CN112394376B - A method for parallel processing of large-scale GNSS network observation data with non-differential whole network - Google Patents
A method for parallel processing of large-scale GNSS network observation data with non-differential whole network Download PDFInfo
- Publication number
- CN112394376B CN112394376B CN202011310618.XA CN202011310618A CN112394376B CN 112394376 B CN112394376 B CN 112394376B CN 202011310618 A CN202011310618 A CN 202011310618A CN 112394376 B CN112394376 B CN 112394376B
- Authority
- CN
- China
- Prior art keywords
- parallel
- network
- difference
- stations
- station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/33—Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明涉及一种大规模GNSS网观测数据非差整网并行处理方法,具体基于底层多核并行计算技术,实现对大规模GNSS网观测数据的非差整网并行计算。首先从大规模GNSS网中筛选一定数量的测站作为核心站,并行估计卫星轨道和卫星钟差,进行站间并行的非差浮点解计算,并行估计卫星端的宽巷和窄巷小数相位偏差;其次对GNSS网中其它测站进行站间并行的非差浮点解的并行计算,利用核心站估计的宽巷和窄巷小数相位偏差并行固定所有站的非差模糊度,并行生成GNSS网中所有测站的载波距离;最后,利用伪距观测值和载波距离进行非差模式下的整网统一解算,待估参数包括测站坐标、卫星轨道、接收机和卫星钟差、双差模糊度、对流层延迟、小数相位偏差和地球自转参数等。
The invention relates to a non-difference network-wide parallel processing method for large-scale GNSS network observation data, specifically based on the underlying multi-core parallel computing technology, to realize non-difference network-wide parallel computing of large-scale GNSS network observation data. First, select a certain number of measuring stations from the large-scale GNSS network as the core stations, estimate the satellite orbit and satellite clock error in parallel, perform parallel non-difference floating-point solution calculations between stations, and estimate the wide-lane and narrow-lane fractional phase deviations at the satellite end in parallel ;Secondly, carry out the parallel calculation of non-difference floating-point solutions between stations for other stations in the GNSS network, use the wide-lane and narrow-lane decimal phase deviations estimated by the core station to fix the non-difference ambiguities of all stations in parallel, and generate the GNSS network in parallel The carrier distance of all stations in the network; finally, use the pseudo-range observation value and carrier distance to carry out the unified calculation of the whole network in the non-difference mode. The parameters to be estimated include the coordinates of the station, satellite orbit, receiver and satellite clock difference, double difference Ambiguity, tropospheric delay, fractional phase bias and Earth rotation parameters, etc.
Description
技术领域technical field
本发明涉及一种大规模GNSS网观测数据非差整网并行处理方法,属于大规模GNSS网观测数据处理技术领域。The invention relates to a large-scale GNSS network observation data non-difference whole network parallel processing method, and belongs to the technical field of large-scale GNSS network observation data processing.
背景技术Background technique
作为国家的重要地面基础设施,目前已有多个国家和区域建立了由数百个甚至上千个连续运行参考站组成的GNSS(Global Navigation Satellite System)基准站网。大规模全球GNSS网数据提供了丰富的计算资源,但也带来了数据处理上的巨大挑战。数据处理解算耗时随GNSS网规模的扩大呈几何级数增加,全球GNSS大网数据处理面临计算效率低下甚至无法解算的难题,迫切需要与之对应的高效率数据处理模型与方法作为支撑,以充分发挥大网的优势,提升大网服务的精度、可靠性和实时性。寻求大规模GNSS网数据的高效快速处理成为目前热点方向之一,受到越来越多的关注和重视。As an important ground infrastructure of the country, many countries and regions have established a GNSS (Global Navigation Satellite System) reference station network consisting of hundreds or even thousands of continuously operating reference stations. Large-scale global GNSS network data provides abundant computing resources, but it also brings great challenges in data processing. The time-consuming data processing and calculation increases geometrically with the expansion of the scale of the GNSS network. The data processing of the global GNSS large network faces the problem of low computational efficiency or even inability to solve the problem. There is an urgent need for corresponding high-efficiency data processing models and methods as support. , to give full play to the advantages of the large network and improve the accuracy, reliability and real-time performance of large network services. Seeking efficient and fast processing of large-scale GNSS network data has become one of the current hot topics and has received more and more attention and attention.
国内外研究机构和研究人员改进模型和算法、并行计算技术应用等方面进行了广泛的关注和研究,发表的文献主要包括:国外《Advances in Space Research》的《GlobalGPS reference frame solutions of unlimited size》和《Parallel resolution oflarge-scale GNSS network un-difference ambiguity》,《Journal of Geodesy》的《Anew data processing strategy for huge GNSS global networks》和《An enhancedstrategy for GNSS data processing of massive networks》,国内《测绘学报》的《多核环境下的GNSS数据并行处理研究》、《GNSS大网双差模型并行快速解算方法》和《PPP网解UPD模糊度固定的无基站差分大型CORS站整网快速精密解算》,《大地测量与地球动力学》的《一种GNSS大网数据快速高效处理策略》。Research institutions and researchers at home and abroad have paid extensive attention and research on improving models and algorithms, and applying parallel computing technology. "Parallel resolution of large-scale GNSS network un-difference ambiguity", "Anew data processing strategy for huge GNSS global networks" of "Journal of Geodesy" and "An enhanced strategy for GNSS data processing of massive networks", domestic "Journal of Surveying and Mapping" "Research on Parallel Processing of GNSS Data in a Multi-core Environment", "Parallel Fast Calculation Method of GNSS Large-scale Double-difference Model" and "Fast and Precise Calculation of PPP Network Solving UPD Ambiguity Fixed Large-scale CORS Stations without Base Station Difference", " "A Fast and Efficient Processing Strategy for GNSS Large Network Data" in Geodesy and Geodynamics.
大规模GNSS网非差整网计算方法中,已有解决方案采用串行计算的方法,同步处理大规模GNSS网中所有基准站的数据,依次串行估计卫星轨道和钟差的、串行估计宽巷和窄巷小数相位偏差、非差模糊度串行固定、载波距串行生成和整网串行解算。而对大规模GNSS网观测数据的并行解算中,已有研究集中在基线向量网平差、双差基线解算、单站非差浮点解和固定解计算等方面。In the large-scale GNSS network non-difference whole network calculation method, the existing solution adopts the serial calculation method to synchronously process the data of all reference stations in the large-scale GNSS network, and serially estimate satellite orbits and clock errors sequentially. Wide-lane and narrow-lane fractional phase deviation, serial fixation of non-difference ambiguity, serial generation of carrier distance and serial solution of the whole network. In the parallel calculation of large-scale GNSS network observation data, existing research has focused on baseline vector network adjustment, double-difference baseline calculation, single-station non-difference floating-point solution and fixed solution calculation, etc.
发明内容Contents of the invention
本发明的目的是提供一种大规模GNSS网观测数据非差整网并行处理方法,用以解决当前GNSS网规模不断扩大导致数据处理解算耗时指数级增长的问题。The purpose of the present invention is to provide a large-scale GNSS network observation data non-differential network parallel processing method to solve the problem that the current GNSS network scale continues to expand and the time-consuming data processing and solution increases exponentially.
为实现上述目的,本发明的方案包括:To achieve the above object, the solutions of the present invention include:
本发明的一种大规模GNSS网观测数据非差整网并行处理方法,包括如下步骤:A kind of large-scale GNSS network observation data non-difference whole network parallel processing method of the present invention comprises the following steps:
1)选择设定数量的测站作为核心站,根据所述核心站的观测数据,并行解算卫星轨道、卫星钟差和地球自转参数;1) Select a set number of measuring stations as core stations, and calculate satellite orbit, satellite clock error and earth rotation parameters in parallel according to the observation data of said core stations;
2)利用卫星轨道、卫星钟差和地球自转参数,估计出卫星端的宽巷小数相位偏差及窄巷小数相位偏差;2) Estimate the wide-lane fractional phase deviation and the narrow-lane fractional phase deviation at the satellite end by using the satellite orbit, satellite clock error and earth rotation parameters;
3)对于每个核心站构建非差模糊度,利用取整后的宽巷小数相位偏差及窄巷小数相位偏差,进行无电离层组合模糊度的固定;3) Construct the non-difference ambiguity for each core station, and use the rounded wide-lane fractional phase deviation and narrow-lane fractional phase deviation to fix the ionospheric-free combination ambiguity;
对于除核心站以外的其他测站,利用卫星轨道、卫星钟差、地球自转参数和卫星端的宽巷小数相位偏差及窄巷小数相位偏差,进行站间并行非差固定解计算,对每个其他测站构建非差模糊度,进行无电离层组合模糊度的固定;For stations other than the core station, use the satellite orbit, satellite clock error, earth rotation parameters, and the wide-lane fractional phase deviation and narrow-lane fractional phase deviation at the satellite end to perform inter-station parallel non-difference fixed solution calculations, for each other The station constructs the undifferenced ambiguity, and fixes the combined ambiguity without the ionosphere;
4)根据每个测站的载波相位观测值和固定的无电离层组合模糊度,并行生成对应测站的载波距离观测值;4) According to the carrier phase observation value of each station and the fixed ionosphere-free combination ambiguity, generate the carrier distance observation value of the corresponding station in parallel;
5)联合各测站的伪距观测值和载波距离观测值,并行构建法方程,并对法方程并行求逆,基于非差模式进行整网并行解算。5) Combining the pseudo-range observations and carrier distance observations of each station, constructing the normal equation in parallel, and inverting the normal equation in parallel, and performing parallel calculations for the entire network based on the non-difference mode.
本发明提供了一种新的大规模GNSS网观测数据非差整网多核并行处理的方法,实现了大规模GNSS网观测数据非差整网计算众多环节的并行执行,提高了计算对多核平台的利用率,提高了整网解算的效率。The present invention provides a new large-scale GNSS network observation data non-difference whole network multi-core parallel processing method, which realizes the parallel execution of many links in the large-scale GNSS network observation data non-difference whole network calculation, and improves the computational efficiency of the multi-core platform The utilization rate improves the efficiency of the whole network solution.
进一步的,其特征在于,所述核心站为在全球均匀分布的不少于100个的测站。Further, it is characterized in that the core stations are not less than 100 measuring stations evenly distributed around the world.
进一步的,步骤1)中,通过非差模式下的卡尔曼滤波对卫星轨道和地球自转参数进行估计,以单个核心站为并行粒度构建非差观测方程,通过构建双差模糊度并进行模糊度固定,对非差观测方程进行约束。Further, in step 1), the satellite orbit and earth rotation parameters are estimated by Kalman filtering in the non-difference mode, and the non-difference observation equation is constructed with a single core station as the parallel granularity, and the double difference ambiguity is constructed and the ambiguity Fixed, constraining the undifferenced observation equation.
进一步的,步骤2)中,卫星端的宽巷小数相位偏差及窄巷小数相位偏差,通过对核心站进行站间并行的非差浮点解计算来实现并行估计。Further, in step 2), the wide-lane fractional phase deviation and the narrow-lane fractional phase deviation at the satellite end are estimated in parallel by performing inter-station parallel non-difference floating-point solution calculations on the core station.
进一步的,步骤4)中,利用固定的无电离层组合模糊度和天线相位缠绕效应,对载波相位观测值进行修正得到载波距离观测值。Further, in step 4), the carrier phase observation value is corrected to obtain the carrier distance observation value by using the fixed ionosphere-free combination ambiguity and the antenna phase winding effect.
进一步的,步骤5)中,所述伪距观测值中扣除了卫星端伪距硬件延迟。Further, in step 5), the pseudo-range hardware delay of the satellite terminal is deducted from the pseudo-range observation value.
进一步的,步骤5)中,基于非差模式进行整网并行解算的方法为:将伪距观测值和载波距离观测值作为观测量;以历元为粒度,并行构建每个历元的法方程;采用基于递归最小二乘的参数消去算法对法方程进行解算;采用矩阵分块求逆和Cholesky并行分解法对法方程进行求逆。Further, in step 5), the method for parallel calculation of the entire network based on the non-difference mode is: use the pseudorange observation value and the carrier distance observation value as observations; Equation; use the parameter elimination algorithm based on recursive least squares to solve the normal equation; use matrix block inversion and Cholesky parallel decomposition method to invert the normal equation.
当前,大规模GNSS网观测数据非差整网统一解算对实时性和计算效率的要求越来越高,本发明的方法为了缩短大规模GNSS网观测数据非差整网计算的时间,提高大规模GNSS网观测数据非差整网计算的时效性,采用多核并行计算技术——并行任务库(taskparallel library,TPL)设计了多核平台下大规模GNSS网观测数据非差整网计算方法,实现核心站并行解算卫星轨道、卫星钟差和地球自转参数;核心站并行估计宽巷小数相位偏差和窄巷小数相位偏差;整网非差模糊度并行固定、整网载波距离并行生成和非差模式下整网解算的多核并行执行。At present, the unified calculation of large-scale GNSS network observation data is more and more demanding on real-time and calculation efficiency. For the timeliness of large-scale GNSS network observation data non-difference network calculation, the multi-core parallel computing technology - parallel task library (taskparallel library, TPL) is used to design the large-scale GNSS network observation data non-difference network calculation method under the multi-core platform to realize the core Parallel calculation of satellite orbit, satellite clock error and earth rotation parameters by stations; parallel estimation of wide-lane fractional phase deviation and narrow-lane fractional phase deviation by core stations; parallel fixation of non-difference ambiguity of the whole network, parallel generation of carrier distance of the whole network and non-difference mode Under the multi-core parallel execution of the entire network solution.
本发明的方法简单,易操作,提高了对多核平台的利用率,缩短了大规模GNSS网观测数据非差整网计算的时间,提高了大规模GNSS网观测数据非差整网解算的效率。The method of the present invention is simple and easy to operate, improves the utilization rate of the multi-core platform, shortens the time for non-difference whole network calculation of large-scale GNSS network observation data, and improves the efficiency of non-difference whole network calculation of large-scale GNSS network observation data .
进一步的,整网并行解算得到的待估参数包括:测站坐标、卫星轨道、双差模糊度、对流层延迟、接收机和卫星钟差、小数相位偏差和地球自转参数。Furthermore, the parameters to be estimated obtained by the parallel calculation of the entire network include: station coordinates, satellite orbits, double-difference ambiguities, tropospheric delays, receiver and satellite clock errors, fractional phase deviations, and earth rotation parameters.
进一步的,对于步骤3)中各测站未固定的无电离层组合模糊度,构建站星双差的无电离层组合模糊度,进行无电离层组合模糊度的固定。Further, for the unfixed ionosphere-free combination ambiguity of each station in step 3), construct the ionosphere-free combination ambiguity of station-satellite double difference, and fix the ionosphere-free combination ambiguity.
对于各测站无法通过非差模式固定的模糊度,进一步尝试采用双差模式进行固定,提高模糊度固定的成功率,以在整网解算时能够利用更多的观测数据,进而提高待估参数解算的精度和可靠性。For the ambiguities that cannot be fixed by the non-difference mode at each station, further try to use the double-difference mode to fix the ambiguity, so as to improve the success rate of ambiguity fixation, so that more observation data can be used in the calculation of the whole network, and then the estimated Accuracy and reliability of parameter solution.
附图说明Description of drawings
图1是本发明多核平台下大规模GNSS网观测数据非差整网并行计算的流程图。Fig. 1 is a flow chart of the non-differential network-wide parallel calculation of large-scale GNSS network observation data under the multi-core platform of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
由图1所示,对大规模GNSS网基准站(测站)的观测数据,本发明的方法公开了多核平台下大规模GNSS网观测数据非差整网并行处理的流程,分为以下步骤:As shown in Figure 1, to the observation data of large-scale GNSS network reference station (measuring station), the method of the present invention discloses the flow process of large-scale GNSS network observation data non-difference whole network parallel processing under the multi-core platform, is divided into the following steps:
步骤1:筛选大规模GNSS网中一定数量的、全球均匀分布的测站作为核心站,基于任务并行和数据并行,并行解算卫星轨道、卫星钟差和地球自转参数;Step 1: Select a certain number of globally uniformly distributed measuring stations in the large-scale GNSS network as core stations, and calculate satellite orbits, satellite clock errors and earth rotation parameters in parallel based on task parallelism and data parallelism;
步骤2:利用卫星轨道、卫星钟差和地球自转参数,对核心站进行站间并行的非差浮点解计算,并行估计卫星端的宽巷小数相位偏差和窄巷小数相位偏差;Step 2: Using the satellite orbit, satellite clock error and earth rotation parameters, perform parallel non-difference floating-point solution calculations for the core station, and estimate the wide-lane fractional phase deviation and narrow-lane fractional phase deviation at the satellite side in parallel;
步骤3:对大规模GNSS网中的其他测站进行站间并行的非差浮点解的并行计算,利用核心站估计的宽巷和窄巷小数相位偏差针对各个测站进行非差模糊度的固定,得到固定后的非差无电离层组合模糊度;Step 3: Perform parallel calculation of non-differenced floating-point solutions for other stations in the large-scale GNSS network, and use the wide-lane and narrow-lane fractional phase deviations estimated by the core station to perform non-differenced ambiguity calculations for each station fixed, to obtain the fixed non-difference ionosphere-free combined ambiguity;
步骤4:对大规模GNSS网中所有测站的载波相位观测值,基于站间和星间两级并行机制,扣除对应的固定后的非差无电离层组合模糊度,转换为无模糊度的载波距离观测值,对所有测站的伪距观测值,扣除卫星端伪距硬件延迟;Step 4: For the carrier phase observations of all stations in the large-scale GNSS network, based on the inter-station and inter-satellite two-level parallel mechanism, the corresponding fixed non-difference ionospheric-free combination ambiguities are deducted, and converted into ambiguity-free The carrier distance observation value, for the pseudo-range observation value of all stations, deducts the satellite-side pseudo-range hardware delay;
步骤5:联合步骤4得到的伪距和载波距离,并行构建法方程,并对法方程并行求逆,基于非差模式进行整网并行解算。Step 5: Combine the pseudorange and carrier distance obtained in step 4, construct the normal equation in parallel, and invert the normal equation in parallel, and perform parallel calculation of the entire network based on the non-difference mode.
步骤1中,全球均匀分的核心站的数量不少于100个,卫星轨道、卫星钟差和地球自转参数估计的策略为非差模式下的卡尔曼滤波,以单个测站为并行粒度构建非差观测方程,通过构建双差模糊度并进行固定,对非差方程进行约束。In step 1, the number of core stations evenly distributed globally is not less than 100, and the strategy for estimating satellite orbit, satellite clock error, and earth rotation parameters is the Kalman filter in the non-difference mode. The difference observation equation, by constructing the double-difference ambiguity and fixing it, constrains the non-difference equation.
步骤3)中,非差固定解并行计算的方法为:In step 3), the method of parallel calculation of non-difference fixed solution is:
针对核心站,无需再进行非差浮点解计算,直接利用步骤2)中得到的宽巷小数相位偏差和窄巷小数相位偏差,取整后得到宽巷模糊度和窄巷模糊度,再利用固定了的宽巷模糊度和窄巷模糊度计算得到固定的非差无电离层组合模糊度;For the core station, there is no need to calculate the non-difference floating-point solution, and directly use the wide-lane fractional phase deviation and narrow-lane fractional phase deviation obtained in step 2), and obtain the wide-lane ambiguity and narrow-lane ambiguity after rounding, and then use The fixed wide-lane ambiguity and narrow-lane ambiguity are calculated to obtain a fixed non-difference ionosphere-free combined ambiguity;
对GNSS网中的其它测站,利用卫星轨道、卫星钟差、地球自转参数、卫星端的宽巷小数相位偏差和窄巷小数相位偏差,进行站间并行的非差固定解计算。For other stations in the GNSS network, use satellite orbit, satellite clock error, earth rotation parameters, wide-lane fractional phase deviation and narrow-lane fractional phase deviation at the satellite end to perform inter-station parallel non-difference fixed solution calculations.
步骤4)中,载波距离的生成利用了步骤3)中固定了的非差无电离层组合模糊度,以及用模型计算得到的天线相位缠绕效应,对无电离层组合载波相位观测量进行修正得到载波距 In step 4), the carrier distance is generated using the fixed non-difference ionosphere-free combination ambiguity in step 3), and the antenna phase winding effect calculated by the model, and the ionosphere-free combination carrier phase observation is corrected to obtain Carrier distance
式中,为载波距离,L为原始无电离层组合载波相位观测值,λ为无电离层组合波长,N为固定了的非差无电离层组合模糊度,ξ为天线相位缠绕效应。In the formula, is the carrier distance, L is the original ionospheric combination carrier phase observation value, λ is the ionospheric combination wavelength, N is the fixed non-difference ionospheric combination ambiguity, ξ is the antenna phase winding effect.
对于步骤3)中各测站未实现非差固定的无电离层组合模糊度,进一步构建站星双差的无电离层组合模糊度,尝试进行双差模糊度的固定,有效提高模糊度固定的成功率,增加了可用于步骤5)整网并行解算的有效载波距观测值,进而提高待估参数解算的精度和可靠性。For the ionosphere-free combination ambiguity that has not been fixed by non-difference fixed at each station in step 3), further construct the ionosphere-free combination ambiguity of station-satellite double-difference, try to fix the double-difference ambiguity, and effectively improve the ambiguity of the fixed ambiguity. The success rate increases the effective carrier distance observation value that can be used for the parallel calculation of the whole network in step 5), thereby improving the accuracy and reliability of the calculation of the parameters to be estimated.
步骤5)中,非差模式下的整网并行解算方法为:In step 5), the parallel calculation method for the entire network in the non-difference mode is:
首先将得到的伪距和载波距作为观测量,法方程构建时,以历元为粒度,基于数据并行,并行构建每个历元的法方程,采用基于递归最小二乘的参数消去算法对法方程进行解算;法方程求逆时,可采用矩阵分块求逆和Cholesky并行分解法等。First, the obtained pseudorange and carrier distance are used as observations. When the normal equation is constructed, the epoch is used as the granularity, and the normal equation of each epoch is constructed in parallel based on data parallelism. The parameter elimination algorithm based on recursive least squares Equations are solved; when inverting normal equations, matrix block inversion and Cholesky parallel decomposition methods can be used.
非差模式下整网解算的待估参数包括测站坐标、卫星轨道、双差模糊度、对流层延迟、接收机和卫星钟差、小数相位偏差和地球自转参数等。The parameters to be estimated for the whole network solution in the non-difference mode include station coordinates, satellite orbits, double-difference ambiguities, tropospheric delays, receiver and satellite clock errors, fractional phase deviations, and earth rotation parameters, etc.
本发明的观测数据包括GPS、Galileo、BDS和GLONASS系统的、多个频率的伪距和载波相位观测值。The observation data of the present invention include GPS, Galileo, BDS and GLONASS systems, multiple frequency pseudorange and carrier phase observation values.
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。The above is only a preferred embodiment of the present invention, and the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field within the technical scope disclosed in the present invention can obviously obtain the simplicity of the technical solution. Changes or equivalent replacements all fall within the protection scope of the present invention.
本发明的一种大规模GNSS网观测数据非差整网并行处理方法,其实质在于实现了大规模GNSS网观测数据非差整网计算众多环节的多核并行执行。实验利用全球分布的500个GNSS基准站的观测数据,分别采用双核、四核和六核并行三种方案。通过测试,本发明提出的大规模GNSS网观测数据非差整网多核并行处理方法与传统单核串行方法相比,大大缩短了计算时间,提高了解算效率,双核、四核、六核并行的加速比分别达到了1.60、3.05、4.50倍。实际应用的效果与硬件系统的性能、GNSS网规模的大小和观测数据的质量等密切相关。The essence of the method for parallel processing of large-scale GNSS network observation data non-difference whole network of the present invention is to realize the multi-core parallel execution of many links of large-scale GNSS network observation data non-difference whole network calculation. The experiment uses the observation data of 500 GNSS reference stations distributed around the world, and adopts dual-core, quad-core and six-core parallel schemes respectively. Through testing, the large-scale GNSS network observation data non-differential network multi-core parallel processing method proposed by the present invention greatly shortens the calculation time and improves the calculation efficiency compared with the traditional single-core serial method. Dual-core, quad-core, and six-core parallel processing The speedup ratios reached 1.60, 3.05, and 4.50 times respectively. The actual application effect is closely related to the performance of the hardware system, the size of the GNSS network and the quality of the observation data.
因此本发明与现有技术相比,具有以下突出的有益技术效果:Therefore, compared with the prior art, the present invention has the following outstanding beneficial technical effects:
(1)提高大规模GNSS网观测数据非差整网计算的时效性。(1) Improve the timeliness of non-difference whole network calculation of large-scale GNSS network observation data.
本发明提出了大规模GNSS网观测数据非差整网并行计算的方法,在多核平台下实现了GNSS网中一定数量的、均匀分布的核心站并行解算卫星轨道、卫星钟差和地球自转参数;核心站并行估计宽巷和窄巷小数相位偏差;以及整网非差模糊度并行固定、整网载波距离并行生成和非差模式下整网解算的并行计算,缩短了大规模GNSS网观测数据非差整网计算的时间,提高了计算效率。The invention proposes a large-scale GNSS network observation data non-difference whole network parallel calculation method, and realizes a certain number of uniformly distributed core stations in the GNSS network to solve satellite orbits, satellite clock errors and earth rotation parameters in parallel under the multi-core platform ; the core station parallelly estimates the wide-lane and narrow-lane fractional phase deviation; and the parallel calculation of the whole network non-difference ambiguity, the parallel generation of the whole network carrier distance and the parallel calculation of the whole network solution in the non-difference mode shortens the large-scale GNSS network observation The calculation time of the whole network without data difference improves the calculation efficiency.
(2)易于扩展。(2) Easy to expand.
本发明提出的方法具有较广泛的适用性和较强的扩展性,适用于处理各类卫星导航系统的多频观测值,基于非差模式进行整网解算。对GPS、Galileo、BDS和GLONASS等系统的观测数据,都可纳入本发明的非差整网并行计算方法,都可采用本发明所提的方法对所选卫星导航系统的多频观测数据进行非差模式下的整网并行计算,并且不仅限于上述2个频率,仍适用于3个、4个和5个频率,本发明有效应用于“测绘科学与技术”学科中的“大地测量学与测量工程”技术领域,实现了大规模GNSS网观测数据非差整网并行计算,经济和社会效益巨大。The method proposed by the invention has wide applicability and strong expansibility, is suitable for processing multi-frequency observation values of various satellite navigation systems, and performs calculation of the whole network based on the non-difference mode. The observation data of systems such as GPS, Galileo, BDS and GLONASS can all be incorporated into the non-difference whole network parallel computing method of the present invention, and the method proposed by the present invention can be used to carry out non-differentiated multi-frequency observation data of the selected satellite navigation system. Parallel computing of the entire network under differential mode, and not limited to the above 2 frequencies, but still applicable to 3, 4 and 5 frequencies, the present invention is effectively applied to the "Geodesy and Surveying In the field of "engineering" technology, the large-scale GNSS network observation data is realized, and the parallel calculation of the whole network is not different, and the economic and social benefits are huge.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011310618.XA CN112394376B (en) | 2020-11-20 | 2020-11-20 | A method for parallel processing of large-scale GNSS network observation data with non-differential whole network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011310618.XA CN112394376B (en) | 2020-11-20 | 2020-11-20 | A method for parallel processing of large-scale GNSS network observation data with non-differential whole network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112394376A CN112394376A (en) | 2021-02-23 |
CN112394376B true CN112394376B (en) | 2023-07-04 |
Family
ID=74605958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011310618.XA Active CN112394376B (en) | 2020-11-20 | 2020-11-20 | A method for parallel processing of large-scale GNSS network observation data with non-differential whole network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112394376B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113282406B (en) * | 2021-04-27 | 2024-08-23 | 中国人民解放军陆军勤务学院 | GNSS large network observation data collaborative parallel computing method |
CN113281794A (en) * | 2021-04-27 | 2021-08-20 | 中国人民解放军陆军勤务学院 | Method for parallel estimation of single-difference wide-lane FCB between satellites |
CN113848577A (en) * | 2021-08-19 | 2021-12-28 | 中国能源建设集团江苏省电力设计院有限公司 | Large-scale GNSS network parallel resolving method and system based on dynamic partitioning |
CN114355420B (en) * | 2021-12-15 | 2023-05-09 | 中国科学院国家授时中心 | A distributed Beidou location service center PPP product positioning method and device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065664A1 (en) * | 2012-10-25 | 2014-05-01 | Fugro N.V. | Ppp-rtk method and system for gnss signal based position determination |
CN105929430A (en) * | 2016-07-14 | 2016-09-07 | 天津市勘察院 | GNSS (global navigation satellite system) zero-baseline inter-reference station ambiguity quick fixation method |
CN107656295A (en) * | 2017-07-31 | 2018-02-02 | 武汉大学 | A kind of GNSS high accuracy Baseline Survey methods based on original observed data |
CN107942346A (en) * | 2017-11-21 | 2018-04-20 | 武汉大学 | A kind of high-precision GNSS ionized layer TEC observation extracting method |
CN108549095A (en) * | 2018-04-12 | 2018-09-18 | 中国人民解放军战略支援部队信息工程大学 | A kind of region CORS nets non-poor Enhancement Method and system parallel |
CN111025346A (en) * | 2019-11-18 | 2020-04-17 | 广州南方卫星导航仪器有限公司 | A method and storage medium for rapidly estimating GNSS precise satellite clock error |
CN111208520A (en) * | 2020-01-17 | 2020-05-29 | 中国人民解放军战略支援部队信息工程大学 | A positioning method and device for a submarine acoustic transponder |
CN111273327A (en) * | 2020-03-20 | 2020-06-12 | 中国人民解放军61081部队 | A Precise Single Point Positioning Method Based on Combined and Uncombined Mixed Observation Models |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8694250B2 (en) * | 2008-01-09 | 2014-04-08 | Trimble Navigation Limited | Processing multi-GNSS data from mixed-type receivers |
US8260551B2 (en) * | 2008-01-10 | 2012-09-04 | Trimble Navigation Limited | System and method for refining a position estimate of a low earth orbiting satellite |
US9121932B2 (en) * | 2008-01-10 | 2015-09-01 | Trimble Navigation Limited | Refining a position estimate of a low earth orbiting satellite |
US8018377B2 (en) * | 2009-01-23 | 2011-09-13 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources | Decoupled clock model with ambiguity datum fixing |
US7983185B2 (en) * | 2009-02-12 | 2011-07-19 | Zulutime, Llc | Systems and methods for space-time determinations with reduced network traffic |
US8558736B2 (en) * | 2009-02-22 | 2013-10-15 | Trimble Navigation Limited | GNSS signal processing methods and apparatus with ionospheric filters |
US8638257B2 (en) * | 2009-10-15 | 2014-01-28 | Novatel, Inc. | Ultra short baseline GNSS receiver |
JP2012194099A (en) * | 2011-03-17 | 2012-10-11 | Seiko Epson Corp | Pseudo-distance error estimation method, position calculation method and pseudo-distance error estimation apparatus |
US9274230B2 (en) * | 2011-09-16 | 2016-03-01 | Trimble Navigation Limited | GNSS signal processing methods and apparatus |
CN103175516B (en) * | 2013-02-26 | 2014-11-05 | 中国人民解放军信息工程大学 | Distributed computing method for adjustment of large-scale geodesic control net |
CN104459745B (en) * | 2014-12-25 | 2017-03-15 | 东南大学 | A kind of many constellation Long baselines network RTK obscure portions degree fast resolution algorithms |
CN105301619A (en) * | 2015-12-02 | 2016-02-03 | 武汉大学 | Rapid processing method and system for whole large scale GNSS network data |
CN110226108B (en) * | 2017-01-30 | 2023-06-02 | 三菱电机株式会社 | Positioning device and positioning method |
CN109212562A (en) * | 2018-08-29 | 2019-01-15 | 中国人民解放军61540部队 | A method of generating carrier wave pseudo range observed quantity |
CN109799521A (en) * | 2019-03-14 | 2019-05-24 | 苏州工业园区测绘地理信息有限公司 | A kind of tri- subtractive combination cycle-slip detection and repair method of BDS/GPS |
CN110749911B (en) * | 2019-10-28 | 2022-07-12 | 中国人民解放军战略支援部队信息工程大学 | Parallel preprocessing method and device for large-scale GNSS network clean station star oblique path distance |
CN111045042B (en) * | 2019-12-20 | 2022-03-04 | 西安空间无线电技术研究所 | A PPP-RTK enhancement method and system based on "cloud-end" architecture |
CN111290004A (en) * | 2020-03-04 | 2020-06-16 | 高维时空(北京)网络有限公司 | Pseudo-range differential positioning method, pseudo-range differential positioning device, electronic equipment and storage medium |
-
2020
- 2020-11-20 CN CN202011310618.XA patent/CN112394376B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065664A1 (en) * | 2012-10-25 | 2014-05-01 | Fugro N.V. | Ppp-rtk method and system for gnss signal based position determination |
CN105929430A (en) * | 2016-07-14 | 2016-09-07 | 天津市勘察院 | GNSS (global navigation satellite system) zero-baseline inter-reference station ambiguity quick fixation method |
CN107656295A (en) * | 2017-07-31 | 2018-02-02 | 武汉大学 | A kind of GNSS high accuracy Baseline Survey methods based on original observed data |
CN107942346A (en) * | 2017-11-21 | 2018-04-20 | 武汉大学 | A kind of high-precision GNSS ionized layer TEC observation extracting method |
CN108549095A (en) * | 2018-04-12 | 2018-09-18 | 中国人民解放军战略支援部队信息工程大学 | A kind of region CORS nets non-poor Enhancement Method and system parallel |
CN111025346A (en) * | 2019-11-18 | 2020-04-17 | 广州南方卫星导航仪器有限公司 | A method and storage medium for rapidly estimating GNSS precise satellite clock error |
CN111208520A (en) * | 2020-01-17 | 2020-05-29 | 中国人民解放军战略支援部队信息工程大学 | A positioning method and device for a submarine acoustic transponder |
CN111273327A (en) * | 2020-03-20 | 2020-06-12 | 中国人民解放军61081部队 | A Precise Single Point Positioning Method Based on Combined and Uncombined Mixed Observation Models |
Also Published As
Publication number | Publication date |
---|---|
CN112394376A (en) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112394376B (en) | A method for parallel processing of large-scale GNSS network observation data with non-differential whole network | |
CN108549095B (en) | Non-differential parallel enhancement method and system for regional CORS network | |
Ge et al. | A computationally efficient approach for estimating high-rate satellite clock corrections in realtime | |
CN110007320B (en) | Network RTK resolving method | |
CN112462396B (en) | A Real-time Parallel Method for Determining the Clock Error of Navigation Satellites with High Sampling Rate | |
CN103217698B (en) | Determining method of three frequency signal ambiguity based on Beidou navigation system | |
CN105699999A (en) | Method for fixing narrow lane ambiguity of Beidou ground based augmentation system base station | |
CN115933356B (en) | A high-precision time synchronization system and method for a virtual atomic clock | |
CN114460615B (en) | Beidou three-new frequency point positioning method and system with additional virtual observation value | |
CN114859390B (en) | A FTK solution method for high-precision CORS ionospheric correction | |
CN105738934B (en) | The quick fixing means of URTK fuzzinesses of additional atmospheric information dynamic constrained | |
CN115373005A (en) | High-precision product conversion method between satellite navigation signals | |
CN107544082A (en) | The step modeling of Big Dipper IGSO/MEO satellite pseudorange codes deviation one | |
CN108196284A (en) | One kind is into the poor fixed GNSS network datas processing method of fuzziness single between planet | |
CN116540280B (en) | Comprehensive processing method and system for state domain correction information of multi-frequency satellite navigation data | |
CN112987059A (en) | Integer ambiguity calculation method based on three-frequency ambiguity resolution | |
CN105301619A (en) | Rapid processing method and system for whole large scale GNSS network data | |
CN109212562A (en) | A method of generating carrier wave pseudo range observed quantity | |
Seepersad et al. | An assessment of the interoperability of PPP-AR network products | |
CN113358017A (en) | Multi-station cooperative processing GNSS high-precision deformation monitoring method | |
CN110749911B (en) | Parallel preprocessing method and device for large-scale GNSS network clean station star oblique path distance | |
Yang et al. | Improving precise point positioning (PPP) performance with best integer equivariant (BIE) estimator | |
CN115421172A (en) | A Beidou deformation monitoring method based on the combination of real-time and quasi-real-time | |
Li et al. | Parallel resolution of large-scale GNSS network un-difference ambiguity | |
CN116299585B (en) | A GNSS carrier phase time transfer method taking into account differential information between epochs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 450000 Science Avenue 62, Zhengzhou High-tech Zone, Henan Province Patentee after: Information Engineering University of the Chinese People's Liberation Army Cyberspace Force Country or region after: China Address before: No. 62 Science Avenue, High tech Zone, Zhengzhou City, Henan Province Patentee before: Information Engineering University of Strategic Support Force,PLA Country or region before: China |