CN112345507B - Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change - Google Patents
Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change Download PDFInfo
- Publication number
- CN112345507B CN112345507B CN202011228799.1A CN202011228799A CN112345507B CN 112345507 B CN112345507 B CN 112345507B CN 202011228799 A CN202011228799 A CN 202011228799A CN 112345507 B CN112345507 B CN 112345507B
- Authority
- CN
- China
- Prior art keywords
- triangular prism
- biosensor
- sequences
- dna
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物传感器技术领域,涉及一种基于DNA三棱柱结构构象变化靶向癌细胞的生物传感器。The invention belongs to the technical field of biosensors, and relates to a biosensor targeting cancer cells based on the change of DNA triangular prism structure and conformation.
背景技术Background technique
一种优秀的纳米结构应同时具备良好的成像和药物递送能力,才能在肿瘤诊断和治疗中发挥最大的应用价值。与外源材料相比,DNA具有良好的生物亲和性,是生物治疗和生物医学应用的主要材料。随着DNA纳米技术的发展,许多DNA纳米组装如DNA折纸、DNA四面体和DNA笼子已成功构建并应用于癌细胞靶向成像,但这些纳米结构稳定性过好,空间利用率低。因此迫切需要开发一种特异性强、结构可控的DNA纳米结构,用于靶细胞成像。An excellent nanostructure should have both good imaging and drug delivery capabilities in order to exert the greatest application value in tumor diagnosis and treatment. Compared with exogenous materials, DNA has good bioaffinity and is the main material for biotherapy and biomedical applications. With the development of DNA nanotechnology, many DNA nanoassemblies such as DNA origami, DNA tetrahedra and DNA cages have been successfully constructed and applied to cancer cell targeted imaging, but these nanostructures are too stable and have low space utilization. Therefore, there is an urgent need to develop a specific and structurally controllable DNA nanostructure for target cell imaging.
发明内容SUMMARY OF THE INVENTION
为了提供一种特异性强、结构可控的DNA纳米结构,本发明利用三棱柱结构可调控的特点,在肿瘤细胞的酸性环境下特异性地形成i-motif结构,并合理修饰荧光基团,使得三棱柱纳米结构具备靶细胞成像的功能。In order to provide a DNA nanostructure with strong specificity and controllable structure, the present invention utilizes the controllable feature of the triangular prism structure to specifically form an i-motif structure in the acidic environment of tumor cells, and reasonably modify the fluorescent group, The triangular prism nanostructures have the function of imaging target cells.
为实现上述目的,本发明采用如下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种靶向癌细胞成像的生物传感器,包括6条Oligo DNA:T1、T2、S1、S2、S3、S4,其序列如SEQ ID NO: 1-6所示;其中,S4的5’和3’端分别修饰FRET荧光标记基团对。A biosensor for imaging cancer cells, comprising 6 pieces of Oligo DNA: T1, T2, S1, S2, S3, S4, the sequences of which are shown in SEQ ID NOs: 1-6; wherein, 5' and 3 of S4 The ' ends are modified with FRET fluorescent labeling group pairs respectively.
所述FRET荧光标记基团对选自CY3和CY5或FITC和Rhodamine。The FRET fluorescent labeling group pair is selected from CY3 and CY5 or FITC and Rhodamine.
一种上述生物传感器的制备方法,包括以下步骤:A preparation method of the above biosensor, comprising the following steps:
(1)合成T1、T2、S1、S2、S3、S4;(1) Synthesize T1, T2, S1, S2, S3, S4;
(2)在含Mg2+的碱性缓冲液中等摩尔混合T1、T2、S1、S2、S3、S4的溶液,退火形成三棱柱纳米结构。(2) Mix the solutions of T1, T2, S1, S2, S3, and S4 in an equimolar equimolar solution in an alkaline buffer containing Mg 2+ , and anneal to form triangular prism nanostructures.
所述退火步骤为:在95℃保温10 min,逐渐冷却到室温。The annealing step is as follows: holding at 95° C. for 10 min, and gradually cooling to room temperature.
所述缓冲液的pH为8.0-8.3;所述Mg2+的终浓度为10 mM;所述缓冲液选自TAE缓冲液或TBE缓冲液。The pH of the buffer is 8.0-8.3; the final concentration of Mg 2+ is 10 mM; the buffer is selected from TAE buffer or TBE buffer.
一种上述生物传感器在制备癌细胞成像试剂中的应用。An application of the above biosensor in the preparation of cancer cell imaging reagents.
一种含有上述生物传感器的试剂盒。A kit containing the above biosensor.
本发明的检测原理如下:The detection principle of the present invention is as follows:
本发明一共用到了6条DNA链,其序列(5’-3’)分别是:The present invention uses a total of 6 DNA strands, and their sequences (5'-3') are:
T1:T1:
GGACCCACATTTGCAATAACACATATCGGTTCAGTACTCTTCATCGTATTCGTGACTGCGGACCCACATTTGCAATAACACATATCGGTTCAGTACTCTTCATCGTATTCGTGACTGC
T2:CTCAGCGCATTGCCTATATCTCAAGTCTTACGTATACAGTTAATGCTTACACCTCGACT2: CTCAGCGCATTGCCTATATCTCAAGTCTTACGTATACAGTTAATGCTTACACCTCGAC
S1:CCCATTTTAAGGAGGAGGCTTTTTATGTGGGTCCGCAGTCACGATTTCCCTATCCCTATCCCTATCCCTTTGCGCTGAGGTCGAGGTGTTTTTTGAGGGGGTCTTAATCTACCS1:CCCATT TTAAGGAGGAGGC TTTTTAT GTGGGTCCGCAGTCACGA TTTCCCTATCCCTATCCCTATCCCTTT GCGCTGAGGTCGAGGTGT TTTTT GAGGGGGTCTTAA TCTACC
S2:CCCATTTTAAGGAGGAGGCTTTTTTACGATGAAGAGTACTGATTTCCCTATCCCTATCCCTATCCCTTAGACTTGAGATATAGGCATTTTTGAGGGGGTCTTAATCTACCS2: CCCATT TTAAGGAGGAGGC TTTTT TACGATGAAGAGTACTGA TTTCCCTATCCCTATCCCTATCCCTT AGACTTGAGATATAGGCA TTTTT GAGGGGGTCTTAA TCTACC
S3:CCCATTTTAAGGAGGAGGCTTTTTCCGATATGTGTTATTGCATTTCCCTATCCCTATCCCTATCCCTTAGCATTAACTGTATACGTTTTTTGAGGGGGTCTTAATCTACCS3:CCCATT TTAAGGAGGAGGC TTTTT CCGATATGTGTTATTGCA TTTCCCTATCCCTATCCCTATCCCTT AGCATTAACTGTATACGT TTTTT GAGGGGGTCTTAA TCTACC
S4:cy5-AATGGGATAGGGATAGGGATAGGGTAGA-cy3S4: cy5-AATGGGATAGGGATAGGGATAGGGTAGA-cy3
其中,T1和T2构成三棱柱的两个底,分别与S1/S2/S3的“ ”和“ ”序列结合;S1/S2/S3的斜体序列是ATP劈开的适配体,加粗部分可以与S4的加粗序列特异性结合;S4序列的两端分别修饰FRET荧光标记基团对。当FRET荧光标记基团对,如cy5、cy3临近时会发生荧光共振能量转移。Among them, T1 and T2 constitute the two bases of the triangular prism, which are respectively related to the "bases" of S1/S2/S3. "and" ” sequence binding; the italic sequence of S1/S2/S3 is an aptamer cleaved by ATP, and the bold part can specifically bind to the bold sequence of S4; the two ends of the S4 sequence are modified with FRET fluorescent labeling group pairs respectively. When FRET fluorescent labeling group pairs, such as cy5 and cy3, will undergo fluorescence resonance energy transfer when they are adjacent.
当DNA三棱柱纳米结构处于酸性环境时,三棱柱的棱可以形成i-motif结构,释放S4链。S1、S2、S3的两端可以识别ATP形成夹子“工”形结构,与S4链的两端序列特异性结合,FRET荧光标记基团对邻近发生FRET,进而可特异性靶向癌细胞进行成像。When the DNA triangular prism nanostructure is in an acidic environment, the edges of the triangular prism can form an i-motif structure and release the S4 chain. Both ends of S1, S2, and S3 can recognize ATP to form a clip "I"-shaped structure, which can specifically bind to the sequences at both ends of the S4 chain. .
在检测之前,先构建DNA三棱柱纳米结构。然后改变反应溶液的pH值,使三棱柱纳米结构的构象发生改变。之后加入癌症标志物ATP,邻近反应使两个荧光基团靠近发生FRET,通过荧光光谱进行检测。Before detection, DNA triangular prism nanostructures were constructed. Then, the pH value of the reaction solution was changed to change the conformation of the triangular prism nanostructures. Then, the cancer marker ATP is added, and the proximity reaction brings the two fluorophores close to each other to generate FRET, which is detected by fluorescence spectroscopy.
本发明具有以下优点:The present invention has the following advantages:
本发明的生物传感器利用DNA三棱柱纳米结构的易变性和可操作性实现靶细胞的成像和治疗;利用癌细胞特有的酸性环境及高浓度ATP可以特异性地靶向目标细胞;利用两个荧光基团发生FRET,性质稳定,背景信号低;该传感器的反应条件温和,反应速度快;由于使用荧光法,其检测方法操作简便、检测周期短;检测原理的主要过程均是在均相中实现的,提高了反应速度,降低了操作的复杂程度,实现了目标物的快速,简单,灵敏的检测;制备方法简单,性能稳定,荧光检测的重复性好,适用于细胞靶向成像和生物传感器产业化的实际应用;制作该生物传感器的工艺成本低,适用于产业化中价廉的要求。The biosensor of the invention utilizes the variability and operability of the DNA triangular prism nanostructure to realize the imaging and treatment of target cells; utilizes the unique acidic environment of cancer cells and high concentration of ATP to specifically target the target cells; utilizes two fluorescence The group undergoes FRET, the properties are stable, and the background signal is low; the reaction conditions of the sensor are mild and the reaction speed is fast; due to the use of the fluorescence method, the detection method is easy to operate and the detection period is short; the main process of the detection principle is realized in a homogeneous phase It improves the reaction speed, reduces the complexity of the operation, and realizes the fast, simple and sensitive detection of the target; the preparation method is simple, the performance is stable, and the repeatability of the fluorescence detection is good, which is suitable for cell-targeted imaging and biosensors The practical application of industrialization; the process cost of making the biosensor is low, and it is suitable for the requirement of low price in industrialization.
本发明基于DNA三棱柱纳米结构的构象变化,靶向癌细胞进行细胞成像和释药。该传感器具有检测速度快,检测限低,特异性高等优点,可以弥补现有检测方法的缺陷与不足,实现对其快速、准确的定量检测。Based on the conformational change of the DNA triangular prism nanostructure, the invention targets cancer cells for cell imaging and drug release. The sensor has the advantages of fast detection speed, low detection limit and high specificity, can make up for the defects and deficiencies of the existing detection methods, and realize the fast and accurate quantitative detection of the sensor.
附图说明Description of drawings
图1为本发明生物传感器的原理图;1 is a schematic diagram of the biosensor of the present invention;
图2为pH优化检测结果图;Fig. 2 is pH optimization detection result graph;
图3为ATP浓度优化检测结果图;Fig. 3 is a graph of ATP concentration optimization detection result;
图4为传感器对ATP的特异性;Figure 4 shows the specificity of the sensor to ATP;
图5为四种条件下的检测结果图。Figure 5 is a graph of the detection results under the four conditions.
具体实施方式Detailed ways
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制。The present invention will be further described below with reference to the embodiments and the accompanying drawings, but the present invention is not limited by the following embodiments.
实施例1 三棱柱纳米结构的制备Example 1 Preparation of triangular prism nanostructures
(1)根据序列SEQ ID NO: 1-6合成T1、T2、S1、S2、S3、S4,其中,S4的5’和3’端分别修饰CY3和CY5;(1) Synthesize T1, T2, S1, S2, S3, and S4 according to the sequence of SEQ ID NOs: 1-6, wherein the 5' and 3' ends of S4 are modified with CY3 and CY5 respectively;
以1×TAE溶液(pH 8.0,含10 mM Mg2+)配制分别成浓度为100 µM的稀释液;1×TAE solution (pH 8.0, containing 10 mM Mg 2+ ) was used to prepare dilutions with a concentration of 100 μM;
(2)取灭菌EP管,分别加入5 μL的T1、T2、S1、S2、S3、S4溶液,灭菌水补至50 μL,95℃保温10 min,逐渐冷却到室温,退火获得含三棱柱纳米结构的溶液(10 µM)。(2) Take sterilized EP tubes, add 5 μL of T1, T2, S1, S2, S3, and S4 solutions respectively, make up to 50 μL of sterile water, keep at 95°C for 10 min, gradually cool to room temperature, and anneal to obtain a solution containing three A solution of prismatic nanostructures (10 µM).
实施例2 检测pH条件的筛选Example 2 Screening for detecting pH conditions
(1)配置缓冲液,含有MgAc2(10 mM),KAc2(140 nM),EDTA(0.1 mM),以醋酸或氢氧化钾调节溶液pH值分别为4、4.5、5、5.5、6、6.5、7、7.5和8。(1) Prepare buffer containing MgAc 2 (10 mM), KAc 2 (140 nM), EDTA (0.1 mM), and adjust the pH of the solution with acetic acid or potassium hydroxide to 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5 and 8.
(2)将5 µL不同pH的缓冲液分别加入9个灭菌的EP管中,分别加入5 µL实施例1中含三棱柱纳米结构的溶液振荡30 s;(2) Add 5 µL of buffers with different pH into 9 sterilized EP tubes, respectively, add 5 µL of the solution containing triangular prism nanostructures in Example 1, and shake for 30 s;
(3)再加入5 μL 10 mΜ ATP溶液,将离心管放在37℃的水浴箱中反应2 h;反应结束室温下用F-4600荧光光谱检测(激发波长525 nm,荧光发射光谱扫描范围550-750 nm,狭缝1 nm);(3) Add 5 μL of 10 mM ATP solution, put the centrifuge tube in a water bath at 37 °C for 2 h; after the reaction, use F-4600 fluorescence spectrum detection at room temperature (excitation wavelength 525 nm, fluorescence emission spectrum scanning range 550 -750 nm,
以pH 4.5的缓冲液在667nm处的荧光强度为1,计算归一化荧光强度,结果见图2,从图中可以看出,检测到的荧光信号随着pH的浓度在8-5.5区间内增大,当pH达到5时,荧光信号趋于稳定,所以pH的最佳浓度为5。Taking the fluorescence intensity of pH 4.5 buffer at 667nm as 1, the normalized fluorescence intensity was calculated. The results are shown in Figure 2. It can be seen from the figure that the detected fluorescence signal is in the range of 8-5.5 with the concentration of pH. When the pH reaches 5, the fluorescence signal tends to be stable, so the optimal concentration of pH is 5.
实施例3 ATP浓度筛选Example 3 ATP concentration screening
(1)将5 µL实施例2配制的pH 5的缓冲液分别加入12个灭菌的EP管中,分别加入5µL实施例1中含三棱柱纳米结构的溶液振荡30 s;(1) Add 5 µL of the
(2)再加入5 μL 0、0.1、0.2、0.4、0.6、0.8、1、2、4、6、8、10 mΜ ATP溶液,将离心管放在37℃的水浴箱中反应2 h;反应结束室温下用F-4600荧光光谱检测(激发波长525 nm,荧光发射光谱扫描范围550-750 nm,狭缝1 nm);(2) Add 5 μL of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10 mM ATP solution, and place the centrifuge tube in a water bath at 37 °C for 2 h; At the end of room temperature, use F-4600 fluorescence spectrum detection (excitation wavelength 525 nm, fluorescence emission spectrum scanning range 550-750 nm,
以ATP浓度为10 mM的试液在667 nm处的荧光强度为1,计算归一化荧光强度,结果见图3,从图中可以看出,检测到的荧光信号随着ATP的浓度在0-10 mM区间内增大而增大,当浓度达到10 mM后,荧光信号达到最大值,所以ATP的最佳浓度为10 mM。The fluorescence intensity at 667 nm of the test solution with an ATP concentration of 10 mM is 1, and the normalized fluorescence intensity is calculated. The results are shown in Figure 3. It can be seen from the figure that the detected fluorescence signal increases with the concentration of ATP at 0. When the concentration reaches 10 mM, the fluorescence signal reaches the maximum value, so the optimal concentration of ATP is 10 mM.
实施例4 三棱柱纳米构型对检测影响Example 4 Influence of triangular prism nanoconfiguration on detection
(1)将5 µL实施例2配制的pH 5的缓冲液分别加入5个灭菌的EP管中,然后分别加入5 µL实施例1中含三棱柱纳米结构的溶液振荡30 s;(1) Add 5 µL of the
(2)再加入5 μL 10 mΜ ATP溶液或浓度为1M的UTP、CTP、GTP,将离心管放在37℃的水浴箱中反应2 h;反应结束室温下用F-4600荧光光谱检测(激发波长525 nm,荧光发射光谱扫描范围550-750 nm,狭缝1 nm);(2) Add 5 μL of 10 mM ATP solution or UTP, CTP, GTP with a concentration of 1 M, and place the centrifuge tube in a water bath at 37 °C for 2 h; after the reaction is completed, use F-4600 fluorescence spectrum detection (excitation) at room temperature. Wavelength 525 nm, fluorescence emission spectrum scanning range 550-750 nm, slit 1 nm);
以含有目标物ATP的试液在667 nm处的荧光强度为1,计算归一化荧光强度,结果见图4,从图中可以看出,只有在ATP存在的情况下才会产生明显的荧光信号。Taking the fluorescence intensity of the test solution containing the target ATP at 667 nm as 1, the normalized fluorescence intensity was calculated. The results are shown in Figure 4. It can be seen from the figure that only in the presence of ATP will it produce obvious fluorescence Signal.
实施例5 三棱柱纳米构型对检测影响Example 5 Influence of triangular prism nanoconfiguration on detection
(1)将5 µL实施例2配制的pH 5、pH 8的缓冲液分别加入灭菌的EP管中,每种各2个,然后分别加入5 µL实施例1中含三棱柱纳米结构的溶液振荡30 s;(1) Add 5 µL of
(2)再加入5 μL 10 mΜ ATP溶液,将离心管放在37℃的水浴箱中反应2 h;反应结束室温下用F-4600荧光光谱检测(激发波长525 nm,荧光发射光谱扫描范围550-750 nm,狭缝1 nm);(2) Add 5 μL of 10 mM ATP solution, put the centrifuge tube in a water bath at 37 °C for 2 h; after the reaction, use F-4600 fluorescence spectrum detection at room temperature (excitation wavelength 525 nm, fluorescence emission spectrum scanning range 550 -750 nm, slit 1 nm);
以pH为8含有10 mM ATP的试液在667 nm处的荧光强度为1,计算归一化荧光强度,结果见图5,从图中可以看出,pH为5含有ATP的体系发生了明显的FRET,含有ATP pH为8及不含ATP的三个体系667 nm处荧光信号低,没有发生FRET,说明只有在酸性环境且ATP存在的情况下,三棱柱纳米构型能够发生相应变化,才能检测到FRET荧光信号,并对靶细胞进行特异性成像。Taking the fluorescence intensity of the test solution containing 10 mM ATP at
序列表sequence listing
<110> 济南大学<110> Jinan University
<120> 一种基于DNA三棱柱结构构象变化靶向癌细胞的生物传感器<120> A biosensor targeting cancer cells based on the conformational change of DNA triangular prism structure
<130> 20201009<130> 20201009
<160> 6<160> 6
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 59<211> 59
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> T1<223> T1
<400> 1<400> 1
ggacccacat ttgcaataac acatatcggt tcagtactct tcatcgtatt cgtgactgc 59ggacccacat ttgcaataac acatatcggt tcagtactct tcatcgtatt cgtgactgc 59
<210> 2<210> 2
<211> 58<211> 58
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> T2<223> T2
<400> 2<400> 2
ctcagcgcat tgcctatatc tcaagtctta cgtatacagt taatgcttac acctcgac 58ctcagcgcat tgcctatatc tcaagtctta cgtatacagt taatgcttac acctcgac 58
<210> 3<210> 3
<211> 113<211> 113
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S1<223> S1
<400> 3<400> 3
cccattttaa ggaggaggct ttttatgtgg gtccgcagtc acgatttccc tatccctatc 60cccattttaa ggaggaggct ttttatgtgg gtccgcagtc acgatttccc tatccctatc 60
cctatccctt tgcgctgagg tcgaggtgtt ttttgagggg gtcttaatct acc 113cctatccctt tgcgctgagg tcgaggtgtt ttttgagggg gtcttaatct acc 113
<210> 4<210> 4
<211> 110<211> 110
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S2<223> S2
<400> 4<400> 4
cccattttaa ggaggaggct tttttacgat gaagagtact gatttcccta tccctatccc 60cccattttaa ggaggaggct tttttacgat gaagagtact gatttcccta tccctatccc 60
tatcccttag acttgagata taggcatttt tgagggggtc ttaatctacc 110tatcccttag acttgagata taggcatttt tgagggggtc ttaatctacc 110
<210> 5<210> 5
<211> 110<211> 110
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S3<223> S3
<400> 5<400> 5
cccattttaa ggaggaggct ttttccgata tgtgttattg catttcccta tccctatccc 60cccattttaa ggaggaggct ttttccgata tgtgttattg catttcccta tccctatccc 60
tatcccttag cattaactgt atacgttttt tgagggggtc ttaatctacc 110tatcccttag cattaactgt atacgttttt tgagggggtc ttaatctacc 110
<210> 6<210> 6
<211> 28<211> 28
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> S4<223> S4
<400> 6<400> 6
aatgggatag ggatagggat agggtaga 28aatgggatag ggatagggat agggtaga 28
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011228799.1A CN112345507B (en) | 2020-11-06 | 2020-11-06 | Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011228799.1A CN112345507B (en) | 2020-11-06 | 2020-11-06 | Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112345507A CN112345507A (en) | 2021-02-09 |
CN112345507B true CN112345507B (en) | 2022-07-05 |
Family
ID=74428397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011228799.1A Active CN112345507B (en) | 2020-11-06 | 2020-11-06 | Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112345507B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113092425B (en) * | 2021-03-29 | 2022-09-27 | 上海交通大学 | A method for establishing programmable intercellular communication based on pH-responsive DNA nanomachines |
CN113750259A (en) * | 2021-08-05 | 2021-12-07 | 中南大学 | DNA nano system with targeting activation capability and construction method and application thereof |
CN117224672B (en) * | 2023-08-25 | 2024-05-14 | 华东理工大学 | A universal DNA sensing toolbox for cell surface and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131722A (en) * | 2010-12-21 | 2012-07-12 | Asahi Kasei Kuraray Medical Co Ltd | Cancer treating agent containing antibody |
KR20130124196A (en) * | 2012-04-24 | 2013-11-13 | 서울대학교산학협력단 | Nucleic acid detection composition and nucleic acid detection method using same |
KR20150128612A (en) * | 2014-05-08 | 2015-11-18 | 서울대학교산학협력단 | Method for detecting nucleic acid and kit for detecting nucleic acid |
CN109406477A (en) * | 2018-12-29 | 2019-03-01 | 济南大学 | Active biological sensor of a kind of detection dnmt rna and preparation method thereof |
CN111836902A (en) * | 2018-01-12 | 2020-10-27 | 蛋白科技先锋 | Fluorescent nucleic acid nanostructure-graphene biosensor for nucleic acid detection |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011529882A (en) * | 2008-07-31 | 2011-12-15 | ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ・アズ リプレゼンテッド バイ ザ セクレタリー・デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Antiviral activity and use of protein cytovirin |
KR101755617B1 (en) * | 2014-07-23 | 2017-07-10 | 한국과학기술연구원 | Drug Carrier Having Self-assembled 3-D Nucleic Acid Nano-structure |
WO2017197009A1 (en) * | 2016-05-10 | 2017-11-16 | Ohio State Innovation Foundation | Self-assembled 3d rna cage nanoparticles |
-
2020
- 2020-11-06 CN CN202011228799.1A patent/CN112345507B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131722A (en) * | 2010-12-21 | 2012-07-12 | Asahi Kasei Kuraray Medical Co Ltd | Cancer treating agent containing antibody |
KR20130124196A (en) * | 2012-04-24 | 2013-11-13 | 서울대학교산학협력단 | Nucleic acid detection composition and nucleic acid detection method using same |
KR20150128612A (en) * | 2014-05-08 | 2015-11-18 | 서울대학교산학협력단 | Method for detecting nucleic acid and kit for detecting nucleic acid |
CN111836902A (en) * | 2018-01-12 | 2020-10-27 | 蛋白科技先锋 | Fluorescent nucleic acid nanostructure-graphene biosensor for nucleic acid detection |
CN109406477A (en) * | 2018-12-29 | 2019-03-01 | 济南大学 | Active biological sensor of a kind of detection dnmt rna and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
"基于DNA三棱柱纳米探针的生物传感及分子逻辑计算研究";郑小芳;《中国优秀硕士学位论文全文数据库》;20190115(第1期);全文 * |
"基于DNA纳米机器和纳米材料的生物传感新方法";周玉洁;《中国优秀硕士学位全文数据库》;20200715(第7期);全文 * |
S100A4与p53在活细胞内相互作用研究;刘臻等;《中华肿瘤防治杂志》;20200328(第06期);全文 * |
监测细胞微环境及活性分子的有机小分子荧光探针;王阳等;《化学进展》;20200324;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112345507A (en) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112345507B (en) | Biosensor for targeting cancer cells based on DNA triangular prism structure conformational change | |
CN107574227B (en) | Nucleic acid analysis method based on cascade hybridization chain reaction | |
Li et al. | Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells | |
Li et al. | Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell | |
CN101424642B (en) | Target molecule detecting method based on nanometer aurum and nucleic acid structure | |
Song et al. | Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein | |
CN103451182B (en) | Split nucleic acid aptamer probe and application method of probe in tumor cell detection, capture and release | |
JP2007529994A (en) | Hairpin labeled probes and how to use them | |
US5582982A (en) | Background-reducing compounds for probe-mediated fluorimetric flow cytometric assays | |
CN112961907B (en) | A fluorescent biosensor for simultaneously detecting two kinds of RNA and its preparation and use method | |
Meng et al. | FRET investigation toward DNA tetrahedron-based ratiometric analysis of intracellular telomerase activity | |
CN108152258A (en) | A kind of method for detecting the content of aminoglycoside antibiotics in solution to be measured | |
CN115094063B (en) | Multivalent activatable aptamer probe for early intelligent diagnosis of lung cancer and preparation and application thereof | |
Ho et al. | Self-assembling protein platform for direct quantification of circulating microRNAs in serum with total internal reflection fluorescence microscopy | |
CN112458151B (en) | Application of accelerated DNA tetrahedral molecular probe in miRNA detection and living cell imaging | |
CN104313148A (en) | Molecular beacon of Cd semiconductor quantum dot and preparation method of molecular beacon | |
Peng et al. | Rapid self-disassembly of DNA diblock copolymer micelles via target induced hydrophilic–hydrophobic regulation for sensitive MiRNA detection | |
CN110669821B (en) | Preparation method and application of two-photon deoxyribozyme metal organic framework probe | |
EP4055159A1 (en) | Synthetic strands for nucleic acid sequencing and related methods and systems | |
CN106520964A (en) | Double-recognition quantitative detection method for microRNA | |
CN102321766A (en) | Fluorescence in situ two-hybridization method | |
CN114113013B (en) | A fluorescent aptamer probe and its application in microRNA/ctDNA nucleic acid molecule detection | |
CN110564817A (en) | light-up silver cluster probe-based fluorescence biosensor and application thereof in miR-122 detection | |
CN114085890B (en) | miRNA detection and imaging methods, compositions and kits | |
WO2015033237A1 (en) | Nucleotide sequences, nucleic acid sensors and methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |