[go: up one dir, main page]

CN112322533B - Strain for producing efficient collagenase and application thereof - Google Patents

Strain for producing efficient collagenase and application thereof Download PDF

Info

Publication number
CN112322533B
CN112322533B CN202011236101.0A CN202011236101A CN112322533B CN 112322533 B CN112322533 B CN 112322533B CN 202011236101 A CN202011236101 A CN 202011236101A CN 112322533 B CN112322533 B CN 112322533B
Authority
CN
China
Prior art keywords
collagen
family
pseudoalteromonas
strain
new bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011236101.0A
Other languages
Chinese (zh)
Other versions
CN112322533A (en
Inventor
张玉忠
李健
程俊慧
张熙颖
陈秀兰
宋晓妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202011236101.0A priority Critical patent/CN112322533B/en
Publication of CN112322533A publication Critical patent/CN112322533A/en
Application granted granted Critical
Publication of CN112322533B publication Critical patent/CN112322533B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24003Microbial collagenase (3.4.24.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一株产生高效胶原蛋白酶的菌株及其应用,该菌株2020年10月9日保存于中国典型培养物保藏中心,保藏号CCTCC M2020574,地址:中国,武汉,武汉大学。该菌株具有胶原蛋白降解能力,所产出的胶原蛋白酶能够应用于降解胶原蛋白,生产胶原蛋白寡肽。特别是对牛骨和鱼皮等胶原蛋白原料具有很强的降解能力,可以对牛骨、鱼皮等肉类加工和渔业加工的副产品做进一步的酶解处理,采用鳕鱼皮作为原料,制备的胶原蛋白寡肽分子量小于3000Da的肽段达到了95%以上,分子量小且均一度高,易于被人体吸收利用,有效的提高了胶原蛋白副产品的附加值,具有很好的经济效益。The present invention relates to a strain producing high-efficiency collagenase and its application. The strain was preserved in the China Center for Type Culture Collection on October 9, 2020, with the deposit number CCTCC M2020574, and the address is Wuhan University, Wuhan, China. The strain has the ability to degrade collagen, and the produced collagenase can be used to degrade collagen to produce collagen oligopeptide. In particular, it has a strong ability to degrade collagen raw materials such as beef bones and fish skins. It can further enzymatically process by-products of meat processing and fishery processing such as beef bones and fish skins. Cod skins are used as raw materials. Collagen oligopeptide has more than 95% of the peptides with molecular weight less than 3000Da, small molecular weight and high uniformity, easy to be absorbed and utilized by the human body, effectively improving the added value of collagen by-products, and having good economic benefits.

Description

一株产生高效胶原蛋白酶的菌株及其应用A strain producing high-efficiency collagenase and its application

技术领域technical field

本发明涉及一株产生高效胶原蛋白酶的菌株及其应用,属于生物技术技术领域。The invention relates to a high-efficiency collagenase-producing strain and its application, belonging to the technical field of biotechnology.

背景技术Background technique

胶原蛋白是动物体内含量最丰富的蛋白质,是细胞外基质内的一种主要结构蛋白,广泛分布于哺乳动物的肌腱、骨骼、韧带、皮肤、血管等结缔组织中和水生动物的鱼皮、鱼鳞、鱼骨等组织中,主要以不溶性纤维状蛋白的形式存在。这些胶原蛋白在食品加工过程中往往作为下脚料处理,不仅造成生物资源的浪费,还对环境造成不良的影响。充分合理的利用这些食品加工过程中的废弃物,不仅能够推动畜产、水产加工业的发展,而且能够减少环境污染。Collagen is the most abundant protein in animals and a major structural protein in the extracellular matrix. It is widely distributed in connective tissues such as tendons, bones, ligaments, skin and blood vessels of mammals and fish skin and scales of aquatic animals. , fish bone and other tissues, mainly in the form of insoluble fibrous protein. These collagens are often treated as scraps in the food processing process, which not only causes waste of biological resources, but also adversely affects the environment. The full and rational use of these wastes in the food processing process can not only promote the development of livestock and aquatic products processing industries, but also reduce environmental pollution.

利用胶原蛋白原料生产胶原蛋白寡肽是食品加工过程中产生的胶原蛋白下脚料高值化利用的重要途径。胶原蛋白寡肽是胶原蛋白的酶解产物,具有抗菌、抗氧化和血管紧张素转化酶(ACE)抑制活性等多种生物学功能,在食品、化妆品、生物医学等领域都具有很好的应用潜力。但是胶原蛋白具有由三股左手螺旋α肽链相互缠绕折叠形成的右手螺旋超分子结构,稳定性高,难以被降解。目前工业生产中常用于胶原蛋白寡肽制备的工具酶包括植物性蛋白酶(菠萝蛋白酶、木瓜蛋白酶),细菌性蛋白酶(中性蛋白酶、碱性蛋白酶),动物蛋白酶(胰蛋白酶、胰凝乳蛋白酶、胶原蛋白酶)。但是这些商品化的酶制剂往往对胶原蛋白的特异性较差,得到的寡肽分子量范围分布广且分子量较高,并且产品的得率较低。因此筛选获得新的特异性的高效胶原蛋白酶尤为重要。成熟的微生物发酵工艺和产物提取纯化工艺使得微生物来源的胶原蛋白酶尤为引人关注。The use of collagen raw materials to produce collagen oligopeptides is an important way for high-value utilization of collagen scraps produced in food processing. Collagen oligopeptides are the enzymatic hydrolysis products of collagen, which have various biological functions such as antibacterial, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities, and have good applications in food, cosmetics, biomedicine and other fields. potential. However, collagen has a right-handed helical supramolecular structure formed by intertwining and folding of three left-handed helical α-peptide chains, which is highly stable and difficult to be degraded. At present, the tool enzymes commonly used in the preparation of collagen oligopeptides in industrial production include plant proteases (bromelain, papain), bacterial proteases (neutral protease, alkaline protease), animal proteases (trypsin, chymotrypsin, collagenase). However, these commercial enzyme preparations often have poor specificity to collagen, and the obtained oligopeptides have a wide molecular weight distribution and high molecular weight, and the product yield is low. Therefore, it is particularly important to screen to obtain new and specific high-efficiency collagenases. The mature microbial fermentation process and product extraction and purification process make microbial-derived collagenase particularly attractive.

目前,人们已经从枯草杆菌、蜡状芽孢杆菌、放线菌、假交替单胞菌等微生物中获得了胶原蛋白酶,但大多数菌株产酶活力较低或需要特殊的诱导条件,生产高效胶原蛋白酶的菌株还很缺乏。At present, collagenase has been obtained from microorganisms such as Bacillus subtilis, Bacillus cereus, Actinomyces, Pseudomonas, but most strains have low enzyme activity or require special induction conditions to produce high-efficiency collagenase. strains are still lacking.

发明内容SUMMARY OF THE INVENTION

本发明针对现有技术的不足,提供一株产生高效胶原蛋白酶的菌株及其应用。该菌株属于假交替单胞菌科的一个新种,产生的胶原蛋白酶可用于胶原蛋白的降解,提高畜产、水产加工中胶原蛋白下脚料的附加值。Aiming at the deficiencies of the prior art, the present invention provides a strain producing high-efficiency collagenase and its application. The strain belongs to a new species of the family Pseudomonas, and the collagenase produced can be used for the degradation of collagen, thereby increasing the added value of collagen scraps in animal production and aquatic product processing.

本发明的技术方案如下:The technical scheme of the present invention is as follows:

一株假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988,该菌株2020年10月9日保存于中国典型培养物保藏中心,保藏号CCTCC M2020574,地址:中国,武汉,武汉大学。A new strain of pseudoalteromonas family, Flocculibacter collagenilyticus SM1988, was deposited in the China Center for Type Culture Collection on October 9, 2020, with the deposit number CCTCC M2020574, address: Wuhan University, Wuhan, China.

所述菌株自山东青岛沿岸潮间带(N36.22°,E120.41°)的刺松藻样品分离得到。The strain was isolated from the samples of Pinus spinosa in the intertidal zone (N36.22°, E120.41°) along the coast of Qingdao, Shandong.

根据本发明优选的,所述假交替单胞菌科新菌Flocculibactercollagenilyticus SM1988的16S rDNA基因序列如SEQ ID NO.1所示。According to a preferred embodiment of the present invention, the 16S rDNA gene sequence of the new pseudoalteromonas family Flocculibactercollagenilyticus SM1988 is shown in SEQ ID NO.1.

根据本发明优选的,所述假交替单胞菌科新菌Flocculibactercollagenilyticus SM1988的生长温度范围为10~40℃,最适生长温度为25~30℃;生长的NaCl浓度范围为0.5~6%(w/v),最适生长的NaCl浓度为2.5~3.0%(w/v);生长的pH范围为6~10,最适生长的pH值为7.0~8.0。Preferably according to the present invention, the growth temperature range of the new bacterium Flocculibactercollagenilyticus SM1988 is 10-40°C, and the optimum growth temperature is 25-30°C; the NaCl concentration range for growth is 0.5-6% (w /v), the optimum growth NaCl concentration is 2.5-3.0% (w/v); the growth pH range is 6-10, and the optimum growth pH is 7.0-8.0.

本发明提供所述假交替单胞菌科新菌Flocculibacter collagenilyticusSM1988在降解胶原蛋白中的应用。The present invention provides the application of the new bacterium Flocculibacter collagenilyticus SM1988 in the family of Pseudoalteromonas in degrading collagen.

本发明还提供一种利用所述的假交替单胞菌科新菌Flocculibactercollagenilyticus SM1988降解胶原蛋白的方法,包括步骤如下:The present invention also provides a method for degrading collagen by utilizing the new bacterium Flocculibactercollagenilyticus SM1988 of the Pseudomonas family, comprising the following steps:

将假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988接种至TYS液体培养基中进行发酵培养,在摇床转速150~200rpm,培养温度23~27℃下培养4~7d,得到发酵液;再将发酵液经离心得到的上清液即为胶原蛋白酶液;然后向胶原蛋白中加入胶原蛋白酶液,在37~55℃的条件下反应2~3h,经离心后去除沉淀,得到的上清液即为胶原蛋白酶解液。Flocculibacter collagenilyticus SM1988, a new strain of Pseudomonas family, was inoculated into TYS liquid medium for fermentation and culture, and cultured at a shaking table speed of 150 to 200 rpm and a culture temperature of 23 to 27 °C for 4 to 7 days to obtain a fermentation broth; The supernatant obtained by centrifugation of the liquid is the collagenase solution; then add the collagenase solution to the collagen, react at 37-55°C for 2-3 hours, and remove the precipitate after centrifugation, and the obtained supernatant is Collagenase hydrolyzate.

根据本发明优选的,所述的TYS液体培养基组分如下:蛋白胨5份,酵母粉1份,海盐30份,水1000份,pH 7.0~7.4,均为重量份。Preferably according to the present invention, the components of the TYS liquid medium are as follows: 5 parts of peptone, 1 part of yeast powder, 30 parts of sea salt, 1000 parts of water, pH 7.0-7.4, all parts by weight.

根据本发明优选的,所述的发酵培养条件为:摇床转速180rpm,培养温度25℃,培养时间5~6d。According to a preferred embodiment of the present invention, the fermentation culture conditions are as follows: the rotating speed of the shaker is 180 rpm, the culture temperature is 25°C, and the culture time is 5-6 d.

根据本发明优选的,所述的离心转速为6000~8000r/min,离心时间为8~12min。Preferably according to the present invention, the centrifugal rotation speed is 6000-8000 r/min, and the centrifugal time is 8-12 min.

根据本发明优选的,所述的胶原蛋白为牛骨胶原蛋白或鳕鱼皮胶原蛋白。Preferably according to the present invention, the collagen is bovine bone collagen or cod skin collagen.

根据本发明优选的,所述的胶原蛋白酶液的加入量为60~1600U/g的酶料比(E/S)。Preferably according to the present invention, the added amount of the collagenase solution is an enzyme-to-material ratio (E/S) of 60-1600 U/g.

有益效果:Beneficial effects:

本发明提供的假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988是假交替单胞菌科的一个新种,具有胶原蛋白降解能力,所产出的胶原蛋白酶能够用于降解胶原蛋白,生产胶原蛋白寡肽。特别是对牛骨和鱼皮等胶原蛋白原料具有很强的降解能力,可以对牛骨、鱼皮等肉类加工和渔业加工的副产品做进一步的酶解处理,采用鳕鱼皮作为原料,制备的胶原蛋白寡肽分子量小于3000Da的肽段达到了95%以上,分子量小且均一度高,易于被人体吸收利用,有效的提高了胶原蛋白副产品的附加值,具有很好的经济效益。The new bacterium Flocculibacter collagenilyticus SM1988 provided by the present invention is a new species of the family Pseudoalteromonas, and has the ability to degrade collagen, and the produced collagenase can be used to degrade collagen to produce collagen oligosaccharides. peptides. In particular, it has a strong ability to degrade collagen raw materials such as beef bones and fish skins. It can further enzymatically process by-products of meat processing and fishery processing such as beef bones and fish skins. Cod skins are used as raw materials. Collagen oligopeptide has more than 95% of the peptides with molecular weight less than 3000Da, small molecular weight and high uniformity, easy to be absorbed and utilized by the human body, effectively improving the added value of collagen by-products, and having good economic benefits.

附图说明Description of drawings

图1为假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988的原子力显微镜(AFM)图和透射电子显微镜(TEM)图;Figure 1 is an atomic force microscope (AFM) image and a transmission electron microscope (TEM) image of the new bacterium Flocculibacter collagenilyticus SM1988 of the Pseudomonas family;

图中:1、AFM,2、TEM。In the figure: 1, AFM, 2, TEM.

图2为根据假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988以及其它细菌的16S rDNA序列构建的系统发育树图。Figure 2 is a phylogenetic tree diagram constructed from the 16S rDNA sequences of the new Pseudoalteromonas bacterium Flocculibacter collagenilyticus SM1988 and other bacteria.

图3为假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988的极性脂双向层析图。Fig. 3 is a bidirectional chromatogram of polar lipids of Flocculibacter collagenilyticus SM1988, a new bacterium of the family Pseudoalteromonas family.

图4为假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988对牛骨胶原蛋白的酶解效果图;Figure 4 is a graph showing the effect of enzymatic hydrolysis of bovine bone collagen by Flocculibacter collagenilyticus SM1988, a new bacterium of the family Pseudoalteromonas family;

图中:1、降解后,2、降解前。In the figure: 1. After degradation, 2. Before degradation.

图5为假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988对鳕鱼皮的酶解效果图;Figure 5 is a graph showing the effect of enzymolysis on cod skin by Flocculibacter collagenilyticus SM1988, a new bacterium of the family Pseudomonas;

图中:A、降解前,B、降解后。In the figure: A, before degradation, B, after degradation.

图6为实施例6不同酶料比对牛骨胶原蛋白(A)和鳕鱼皮(B)的水解率折线图。FIG. 6 is a broken line graph of the hydrolysis rates of bovine bone collagen (A) and cod skin (B) with different ratios of enzyme materials in Example 6. FIG.

图7为实施例6牛骨胶原蛋白和鳕鱼皮水解物的分子量分布图。FIG. 7 is a molecular weight distribution diagram of bovine bone collagen and cod skin hydrolyzate in Example 6. FIG.

具体实施方式Detailed ways

下面结合实施例对本发明的技术方案作进一步说明,但本发明所保护范围不限于此。The technical solutions of the present invention will be further described below with reference to the embodiments, but the protection scope of the present invention is not limited thereto.

一株假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988,2020年10月9日保存于中国典型培养物保藏中心,保藏号CCTCC M 2020574,地址:中国,武汉,武汉大学。Flocculibacter collagenilyticus SM1988, a new strain of Pseudoalteromonas family, was deposited in the China Center for Type Culture Collection on October 9, 2020, with the deposit number CCTCC M 2020574, address: Wuhan University, Wuhan, China.

实施例中培养基的配制原料均为本领域常用原料;牛骨胶原蛋白、鳕鱼皮均可在市场购得。The raw materials for the preparation of the culture medium in the examples are all commonly used raw materials in the art; both bovine bone collagen and cod skin can be purchased in the market.

实施例1菌株的筛选与分离Screening and isolation of strains of Example 1

(1)样品采集(1) Sample collection

从青岛沿岸潮间带(N36.22°,E120.41°)石滩中采集刺松藻,放置在冰盒中带回实验室。Pine algae were collected from the rocky beach in the intertidal zone (N36.22°, E120.41°) along the coast of Qingdao, placed in an ice box and brought back to the laboratory.

(2)富集驯化(2) Enrichment and domestication

用灭过菌的海水轻轻冲洗刺松藻体,用无菌剪刀将藻体剪碎放入至1/10TYS液体培养基中,在摇床中以25℃,180rpm的条件,震荡10min,得到富集的菌液。Gently rinse the algal body with sterilized seawater, cut the algal body into 1/10 TYS liquid medium with sterile scissors, and shake it for 10 min at 25°C and 180 rpm in a shaker to obtain enriched bacteria.

(3)菌株的筛选和分离(3) Screening and isolation of strains

将步骤(2)中富集的菌液按照101,102,103,104,105的倍数进行梯度稀释,然后分别接种于筛选培养基平板上,在25℃条件下培养48h,将形成降解圈的菌株挑出,并进一步采用平板划线法纯化,得到具有高效降解胶原蛋白能力的菌株,通过甘油管方法保藏。The bacterial liquid enriched in step (2) was serially diluted according to the multiples of 10 1 , 10 2 , 10 3 , 10 4 , and 10 5 , and then inoculated on the screening medium plate respectively, and cultivated at 25°C for 48h, The strains that formed the degradation circle were picked out and further purified by plate streak method to obtain strains with the ability to degrade collagen efficiently, which were preserved by the glycerol tube method.

上述培养基组分如下:The above-mentioned medium components are as follows:

1/10TYS液体培养基:蛋白胨0.5份,酵母粉0.1份,海盐3份,水100份,pH 7.0~7.4,均为重量份。1/10 TYS liquid medium: 0.5 part of peptone, 0.1 part of yeast powder, 3 parts of sea salt, 100 parts of water, pH 7.0-7.4, all parts by weight.

筛选培养基:每升蒸馏水中含有蛋白胨5g,酵母粉1g,明胶1g,海盐30g,琼脂粉15g,pH 7.0~7.4。Screening medium: Each liter of distilled water contains 5 g of peptone, 1 g of yeast powder, 1 g of gelatin, 30 g of sea salt, and 15 g of agar powder, pH 7.0-7.4.

实施例2菌株形态学的鉴定Example 2 Identification of strain morphology

将实施例1筛选和分离的菌株划线到TYS固体培养基平板上,然后将平板倒转,在温度为25℃的条件下培养24h,观察并记录平板上菌落的生长情况,菌落形态的原子力显微镜(AFM)图和透射电子显微镜(TEM)图,如图1所示。The strains screened and isolated in Example 1 were streaked onto a TYS solid medium plate, and then the plate was inverted and cultured for 24 hours at a temperature of 25°C, and the growth of the colonies on the plate was observed and recorded. (AFM) image and transmission electron microscope (TEM) image, as shown in Figure 1.

由图1可知,该菌株在TYS培养基平板上,菌落呈白色(后期发黄),圆形,边缘整齐,菌落湿黏(后期坚硬成块)表明光滑较湿润,不透明;革兰氏染色呈红色,表明为革兰氏阴性菌;原子力显微镜(AFM)图和透射电子显微镜(TEM)图中细胞呈棒状,长宽为0.8~1.5×0.3~0.5μm,单胞,极生鞭毛,可分泌大量的胞外聚合物。It can be seen from Figure 1 that on the TYS medium plate, the colony of this strain is white (yellow in the later stage), round, with neat edges, and the colony is wet and sticky (hard and lumpy in the later stage), indicating that it is smooth, moist and opaque; Red, indicating Gram-negative bacteria; cells in atomic force microscope (AFM) and transmission electron microscope (TEM) images are rod-shaped, with a length and width of 0.8-1.5×0.3-0.5μm, single cells, polar flagella, and can secrete A large number of extracellular polymers.

实施例3菌株生理生化的鉴定Example 3 Identification of Physiological and Biochemical Bacteria

通过常规生理生化实验和API 20NE、ZYM试剂条对实施例1筛选和分离的菌株的生理生化特征进行鉴定。The physiological and biochemical characteristics of the strains screened and isolated in Example 1 were identified by routine physiological and biochemical experiments and API 20NE and ZYM reagent strips.

鉴定分析结果见表1。The identification analysis results are shown in Table 1.

表1实施例1分离的菌株和假交替单胞菌科亲缘关系相近菌株的生理生化特征比较Table 1 Comparison of physiological and biochemical characteristics of strains isolated in Example 1 and strains of Pseudomonas family with close kinship

Figure BDA0002766715100000041
Figure BDA0002766715100000041

Figure BDA0002766715100000051
Figure BDA0002766715100000051

Figure BDA0002766715100000061
Figure BDA0002766715100000061

Figure BDA0002766715100000071
Figure BDA0002766715100000071

Figure BDA0002766715100000081
Figure BDA0002766715100000081

表中:1为实施例1分离的菌株;2为菌种Pseudoalteromonas mariniglutinosaKMM 3635T;3为菌种Psychrosphaera aestuarii PSC101T;4为菌种Psychrosphaeraaquimarina SW33T;5为菌种Psychrosphaera haliotis KDW4T;6为菌种Psychrosphaerasaromensis SA4-48T;7为菌种Salsuginimonas clara LSN-49T。+代表阳性;w代表弱阳性;-代表阴性;ND代表没有可用数据。In the table: 1 is the bacterial strain isolated by embodiment 1; 2 is bacterial classification Pseudoalteromonas mariniglutinosaKMM 3635 T ; 3 is bacterial classification Psychrosphaera aestuarii PSC101 T ; 4 is bacterial classification Psychrosphaeraaquimarina SW33 T ; 5 is bacterial classification Psychrosphaera haliotis KDW4 T ; 6 is bacterial classification Species Psychrosphaerasaromensis SA4-48T ; 7 is bacterial species Salsuginimonas clara LSN- 49T . + means positive; w means weak positive; - means negative; ND means no data available.

由表1可知,实施例1筛选和分离的菌株SM1988生长温度范围为10~40℃,最适生长温度为25~30℃;生长的NaCl浓度范围为0.5~6%(w/v),最适生长的NaCl浓度为2.5~3.0%;生长的pH范围为6~10,最适生长的pH值为7.0~8.0。SM1988菌株能够还原硝酸盐为亚硝酸盐,其氧化酶和触酶反应为阳性。该菌株能够水解酪蛋白、明胶、Tween 20、Tween40、Tween 60、Tween 80,不能水解琼脂、淀粉和七叶苷。As can be seen from Table 1, the growth temperature range of strain SM1988 screened and isolated in Example 1 is 10-40°C, and the optimum growth temperature is 25-30°C; the growth NaCl concentration range is 0.5-6% (w/v), and the most The NaCl concentration suitable for growth is 2.5-3.0%; the pH range for growth is 6-10, and the optimum pH for growth is 7.0-8.0. Strain SM1988 can reduce nitrate to nitrite, and its oxidase and catalase reactions are positive. The strain can hydrolyze casein, gelatin, Tween 20, Tween40, Tween 60, Tween 80, but cannot hydrolyze agar, starch and esculin.

实施例4菌株的16S rDNA序列扩增与鉴定16S rDNA sequence amplification and identification of the strain of Example 4

使用Bio Teke细菌基因组提取试剂盒提取实施例1筛选和分离的菌株SM1988中的DNA,具体提取方法参照该试剂盒的说明书。The DNA from the strain SM1988 screened and isolated in Example 1 was extracted using the Bio Teke bacterial genome extraction kit, and the specific extraction method was referred to the instructions of the kit.

PCR引物采用通用引物:PCR primers use universal primers:

27F(5'-AGAGTTTGATCCTGGCTCAG-3'),27F(5'-AGAGTTTGATCCTGGCTCAG-3'),

1492R(5'-GGTTACCTTGTTACGACTTC-3'),1492R(5'-GGTTACCTTGTTACGACTTC-3'),

PCR反应条件为:温度为95℃预变性5min;95℃变性30s;55℃退火30s;72℃延伸90s;30个循环,72℃延伸5min,4℃保存。PCR reaction conditions were: pre-denaturation at 95°C for 5 min; denaturation at 95°C for 30s; annealing at 55°C for 30s; extension at 72°C for 90s; 30 cycles of extension at 72°C for 5 min, and storage at 4°C.

PCR产物由华大基因进行测序,测序结果如序列表SEQ ID NO.1所示,长度为1538bp。The PCR product was sequenced by BGI, and the sequencing result is shown in SEQ ID NO. 1 of the sequence table, with a length of 1538 bp.

将扩增出的16S rDNA序列在EZBioCloud数据库与所有标准菌株16S rDNA序列进行同源性分析,结果显示同源性较高的序列均属于假交替单胞菌科,选取交替单胞菌目内的相近科内的代表种,并以菌种Alcanivorax borkumensis Sk2T作为外源参照与实施例1分离的菌株进行系统发育分析。采用MEGA-X软件运用邻接法(Neighbor-joining)构建系统发育树,如图2所示。The amplified 16S rDNA sequence was analyzed for homology with the 16S rDNA sequences of all standard strains in the EZBioCloud database. The results showed that the sequences with higher homology belonged to the family Pseudomonas. Representative species in similar families, and the strain Alcanivorax borkumensis Sk2 T was used as an exogenous reference for phylogenetic analysis with the strain isolated in Example 1. The MEGA-X software was used to construct a phylogenetic tree using the Neighbor-joining method, as shown in Figure 2.

根据16S rDNA序列比对结果并结合该菌株的生物学特性,将该菌株鉴定为假交替单胞菌科新菌,命名为Flocculibacter collagenilyticus SM1988。According to the 16S rDNA sequence alignment results and the biological characteristics of the strain, the strain was identified as a new bacterium of the family Pseudoalteromonas and named as Flocculibacter collagenilyticus SM1988.

实施例5菌株的脂肪酸、细胞醌和极性脂成分分析Analysis of fatty acid, cytoquinone and polar lipid composition of the strain of Example 5

使用MIDI(Microbial Identification)公司的Sherolock全自动细菌鉴定系统对假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988进行脂肪酸成分分析,具体分析方法参照该全自动细菌鉴定系统的说明书,分析结果如表2所示。Using the Sherolock automatic bacterial identification system of MIDI (Microbial Identification) company to analyze the fatty acid composition of the new Pseudomonas bacteria Flocculibacter collagenilyticus SM1988, the specific analysis method refers to the manual of the automatic bacterial identification system, and the analysis results are shown in Table 2. Show.

通过薄层双向层析方法(TLC)分析实施例1筛选和分离的假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988极性脂组成,结果如图3所示。The polar lipid composition of Flocculibacter collagenilyticus SM1988, which was screened and isolated in Example 1, was analyzed by thin-layer two-dimensional chromatography (TLC). The results are shown in FIG. 3 .

使用反相高效液相色谱分析法,用十八烷基硅烷色谱柱(ODS 5mm,150×4.6mm)分析假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988呼吸醌组分。The respiratory quinone fraction of Pseudomonas Flocculibacter collagenilyticus SM1988 was analyzed using an octadecylsilane column (ODS 5 mm, 150 × 4.6 mm) using reversed-phase high performance liquid chromatography.

表2假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988和亲缘关系相近菌株的脂肪酸含量比较Table 2 Comparison of fatty acid content between Flocculibacter collagenilyticus SM1988 and strains with similar relationship

Figure BDA0002766715100000091
Figure BDA0002766715100000091

Figure BDA0002766715100000101
Figure BDA0002766715100000101

表中:1为菌种Flocculibacter collagenilyticus;2为菌种Pseudoalteromonasmariniglutinosa KMM 3635T;3为菌种Psychrosphaera haliotis KDW4TIn the table: 1 is bacterial species Flocculibacter collagenilyticus; 2 is bacterial species Pseudoalteromonas mariniglutinosa KMM 3635 T ; 3 is bacterial species Psychrosphaera haliotis KDW4 T.

由表2可知,假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988的主要脂肪酸为:C18:1ω7c/C18:1ω6c,C17:1ω8c,C16:1ω7c/C16:1ω6c,C16:0;主要呼吸醌为Q-8,主要的极性脂类为:磷脂酰乙醇胺(phosphatidylethanolamine,PE),磷脂酰甘油(phosphatidylglycerol,PG)。假交替单胞菌科新菌Flocculibacter collagenilyticusSM1988的基因组DNA的G+C含量为39.9mol%。It can be seen from Table 2 that the main fatty acids of Flocculibacter collagenilyticus SM1988 are: C 18:1 ω7c/C 18:1 ω6c, C 17:1 ω8c, C 16:1 ω7c/C 16:1 ω6c , C 16:0 ; the main respiratory quinone is Q-8, and the main polar lipids are: phosphatidylethanolamine (PE), phosphatidylglycerol (PG). The G+C content of the genomic DNA of Flocculibacter collagenilyticusSM1988, a new bacterium of the family Pseudoalteromonas family, was 39.9 mol%.

实施例6Example 6

实施例1筛选和分离的假交替单胞菌科新菌Flocculibacter collagenilyticusSM1988在胶原蛋白降解中的应用,包括步骤如下:The application of the new bacterium Flocculibacter collagenilyticusSM1988 of the family Pseudomonas family screened and isolated in Example 1 in the degradation of collagen, including the steps as follows:

将假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988接种至TYS液体培养基中进行培养,摇床转速180rpm,培养温度25℃,培养时间5d,发酵液经7000r/min,离心10min,得到的上清液即为胶原蛋白酶液;然后按照1600U/g的酶料比向牛骨胶原蛋白中加入胶原蛋白酶液,在55℃下反应2h;按照60U/g的酶料比向匀浆的鳕鱼皮中加入胶原蛋白酶液,在37℃下反应2h。两者反应完成后经7000r/min离心10min后去除沉淀,得到的上清液即为胶原蛋白酶解液。Pseudoalteromonas new bacteria Flocculibacter collagenilyticus SM1988 was inoculated into TYS liquid medium for culture, the shaker speed was 180rpm, the culture temperature was 25°C, the culture time was 5d, the fermentation broth was centrifuged at 7000r/min for 10min, and the obtained supernatant The solution is collagenase solution; then add collagenase solution to bovine bone collagen according to the enzyme-material ratio of 1600U/g, and react at 55°C for 2 hours; add the homogenized cod skin according to the enzyme-material ratio of 60U/g. Collagenase solution, react at 37°C for 2h. After the two reactions were completed, the precipitate was removed by centrifugation at 7000 r/min for 10 min, and the obtained supernatant was the collagenase hydrolyzate.

本实施例的酶解效果如图4、图5所示,反应后,称量反应剩余的底物量,计算胶原蛋白底物的酶解率,结果如图6所示。The enzymatic hydrolysis effect of this example is shown in Figures 4 and 5. After the reaction, the amount of the remaining substrate in the reaction was weighed to calculate the enzymatic hydrolysis rate of the collagen substrate. The results are shown in Figure 6.

由图4~6可知,假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988产生的胶原蛋白酶能够高效地酶解牛骨胶原蛋白和鳕鱼皮,最高酶解率分别达到91.27%和91.97%。It can be seen from Figures 4-6 that the collagenase produced by Flocculibacter collagenilyticus SM1988, a new bacterium of the Pseudomonas family, can efficiently hydrolyze bovine bone collagen and cod skin, with the highest enzymatic hydrolysis rates reaching 91.27% and 91.97%, respectively.

本实施例中牛骨和鳕鱼皮胶原蛋白降解得到的胶原蛋白酶解液经冷冻干燥后,用流动相溶液(乙腈:蒸馏水:三氟乙酸=45:55:0.1)配制成5.0mg/mL的胶原蛋白酶解液,待样品充分溶解后,用0.22μm的滤器过滤后,利用HPLC分析酶解液中胶原蛋白肽的分子量分布,结果如图7和表3所示。In this example, the collagen hydrolyzed solution obtained by degrading the collagen of bovine bone and cod skin was freeze-dried, and then prepared into 5.0 mg/mL collagen with a mobile phase solution (acetonitrile: distilled water: trifluoroacetic acid = 45:55:0.1). After the protease hydrolyzed solution was fully dissolved, it was filtered with a 0.22 μm filter, and the molecular weight distribution of collagen peptides in the enzymatic hydrolyzed solution was analyzed by HPLC. The results are shown in Figure 7 and Table 3.

表3牛骨胶原蛋白和鳕鱼皮酶解液中不同分子量肽段的相对丰度Table 3 Relative abundance of different molecular weight peptides in bovine bone collagen and cod skin enzymatic hydrolysate

Figure BDA0002766715100000111
Figure BDA0002766715100000111

由图7和表3可知,采用本发明提供的假交替单胞菌科新菌Flocculibactercollagenilyticus SM1988分泌的胶原蛋白酶来降解牛骨,所得的胶原蛋白酶解液中不同分子量的胶原蛋白肽分布比较均匀,其中分子量5000Da以下的胶原蛋白肽占总肽段40%以上;采用本发明提供的假交替单胞菌科新菌Flocculibacter collagenilyticus SM1988来降解鳕鱼皮,所得的胶原蛋白酶解液中主要为分子量3000Da以下的低分子量胶原蛋白寡肽,占总肽段的95%以上。因此,可将假交替单胞菌科新菌Flocculibactercollagenilyticus SM1988分泌的胶原蛋白酶用于降解牛骨胶原蛋白制备含有不同分子量的胶原蛋白肽,用于降解鳕鱼皮制备低分子量胶原蛋白寡肽。As can be seen from Figure 7 and Table 3, the collagenase secreted by the new bacterium Flocculibactercollagenilyticus SM1988 of the family Pseudomonas family provided by the present invention is used to degrade bovine bone, and the collagen peptides of different molecular weights in the obtained collagenase hydrolyzate are relatively uniformly distributed, wherein Collagen peptides with a molecular weight of less than 5000Da account for more than 40% of the total peptide segments; Flocculibacter collagenilyticus SM1988, a new bacterium of the Pseudomonas family provided by the present invention, is used to degrade cod skin, and the collagenase hydrolyzed solution obtained is mainly low molecular weight less than 3000Da. Molecular weight collagen oligopeptides, accounting for more than 95% of the total peptides. Therefore, the collagenase secreted by Flocculibactercollagenilyticus SM1988 can be used to degrade bovine bone collagen to prepare collagen peptides with different molecular weights, and to degrade cod skin to prepare low molecular weight collagen oligopeptides.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 山东大学<110> Shandong University

<120> 一株产生高效胶原蛋白酶的菌株及其应用<120> A strain producing high-efficiency collagenase and its application

<160> 1<160> 1

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1538<211> 1538

<212> DNA<212> DNA

<213> 假交替单胞科新菌Flocculibacter collagenilyticus SM1988<213> Flocculibacter collagenilyticus SM1988

<400> 1<400> 1

attgaagagt ttgatcatgg ctcagattga acgctggcgg caggcctaac acatgcaagt 60attgaagagt ttgatcatgg ctcagattga acgctggcgg caggcctaac acatgcaagt 60

cgagcggtaa catttctagc ttgctagaag atgacgagcg gcggacgggt gagtaatgct 120cgagcggtaa catttctagc ttgctagaag atgacgagcg gcggacgggt gagtaatgct 120

tgggtatatg ccttaaggtg ggggacaaca gttggaaacg actgctaata ccgcataatg 180tgggtatatg ccttaaggtg ggggacaaca gttggaaacg actgctaata ccgcataatg 180

tctacggacc aaagtggggg accttcgggc ctcacgcctt aagattagcc caagtgggat 240tctacggacc aaagtggggg accttcgggc ctcacgcctt aagattagcc caagtgggat 240

tagcttgttg gtgaggtaat ggctcaccaa ggcaacgatc cctagctggt ctgagaggat 300tagcttgttg gtgaggtaat ggctcaccaa ggcaacgatc cctagctggt ctgagaggat 300

gatcagccac actggaactg agacacggtc cagactccta cgggaggcag cagtggggaa 360gatcagccac actggaactg agacacggtc cagactccta cgggaggcag cagtggggaa 360

tattggacaa tgggcgcaag cctgatccag ccatgccgcg tgtgtgaaga aggccttcgg 420tattggacaa tgggcgcaag cctgatccag ccatgccgcg tgtgtgaaga aggccttcgg 420

gttgtaaagc actttcagcg aggaggaaag gttgtcagtt aatagctgtc agctgtgacg 480gttgtaaagc actttcagcg aggaggaaag gttgtcagtt aatagctgtc agctgtgacg 480

ttactcgcag aagaagcacc ggctaactcc gtgccagcag ccgcggtaat acggagggtg 540ttactcgcag aagaagcacc ggctaactcc gtgccagcag ccgcggtaat acggagggtg 540

cgagcgttaa tcggaattac tgggcgtaaa gggcacgcag gcggttaatt aagtcagatg 600cgagcgttaa tcggaattac tgggcgtaaa gggcacgcag gcggttaatt aagtcagatg 600

tgaaagcccc gggctcaacc cgggaactgc atttgaaact ggttaactag agtacgagag 660tgaaagcccc gggctcaacc cgggaactgc atttgaaact ggttaactag agtacgagag 660

aggaaagtag aatttcaggt gtagcggtga aatgcgtaga gatctgaagg aataccgatg 720aggaaagtag aatttcaggt gtagcggtga aatgcgtaga gatctgaagg aataccgatg 720

gcgaaggcag ctttctggct cgatactgac gctcatgtgc gaaagcgtgg ggagcaaaca 780gcgaaggcag ctttctggct cgatactgac gctcatgtgc gaaagcgtgg ggagcaaaca 780

ggattagata ccctggtagt ccacgccgta aacgatgtct actagcagct cggttcgtca 840ggattagata ccctggtagt ccacgccgta aacgatgtct actagcagct cggttcgtca 840

agaactgttt tgcgcagcta acgcattaag tagaccgcct ggggagtacg gccgcaaggt 900agaactgttt tgcgcagcta acgcattaag tagaccgcct ggggagtacg gccgcaaggt 900

taaaactcaa atgaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 960taaaactcaa atgaattgac gggggcccgc acaagcggtg gagcatgtgg tttaattcga 960

tgcaacgcga agaaccttac catcccttga catccagaga acttactaga gatagtttgg 1020tgcaacgcga agaaccttac catcccttga catccagaga acttactaga gatagtttgg 1020

tgccttcggg aactctgaga caggtgctgc atggctgtcg tcagctcgtg ttgtgagatg 1080tgccttcggg aactctgaga caggtgctgc atggctgtcg tcagctcgtg ttgtgagatg 1080

ttgggttaag tcccgcaacg agcgcaaccc ctatccttag ttgctagcag gtaatgctga 1140ttgggttaag tcccgcaacg agcgcaaccc ctatccttag ttgctagcag gtaatgctga 1140

gaactctaag gagactgccg gtgataaacc ggaggaaggt ggggacgacg tcaagtcatc 1200gaactctaag gagactgccg gtgataaacc ggaggaaggt ggggacgacg tcaagtcatc 1200

atggccctta cgggatgggc tacacacgtg ctacaatggt agatacaaag ggcagcaaga 1260atggccctta cgggatgggc tacacacgtg ctacaatggt agatacaaag ggcagcaaga 1260

ccgcgaggtg gagcgaatcc cataaagtct atcgtagtcc ggattggagt ctgcaactcg 1320ccgcgaggtg gagcgaatcc cataaagtct atcgtagtcc ggattggagt ctgcaactcg 1320

actccatgaa gtcggaatcg ctagtaatcg tagatcagaa tgctacggtg aatacgttcc 1380actccatgaa gtcggaatcg ctagtaatcg tagatcagaa tgctacggtg aatacgttcc 1380

cgggccttgt acacaccgcc cgtcacacca tgggagtggg ttgctccaga agtggttagc 1440cgggccttgt acacaccgcc cgtcacacca tgggagtggg ttgctccaga agtggttagc 1440

ctaaccttcg ggagggcgat caccacggag tgattcatga ctggggtgaa gtcgtaacaa 1500ctaaccttcg ggagggcgat caccacggag tgattcatga ctggggtgaa gtcgtaacaa 1500

ggtagcccta ggggaacctg gggctggatc acctcctt 1538ggtagcccta ggggaacctg gggctggatc acctcctt 1538

Claims (10)

1. A new bacterium, Flccculibacter collagegentinicus SM1988, of the pseudoalteromonas family, which is preserved in China center for type culture Collection in 10 months and 9 days of 2020, with the preservation number of CCTCC M2020574, address: china, wuhan university.
2. The new bacterium, Flcculus colagenilyticus SM1988, of the family Pseudoalteromonas according to claim 1, wherein the 16S rDNA gene sequence of the new bacterium, Flcculus colagenilyticus SM1988, of the family Pseudoalteromonas is shown in SEQ ID No. 1.
3. The new bacterium, Flcculus colagenilyticus SM1988, of the family Pseudoalteromonas according to claim 1, wherein the new bacterium, Flcculus colagenilyticus SM1988, of the family Pseudoalteromonas has a growth temperature range of 10-40 ℃, a growth NaCl concentration range of 0.5-6% (w/v), and a growth pH range of 6-10.
4. Use of the new bacterium of the family pseudoalteromonas florigenilyticus SM1988 for the degradation of collagen.
5. A method for degrading collagen using the new bacterium of the family Pseudoalteromonas of claim 1, Flccullibacter collageniltyticus SM1988, comprising the steps of:
inoculating a new bacterium Flccculibacter colagenyticus SM1988 of pseudoalteromonas to a TYS liquid culture medium for fermentation culture, and culturing for 4-7 days at a shaker rotation speed of 150-200 rpm and a culture temperature of 23-27 ℃ to obtain a fermentation liquid; centrifuging the fermentation liquor to obtain supernatant, namely collagen enzyme liquid; and then adding the enzyme solution into the collagen, reacting for 2-3 h at 37-55 ℃, centrifuging, and removing the precipitate to obtain a supernatant, namely the collagen enzymolysis solution.
6. The method of claim 5, wherein said TYS broth comprises the following components: 5 parts of peptone, 1 part of yeast powder, 30 parts of sea salt, 1000 parts of water and 7.0-7.4 of pH, wherein the components are in parts by weight.
7. The method of claim 5, wherein the fermentation conditions are: the rotating speed of a shaking table is 180rpm, the culture temperature is 25 ℃, and the culture time is 5-6 d.
8. The method according to claim 5, wherein the centrifugal rotation speed is 6000 to 8000r/min, and the centrifugal time is 8 to 12 min.
9. The method of claim 5, wherein the collagen is bovine bone collagen or cod skin.
10. The method according to claim 5, wherein the collagenase solution is added in an enzyme-to-material ratio (E/S) of 60 to 1600U/g.
CN202011236101.0A 2020-11-09 2020-11-09 Strain for producing efficient collagenase and application thereof Active CN112322533B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011236101.0A CN112322533B (en) 2020-11-09 2020-11-09 Strain for producing efficient collagenase and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011236101.0A CN112322533B (en) 2020-11-09 2020-11-09 Strain for producing efficient collagenase and application thereof

Publications (2)

Publication Number Publication Date
CN112322533A CN112322533A (en) 2021-02-05
CN112322533B true CN112322533B (en) 2022-05-03

Family

ID=74316940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011236101.0A Active CN112322533B (en) 2020-11-09 2020-11-09 Strain for producing efficient collagenase and application thereof

Country Status (1)

Country Link
CN (1) CN112322533B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215058B (en) * 2021-06-08 2022-05-03 山东大学 Strain capable of degrading collagen and application thereof
CN117165490B (en) * 2023-09-25 2024-04-12 山东电力工程咨询院有限公司 Alteromonas from ocean and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224938A (en) * 2011-05-11 2011-10-26 山东大学 Application of cold-adapted protease MCP-01 in meat tenderization
CN104122317A (en) * 2014-07-01 2014-10-29 中南大学 Application of protease graph electrophoresis detection method to rapid identification of extracellaluar protease variety of bacteria
CN104894024A (en) * 2015-06-11 2015-09-09 中南大学 Pseudoalteromonas mutant strain and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224938A (en) * 2011-05-11 2011-10-26 山东大学 Application of cold-adapted protease MCP-01 in meat tenderization
CN104122317A (en) * 2014-07-01 2014-10-29 中南大学 Application of protease graph electrophoresis detection method to rapid identification of extracellaluar protease variety of bacteria
CN104894024A (en) * 2015-06-11 2015-09-09 中南大学 Pseudoalteromonas mutant strain and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
海洋细菌Pseudoalteromonas sp.NJ631胶原蛋白酶的克隆与表达;薛春旭等;《食品与生物技术学报》;20160215;第35卷(第2期);第180-184页 *

Also Published As

Publication number Publication date
CN112322533A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
CN103820352B (en) A kind of bacillus cereus YSQ08 and application thereof
CN112226373B (en) A protein-producing strain and its application
CN103667155B (en) One bacillus subtilis Bacillus subtilis 3-2 and application thereof
CN112322533B (en) Strain for producing efficient collagenase and application thereof
CN113215058B (en) Strain capable of degrading collagen and application thereof
CN110317748A (en) One streptomyces strain and its application in degradation of feather
CN114540252B (en) Microbacterium P6 for converting livestock and poultry breeding waste and application
CN111172058B (en) Bacillus amyloliquefaciens and application thereof
WO2023279779A1 (en) Application of strain of bacillus velezensis in extraction of heparin from aquatic products
CN101974460B (en) Ocean source Bacillus barbaricus SCSIO 02429 and method for preparing squid small peptide by using same
CN112646746B (en) A strain of Bacillus firmus that efficiently degrades donkey hair
CN117603889B (en) Bacillus subtilis for producing acid protease for feed and application thereof
CN101434927A (en) A strain of bacillus subtilis for producing lab ferment
CN101245325B (en) Stenotrophomonas maltophilia producing a new type of alkaline protease
CN115074347B (en) Feed additive containing keratinase mutant and bile acid and application thereof
CN117210346A (en) Marine bacterium Virgibacillus sp.SP2 and protease production method and application thereof
CN103865865B (en) A kind of sea cucumber enteron aisle produces Sumizyme MP bacterial strain and application thereof
KR102175728B1 (en) Microbial preparations for the decomposition of organic wastes including novel geobacilli strains and excipients
CN105543123A (en) Strain of bacillus thuringiensis for production of antioxidant peptides and screening method thereof
CN117264822B (en) A kind of degradation bacteria and its separation and screening method and application
CN116640687B (en) Luo Mbu Zygomyces MY01 and application thereof
CN117721025B (en) Aspergillus niger and its application in preparing black soldier fly worm plasma protein peptide
Mahatmanto et al. Feather waste biorefinery using Chryseobacterium sp. A9. 9 adapted to feathers as its sole carbon and nitrogen source
CN119432661A (en) Lactobacillus plantarum and application thereof
CN103060226B (en) A kind of octopus enteron aisle bacteria produced proteinase strain and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant