[go: up one dir, main page]

CN112363400B - Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding - Google Patents

Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding Download PDF

Info

Publication number
CN112363400B
CN112363400B CN202011361609.3A CN202011361609A CN112363400B CN 112363400 B CN112363400 B CN 112363400B CN 202011361609 A CN202011361609 A CN 202011361609A CN 112363400 B CN112363400 B CN 112363400B
Authority
CN
China
Prior art keywords
data
optical fiber
array
intrusion
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011361609.3A
Other languages
Chinese (zh)
Other versions
CN112363400A (en
Inventor
孙宏彬
潘欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baicheng Power Supply Co Of State Grid Jilin Electric Power Co Ltd
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Baicheng Power Supply Co Of State Grid Jilin Electric Power Co ltd
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baicheng Power Supply Co Of State Grid Jilin Electric Power Co ltd, Changchun Institute of Applied Chemistry of CAS filed Critical Baicheng Power Supply Co Of State Grid Jilin Electric Power Co ltd
Priority to CN202011361609.3A priority Critical patent/CN112363400B/en
Publication of CN112363400A publication Critical patent/CN112363400A/en
Application granted granted Critical
Publication of CN112363400B publication Critical patent/CN112363400B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Alarm Systems (AREA)
  • Optical Communication System (AREA)

Abstract

The invention relates to a cable tunnel intrusion monitoring method based on optical fiber sensor signals and abnormal codes. The regression prediction model based on abnormal condition codes instead of specific numerical values can be obtained by utilizing the method, the problem that the conventional prediction method cannot stably run for a long time due to the binding of the conventional prediction method and specific experimental numerical values can be solved, and the intrusion condition of the cable tunnel can be effectively monitored in a longer time range.

Description

基于光纤传感器信号和异常编码的电缆隧道入侵监测方法Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding

技术领域:Technical field:

本发明涉及一种基于光纤传感器信号和异常编码的电缆隧道入侵监测方法,用于电缆隧道入侵情况的监测,属于电缆隧道状态安全监测技术领域。The invention relates to a cable tunnel intrusion monitoring method based on optical fiber sensor signals and abnormal codes, which is used for monitoring the intrusion situation of cable tunnels, and belongs to the technical field of cable tunnel state safety monitoring.

背景技术:Background technique:

电力电缆是电力传输的重要载体,电缆隧道故障影响电力电网建设效能的发挥。电缆隧道经常发生犯罪分子入侵情况,隧道内的内交叉互联线、接地线、接地铜排等时常被并被盗,不但造成巨大经济损失,而且这些问题严重影响了电力系统的安全有效运行,因此非常有必要对电缆隧道入侵情况进行监测。Power cables are an important carrier of power transmission, and cable tunnel failures affect the performance of power grid construction. Criminals often invade cable tunnels, and the internal cross interconnection wires, grounding wires, grounding copper bars, etc. in the tunnel are often stolen and stolen, which not only causes huge economic losses, but also seriously affects the safe and effective operation of the power system. Therefore, It is very necessary to monitor the cable tunnel intrusion.

当前对电缆隧道入侵情况进行监测的方式有两种:一是,直接有专人以固定间隔对隧道情况进行检查,这种方式不但需要耗费巨大人力成本,而且由于电缆距离较长对于可能的入侵情况会发生检测不及时或者漏查的情况;二是,利用光纤传感器信号反应隧道内的情况,建立对应的人工智能模型来预测可能出现的入侵情况,这些模型通常是基于实验室数据或电缆隧道建成初期所获得的数据构建的,其特点是与特定的数值绑定在系统运行初期精度会很高;但是由于地区分布较大的隧道在长时间使用过程中不可避免的会出现沉降和变形情况,所以这些基于数值的模型会越来越不准,在运行一段时间后误报率会不断上升。Currently, there are two ways to monitor the intrusion of cable tunnels: one is to have a special person check the tunnel situation at fixed intervals. This method not only requires huge labor costs, but also reduces the possibility of intrusion due to the long cable distance. There will be cases where the detection is not timely or missed. Second, the optical fiber sensor signals are used to reflect the situation in the tunnel, and corresponding artificial intelligence models are established to predict possible intrusions. These models are usually built based on laboratory data or cable tunnels. It is constructed from the data obtained at the initial stage, and its characteristic is that it is bound to a specific value, and the accuracy will be very high in the initial stage of the system operation; however, due to the fact that the tunnels with large geographical distribution will inevitably appear settlement and deformation during the long-term use process, So these numerical-based models will become more and more inaccurate, and the false positive rate will continue to rise after running for a period of time.

因此需要提出一种方法,可以规避传统的方法与具体实验数值绑定的问题,在较长的时间范围内对电缆隧道入侵情况进行监测。Therefore, it is necessary to propose a method, which can avoid the problem of binding traditional methods and specific experimental values, and monitor the intrusion of cable tunnels in a long time range.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供一种基于光纤传感器信号和异常编码描述的电缆隧道入侵监测方法。对于输入的光纤传感器信号本方法可以对其异常情况进行编码,进而获得基于编码的回归模型,进而实现电缆隧道入侵情况的监测。Aiming at the problems existing in the prior art, the present invention provides a cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal code description. For the input optical fiber sensor signal, the method can encode the abnormal situation, and then obtain the regression model based on the encoding, and then realize the monitoring of the intrusion of the cable tunnel.

本发明所述的一种基于光纤传感器信号和异常编码的电缆隧道入侵监测方法,包括以下步骤:A method for monitoring cable tunnel intrusion based on optical fiber sensor signals and abnormal codes according to the present invention includes the following steps:

S1,输入正常状态的电缆隧道光纤传感器信号数据列表HistoryList,输入电缆隧道出现入侵的情况的数据列表ErrorList,获得HistoryList数据条目的个数HistoryNum,建立正常状态统计数组HArray;获得ErrorList数据条目的个数ErrorNum,建立入侵状态统计数组EArray,获得入侵位置最大值DistanceMax;S1, input the cable tunnel fiber optic sensor signal data list HistoryList in the normal state, input the data list ErrorList of the intrusion of the cable tunnel, obtain the number of HistoryList data entries HistoryNum, establish the normal state statistics array HArray; obtain the number of ErrorList data entries ErrorNum, establish the intrusion state statistics array EArray, and obtain the maximum value of intrusion position DistanceMax;

S101,输入正常状态的电缆隧道光纤传感器信号数据列表HistoryList,HistoryList的字段包括:S101 , input the cable tunnel optical fiber sensor signal data list HistoryList in the normal state, and the fields of the HistoryList include:

HSData:正常状态光纤传感器信号数组,其数据类型为100个元素的浮点型数组。HSData: Array of fiber optic sensor signals in normal state, whose data type is a floating-point array of 100 elements.

HRQ:光纤传感器获取HSData数据所对应的时间;HRQ: The time corresponding to the optical fiber sensor to obtain the HSData data;

S102,输入电缆隧道出现入侵的情况的数据列表ErrorList,ErrorList的字段包括:S102, input the data list ErrorList of the intrusion of the cable tunnel, and the fields of ErrorList include:

ESData:出现入侵情况光纤传感器信号数组,其数据类型为100个元素的浮点型数组;ESData: Array of optical fiber sensor signals in case of intrusion, whose data type is a floating-point array of 100 elements;

EDistance:隧道中出现入侵情况的位置距离光纤传感器的距离,其数据类型为浮点型数据;EDistance: The distance between the location where the intrusion occurs in the tunnel and the fiber optic sensor, the data type is floating point data;

ERQ:光纤传感器获取ESData数据所对应的时间;ERQ: The time corresponding to the optical fiber sensor acquiring ESData data;

S103,HistoryNum=HistoryList的数据条目数,ErrorNum=ErrorList的数据条目数;HArray=100个元素的浮点型数组;EArray=100个元素的浮点型数组;DistanceMax==ErrorList的EDistance字段最大值;S103, HistoryNum=Number of data entries in HistoryList, ErrorNum=Number of data entries in ErrorList; HArray=100-element floating-point array; EArray=100-element floating-point array; DistanceMax==Maximum value of EDistance field of ErrorList;

S104,设置HArray的所有元素的值为0;设置EArray的所有元素至为0;对HistoryList按照HRQ的值从小到大排序;对ErrorList按照ERQ的值从小到大排序;S104, set the value of all elements of HArray to 0; set all elements of EArray to 0; sort HistoryList from small to large according to the value of HRQ; sort ErrorList from small to large according to the value of ERQ;

S105,历史数据计数器HistoryNumCounter=1;S105, history data counter HistoryNumCounter=1;

S106,HArray=HArray+(HistoryList[HistoryNumCounter].HSData)×(1+(HistoryNumCounter/HistoryNum-0.5) /100);S106, HArray=HArray+(HistoryList[HistoryNumCounter].HSData)×(1+(HistoryNumCounter/HistoryNum-0.5) /100);

S107, HistoryNumCounter=HistoryNumCounter+1;S107, HistoryNumCounter=HistoryNumCounter+1;

S108, 如果HistoryNumCounter>HistoryNum则转到S109,否则转到S106;S108, if HistoryNumCounter>HistoryNum, go to S109, otherwise go to S106;

S109,HArray=HArray/HistoryNum;S109, HArray=HArray/HistoryNum;

S110, 入侵情况计数器ErrorNumCounter=1;S110, intrusion counter ErrorNumCounter=1;

S111,EArray=EArray+(ErrorList [ErrorNumCounter].ESData);S111, EArray=EArray+(ErrorList[ErrorNumCounter].ESData);

S112,ErrorNumCounter=ErrorNumCounter+1;S112, ErrorNumCounter=ErrorNumCounter+1;

S113,如果ErrorNumCounter>ErrorNum则转到S114,否则转到S111;S113, if ErrorNumCounter>ErrorNum, go to S114, otherwise go to S111;

S114,EArray=EArray/ErrorNum;S114, EArray=EArray/ErrorNum;

S2,建立光纤信号异常编码描述算子OFeature,OFeature的输入变量为OFeatureInput,OFeatureInput的类型为100个元素的浮点型数组,OFeature的输出变量为OFeatureOutput,OFeatureOutput为400个元素的浮点型数组;S2, establish the optical fiber signal abnormal coding description operator OFeature, the input variable of OFeature is OFeatureInput, the type of OFeatureInput is a floating-point array with 100 elements, the output variable of OFeature is OFeatureOutput, and OFeatureOutput is a floating-point array with 400 elements;

S201,建立光纤信号异常编码描述算子OFeature,OFeature的输入变量为OFeatureInput,OFeatureInput的类型为100个元素的浮点型数组;S201 , an optical fiber signal abnormality encoding description operator OFeature is established, the input variable of OFeature is OFeatureInput, and the type of OFeatureInput is a floating-point array of 100 elements;

S202,建立OFeature的输出变量OFeatureOutput=400个元素的浮点型数组,设置该数组的所有元素值为0;S202, establish a floating-point array of OFeature Output variable OFeatureOutput=400 elements, and set the value of all elements of the array to 0;

S203,算子计数器OFeatureCounter=1;S203, the operator counter OFeatureCounter=1;

S204,如果OFeatureInput[OFeatureCounter]>HArray[OFeatureCounter]则OFeatureOutput[OFeatureCounter]=1;S204, if OFeatureInput[OFeatureCounter]>HArray[OFeatureCounter], then OFeatureOutput[OFeatureCounter]=1;

S205,如果OFeatureInput[OFeatureCounter]>EArray[OFeatureCounter]则OFeatureOutput[OFeatureCounter +100]=1;S205, if OFeatureInput[OFeatureCounter]>EArray[OFeatureCounter], then OFeatureOutput[OFeatureCounter +100]=1;

S206,算子第一暂存变量OFeatureTemp1=0;算子第二暂存变量OFeatureTemp1=0;S206, the operator's first temporary storage variable OFeatureTemp1=0; the operator's second temporary storage variable OFeatureTemp1=0;

S207,OFeatureTemp1=abs(OFeatureInput[OFeatureCounter]-HArray[OFeatureCounter]),其中abs为计算绝对值;S207, OFeatureTemp1=abs(OFeatureInput[OFeatureCounter]-HArray[OFeatureCounter]), where abs is the absolute value of the calculation;

S208,OFeatureTemp2=abs(OFeatureInput[OFeatureCounter]-EArray[OFeatureCounter]),其中abs为计算绝对值;S208, OFeatureTemp2=abs(OFeatureInput[OFeatureCounter]-EArray[OFeatureCounter]), where abs is the calculated absolute value;

S209,如果OFeatureTemp1>OFeatureTemp2,S209, if OFeatureTemp1>OFeatureTemp2,

这OFeatureOutput[OFeatureCounter+200]=1;this OFeatureOutput[OFeatureCounter+200]=1;

S210,如果abs(OFeatureTemp1-OFeatureTemp2)>0.5则,OFeatureOutput[OFeatureCounter+300]=1,其中abs为计算绝对值;S210, if abs(OFeatureTemp1-OFeatureTemp2)>0.5, OFeatureOutput[OFeatureCounter+300]=1, where abs is the calculated absolute value;

S211, OFeatureCounter=OFeatureCounter+1;S211, OFeatureCounter=OFeatureCounter+1;

S212, 如果OFeatureCounter>100则转到S213,否则转到S204;S212, if OFeatureCounter>100, go to S213, otherwise go to S204;

S213,将OFeatureOutput作为OFeature的输出;S213, take OFeatureOutput as the output of OFeature;

S3,利用光纤信号特征描述算子OFeature构建决策信息表DecisionTable,利用DecisionTable训练回归模型RegModel;S3, use the optical fiber signal feature description operator OFeature to construct the decision information table DecisionTable, and use the DecisionTable to train the regression model RegModel;

S301,建立决策信息表DecisionTable,DecisionTable的字段结构如下:S301, a decision information table DecisionTable is established, and the field structure of DecisionTable is as follows:

DecisionInput:决策输入,为400个元素的浮点型数组;DecisionInput: decision input, a floating-point array of 400 elements;

DecisionDistance: 出现入侵情况的距离,其数据类型为浮点型数据;DecisionDistance: The distance of the intrusion situation, its data type is floating-point data;

S302,决策计数器第一变量CreateCounter1=1;S302, the first variable of the decision counter CreateCounter1=1;

S303,决策暂存数组变量CTempArray=通过OFeature进行计算,算子输入OFeatureInput=HistoryList[CreateCounter1].HSData;S303, the decision temporary storage array variable CTempArray= is calculated by OFeature, and the operator input OFeatureInput=HistoryList[CreateCounter1].HSData;

S304,在DecisionTable中新建1条记录;在新加的记录中DecisionInput字段值为CTempArray,DecisionDistance的值为-1;S304, create a new record in DecisionTable; in the newly added record, the value of the DecisionInput field is CTempArray, and the value of DecisionDistance is -1;

S305,CreateCounter1=CreateCounter1+1;S305, CreateCounter1=CreateCounter1+1;

S306,如果CreateCounter1>HistoryNum则转到S307,否则转到S303;S306, if CreateCounter1>HistoryNum, go to S307, otherwise go to S303;

S307,决策计数器第二变量CreateCounter2=1;S307, the second variable of the decision counter CreateCounter2=1;

S308,CTempArray=通过OFeature进行计算,算子输入OFeatureInput=ErrorList[CreateCounter2].ESData;S308, CTempArray=Calculate by OFeature, operator input OFeatureInput=ErrorList[CreateCounter2].ESData;

S309,在DecisionTable中新建1条记录;在新加的记录中DecisionInput字段值为CTempArray,DecisionDistance的值为ErrorList [CreateCounter2].EDistance/DistanceMax;S309, create a new record in DecisionTable; in the newly added record, the value of the DecisionInput field is CTempArray, and the value of DecisionDistance is ErrorList [CreateCounter2].EDistance/DistanceMax;

S310,CreateCounter2=CreateCounter2+1;S310,CreateCounter2=CreateCounter2+1;

S311,如果CreateCounter2>ErrorNum则转到S312,否则转到S308;S311, if CreateCounter2>ErrorNum, go to S312, otherwise go to S308;

S312, 建立神经网回归分析模型RegModel;S312, establish a neural network regression analysis model RegModel;

S313,将DecisionTable的DecisionInput字段作为RegModel模型的输入,将DecisionTable的DecisionDistance字段作为RegModel模型的输出;输入DecisionTable所有数据对RegModel进行训练;S313, use the DecisionInput field of the DecisionTable as the input of the RegModel model, and use the DecisionDistance field of the DecisionTable as the output of the RegModel model; input all the data of the DecisionTable to train the RegModel;

S4,输入电缆隧道中光纤传感器信号采集到的数据CurrentArray,做出入侵的情况预测;S4, input the data CurrentArray collected by the optical fiber sensor signal in the cable tunnel, and predict the intrusion situation;

S401,输入电缆隧道中光纤传感器信号采集到的数据CurrentArray,CurrentArray为一个100个元素的浮点型数组;S401, input the data CurrentArray collected by the optical fiber sensor signal in the cable tunnel, and CurrentArray is a floating-point array with 100 elements;

S402,预测暂存特征变量Feature=通过OFeature进行计算,算子输入OFeatureInput=CurrentArray;S402, predicting the temporary storage feature variable Feature= is calculated by OFeature, and the operator input OFeatureInput=CurrentArray;

S403,预测结果变量PResult=将Feature作为RegModel的输入并获得RegModel的输出;S403, the prediction result variable PResult= takes Feature as the input of RegModel and obtains the output of RegModel;

S404,如果PResult<0则输出“不存在入侵情况”并转到S408,否则转到S405;S404, if PResult<0, output "no intrusion situation" and go to S408, otherwise go to S405;

S405,最终预测距离ResultDis=PResult×DistanceMax;S405, the final predicted distance ResultDis=PResult×DistanceMax;

S406,输出“存在入侵情况”,输出ResultDis作为入侵的位置;S406, output "there is an intrusion situation", and output ResultDis as the location of the intrusion;

S407,转到S409;S407, go to S409;

S408,HArray=(CurrentArray-HArray)/( HistoryNum×10)+HArray;S408, HArray=(CurrentArray-HArray)/(HistoryNum×10)+HArray;

S409,预测过程结束。S409, the prediction process ends.

本发明的有益效果是:The beneficial effects of the present invention are:

提供一种基于光纤传感器信号和异常编码描述的电缆隧道入侵监测方法。对于输入的光纤传感器信号本方法可以对其异常情况进行编码,进而获得基于编码的回归模型,进而实现电缆隧道入侵情况的监测。利用本发明专利可以获得一个基于异常情况编码而不是具体数值的回归预测模型,可以规避传统的预测方法与具体实验数值绑定导致的无法长时间稳定运行的问题,在较长的时间范围内有效的对电缆隧道入侵情况进行监测。Provided is a cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal code description. For the input optical fiber sensor signal, the method can encode the abnormal situation, and then obtain the regression model based on the encoding, and then realize the monitoring of the intrusion of the cable tunnel. Using the patent of the present invention, a regression prediction model based on abnormal condition codes rather than specific values can be obtained, which can avoid the problem of inability to run stably for a long time caused by the binding of traditional prediction methods and specific experimental values, and is effective in a long time range. monitoring of cable tunnel intrusion.

具体实施方式Detailed ways

通过以下实施例进一步举例描述本发明,并不以任何方式限制本发明,在不背离本发明的技术解决方案的前提下,对本发明所作的本领域普通技术人员容易实现的任何改动或改变都将落入本发明的权利要求范围之内。The present invention is further described by the following examples, and does not limit the present invention in any way. On the premise of not departing from the technical solutions of the present invention, any changes or changes that are easily realized by those of ordinary skill in the art made by the present invention will be fall within the scope of the claims of the present invention.

实施例1Example 1

S1,输入正常状态的电缆隧道光纤传感器信号数据列表HistoryList,输入电缆隧道出现入侵的情况的数据列表ErrorList,获得HistoryList数据条目的个数HistoryNum,建立正常状态统计数组HArray;获得ErrorList数据条目的个数ErrorNum,建立入侵状态统计数组EArray,获得入侵位置最大值DistanceMax。S1, input the cable tunnel fiber optic sensor signal data list HistoryList in the normal state, input the data list ErrorList of the intrusion of the cable tunnel, obtain the number of HistoryList data entries HistoryNum, establish the normal state statistics array HArray; obtain the number of ErrorList data entries ErrorNum, establishes the intrusion state statistics array EArray, and obtains the maximum value of intrusion position DistanceMax.

S101,输入正常状态的电缆隧道光纤传感器信号数据列表HistoryList,HistoryList的字段包括:S101 , input the cable tunnel optical fiber sensor signal data list HistoryList in the normal state, and the fields of the HistoryList include:

HSData:正常状态光纤传感器信号数组,其数据类型为100个元素的浮点型数组。HSData: Array of fiber optic sensor signals in normal state, whose data type is a floating-point array of 100 elements.

HRQ:光纤传感器获取HSData数据所对应的时间。HRQ: The time corresponding to the acquisition of HSData data by the optical fiber sensor.

S102,输入电缆隧道出现入侵的情况的数据列表ErrorList,ErrorList的字段包括:S102, input the data list ErrorList of the intrusion of the cable tunnel, and the fields of ErrorList include:

ESData:出现入侵情况光纤传感器信号数组,其数据类型为100个元素的浮点型数组。ESData: Array of fiber optic sensor signals in case of intrusion, whose data type is a floating-point array of 100 elements.

EDistance:隧道中出现入侵情况的位置距离光纤传感器的距离,其数据类型为浮点型数据。EDistance: The distance between the location where the intrusion occurs in the tunnel and the fiber optic sensor, and its data type is floating-point data.

ERQ:光纤传感器获取ESData数据所对应的时间。ERQ: The time corresponding to the fiber optic sensor acquiring ESData data.

S103,HistoryNum=HistoryList的数据条目数,ErrorNum=ErrorList的数据条目数;HArray=100个元素的浮点型数组;EArray=100个元素的浮点型数组;DistanceMax==ErrorList的EDistance字段最大值;S103, HistoryNum=Number of data entries in HistoryList, ErrorNum=Number of data entries in ErrorList; HArray=100-element floating-point array; EArray=100-element floating-point array; DistanceMax==Maximum value of EDistance field of ErrorList;

S104,设置HArray的所有元素的值为0;设置EArray的所有元素至为0;对HistoryList按照HRQ的值从小到大排序;对ErrorList按照ERQ的值从小到大排序;S104, set the value of all elements of HArray to 0; set all elements of EArray to 0; sort HistoryList from small to large according to the value of HRQ; sort ErrorList from small to large according to the value of ERQ;

S105,历史数据计数器HistoryNumCounter=1;S105, history data counter HistoryNumCounter=1;

S106,HArray=HArray+(HistoryList[HistoryNumCounter].HSData)×(1+(HistoryNumCounter/HistoryNum-0.5) /100);S106, HArray=HArray+(HistoryList[HistoryNumCounter].HSData)×(1+(HistoryNumCounter/HistoryNum-0.5) /100);

S107, HistoryNumCounter=HistoryNumCounter+1;S107, HistoryNumCounter=HistoryNumCounter+1;

S108, 如果HistoryNumCounter>HistoryNum则转到S109,否则转到S106;S108, if HistoryNumCounter>HistoryNum, go to S109, otherwise go to S106;

S109,HArray=HArray/HistoryNum;S109, HArray=HArray/HistoryNum;

S110, 入侵情况计数器ErrorNumCounter=1;S110, intrusion counter ErrorNumCounter=1;

S111,EArray=EArray+(ErrorList [ErrorNumCounter].ESData);S111, EArray=EArray+(ErrorList[ErrorNumCounter].ESData);

S112,ErrorNumCounter=ErrorNumCounter+1;S112, ErrorNumCounter=ErrorNumCounter+1;

S113,如果ErrorNumCounter>ErrorNum则转到S114,否则转到S111;S113, if ErrorNumCounter>ErrorNum, go to S114, otherwise go to S111;

S114,EArray=EArray/ErrorNum。S114, EArray=EArray/ErrorNum.

以吉林省某地电缆隧道2018至2019的数据为例Take the data of a cable tunnel in Jilin Province from 2018 to 2019 as an example

输入正常状态的电缆隧道光纤传感器信号数据列表HistoryList,HistoryList包含100条数据其内容如下:Enter the cable tunnel fiber optic sensor signal data list HistoryList in normal state. HistoryList contains 100 pieces of data. The contents are as follows:

Figure 579113DEST_PATH_IMAGE001
Figure 579113DEST_PATH_IMAGE001

输入电缆隧道出现入侵的情况的数据列表ErrorList,ErrorList包含100条数据其内容如下:Enter the data list ErrorList of the intrusion of the cable tunnel. The ErrorList contains 100 pieces of data. The content is as follows:

Figure 965095DEST_PATH_IMAGE002
Figure 965095DEST_PATH_IMAGE002

获得HistoryList数据条目的个数HistoryNum=100Get the number of HistoryList data entries HistoryNum=100

建立正常状态统计数组HArray=[0.21, 1.67, 1.23, 0.99, 1.38, 0.48, 1.11,1.01, 1.18, 1.62, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39, 0.00,2.40];Create a normal state statistics array HArray=[0.21, 1.67, 1.23, 0.99, 1.38, 0.48, 1.11, 1.01, 1.18, 1.62, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39, 0.00, 2.40];

获得ErrorList数据条目的个数ErrorNum=100;Get the number of ErrorList data entries ErrorNum=100;

建立入侵状态统计数组EArray=[0.11, 1.49, 1.29, 1.25, 1.49, 0.48, 1.61,0.69, 1.25, 1.62, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39, 0.00,1.18];Create an intrusion state statistics array EArray=[0.11, 1.49, 1.29, 1.25, 1.49, 0.48, 1.61,0.69, 1.25, 1.62, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39, 0.00, 1.18];

获得入侵位置最大值DistanceMax=2349;Get the maximum value of the invasion location DistanceMax=2349;

S2,建立光纤信号异常编码描述算子OFeature,OFeature的输入变量为OFeatureInput,OFeatureInput的类型为100个元素的浮点型数组,OFeature的输出变量为OFeatureOutput,OFeatureOutput为400个元素的浮点型数组。S2, establish an optical fiber signal abnormality encoding description operator OFeature, the input variable of OFeature is OFeatureInput, the type of OFeatureInput is a floating-point array of 100 elements, the output variable of OFeature is OFeatureOutput, and OFeatureOutput is a floating-point array of 400 elements.

S201,建立光纤信号异常编码描述算子OFeature,OFeature的输入变量为OFeatureInput,OFeatureInput的类型为100个元素的浮点型数组;S201 , an optical fiber signal abnormality encoding description operator OFeature is established, the input variable of OFeature is OFeatureInput, and the type of OFeatureInput is a floating-point array of 100 elements;

S202,建立OFeature的输出变量OFeatureOutput=400个元素的浮点型数组,设置该数组的所有元素值为0;S202, establish a floating-point array of OFeature Output variable OFeatureOutput=400 elements, and set the value of all elements of the array to 0;

S203,算子计数器OFeatureCounter=1;S203, the operator counter OFeatureCounter=1;

S204,如果OFeatureInput[OFeatureCounter]>HArray[OFeatureCounter]则OFeatureOutput[OFeatureCounter]=1;S204, if OFeatureInput[OFeatureCounter]>HArray[OFeatureCounter], then OFeatureOutput[OFeatureCounter]=1;

S205,如果OFeatureInput[OFeatureCounter]>EArray[OFeatureCounter]则OFeatureOutput[OFeatureCounter +100]=1;S205, if OFeatureInput[OFeatureCounter]>EArray[OFeatureCounter], then OFeatureOutput[OFeatureCounter +100]=1;

S206,算子第一暂存变量OFeatureTemp1=0;算子第二暂存变量OFeatureTemp1=0;S206, the operator's first temporary storage variable OFeatureTemp1=0; the operator's second temporary storage variable OFeatureTemp1=0;

S207,OFeatureTemp1=abs(OFeatureInput[OFeatureCounter]-HArray[OFeatureCounter]),其中abs为计算绝对值;S207, OFeatureTemp1=abs(OFeatureInput[OFeatureCounter]-HArray[OFeatureCounter]), where abs is the absolute value of the calculation;

S208,OFeatureTemp2=abs(OFeatureInput[OFeatureCounter]-EArray[OFeatureCounter]),其中abs为计算绝对值;S208, OFeatureTemp2=abs(OFeatureInput[OFeatureCounter]-EArray[OFeatureCounter]), where abs is the calculated absolute value;

S209,如果OFeatureTemp1>OFeatureTemp2,这OFeatureOutput[OFeatureCounter+200]=1;S209, if OFeatureTemp1>OFeatureTemp2, this OFeatureOutput[OFeatureCounter+200]=1;

S210,如果abs(OFeatureTemp1-OFeatureTemp2)>0.5则,OFeatureOutput[OFeatureCounter+300]=1,其中abs为计算绝对值;S210, if abs(OFeatureTemp1-OFeatureTemp2)>0.5, OFeatureOutput[OFeatureCounter+300]=1, where abs is the calculated absolute value;

S211, OFeatureCounter=OFeatureCounter+1;S211, OFeatureCounter=OFeatureCounter+1;

S212, 如果OFeatureCounter>100则转到S213,否则转到S204;S212, if OFeatureCounter>100, go to S213, otherwise go to S204;

S213,将OFeatureOutput作为OFeature的输出;S213, take OFeatureOutput as the output of OFeature;

S3,利用光纤信号特征描述算子OFeature构建决策信息表DecisionTable,利用DecisionTable训练回归模型RegModel;S3, use the optical fiber signal feature description operator OFeature to construct the decision information table DecisionTable, and use the DecisionTable to train the regression model RegModel;

S301,建立决策信息表DecisionTable,DecisionTable的字段结构如下:S301, a decision information table DecisionTable is established, and the field structure of DecisionTable is as follows:

DecisionInput:决策输入,为400个元素的浮点型数组;DecisionInput: decision input, a floating-point array of 400 elements;

DecisionDistance: 出现入侵情况的距离,其数据类型为浮点型数据;DecisionDistance: The distance of the intrusion situation, its data type is floating-point data;

S302,决策计数器第一变量CreateCounter1=1;S302, the first variable of the decision counter CreateCounter1=1;

S303,决策暂存数组变量CTempArray=通过OFeature进行计算,算子输入OFeatureInput=HistoryList[CreateCounter1].HSData;S303, the decision temporary storage array variable CTempArray= is calculated by OFeature, and the operator input OFeatureInput=HistoryList[CreateCounter1].HSData;

S304,在DecisionTable中新建1条记录;在新加的记录中DecisionInput字段值为CTempArray,DecisionDistance的值为-1;S304, create a new record in DecisionTable; in the newly added record, the value of the DecisionInput field is CTempArray, and the value of DecisionDistance is -1;

S305,CreateCounter1=CreateCounter1+1;S305, CreateCounter1=CreateCounter1+1;

S306,如果CreateCounter1>HistoryNum则转到S307,否则转到S303;S306, if CreateCounter1>HistoryNum, go to S307, otherwise go to S303;

S307,决策计数器第二变量CreateCounter2=1;S307, the second variable of the decision counter CreateCounter2=1;

S308,CTempArray=通过OFeature进行计算,算子输入OFeatureInput=ErrorList[CreateCounter2].ESData;S308, CTempArray=Calculate by OFeature, operator input OFeatureInput=ErrorList[CreateCounter2].ESData;

S309,在DecisionTable中新建1条记录;在新加的记录中DecisionInput字段值为CTempArray,DecisionDistance的值为ErrorList [CreateCounter2].EDistance/DistanceMax;S309, create a new record in DecisionTable; in the newly added record, the value of the DecisionInput field is CTempArray, and the value of DecisionDistance is ErrorList [CreateCounter2].EDistance/DistanceMax;

S310,CreateCounter2=CreateCounter2+1;S310,CreateCounter2=CreateCounter2+1;

S311,如果CreateCounter2>ErrorNum则转到S312,否则转到S308;S311, if CreateCounter2>ErrorNum, go to S312, otherwise go to S308;

S312, 建立神经网回归分析模型RegModel;S312, establish a neural network regression analysis model RegModel;

S313,将DecisionTable的DecisionInput字段作为RegModel模型的输入,将DecisionTable的DecisionDistance字段作为RegModel模型的输出;输入DecisionTable所有数据对RegModel进行训练;S313, use the DecisionInput field of the DecisionTable as the input of the RegModel model, and use the DecisionDistance field of the DecisionTable as the output of the RegModel model; input all the data of the DecisionTable to train the RegModel;

S4,输入电缆隧道中光纤传感器信号采集到的数据CurrentArray,做出入侵的情况预测;S4, input the data CurrentArray collected by the optical fiber sensor signal in the cable tunnel, and predict the intrusion situation;

S401,输入电缆隧道中光纤传感器信号采集到的数据CurrentArray,CurrentArray为一个100个元素的浮点型数组;S401, input the data CurrentArray collected by the optical fiber sensor signal in the cable tunnel, and CurrentArray is a floating-point array with 100 elements;

S402,预测暂存特征变量Feature=通过OFeature进行计算,算子输入OFeatureInput=CurrentArray;S402, predicting the temporary storage feature variable Feature= is calculated by OFeature, and the operator input OFeatureInput=CurrentArray;

S403,预测结果变量PResult=将Feature作为RegModel的输入并获得RegModel的输出;S403, the prediction result variable PResult= takes Feature as the input of RegModel and obtains the output of RegModel;

S404,如果PResult<0则输出“不存在入侵情况”并转到S408,否则转到S405;S404, if PResult<0, output "no intrusion situation" and go to S408, otherwise go to S405;

S405,最终预测距离ResultDis=PResult×DistanceMax;S405, the final predicted distance ResultDis=PResult×DistanceMax;

S406,输出“存在入侵情况”,输出ResultDis作为入侵的位置;S406, output "there is an intrusion situation", and output ResultDis as the location of the intrusion;

S407,转到S409;S407, go to S409;

S408,HArray=(CurrentArray-HArray)/( HistoryNum×10)+HArray;S408, HArray=(CurrentArray-HArray)/(HistoryNum×10)+HArray;

S409,预测过程结束;S409, the prediction process ends;

当输入采集到的数据CurrentArray=[0.37, 1.68, 0.76, 0.83, 1.62, 0.16,1.63, 1.13, 0.70, 1.48, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39,0.00, 0.41];When inputting the collected data CurrentArray=[0.37, 1.68, 0.76, 0.83, 1.62, 0.16,1.63, 1.13, 0.70, 1.48, ......0.28, 0.28, 0.44, 0.00, 0.42, 0.25, 0.25, 0.39 , 0.00, 0.41];

获得PResult=-0.3输出“不存在入侵情况”;Get PResult=-0.3 to output "no intrusion";

当输入采集到的数据CurrentArray=[0.26, 1.30, 0.88, 0.74, 1.27, 0.49,1.40, 1.22, 0.73, 1.29, ......0.34, 0.54, 0.48, 0.24, 0.65, 0.28, 0.43, 0.62,0.00, 2.98];When inputting the collected data CurrentArray=[0.26, 1.30, 0.88, 0.74, 1.27, 0.49,1.40, 1.22, 0.73, 1.29, ......0.34, 0.54, 0.48, 0.24, 0.65, 0.28, 0.43, 0.62 , 0.00, 2.98];

获得PResult=0.834输出“存在入侵情况”, 输出ResultDis=0.834×2349=1959.1作为入侵位置。Obtain PResult=0.834 and output "intrusion situation exists", and output ResultDis=0.834×2349=1959.1 as the intrusion position.

实施例2:Example 2:

本发明提出的方法在吉林省某地区进行电缆隧道进行实际运行测试,在2016年开始该隧道投入使用,对2016至2019四年实际运行数据进行验证,与传统的神经网回归模型,SVM回归模型相比,本发明的监测效果如下:The method proposed by the present invention conducts actual operation test of a cable tunnel in a certain area of Jilin Province. The tunnel is put into use in 2016, and the actual operation data from 2016 to 2019 is verified, which is compared with the traditional neural network regression model and SVM regression model. Compared, the monitoring effect of the present invention is as follows:

Figure 744832DEST_PATH_IMAGE004
Figure 744832DEST_PATH_IMAGE004

结论:从上表可以看出传统方法随着时间的推移监测精度不断下降,而误报率不断提高,本发明方法检测精度是三种方法中最高的,同时误报率也较低。Conclusion: From the above table, it can be seen that the monitoring accuracy of the traditional method continues to decrease with the passage of time, while the false alarm rate continues to increase. The detection accuracy of the method of the present invention is the highest among the three methods, and the false alarm rate is also lower.

Claims (1)

1. A cable tunnel intrusion monitoring method based on optical fiber sensor signals and abnormal codes comprises the following steps:
s1, inputting a cable tunnel optical fiber sensor signal data list HistoryList in a normal state, inputting a data list ErrorList in the case of intrusion of a cable tunnel, obtaining the number HistoryNum of HistoryList data entries, and establishing a normal state statistical array HARray; acquiring the number ErrorNum of ErrorList data entries, establishing an intrusion state statistical array EArray, and acquiring the maximum value DistanceMax of an intrusion position;
s101, inputting a cable tunnel optical fiber sensor signal data list HistoryList in a normal state, wherein the fields of the HistoryList comprise:
HSData: the data type of the normal state optical fiber sensor signal array is a floating point type array with 100 elements;
HRQ: the optical fiber sensor acquires time corresponding to the HSData data;
s102, inputting a data list errorlst of a cable tunnel intrusion condition, where fields of the errorlst include:
ESData: the data type of the signal array of the optical fiber sensor with the intrusion condition is a floating point type array with 100 elements;
EDistance: the distance between the position where the intrusion condition occurs in the tunnel and the optical fiber sensor, wherein the data type of the distance is floating point type data;
ERQ: the optical fiber sensor acquires time corresponding to the ESData data;
s103, the number of the data items of HistoryNum is equal to that of HistoryList, and the number of the data items of ErrorNum is equal to that of ErrorList; HArray is equal to a floating point type array of 100 elements; EArray is equal to a floating point type array of 100 elements; DistanceMax equals the maximum value of the EDistance field of ErrorList;
s104, setting the values of all elements of the HARRAY to be 0; setting all elements of EArray to 0; sorting the HistoryList according to the HRQ value from small to large; sorting ErrorList according to the value of ERQ from small to large;
s105, historical data counter HistoryNumCounter = 1;
S106,HArray=HArray+(HistoryList[HistoryNumCounter].HSData)×(1+ (HistoryNumCounter/HistoryNum-0.5) /100);
S107, HistoryNumCounter=HistoryNumCounter+1;
s108, if HistoryNumCount > HistoryNum, then go to S109, otherwise go to S106;
S109,HArray=HArray/HistoryNum;
s110, an intrusion condition counter ErrorNumCount = 1;
S111,EArray=EArray+(ErrorList [ErrorNumCounter].ESData);
S112,ErrorNumCounter=ErrorNumCounter+1;
s113, if the ErrorNumCount is greater than the ErrorNum, then the S114 is turned, otherwise, the S111 is turned;
S114,EArray=EArray/ErrorNum;
s2, establishing an optical fiber signal abnormal coding description operator OFeature, wherein the input variable of OFeature is OFeatureInput, the type of OFeatureInput is a floating-point array with 100 elements, the output variable of OFeature is OFeatureOutput, and OFeatureOutput is a floating-point array with 400 elements;
s201, establishing an optical fiber signal abnormal coding description operator OFeature, wherein the input variable of the OFeature is OFeatureInput, and the type of the OFeatureInput is a floating point type array with 100 elements;
s202, establishing an output variable OFeatureOutput of OFeature, wherein the type of the OFeatureOutput is a floating-point type array of 400 elements, and setting all element values of the array to be 0;
s203, the operator counter ofearturecounter = 1;
s204, if ofeactueinput [ ofeactuecounter ] > harrray [ ofeactuecounter ], ofeactueoutput [ ofeactuecounter ] = 1;
s205, if ofatutureinput [ ofatuturecounter ] > earrray [ ofatuturecounter ], then ofatutureoutput [ ofatuturecounter +100] = 1;
s206, the operator first temporary storage variable ofaturetemp 1= 0; the operator second temporary storage variable ofatuturetemp 1= 0;
s207, ofatuturetemp 1= abs (ofatutureinput [ ofatuturecounter ] -harrray [ ofatuturecounter ]), where abs is the calculated absolute value;
s208, ofatuturetemp 2= abs (ofatutureinput [ ofatuturecounter ] -earrray [ ofatuturecounter ]), where abs is the calculated absolute value;
s209, if OFeatureTemp1> OFeatureTemp2,
this ofeartureoutput [ ofearturecounter +200] = 1;
s210, if abs (ofaturetemp 1-ofaturetemp 2) >0.5, ofatureoutput [ ofaturecounter +300] =1, where abs is the calculated absolute value;
S211,OFeatureCounter=OFeatureCounter+1;
s212, go to S213 if OFeatureCounter >100, otherwise go to S204;
s213, using the OFeatureOutput as the output of the OFeature;
s3, constructing a decision information table DecisionTable by using an optical fiber signal anomaly code descriptor OFeature, and training a neural network regression analysis model RegModel by using the DecisionTable;
s301, establishing a decision information table decisionTable, wherein the field structure of the decisionTable is as follows:
DecisionInput: decision input, which is a floating-point array of 400 elements;
DecisionDistance: the distance of the intrusion condition occurs, and the data type of the distance is floating point type data;
s302, the decision counter first variable CreateCounter1= 1;
s303, calculating a decision temporary storage array variable ctemparay through ofearture, where an operator inputs ofeartureinput = HistoryList [ CreateCounter1]. HSData;
s304, newly creating 1 record in the decisionTable; in the newly added record, the value of the DecisionInput field is CTempower, and the value of the DecisionDistance is-1;
S305,CreateCounter1=CreateCounter1+1;
s306, if the CreateCounter1> HistoryNum, then go to S307, otherwise go to S303;
s307, the decision counter second variable CreateCounter2= 1;
s308, ctemaparay is calculated by ofature, operator input ofatureinput = errorlst [ CreateCounter2]. ESData;
s309, newly building 1 record in the decisionTable; in the newly added record, the value of the DecisionInput field is CTempray, and the value of the DecisionDistance is ErrorList [ CreateCounter2]. EDistance/DistanceMax;
S310,CreateCounter2=CreateCounter2+1;
s311, if CreateCounter2> ErrorNum, go to S312, otherwise go to S308;
s312, establishing a neural network regression analysis model RegModel;
s313, taking a decisionInput field of decisionTable as the input of the RegModel model, and taking a decisionDistance field of decisionTable as the output of the RegModel model; inputting all data of decisionTable to train a RegModel model;
s4, inputting data CurrentArray acquired by the optical fiber sensor signal in the cable tunnel, and predicting the invasion condition;
s401, inputting data CurrentArray acquired by optical fiber sensor signals in a cable tunnel, wherein the CurrentArray is a floating point type array with 100 elements;
s402, calculating a predicted temporary storage characteristic variable Feature through OFeature, and inputting OFeatureInput = CurrentArray by an operator;
s403, using Feature as input of the RegModel model and obtaining output of the RegModel model, and using the output of the RegModel model as a prediction result variable PResult;
s404, if PResult <0, outputting 'no intrusion condition exists' and turning to S408, otherwise, turning to S405;
s405, finally predicting the distance ResultDis = PResult × DistanceMax;
s406, outputting the intrusion condition and outputting ResultDis as the intrusion position;
s407, go to S409;
S408,HArray=(CurrentArray-HArray)/( HistoryNum×10)+HArray;
and S409, finishing the prediction process.
CN202011361609.3A 2020-11-28 2020-11-28 Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding Active CN112363400B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011361609.3A CN112363400B (en) 2020-11-28 2020-11-28 Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011361609.3A CN112363400B (en) 2020-11-28 2020-11-28 Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding

Publications (2)

Publication Number Publication Date
CN112363400A CN112363400A (en) 2021-02-12
CN112363400B true CN112363400B (en) 2022-06-24

Family

ID=74535453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011361609.3A Active CN112363400B (en) 2020-11-28 2020-11-28 Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding

Country Status (1)

Country Link
CN (1) CN112363400B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038289A2 (en) * 2006-09-28 2008-04-03 Soniclynx Ltd. A system and a method for detecting and classifying damage in a pipeline
CN107368463A (en) * 2017-07-11 2017-11-21 中国矿业大学 Tunnel nonlinear deformation Forecasting Methodology based on optical fiber grating sensing network data
CN107392786A (en) * 2017-07-11 2017-11-24 中国矿业大学 Mine fiber grating monitoring system missing data compensation method based on SVMs
CN110488147A (en) * 2019-07-16 2019-11-22 国网吉林省电力有限公司白城供电公司 The cable local discharge on-line monitoring method that puts into operation based on GPS clock wireless synchronization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620853B2 (en) * 2011-07-19 2013-12-31 Smartsignal Corporation Monitoring method using kernel regression modeling with pattern sequences

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038289A2 (en) * 2006-09-28 2008-04-03 Soniclynx Ltd. A system and a method for detecting and classifying damage in a pipeline
CN107368463A (en) * 2017-07-11 2017-11-21 中国矿业大学 Tunnel nonlinear deformation Forecasting Methodology based on optical fiber grating sensing network data
CN107392786A (en) * 2017-07-11 2017-11-24 中国矿业大学 Mine fiber grating monitoring system missing data compensation method based on SVMs
CN110488147A (en) * 2019-07-16 2019-11-22 国网吉林省电力有限公司白城供电公司 The cable local discharge on-line monitoring method that puts into operation based on GPS clock wireless synchronization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于神经网络的SQL注入式攻击漏洞检测问题的研究与实现;张志超;《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》;20170315(第03期);第I139-265页全文 *

Also Published As

Publication number Publication date
CN112363400A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
AU2021100365A4 (en) A multi-sensor-based intelligent monitoring and early warning system and method for dam safety
CN103793853B (en) Condition of Overhead Transmission Lines Based appraisal procedure based on two-way Bayesian network
CN116614177B (en) Optical fiber state multidimensional parameter monitoring system
CN105471882A (en) Behavior characteristics-based network attack detection method and device
CN105608842A (en) Nuclear reactor fuel failure online monitoring alarm device
CN114783165B (en) On-line monitoring system for anti-breakage of cable channel based on distributed optical fiber vibration sensing
CN116389235A (en) Fault monitoring method and system applied to industrial Internet of things
CN118862059B (en) A safety assessment system and method based on data hazard source identification
CN117791856B (en) Power grid fault early warning method and device based on inspection robot
KR20230156641A (en) Battery effective charging data identification method and device based on deep learning, and medium
CN118038640A (en) Alarm system and method based on AI algorithm
CN118798002A (en) An intelligent water conservancy early warning system and method based on digital twin
CN118589694A (en) An intelligent distribution box status online monitoring system and method based on artificial intelligence
CN112862188A (en) Multi-sensor environment prediction method and system
CN112052732A (en) Method and device for automatically alarming cable abnormity
CN112363400B (en) Cable tunnel intrusion monitoring method based on optical fiber sensor signal and abnormal coding
CN117978628B (en) Communication control method and system based on intelligent park
CN119625954A (en) SCL on-site safety accident analysis and early warning methods, systems, media and program products
CN117765481B (en) Intelligent fire disaster early warning method and system for power system integrating multi-source data
CN119168322A (en) A method for early warning analysis of full pipe operation of sewage pipe network
CN112215721A (en) Electric power electricity stealing accurate identification and electricity stealing feedback data analysis model based on big data
CN119007395A (en) Abnormal fault alarm device and alarm method for energy storage power station
CN118278730A (en) Mine external factor fire early warning method based on game theory combined weighting
CN117607751A (en) A superconducting cable condition assessment system based on vector machine and random forest model
CN117196145A (en) Method, device, equipment and storage medium for evaluating running state of power distribution station

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220609

Address after: No. 395, KUANPING Road, Chaoyang District, Changchun City, Jilin Province

Applicant after: CHANGCHUN INSTITUTE OF TECHNOLOGY

Applicant after: Baicheng power supply company of State Grid Jilin Electric Power Co., Ltd

Address before: No. 395, KUANPING Road, Chaoyang District, Changchun City, Jilin Province

Applicant before: CHANGCHUN INSTITUTE OF TECHNOLOGY

GR01 Patent grant
GR01 Patent grant