of the i-th measurement point;
步骤A2、对重力敏感器输出信息进行垂向加速度改正、正常重力场改正和厄特弗斯改正,得到与测线上各个测量点位置对应的重力异常信息δgi。Step A2, output information to the gravity sensor The vertical acceleration correction, the normal gravity field correction and the Otterfus correction are carried out to obtain the gravity anomaly information δg i corresponding to the position of each measurement point on the survey line.
进一步的,所述步骤C中,利用测线上各测量点的位置信息对卫星重力进行插值时,具体采用以下方式:Further, in the step C, when using the position information of each measurement point on the survey line to interpolate the satellite gravity, the following methods are specifically adopted:
(1)通过公开数据获得卫星重力信息,得到待插值的位置点在已知卫星重力值的四个位置点的内部,定义四个位置点的经纬度和卫星重力异常值构成的向量分别为和即有:(1) Obtain satellite gravity information through public data, and obtain the position point to be interpolated Inside the four position points with known satellite gravity values, the vectors defined by the latitude and longitude of the four position points and the satellite gravity anomalies are respectively: and That is:
其中,为第i个测量点的纬度;λi为第i个测量点的经度;hi为第i个测量点的高度;和表示纬度,λa和λb表示经度,和分别为四个位置点的卫星重力异常值;in, is the latitude of the i-th measurement point; λ i is the longitude of the i -th measurement point; hi is the height of the i-th measurement point; and represents latitude, λ a and λ b represent longitude, and are the satellite gravity anomalies of the four locations, respectively;
(2)定义中间变量α和β:(2) Define the intermediate variables α and β:
由此得到线性插值公式:This leads to the linear interpolation formula:
式中和为中间变量;in the formula and is an intermediate variable;
(3)进而得到:(3) and then get:
由此得到测线上各个位置点的卫星重力值,并求其平均值计算公式为:From this, the satellite gravity value of each position point on the survey line is obtained, and the average value is obtained. The calculation formula is:
与现有技术相比,本发明的优点和积极效果在于:Compared with the prior art, the advantages and positive effects of the present invention are:
本方案另辟蹊径,创造性的提出利用零位漂移极小但空间分辨率低精度高的卫星重力异常信息对动态相对重力仪进行校准,通过获得测线上的重力异常信息、单条测线上动态相对重力仪输出重力异常的平均值,并结合测线卫星重力输出的重力异常信息的平均值,将相对动态重力仪高分辨率的优势和卫星重力高稳定性的优势相融合得到经卫星重力校正后相对重力测量值,实现对从方案上降低重力敏感器的零位漂移误差,提高测量精度。This scheme takes a different approach and creatively proposes to use the satellite gravity anomaly information with very small zero drift but low spatial resolution and high precision to calibrate the dynamic relative gravimeter. By obtaining the gravity anomaly information on the survey line, the dynamic relative gravity on a single survey line The average value of the gravity anomaly output by the instrument, combined with the average value of the gravity anomaly information output by the gravity of the survey line satellite, the advantages of the relative high resolution of the dynamic gravimeter and the advantages of the high stability of the satellite gravity are combined to obtain the relative gravity after the satellite gravity correction. The gravity measurement value can reduce the zero drift error of the gravity sensor and improve the measurement accuracy.
附图说明Description of drawings
图1为本发明实施例所述的零位漂移补偿方法流程示意图;FIG. 1 is a schematic flowchart of a zero drift compensation method according to an embodiment of the present invention;
图2为本发明实施例卫星重力信息插值示意图。FIG. 2 is a schematic diagram of interpolation of satellite gravity information according to an embodiment of the present invention.
具体实施方式Detailed ways
为了能够更加清楚地理解本发明的上述目的、特征和优点,下面结合附图及实施例对本发明做进一步说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例。In order to more clearly understand the above objects, features and advantages of the present invention, the present invention will be further described below with reference to the accompanying drawings and embodiments. Numerous specific details are set forth in the following description to facilitate a full understanding of the present invention, however, the present invention may also be practiced in other ways than those described herein, and therefore, the present invention is not limited to the specific embodiments disclosed below.
一种基于卫星重力异常信息的动态相对重力仪零位漂移补偿方法,如图1所述,包括以下步骤:A dynamic relative gravimeter zero drift compensation method based on satellite gravity anomaly information, as shown in Figure 1, includes the following steps:
(1)按照作业规程基于动态相对重力仪进行测量作业并处理数据,得到测线上的重力异常信息,具体的:(1) Carry out the measurement operation and process the data based on the dynamic relative gravimeter according to the operating procedures, and obtain the information of gravity anomaly on the survey line, specifically:
利用飞机、舰船等移动平台搭载动态相对重力仪进行常规测量作业,通过GNSS记录测量过程中各个时间点的载体位置信息矢量Pi(i=1,2,3,……,N)和同步重力敏感器输出信息其中位置信息矢量为:Use mobile platforms such as aircraft and ships to carry dynamic relative gravimeters for routine surveying operations, and record the carrier position information vector P i (i=1, 2, 3, ..., N) and synchronization at each time point in the survey process through GNSS. Gravity sensor output information where the location information vector is:
式中:where:
——第i个测量点的纬度; - the latitude of the i-th measurement point;
λi——第i个测量点的经度;λ i ——the longitude of the i-th measurement point;
hi——第i个测量点的高度。h i ——The height of the i-th measurement point.
对重力敏感器输出信息进行数据处理,具体为:利用GNSS导航信息主要为垂向加速度改正、正常重力场改正和厄特弗斯改正,其中:Data processing is performed on the output information of the gravity sensor, specifically: the use of GNSS navigation information is mainly vertical acceleration correction, normal gravity field correction and otfus correction, among which:
垂向加速度改正公式为:The vertical acceleration correction formula is:
正常重力场改正公式为:The normal gravity field correction formula is:
式中ge=9.78049m/s2表示赤道海平面上的重力加速度。where g e =9.78049m/s 2 represents the gravitational acceleration at the equatorial sea level.
厄特弗斯改正公式为:The Utfus correction formula is:
式中:where:
Ω——载体东向速度;Ω——the eastward speed of the carrier;
ve——地球自转角速度;v e ——the angular velocity of the earth's rotation;
v——载体水平速度;v——the horizontal velocity of the carrier;
R——地球半径。R - the radius of the earth.
经过上述三项改正后,可得到与测线上各个测量点位置对应的重力异常信息δgi(i=1,2,3,……,N)。After the above three corrections, the gravity anomaly information δg i (i=1,2,3,...,N) corresponding to the position of each measurement point on the survey line can be obtained.
(2)计算单条测线上动态相对重力仪输出重力异常的平均值δg0;(2) Calculate the average value δg 0 of the output gravity anomaly of the dynamic relative gravimeter on a single survey line;
式中δg0表示该条测线上的动态相对重力仪输出重力异常的平均值。where δg 0 represents the average value of the gravity anomaly output by the dynamic relative gravimeter on this line.
(3)利用卫星重力信息通过插值的方法得到该测线卫星重力输出的重力异常信息并求其平均值 (3) Using the satellite gravity information to obtain the gravity anomaly information output by the satellite gravity of the survey line by means of interpolation and find the average
具体的,利用测线上各点的位置信息对卫星重力进行插值,得到各个位置点的卫星重力异常信息鉴于目前公开的卫星重力信息中经纬度信息均为等间隔形式,本实施例在忽略高程影响的前提下采用双线性插值方法,具体为:Specifically, the satellite gravity is interpolated by using the position information of each point on the survey line to obtain the satellite gravity anomaly information of each position point. In view of the fact that the latitude and longitude information in the currently disclosed satellite gravity information is in the form of equal intervals, this embodiment adopts the bilinear interpolation method under the premise of ignoring the influence of elevation, specifically:
如图2所示,通过读取公开的卫星重力信息,总可以找到待插值的位置点在四个已知卫星重力值的位置点内部,定义四个位置点的经纬度和卫星重力异常值构成的向量分别为和即有:As shown in Figure 2, by reading the published satellite gravity information, the position point to be interpolated can always be found Inside the four position points with known satellite gravity values, the vectors defined by the latitude and longitude of the four position points and the satellite gravity anomalies are respectively: and That is:
其中,为第i个测量点的纬度;λi为第i个测量点的经度;hi为第i个测量点的高度;和表示纬度,λa和λb表示经度,和分别为四个位置点的卫星重力异常值;in, is the latitude of the i-th measurement point; λ i is the longitude of the i -th measurement point; hi is the height of the i-th measurement point; and represents latitude, λ a and λ b represent longitude, and are the satellite gravity anomalies of the four locations, respectively;
定义中间变量α和β,其计算公式为:Define the intermediate variables α and β, and their calculation formulas are:
由此得到线性插值公式为:The resulting linear interpolation formula is:
式中和为中间变量;in the formula and is an intermediate variable;
进而得到:and get:
由此得到测线上各个位置点的卫星重力值,并求其平均值 From this, the satellite gravity value of each position point on the survey line is obtained, and the average value is obtained.
(4)利用卫星重力输出的重力异常信息对近地表相对重力仪输出的重力异常信息进行校准,将相对动态重力仪高分辨率的优势和卫星重力高稳定性的优势相融合,得到:(4) Use the gravity anomaly information output by the satellite gravity to calibrate the gravity anomaly information output by the near-surface relative gravimeter, and combine the advantages of the high resolution of the relative dynamic gravimeter with the advantages of the high stability of satellite gravity, and obtain:
式中是经过卫星重力校正后相对重力测量值。in the formula is the relative gravity measurement after satellite gravity correction.
目前动态相对重力仪受限于工艺水平和电子线路技术,无法从原理上解决零位漂移问题,只能尽可能的提高温度控制精度、减震器减震效率等措施抑制其零位漂移。本发明另辟蹊径,利用零位漂移极低的低空间分辨率高精度的卫星重力异常信息对动态相对重力仪进行校准,从方案上降低重力敏感器的零位漂移误差,提高测量精度,具有更好的实际应用及参考价值。At present, the dynamic relative gravimeter is limited by the technological level and electronic circuit technology, and cannot solve the problem of zero drift in principle. Only measures such as temperature control accuracy and shock absorption efficiency of shock absorbers can be suppressed as much as possible to suppress its zero drift. The invention takes a new approach, uses the satellite gravity anomaly information of low spatial resolution and high precision with extremely low zero drift to calibrate the dynamic relative gravimeter, reduces the zero drift error of the gravity sensor in the scheme, improves the measurement accuracy, and has better performance. practical application and reference value.
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms. Any person skilled in the art may use the technical content disclosed above to make changes or modifications to equivalent changes. The embodiments are applied in other fields, but any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the protection scope of the technical solutions of the present invention without departing from the content of the technical solutions of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011161400.2A CN112415634B (en) | 2020-10-27 | 2020-10-27 | Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011161400.2A CN112415634B (en) | 2020-10-27 | 2020-10-27 | Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112415634A CN112415634A (en) | 2021-02-26 |
CN112415634B true CN112415634B (en) | 2021-12-07 |
Family
ID=74841446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011161400.2A Active CN112415634B (en) | 2020-10-27 | 2020-10-27 | Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112415634B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115291289B (en) * | 2022-07-08 | 2024-04-12 | 中国人民解放军海军工程大学 | Absolute gravity value dynamic measurement and calculation system, method and medium |
CN118794415A (en) * | 2024-07-10 | 2024-10-18 | 中国地质调查局地球物理调查中心 | Geodetic mapping method based on double-pass round-trip zero drift rate correction of gravimeter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101639541A (en) * | 2009-09-07 | 2010-02-03 | 北京航天控制仪器研究所 | Accelerometer relative gravity meter |
CN103605167A (en) * | 2013-11-14 | 2014-02-26 | 哈尔滨工程大学 | Mallat algorithm-based marine gravity measurement error eliminating method |
CN106405670A (en) * | 2016-10-10 | 2017-02-15 | 北京航天控制仪器研究所 | Gravity anomaly data processing method applicable to strapdown marine gravimeter |
CN110706275A (en) * | 2019-10-16 | 2020-01-17 | 中国石油大学(华东) | Local gravity anomaly extraction method based on satellite altimetry gravity data |
CN110927823A (en) * | 2019-12-04 | 2020-03-27 | 自然资源部第一海洋研究所 | Grid value correction method applied to shipborne gravimeter |
CN111722295A (en) * | 2020-07-04 | 2020-09-29 | 东南大学 | An underwater strapdown gravity measurement data processing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160131794A1 (en) * | 2014-11-12 | 2016-05-12 | Cgg Services Sa | Systems and methods for a gravity survey using a free-fall gravity sensor |
US20170108612A1 (en) * | 2015-10-15 | 2017-04-20 | King Saud University | Inertial system for gravity difference measurement |
-
2020
- 2020-10-27 CN CN202011161400.2A patent/CN112415634B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101639541A (en) * | 2009-09-07 | 2010-02-03 | 北京航天控制仪器研究所 | Accelerometer relative gravity meter |
CN103605167A (en) * | 2013-11-14 | 2014-02-26 | 哈尔滨工程大学 | Mallat algorithm-based marine gravity measurement error eliminating method |
CN106405670A (en) * | 2016-10-10 | 2017-02-15 | 北京航天控制仪器研究所 | Gravity anomaly data processing method applicable to strapdown marine gravimeter |
CN110706275A (en) * | 2019-10-16 | 2020-01-17 | 中国石油大学(华东) | Local gravity anomaly extraction method based on satellite altimetry gravity data |
CN110927823A (en) * | 2019-12-04 | 2020-03-27 | 自然资源部第一海洋研究所 | Grid value correction method applied to shipborne gravimeter |
CN111722295A (en) * | 2020-07-04 | 2020-09-29 | 东南大学 | An underwater strapdown gravity measurement data processing method |
Non-Patent Citations (3)
Title |
---|
DGS AT1M-3 海洋重力仪的应用及精度评估;张登 等;《海洋测绘》;20200531;第40卷(第3期);第68-72页 * |
Gravity anomaly from satellite gravity gradiometry data by GOCE in Japan Ms9.0 strong earthquake region;ZHANG Yong-zhi 等;《 Procedia Environmental Sciences 10》;20111231;第529-534页 * |
海洋重力测量误差补偿技术;奚碚华 等;《中国惯性技术学报》;20110228;第19卷(第1期);第1-5页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112415634A (en) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107655476B (en) | Pedestrian high-precision foot navigation method based on multi-information fusion compensation | |
CN104698485B (en) | Integrated navigation system and air navigation aid based on BD, GPS and MEMS | |
CN111722295B (en) | Underwater strapdown gravity measurement data processing method | |
CN109470241B (en) | Inertial navigation system with gravity disturbance autonomous compensation function and method | |
CN104697520B (en) | Integrated gyro free strap down inertial navigation system and gps system Combinated navigation method | |
CN106017452B (en) | Double tops disturbance rejection north finding method | |
CN112415634B (en) | Dynamic gravimeter zero drift compensation method based on satellite gravity anomaly information | |
CN101183004A (en) | A Method for Eliminating Oscillation Errors of Fiber Optic Gyro Strapdown Inertial Navigation System Online and Real Time | |
CN113203415B (en) | An atomic gyro navigation system and its navigation solution method | |
CN110703355B (en) | Calibration method and device of satellite-borne accelerometer | |
CN103630123B (en) | A kind of Wave Sensor | |
CN108562305A (en) | A kind of quick thick scaling method in inertia/five position of astronomy deep integrated navigation system installation error | |
CN107255475B (en) | A Symmetrical Structure Accelerometer North Finder and Dynamic Differential North Finding Method | |
CN112710328A (en) | Error calibration method of four-axis redundant inertial navigation system | |
CN118131348B (en) | High-precision platform control method under complex dynamic condition of unmanned platform gravity meter | |
CN113137977B (en) | An Initial Alignment Filtering Method for SINS/Polarized Light Integrated Navigation | |
CN113900069B (en) | Perpendicular deviation calculation method and system based on interference imaging altimeter | |
CN111141285B (en) | Aviation gravity measuring device | |
CN116559966B (en) | Gravity measurement method and system based on SINS/LDV combination | |
CN112882118B (en) | Method and system for estimating gravity vector of movable base under earth-fixed coordinate system and storage medium | |
CN116539032A (en) | SINS/DVL/USBL underwater tight combination navigation method based on centralized filtering | |
CN112595314A (en) | Inertial navigation system capable of measuring gravity acceleration in real time | |
CN111829553A (en) | PC-104-based high-precision inertial navigation system disturbance gravity compensation method | |
CN119148246B (en) | A method and system for processing measurement data of a small platform gravimeter | |
CN113970344B (en) | Gyro and accelerometer scale coefficient asymmetry error calibration method of inertial navigation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |