CN112378506B - A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall - Google Patents
A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall Download PDFInfo
- Publication number
- CN112378506B CN112378506B CN202011094423.6A CN202011094423A CN112378506B CN 112378506 B CN112378506 B CN 112378506B CN 202011094423 A CN202011094423 A CN 202011094423A CN 112378506 B CN112378506 B CN 112378506B
- Authority
- CN
- China
- Prior art keywords
- runner
- vibration
- laser
- flow hydraulic
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 38
- 238000010998 test method Methods 0.000 title claims description 7
- 238000012360 testing method Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000010219 correlation analysis Methods 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims abstract description 3
- 238000010183 spectrum analysis Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000010349 pulsation Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 8
- 229920005372 Plexiglas® Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B11/00—Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
- F03B11/008—Measuring or testing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Hydraulic Turbines (AREA)
Abstract
本发明公开了一种贯流式水力机械转轮和外壁振动的同步测试方法,具体包括如下步骤:步骤1,基于不同的待测试对象,对转轮室进行加工;步骤2,根据步骤1选取的测试对象,布置激光测振仪、光电编码器和压电式振动速度传感器;步骤3,采用电脑同步采集旋转光电编码器、两台激光测振仪以及所有压电式振动速度传感器的输出信号,对测得的信号可进行互功率谱分析和互相关分析从而确定信号间的关联关系。本发明在测量的过程中完全不影响贯流式水力机械的正常运转,且可以实现转轮振动、外壁振动的同步测量。
The invention discloses a synchronous testing method for the vibration of a tubular hydraulic mechanical runner and an outer wall, which specifically includes the following steps: step 1, processing a runner chamber based on different objects to be tested; step 2, selecting according to step 1 The test object is arranged with laser vibrometer, photoelectric encoder and piezoelectric vibration velocity sensor; step 3, use computer to synchronously collect the output signals of rotary photoelectric encoder, two laser vibrometers and all piezoelectric vibration velocity sensors , cross-power spectrum analysis and cross-correlation analysis can be performed on the measured signals to determine the correlation between the signals. The invention does not affect the normal operation of the tubular hydraulic machinery at all in the measurement process, and can realize the synchronous measurement of the vibration of the runner and the vibration of the outer wall.
Description
技术领域technical field
本发明属于水力机械设备技术领域,涉及一种贯流式水力机械转轮和外壁振动的同步测试方法。The invention belongs to the technical field of hydraulic mechanical equipment, and relates to a synchronous testing method for the vibration of a through-flow hydraulic mechanical runner and an outer wall.
背景技术Background technique
贯流式水力机械包括贯流式水泵、水轮机以及船用螺旋桨等,在我国国民经济领域中发挥着不可替代的作用,特别是涉及军事用途的贯流式水力机械,其稳定性更是设计人员关注的重中之重。贯流式水力机械的转轮是整个设备的主动部件,其在水中高速旋转时诱发的非稳定流动以及碰磨是引发贯流式水力机械振动的主要原因,因此,实现贯流式水力机械转轮和外壁振动的同步检测与分析对判断贯流式水力机械的运行状态有着重要的现实意义。Tubular hydraulic machinery, including tubular water pumps, water turbines and marine propellers, etc., plays an irreplaceable role in the field of national economy in our country, especially the stability of tubular hydraulic machinery involving military use is more concerned by designers top priority. The runner of the through-flow hydraulic machinery is the active part of the whole equipment. The unstable flow and friction caused by the high-speed rotation in the water are the main reasons for the vibration of the through-flow hydraulic machinery. Therefore, the realization of the through-flow hydraulic machinery Synchronous detection and analysis of wheel and outer wall vibration has important practical significance for judging the running state of tubular hydraulic machinery.
发明内容Contents of the invention
本发明的目的是提供一种贯流式水力机械转轮和外壁振动的同步测试方法,该方法在测量的过程中完全不影响贯流式水力机械的正常运转,且可以实现转轮振动、外壁振动的同步测量。The purpose of the present invention is to provide a synchronous test method for the vibration of the runner and the outer wall of the through-flow hydraulic machinery. Synchronous measurement of vibration.
本发明所采用的技术方案是,一种贯流式水力机械转轮和外壁振动的同步测试方法,具体包括如下步骤:The technical solution adopted in the present invention is a synchronous testing method for the vibration of the runner and the outer wall of a through-flow hydraulic machine, which specifically includes the following steps:
步骤1,基于不同的待测试对象,对转轮室进行加工;
步骤2,根据步骤1选取的测试对象,布置激光测振仪、光电编码器和压电式振动速度传感器;
步骤3,采用电脑同步采集旋转光电编码器、两台激光测振仪以及所有压电式振动速度传感器的输出信号,对测得的信号可进行互功率谱分析和互相关分析从而确定信号间的关联关系。
本发明的特点还在于,The present invention is also characterized in that,
步骤1中:In step 1:
如果待测试的对象为试验室中的贯流式水力机械模型,则将转轮室整体采用高透明有机玻璃材料进行加工;If the object to be tested is a through-flow hydraulic mechanical model in the laboratory, the entire runner chamber shall be processed with high-transparency plexiglass material;
当待测试的对象为工程应用中的贯流式水力机械时,则需在转轮室上与转轮泄水锥任一横截面对齐的轴向位置加工两个周向成90°夹角的圆形窗口,且窗口采用高透明有机玻璃盖封闭。When the object to be tested is a through-flow hydraulic machine in engineering applications, it is necessary to process two circular circles at an angle of 90° in the circumferential direction at the axial position on the runner chamber that is aligned with any cross-section of the runner discharge cone. The window is closed with a high transparent plexiglass cover.
窗口的半径R大于50mm。The radius R of the window is greater than 50mm.
步骤2的具体过程为:The specific process of
步骤2.1,当测试对象为试验室中的贯流式水力机械模型,在步骤1中已将贯流式水力机械转轮室采用高透明有机玻璃材料加工,因而激光测振仪的可视激光可以有效穿透转轮室聚焦在转轮泄水锥上,此时,将两台激光测振仪布置在同一轴向位置并按周向夹角90度布置,这样可使两束激光的方向成90度照在转轮泄水锥上,从而可获得转轮周向相位成90度的两个方向上的振动信号;Step 2.1, when the test object is the model of the tubular hydraulic machinery in the laboratory, the runner chamber of the tubular hydraulic machinery has been processed with high-transparency plexiglass material in
当测试对象为工程应用中的贯流式水力机械,在步骤1中已将贯流式水力机械转轮室加工出了两个周向成90°夹角的圆形窗口,两个圆形窗口由于采用高透明有机玻璃盖封闭,因此激光可以有效穿透并聚焦在转轮泄水锥上,此时,在与圆形窗口轴向位置相同的平面上布置两台周向夹角为90度的激光测振仪,两台激光测振仪的激光束周向位置分别与两个圆形窗口的周向位置相同,从而确保两束激光分别从两个圆形窗口射入,获得转轮周向相位成90度的两个方向上的振动信号;When the test object is a through-flow hydraulic machine in engineering applications, two circular windows with a circumferential angle of 90° have been processed in the runner chamber of the through-flow hydraulic machine in
步骤2.2,将旋转光电编码器安装在贯流式水力机械的伸出轴上,并引出信号输出线接入多通道同步数字信号采集器;将两台激光测振仪的信号输出线接入多通道同步数字信号采集器;Step 2.2, install the rotary photoelectric encoder on the extended shaft of the tubular hydraulic machinery, and lead out the signal output line to the multi-channel synchronous digital signal collector; connect the signal output lines of the two laser vibrometers to the multiple Channel synchronous digital signal collector;
步骤2.3,按照具体的测试位置需求,将多个压电式振动速度传感器安装在进水管、转轮室和尾水管的外壁面,将布置好的压电式振动速度传感器的信号输出线接入多通道同步数字信号采集器,多通道同步数字信号采集器的输出线将同步采集的数据输送至电脑。Step 2.3, according to the specific test location requirements, install multiple piezoelectric vibration velocity sensors on the outer wall of the water inlet pipe, runner chamber and draft tube, and connect the signal output lines of the arranged piezoelectric vibration velocity sensors to Multi-channel synchronous digital signal acquisition device, the output line of the multi-channel synchronous digital signal acquisition device transmits the data collected synchronously to the computer.
步骤2.1中,当测试对象为试验室中的贯流式水力机械模型时,两台激光测振仪与转轮泄水锥之间的径向距离必须位于0.2米~30米的范围内;In step 2.1, when the test object is a through-flow hydraulic mechanical model in the laboratory, the radial distance between the two laser vibrometers and the water discharge cone of the runner must be within the range of 0.2 meters to 30 meters;
当测试对象为工程应用中的贯流式水力机械时,两台激光测振仪与转轮泄水锥之间的径向距离不得超过30米。When the test object is a through-flow hydraulic machine used in engineering applications, the radial distance between the two laser vibrometers and the water discharge cone of the runner shall not exceed 30 meters.
步骤2.3中,压电式振动速度传感器的数量应少于多通道同步数字信号采集器连接了旋转光电编码器和两台激光测振仪以后剩余的通道数量。In step 2.3, the number of piezoelectric vibration velocity sensors should be less than the number of remaining channels after the multi-channel synchronous digital signal acquisition device is connected with a rotary photoelectric encoder and two laser vibrometers.
在测试过程中,如果多通道同步数字信号采集器仍然有多余的通道,还可以接入监测流道内部压力脉动的压电式压力脉动传感器,实现贯流式水力机械流道内压力脉动、转轮振动和外壁面振动的同步测量。During the test, if the multi-channel synchronous digital signal collector still has redundant channels, it can also be connected to a piezoelectric pressure pulsation sensor that monitors the pressure pulsation inside the flow channel to realize the pressure pulsation in the flow channel of the through-flow hydraulic machinery, the runner Simultaneous measurement of vibration and external wall vibration.
本发明的有益效果是,本发明提出的一种贯流式水力机械转轮和外壁振动的同步测试方法,该方法即可适用于贯流式水力机械模型试验中转轮和外壁的振动同步测试,也可适用于大型工程应用中的贯流式水力机械转轮和外壁的振动同步测试。该方法在测量的过程中完全不影响贯流式水力机械的正常运转,且可以实现转轮振动、外壁振动的同步测量,优势明显。The beneficial effects of the present invention are that the present invention proposes a method for synchronously testing the vibration of the runner and the outer wall of a through-flow hydraulic machine, which can be applied to the synchronous testing of the vibration of the runner and the outer wall in the model test of the through-flow hydraulic machine , It is also suitable for the vibration synchronization test of the runner and the outer wall of the through-flow hydraulic machinery in large-scale engineering applications. This method does not affect the normal operation of the through-flow hydraulic machinery at all during the measurement process, and can realize the simultaneous measurement of the vibration of the runner and the vibration of the outer wall, with obvious advantages.
附图说明Description of drawings
图1是本发明一种贯流式水力机械转轮和外壁振动的同步测试方法中的贯流式水力机械结构示意图;Fig. 1 is a schematic diagram of the structure of a through-flow hydraulic machine in a synchronous testing method of a through-flow hydraulic machine runner and outer wall vibration of the present invention;
图2是本发明一种贯流式水力机械转轮和外壁振动的同步测试方法测试工程应用中贯流式水力机械时转轮室上的透明玻璃窗口示意图;Fig. 2 is a schematic diagram of the transparent glass window on the runner chamber during the test engineering application of the synchronous testing method of the runner and the outer wall vibration of the through-flow hydraulic machinery;
图3是本发明一种贯流式水力机械转轮和外壁振动的同步测试方法测试贯流式水力机械模型时的激光测振仪安放示意图;Fig. 3 is a synchronous testing method of the vibration of a through-flow hydraulic machinery runner and the outer wall of the present invention, and a schematic diagram of the placement of the laser vibrometer when testing the model of the through-flow hydraulic machinery;
图4是本发明一种贯流式水力机械转轮和外壁振动的同步测试方法测试工程应用中贯流式水力机械时的激光测振仪安放示意图;Fig. 4 is a synchronous test method for the vibration of a through-flow hydraulic machinery runner and the outer wall of the present invention, and a schematic diagram of the placement of the laser vibrometer when testing the through-flow hydraulic machinery in engineering applications;
图5是本发明一种贯流式水力机械转轮和外壁振动的同步测试方法中的测试系统相关设备连接示意图;Fig. 5 is a schematic diagram of the connection of related equipment of the test system in a synchronous test method of a through-flow hydraulic mechanical runner and outer wall vibration of the present invention;
图中,1.进水管,2.导叶,3.转轮叶片,4.转轮泄水锥,5.转轮室,6.尾水管,7.圆形窗口,8.激光测振仪,9.旋转光电编码器,10.伸出轴,11.多通道同步数字信号采集器,12.压电式振动速度传感器,13.电脑。In the figure, 1. Inlet pipe, 2. Guide vane, 3. Runner blade, 4. Runner discharge cone, 5. Runner chamber, 6. Draft pipe, 7. Circular window, 8. Laser vibrometer , 9. Rotary photoelectric encoder, 10. Extended shaft, 11. Multi-channel synchronous digital signal acquisition device, 12. Piezoelectric vibration speed sensor, 13. Computer.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明一种贯流式水力机械转轮和外壁振动的同步测试方法,要求的硬件设备包括但不限于:基于多普勒激光原理的激光测振仪(要求激光为能量小于1mW的可视激光且激光有效工作距离为0.2米~30米)、压电式压电式振动速度传感器、旋转光电编码器以及多通道(通道数≥8)同步数字信号采集器。其中,多通道同步数字信号采集器的采样频率在50Hz至128kHz的范围内可调节、支持IEPE(ICP)类传感器,且可将采集数据通过USB数据传输电缆传送至电脑。The present invention is a synchronous test method for the vibration of a through-flow hydraulic machinery runner and outer wall. The required hardware equipment includes but not limited to: a laser vibrometer based on the Doppler laser principle (the laser is required to be a visible laser with an energy less than 1mW) And the effective working distance of the laser is 0.2 meters to 30 meters), piezoelectric piezoelectric vibration speed sensor, rotary photoelectric encoder and multi-channel (channel number ≥ 8) synchronous digital signal collector. Among them, the sampling frequency of the multi-channel synchronous digital signal collector is adjustable within the range of 50Hz to 128kHz, supports IEPE (ICP) type sensors, and can transmit the collected data to the computer through the USB data transmission cable.
具体包括如下步骤:Specifically include the following steps:
步骤1,贯流式水力机械的结构如图1所示,包括进水管1、导叶2、转轮叶片3、转轮泄水锥4、转轮室5、尾水管6。首先判定测试方法应用场合,如果待测试的对象为试验室中的贯流式水力机械模型,则将转轮室5整体采用高透明有机玻璃材料进行加工;
如果待测试的对象为大型工程应用中的贯流式水力机械,如图2所示,则需在转轮室5上与转轮泄水锥4任一横截面对齐的轴向位置加工两个周向成90°夹角的圆形窗口7,圆形窗口7的半径R需大于50mm,且采用高透明有机玻璃盖封闭,防止漏水。If the object to be tested is a tubular hydraulic machine in large-scale engineering applications, as shown in Figure 2, it is necessary to machine two
步骤2,布置激光测振仪、光电编码器和压电式振动速度传感器。
步骤2.1,如果测试对象为试验室中的贯流式水力机械模型,在步骤1中已将贯流式水力机械转轮室5采用高透明有机玻璃材料加工,所以激光测振仪8的可视激光可以有效穿透转轮室聚焦在转轮泄水锥4上。此时,如图3所示,将两台激光测振仪8布置在同一轴向位置并按周向夹角90度布置,这样可使两束激光的方向成90度照在转轮泄水锥4上,从而可获得转轮周向相位成90度的两个方向上的振动信号。两台激光测振仪8与转轮泄水锥4之间的径向距离必须位于0.2米~30米的范围内。Step 2.1, if the test object is the model of the through-flow hydraulic machinery in the laboratory, the
如果测试对象为大型工程应用中的贯流式水力机械,在步骤1中已将贯流式水力机械转轮室5加工出了两个周向成90°夹角的圆形窗口7,两个圆形窗口7由于采用高透明有机玻璃盖封闭,因此激光可以有效穿透并聚焦在转轮泄水锥4上。此时,如图4所示,在与圆形窗口7轴向位置相同的平面上布置两台周向夹角为90度的激光测振仪8。两台激光测振仪8的激光束周向位置分别与两个圆形窗口7的周向位置相同,从而确保两束激光分别从两个圆形窗口7射入,获得转轮周向相位成90度的两个方向上的振动信号。两台激光测振仪8与转轮泄水锥4之间的径向距离不得超过30米。If the test object is the through-flow hydraulic machinery in large-scale engineering applications, the
步骤2.2,如图5所示,将旋转光电编码器9安装在贯流式水力机械的伸出轴10上,并引出信号输出线接入多通道同步数字信号采集器11;将两台激光测振仪8的信号输出线接入多通道同步数字信号采集器11。Step 2.2, as shown in Figure 5, install the rotary photoelectric encoder 9 on the
步骤2.3,如图5所示,按照具体的测试位置需求,将多个压电式振动速度传感器12安装在进水管1、转轮室5和尾水管6的外壁面,压电式振动速度传感器12的数量应少于多通道同步数字信号采集器11连接了旋转光电编码器9和两台激光测振仪8以后剩余的通道数量。将布置好的压电式振动速度传感器12的信号输出线接入多通道同步数字信号采集器11,多通道同步数字信号采集器11的输出线将同步采集的数据输送至电脑13。Step 2.3, as shown in Figure 5, install a plurality of piezoelectric
步骤3,采用电脑13同步采集旋转光电编码器9、两台激光测振仪8以及所有压电式振动速度传感器12的输出信号,对测得的信号可进行互功率谱分析和互相关分析从而确定信号间的关联关系。
在测试过程中,如果多通道同步数字信号采集器11仍然有多余的通道,还可以接入监测流道内部压力脉动的压电式压力脉动传感器,实现贯流式水力机械流道内压力脉动、转轮振动和外壁面振动的同步测量。During the test, if the multi-channel synchronous
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011094423.6A CN112378506B (en) | 2020-10-14 | 2020-10-14 | A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011094423.6A CN112378506B (en) | 2020-10-14 | 2020-10-14 | A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112378506A CN112378506A (en) | 2021-02-19 |
CN112378506B true CN112378506B (en) | 2022-11-01 |
Family
ID=74581411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011094423.6A Expired - Fee Related CN112378506B (en) | 2020-10-14 | 2020-10-14 | A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112378506B (en) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU1781556C (en) * | 1990-06-28 | 1992-12-15 | Институт Проблем Моделирования В Энергетике Ан Усср | Device for vibration diagnostics |
CN1401986A (en) * | 2002-09-29 | 2003-03-12 | 清华大学 | Hydraulic machinery cavitation destruction on-line monitoring method and diagnosis apparatus |
US7382465B1 (en) * | 2006-08-25 | 2008-06-03 | Hrl Laboratories, Llc | Optical vibrometer |
JP2010060425A (en) * | 2008-09-03 | 2010-03-18 | Toshiba Corp | Method and device for detecting erosion damage of turbine member |
CN102128674A (en) * | 2010-12-28 | 2011-07-20 | 哈尔滨电机厂有限责任公司 | Method or measuring Karman vortex vibration of flow passage component of water turbine |
CN104154988A (en) * | 2014-08-21 | 2014-11-19 | 哈尔滨电机厂有限责任公司 | Steam turbine generator iron loss test vibration and noise testing method |
CN105134618A (en) * | 2015-09-10 | 2015-12-09 | 中国农业大学 | Centrifugal pump regulating method based on pressure pulsation time-frequency characteristic analysis |
CN106289114A (en) * | 2016-10-19 | 2017-01-04 | 吴尧增 | A kind of method that indirect type fan rotor geometric parameter measurement and performance optimize |
CN108279103A (en) * | 2018-01-25 | 2018-07-13 | 华电电力科学研究院有限公司 | A kind of online checking system and check method of overall machine vibration monitoring system |
CN207647673U (en) * | 2017-12-14 | 2018-07-24 | 西安理工大学 | A kind of tubular turbine |
JP2018146385A (en) * | 2017-03-06 | 2018-09-20 | 三菱重工業株式会社 | Wing monitoring device and rotating machine system |
CN108757502A (en) * | 2018-05-15 | 2018-11-06 | 江苏大学 | A kind of water pump assembly typical case's health status monitoring device and method based on Internet of Things |
CN110319876A (en) * | 2019-05-20 | 2019-10-11 | 国家电网有限公司 | A kind of state monitoring method and device of hydrogenerator |
CN111366354A (en) * | 2020-05-07 | 2020-07-03 | 西安西热节能技术有限公司 | Test and evaluation system and method for testing vibration characteristics of valve internal components by non-contact measurement |
CN111458007A (en) * | 2020-05-06 | 2020-07-28 | 哈尔滨电机厂有限责任公司 | Method for identifying local vibration of end part of steam turbine generator |
CN211401407U (en) * | 2019-09-26 | 2020-09-01 | 上海电气电站设备有限公司 | Turbine shroud blade vibration measurement sensor |
CN111682712A (en) * | 2020-06-29 | 2020-09-18 | 哈尔滨电机厂有限责任公司 | A field installation method of a large generator end vibration monitoring device |
CN111739160A (en) * | 2020-07-02 | 2020-10-02 | 哈尔滨电机厂有限责任公司 | Method for identifying dynamic and static interference vibration frequency of water turbine runner |
-
2020
- 2020-10-14 CN CN202011094423.6A patent/CN112378506B/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU1781556C (en) * | 1990-06-28 | 1992-12-15 | Институт Проблем Моделирования В Энергетике Ан Усср | Device for vibration diagnostics |
CN1401986A (en) * | 2002-09-29 | 2003-03-12 | 清华大学 | Hydraulic machinery cavitation destruction on-line monitoring method and diagnosis apparatus |
US7382465B1 (en) * | 2006-08-25 | 2008-06-03 | Hrl Laboratories, Llc | Optical vibrometer |
JP2010060425A (en) * | 2008-09-03 | 2010-03-18 | Toshiba Corp | Method and device for detecting erosion damage of turbine member |
CN102128674A (en) * | 2010-12-28 | 2011-07-20 | 哈尔滨电机厂有限责任公司 | Method or measuring Karman vortex vibration of flow passage component of water turbine |
CN104154988A (en) * | 2014-08-21 | 2014-11-19 | 哈尔滨电机厂有限责任公司 | Steam turbine generator iron loss test vibration and noise testing method |
CN105134618A (en) * | 2015-09-10 | 2015-12-09 | 中国农业大学 | Centrifugal pump regulating method based on pressure pulsation time-frequency characteristic analysis |
CN106289114A (en) * | 2016-10-19 | 2017-01-04 | 吴尧增 | A kind of method that indirect type fan rotor geometric parameter measurement and performance optimize |
JP2018146385A (en) * | 2017-03-06 | 2018-09-20 | 三菱重工業株式会社 | Wing monitoring device and rotating machine system |
CN207647673U (en) * | 2017-12-14 | 2018-07-24 | 西安理工大学 | A kind of tubular turbine |
CN108279103A (en) * | 2018-01-25 | 2018-07-13 | 华电电力科学研究院有限公司 | A kind of online checking system and check method of overall machine vibration monitoring system |
CN108757502A (en) * | 2018-05-15 | 2018-11-06 | 江苏大学 | A kind of water pump assembly typical case's health status monitoring device and method based on Internet of Things |
CN110319876A (en) * | 2019-05-20 | 2019-10-11 | 国家电网有限公司 | A kind of state monitoring method and device of hydrogenerator |
CN211401407U (en) * | 2019-09-26 | 2020-09-01 | 上海电气电站设备有限公司 | Turbine shroud blade vibration measurement sensor |
CN111458007A (en) * | 2020-05-06 | 2020-07-28 | 哈尔滨电机厂有限责任公司 | Method for identifying local vibration of end part of steam turbine generator |
CN111366354A (en) * | 2020-05-07 | 2020-07-03 | 西安西热节能技术有限公司 | Test and evaluation system and method for testing vibration characteristics of valve internal components by non-contact measurement |
CN111682712A (en) * | 2020-06-29 | 2020-09-18 | 哈尔滨电机厂有限责任公司 | A field installation method of a large generator end vibration monitoring device |
CN111739160A (en) * | 2020-07-02 | 2020-10-02 | 哈尔滨电机厂有限责任公司 | Method for identifying dynamic and static interference vibration frequency of water turbine runner |
Non-Patent Citations (7)
Title |
---|
《A review of cavitation in hydraulic machinery》;Xian-wu LUO;《Journal of Hydrodynamics, Ser. B》;20160630;全文 * |
《No-Load Voltage Waveform Optimization and Damper Bars Heat Reduction of Tubular Hydrogenerator by Different Degree of Adjusting Damper Bar Pitch and Skewing Stator Slot》;Zhen-nan Fan;《IEEE Transactions on Energy Conversion》;20130520;全文 * |
《The Runner Structure Fluid Solid Coupling Research Of Bulb Tubular Turbine Based On The Cam Relationship》;Sheng-Yang PENG;《2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)》;20190524;全文 * |
《水轮机技术进展与发展趋势》;罗兴锜;《水力发电学报》;20200818;全文 * |
《汽车刮水器摩擦引起的噪声特性试验分析》;张立军;《同济大学学报(自然科学版) 》;20100715;全文 * |
《贯流式水轮机非定常流动及稳定性研究》;贯流式水轮机非定常流动及稳定性研究;《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》;20150115;全文 * |
刘鑫.《 水轮机转轮流固耦合裂纹萌生扩展与空化湿模态研究》.《中国博士学位论文全文数据库 (工程科技Ⅱ辑)》.2018, * |
Also Published As
Publication number | Publication date |
---|---|
CN112378506A (en) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203629869U (en) | Water turbine cavitation monitoring and analyzing system | |
Tang et al. | Defect localization on rolling element bearing stationary outer race with acoustic emission technology | |
AU2017393649B2 (en) | Leakage positioning method based on speed difference | |
CN104792364A (en) | Dynamic bridge parameter extracting system and dynamic bridge parameter extracting method based on laser Doppler | |
CN113567560B (en) | A damage detection method for pipelines with auxiliary structures based on ultrasonic guided waves | |
CN104314801B (en) | Water jet propulsion pump noise measuring system based on non-noise elimination environment and its method of testing | |
CN106870347B (en) | A kind of device of monitoring reciprocating pump hydraulic-end moving component and fluid leakage sound | |
CN105823581A (en) | System and method for wirelessly measuring the surface pressure of pump impeller blade | |
CN102102511B (en) | Underground ultrasonic Doppler flow measurement device and measurement method | |
CN112254943A (en) | Device and method for measuring external characteristics and noise performance of water jet propulsion pump | |
CN109357645B (en) | A movable ultrasonic bending tube thickness measuring device | |
CN112378506B (en) | A synchronous test method for the vibration of a tubular hydraulic mechanical runner and outer wall | |
CN111337453B (en) | A multi-point gas concentration detection method and detection device for eliminating the influence of dynamic loss | |
CN206832987U (en) | A kind of parameters,acoustic measurement apparatus of side scan sonar | |
CN103630604B (en) | The recognition methods of centrifugal compressor half-opened impeller crack fault | |
CN209214758U (en) | For recognizing the device of shrouded blade dynamic parameter | |
CN114563131A (en) | A method and system for simultaneous dynamic balancing of single measuring point and multiple rollers | |
CN108645506A (en) | Blade vibration measurement method of parameters based on APD array and device | |
CN105806956B (en) | A kind of probe assembly of steam generator heat-transfer pipe ultrasonic examination | |
CN114942119B (en) | High-temperature high-speed rotating impeller machinery transient flow field test system | |
CN111767870B (en) | Method for determining dynamic and static interference vibration transmission path of water turbine | |
CN202024987U (en) | Standard check testing device for pipeline ultrasonography detection device | |
CN111272241B (en) | A system and method for measuring pipeline flow based on scattered light | |
CN212031294U (en) | Multi-point gas concentration detection device capable of eliminating dynamic loss influence | |
CN116026768A (en) | Sapphire optical probe for high-temperature gas spectrum measurement of aero-engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221101 |
|
CF01 | Termination of patent right due to non-payment of annual fee |