[go: up one dir, main page]

CN112244855B - Electrocardio data-oriented data processing system - Google Patents

Electrocardio data-oriented data processing system Download PDF

Info

Publication number
CN112244855B
CN112244855B CN202011269659.9A CN202011269659A CN112244855B CN 112244855 B CN112244855 B CN 112244855B CN 202011269659 A CN202011269659 A CN 202011269659A CN 112244855 B CN112244855 B CN 112244855B
Authority
CN
China
Prior art keywords
data
information
type
electrocardiogram
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011269659.9A
Other languages
Chinese (zh)
Other versions
CN112244855A (en
Inventor
郑兆年
王斌
赵鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lepu Yunzhi Technology Co ltd
Original Assignee
Shanghai Lepu Yunzhi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Lepu Yunzhi Technology Co ltd filed Critical Shanghai Lepu Yunzhi Technology Co ltd
Priority to CN202011269659.9A priority Critical patent/CN112244855B/en
Publication of CN112244855A publication Critical patent/CN112244855A/en
Application granted granted Critical
Publication of CN112244855B publication Critical patent/CN112244855B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/9035Filtering based on additional data, e.g. user or group profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/906Clustering; Classification
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Software Systems (AREA)
  • Power Engineering (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The embodiment of the invention relates to a data processing system facing electrocardio data, which comprises: the system comprises a data integration module, an electrocardio database, a data cleaning module, a data segmentation module and a data conversion module. According to the data processing system provided by the embodiment of the invention, the collected electrocardio data is classified and stored according to the interference degree through the data integration module; the electrocardio data without training value is filtered through the data cleaning module, so that the quality of the electrocardio data is improved; the data segmentation module is used for segmenting the electrocardiogram data according to the data requirements of the electrocardiogram data calculation model, so that the applicability of the electrocardiogram data is widened; through the data conversion module, the selected section of the electrocardiogram data is converted into new training data through left-right shifting or subsection division, and the diversity of the electrocardiogram signal data is increased.

Description

一种面向心电数据的数据处理系统A data processing system for ECG data

技术领域technical field

本发明涉及数据处理技术领域,特别涉及一种面向心电数据的数据处理系统。The invention relates to the technical field of data processing, in particular to a data processing system oriented to electrocardiographic data.

背景技术Background technique

随着大数据、深度学习等技术的推广,以人工智能(Artificial Intelligence,AI)模型为基础,面向心电数据的心电数据计算模型开始在传统心电数据分析领域里得到应用。对于心电数据计算模型来说,在正式投入商用之前,需要使用大量心电数据进行训练迭代,训练到其分析精度与分析稳定性都趋于可靠时,才可对其进行正式产品化输出。在训练过程中,如果训练数据的质量或者数量不够,会直接影响心电数据计算模型的迭代效率。With the promotion of big data, deep learning and other technologies, based on artificial intelligence (AI) models, ECG data calculation models for ECG data have begun to be applied in the field of traditional ECG data analysis. For the ECG data calculation model, before it is officially put into commercial use, it is necessary to use a large amount of ECG data for training iterations, and only when the analysis accuracy and stability of the training become reliable can it be officially output. During the training process, if the quality or quantity of the training data is insufficient, it will directly affect the iterative efficiency of the ECG data calculation model.

发明内容SUMMARY OF THE INVENTION

本发明的目的,就是针对现有技术的缺陷,提供一种面向心电数据的数据处理系统,通过数据集成模块对收集来的心电数据按受干扰程度进行分类,控制干扰数据的影响;通过数据清洗模块对不具备训练价值的心电数据进行过滤,提高心电数据的质量;通过数据分割模块,根据心电数据计算模型的数据需求,对心电数据进行片段分割,拓宽心电数据的适用性;通过数据转换模块,对心电数据选定片段经由心电数据左右移位、心搏左右移位或者子片段划分等转换得到新的训练数据,增加心电信号数据的多样性。The purpose of the present invention is to aim at the defects of the prior art, to provide a data processing system for ECG data, to classify the collected ECG data according to the degree of interference through the data integration module, and to control the influence of the interference data; The data cleaning module filters the ECG data that does not have training value to improve the quality of the ECG data; through the data segmentation module, according to the data requirements of the ECG data calculation model, the ECG data is segmented to widen the range of ECG data. Applicability: Through the data conversion module, the selected segment of the ECG data can be converted to obtain new training data through the left-right shift of the ECG data, the left-right shift of the heartbeat, or the division of sub-segments, which increases the diversity of the ECG signal data.

为实现上述目的,本发明实施例提供了一种面向心电数据的数据处理系统,所述数据处理系统包括:数据集成模块、心电数据库、数据清洗模块、数据分割模块和数据转换模块;所述数据处理系统分别与心电数据源、第一心电数据计算模型和第二心电数据计算模型连接;In order to achieve the above purpose, an embodiment of the present invention provides a data processing system for ECG data, the data processing system includes: a data integration module, an ECG database, a data cleaning module, a data segmentation module and a data conversion module; The data processing system is respectively connected with the ECG data source, the first ECG data calculation model and the second ECG data calculation model;

所述数据集成模块分别与所述心电数据源和所述心电数据库连接;所述数据集成模块用于从所述心电数据源获取心电数据序列及对应的心电信息集合;并根据所述心电信息集合,进行心电数据分类处理,生成分类数据;再根据所述分类数据,将所述心电数据序列和所述心电信息集合存入所述心电数据库中对应的数据子集;The data integration module is respectively connected with the ECG data source and the ECG database; the data integration module is used to obtain the ECG data sequence and the corresponding ECG information set from the ECG data source; For the ECG information set, perform ECG data classification processing to generate classified data; and then store the ECG data sequence and the ECG information set into the corresponding data in the ECG database according to the classified data Subset;

所述数据清洗模块与所述心电数据库和所述数据分割模块分别连接;所述数据清洗模块用于在准备所述第一心电数据计算模型的计算数据时,从所述心电数据库中获取所述心电数据序列及对应的所述心电信息集合;并根据设定的第一清洗类型数据和所述心电信息集合,进行可用数据标注处理;再将标注为可用数据的所述心电数据序列及对应的所述心电信息集合,向所述数据分割模块发送;The data cleaning module is respectively connected with the ECG database and the data segmentation module; the data cleaning module is used for preparing the calculation data of the first ECG data calculation model from the ECG database Obtain the ECG data sequence and the corresponding ECG information set; and perform available data labeling processing according to the set first cleaning type data and the ECG information set; The ECG data sequence and the corresponding ECG information set are sent to the data segmentation module;

所述数据分割模块与所述第一心电数据计算模型连接;所述数据分割模块用于对所述心电数据序列与所述心电信息集合,根据设定的分割长度数据和滑窗长度数据,进行心电数据片段划分处理,生成多个心电片段数据序列与对应的心电片段信息集合;再将多个所述心电片段数据序列与对应的所述心电片段信息集合向所述第一心电数据计算模型发送;The data segmentation module is connected with the first ECG data calculation model; the data segmentation module is used for the ECG data sequence and the ECG information set according to the set segmentation length data and sliding window length. data, perform ECG data segment division processing, and generate multiple ECG segment data sequences and corresponding ECG segment information sets; and then send the multiple ECG segment data sequences and the corresponding ECG segment information sets to the sending the first ECG data calculation model;

所述数据清洗模块还与所述数据转换模块连接;所述数据清洗模块还用于在准备所述第二心电数据计算模型的计算数据时,从所述心电数据库中获取所述心电数据序列及对应的所述心电信息集合;并根据设定的第二清洗类型数据和所述心电信息集合,对所述心电数据序列,进行可用数据标注处理;再将标注为所述可用数据的所述心电数据序列及对应的所述心电信息集合,向所述数据转换模块发送;The data cleaning module is also connected with the data conversion module; the data cleaning module is further configured to acquire the ECG from the ECG database when preparing the calculation data of the second ECG data calculation model data sequence and the corresponding ECG information set; and according to the set second cleaning type data and the ECG information set, perform available data labeling processing on the ECG data sequence; The ECG data sequence of available data and the corresponding ECG information set are sent to the data conversion module;

所述数据转换模块还与所述第二心电数据计算模型连接;所述数据转换模块用于对所述心电数据序列进行片段标记处理,得到选定片段;再以所述选定片段为基础,根据设定的转换模式数据与所述心电信息集合,进行数据转换处理,生成转换片段数据序列及对应的转换片段心电信息集合;再将所述转换片段数据序列及对应的所述转换片段心电信息集合,向所述第二心电数据计算模型发送。The data conversion module is also connected with the second ECG data calculation model; the data conversion module is used to perform segment marking processing on the ECG data sequence to obtain selected segments; and then use the selected segments as Basically, according to the set conversion mode data and the ECG information set, perform data conversion processing to generate a conversion segment data sequence and a corresponding conversion segment ECG information set; then convert the conversion segment data sequence and the corresponding ECG information set. Convert the segment ECG information set, and send it to the second ECG data calculation model.

优选的,preferably,

所述心电数据序列包括多个心电数据;The ECG data sequence includes a plurality of ECG data;

所述心电信息集合包括心搏类型信息子集、干扰信息子集和低电压信息子集;The ECG information set includes a heartbeat type information subset, an interference information subset and a low voltage information subset;

所述心搏类型信息子集包括多个第一心搏类型信息序列;所述第一心搏类型信息序列包括第一心搏类型数据和多个第一R点位置数据;所述第一R点位置数据,为其对应的所述心电数据在所述心电数据序列中的索引位置信息;The heartbeat type information subset includes a plurality of first heartbeat type information sequences; the first heartbeat type information sequence includes first heartbeat type data and a plurality of first R point position data; the first R point position data, which is the index position information of the corresponding ECG data in the ECG data sequence;

所述干扰信息子集包括多个第一干扰信息序列;所述第一干扰信息序列包括第一干扰类型信息和多个第一干扰位置信息组;所述第一干扰类型信息为一型干扰信息、二型干扰信息或三型干扰信息,其中,所述一型干扰信息、所述二型干扰信息和所述三型干扰信息的干扰级别依次递增;所述第一干扰位置信息组包括第一干扰起始信息和第一干扰结束信息;所述第一干扰起始信息和所述第一干扰结束信息,分别为其对应的所述心电数据在所述心电数据序列中的索引位置信息;The interference information subset includes a plurality of first interference information sequences; the first interference information sequence includes first interference type information and a plurality of first interference location information groups; the first interference type information is type 1 interference information , Type 2 interference information or Type 3 interference information, wherein the interference levels of the Type 1 interference information, the Type 2 interference information and the Type 3 interference information are sequentially increased; the first interference location information group includes the first Interference start information and first interference end information; the first interference start information and the first interference end information are respectively the index position information of the corresponding ECG data in the ECG data sequence ;

所述低电压信息子集包括多个第一低电压信息序列;所述第一低电压信息序列包括多个第一低电压位置信息组;所述第一低电压位置信息组包括第一低电压起始信息和第一低电压结束信息;所述第一低电压起始信息和所述第一低电压结束信息,分别为其对应的所述心电数据在所述心电数据序列中的索引位置信息;The subset of low voltage information includes a plurality of first low voltage information sequences; the first low voltage information sequence includes a plurality of first low voltage position information groups; the first low voltage position information groups include first low voltages Start information and first low-voltage end information; the first low-voltage start information and the first low-voltage end information are respectively the indexes of the corresponding ECG data in the ECG data sequence location information;

所述心电数据库包括一型干扰数据子集、二型干扰数据子集、三型干扰数据子集、低电压数据子集和无干扰数据子集。The ECG database includes a type 1 interference data subset, a type 2 interference data subset, a type 3 interference data subset, a low voltage data subset and a non-interference data subset.

优选的,preferably,

所述数据集成模块具体用于获取从所述心电数据源发送的所述心电数据序列及对应的所述心电信息集合;The data integration module is specifically configured to acquire the ECG data sequence and the corresponding ECG information set sent from the ECG data source;

并根据所述心电信息集合的所述低电压信息子集和所述干扰信息子集,进行心电数据分类处理,生成所述分类数据;当所述低电压信息子集中有效的所述第一低电压信息序列的总数为0,且所述干扰信息子集中有效的所述第一干扰信息序列的总数不为0时,以所有所述第一干扰信息序列中干扰级别最高的所述第一干扰类型信息,做为最高级别干扰信息,并根据所述最高级别干扰信息,对所述分类数据进行设置处理;当所述最高级别干扰信息为所述一型干扰信息时,设置所述分类数据为一型干扰类型;当所述最高级别干扰信息为所述二型干扰信息时,设置所述分类数据为二型干扰类型;当所述最高级别干扰信息为所述三型干扰信息时,设置所述分类数据为三型干扰类型;当所述低电压信息子集中有效的所述第一低电压信息序列的总数不为0时,设置所述分类数据为低电压类型;当所述低电压信息子集中有效的所述第一低电压信息序列的总数为0,且所述干扰信息子集中有效的所述第一干扰信息序列的总数也为0时,设置所述分类数据为无干扰类型;and perform ECG data classification processing according to the low-voltage information subset and the interference information subset of the ECG information set to generate the classified data; When the total number of a low-voltage information sequence is 0, and the total number of valid first interference information sequences in the interference information subset is not 0, the first interference information sequence with the highest interference level among all the first interference information sequences One piece of interference type information is used as the highest level of interference information, and the classification data is set and processed according to the highest level of interference information; when the highest level of interference information is the first type of interference information, the classification data is set The data is a type-1 interference type; when the highest-level interference information is the type-2 interference information, the classified data is set to be a type-2 interference type; when the highest-level interference information is the type-3 interference information, Set the classification data to be the three-type interference type; when the total number of valid first low-voltage information sequences in the low-voltage information subset is not 0, set the classification data to be of the low-voltage type; When the total number of valid first low-voltage information sequences in the voltage information subset is 0, and the total number of valid first interference information sequences in the interference information subset is also 0, set the classification data as no interference type;

再根据所述分类数据,对所述心电数据序列及对应的所述心电信息集合进行存储处理;当所述分类数据为所述一型干扰类型时,将所述心电数据序列及对应的所述心电信息集合存入所述心电数据库的所述一型干扰数据子集;当所述分类数据为所述二型干扰类型时,将所述心电数据序列及对应的所述心电信息集合存入所述心电数据库的所述二型干扰数据子集;当所述分类数据为所述三型干扰类型时,将所述心电数据序列及对应的所述心电信息集合存入所述心电数据库的所述三型干扰数据子集;当所述分类数据为所述低电压类型时,将所述心电数据序列及对应的所述心电信息集合存入所述心电数据库的所述低电压数据子集;当所述分类数据为所述无干扰类型时,将所述心电数据序列及对应的所述心电信息集合存入所述心电数据库的所述无干扰数据子集。Then according to the classification data, the ECG data sequence and the corresponding ECG information set are stored and processed; when the classification data is the type 1 interference type, the ECG data sequence and the corresponding ECG information are stored and processed; The ECG information set is stored in the type 1 interference data subset of the ECG database; when the classified data is the type 2 interference type, the ECG data sequence and the corresponding The ECG information set is stored in the type 2 interference data subset of the ECG database; when the classified data is the type 3 interference type, the ECG data sequence and the corresponding ECG information are stored Collecting the three-type interference data subset stored in the ECG database; when the classified data is the low-voltage type, storing the ECG data sequence and the corresponding ECG information set in the ECG database the low-voltage data subset of the ECG database; when the classified data is the non-interference type, the ECG data sequence and the corresponding ECG information set are stored in the ECG database the undisturbed data subset.

优选的,preferably,

所述数据清洗模块具体用于在准备第一心电数据计算模型的计算数据时,根据第一心电数据计算模型的计算数据要求,从所述心电数据库对应的所述数据子集中,获取所述心电数据序列及对应的所述心电信息集合;The data cleaning module is specifically configured to, when preparing the calculation data of the first ECG data calculation model, obtain from the data subset corresponding to the ECG database according to the calculation data requirements of the first ECG data calculation model. the ECG data sequence and the corresponding ECG information set;

再根据所述第一清洗类型数据和所述心电信息集合,对所述心电数据序列,进行可用数据标注处理;当所述第一清洗类型数据为快心率清洗类型时,根据所述心电信息集合的所述心搏类型信息子集,进行心率换算处理生成第一心率数据,当所述第一心率数据不超过设定的心率上限时,将所述心电数据序列标注为所述可用数据;当所述第一清洗类型数据为干扰清洗类型时,根据所述心电信息集合的所述干扰信息子集,进行三类干扰占比计算处理,生成第一一型占比数据、第一二型占比数据和第一三型占比数据,当所述第一一型占比数据不超过设定的一型占比上限、且所述第一二型占比数据不超过设定的二型占比上限、且所述第一三型占比数据不超过设定的三型占比上限时,将所述心电数据序列标注为所述可用数据;当所述第一清洗类型数据为快心率与干扰清洗类型时,先根据所述心搏类型信息子集,进行心率换算处理生成第二心率数据,当所述第二心率数据不超过所述心率上限时,再根据所述干扰信息子集,进行三类干扰占比计算处理,生成第二一型占比数据、第二二型占比数据和第二三型占比数据,当所述第二一型占比数据不超过所述一型占比上限、且所述第二二型占比数据不超过所述二型占比上限、且所述第一三型占比数据不超过所述三型占比上限时,将所述心电数据序列标注为所述可用数据。Then according to the first cleaning type data and the ECG information set, the available data labeling processing is performed on the ECG data sequence; when the first cleaning type data is the fast heart rate cleaning type, according to the heart rate The heartbeat type information subset of the electrical information set, perform heart rate conversion processing to generate first heart rate data, and when the first heart rate data does not exceed the set heart rate upper limit, mark the electrocardiogram data sequence as the Available data; when the first cleaning type data is an interference cleaning type, perform three types of interference proportion calculation processing according to the interference information subset of the ECG information set to generate the first type 1 proportion data, The first and second types of proportion data and the first and third types of proportion data, when the first type of proportion data does not exceed the set upper limit of the first type of proportion, and the first and second types of proportion data does not exceed the set When the upper limit of the proportion of the second type is set, and the data of the first and third types of proportion does not exceed the set upper limit of the proportion of the third type, the ECG data sequence is marked as the available data; when the first cleaning When the type data is fast heart rate and interference cleaning type, first heart rate conversion processing is performed according to the heartbeat type information subset to generate second heart rate data, and when the second heart rate data does not exceed the heart rate upper limit, the second heart rate data is generated according to the heart rate The subset of interference information is obtained, and three types of interference proportion calculation processing are performed to generate the second type I proportion data, the second type II proportion data and the second and third type proportion data. When the second type I proportion data When the upper limit of the proportion of type 1 is not exceeded, the data of the proportion of the second type of type 2 does not exceed the upper limit of the proportion of type 2, and the proportion of data of the first type and the third type does not exceed the upper limit of the proportion of type 3 , marking the ECG data sequence as the available data.

进一步的,所述数据清洗模块还用于对未标注为所述可用数据的所述心电数据序列,进行数据过滤处理。Further, the data cleaning module is further configured to perform data filtering processing on the ECG data sequence that is not marked as the available data.

优选的,preferably,

所述数据分割模块具体用于设定第一起始索引位置和结束索引位置;并从第一起始索引位置起以所述分割长度数据为分割长度,从所述心电数据序列中划分出第1个所述心电片段数据序列,并根据所述心电信息集合进行对应的心电片段信息转换处理,生成对应的第1个所述心电片段信息集合,再将所述第一起始索引位置与所述滑窗长度数据的和做为第二起始索引位置;再从第二起始索引位置起以所述分割长度数据为分割长度,从所述心电数据序列中划分出第2个所述心电片段数据序列,并根据所述心电信息集合进行对应的心电片段信息转换处理,生成对应的第2个所述心电片段信息集合,再将所述第二起始索引位置与所述滑窗长度数据的和做为第三起始索引位置;直到计算出的起始索引位置超过所述结束索引位置为止。The data segmentation module is specifically used to set a first start index position and an end index position; and from the first start index position, the segmentation length data is used as the segmentation length, and the first index is divided from the ECG data sequence. each of the ECG segment data sequences, and perform the corresponding ECG segment information conversion processing according to the ECG information set to generate the corresponding first ECG segment information set, and then convert the first start index position The sum with the sliding window length data is used as the second starting index position; then from the second starting index position, the segment length data is used as the segment length, and the second is divided from the ECG data sequence. The ECG segment data sequence, and the corresponding ECG segment information conversion processing is performed according to the ECG information set to generate the corresponding second ECG segment information set, and then the second start index position The sum with the sliding window length data is used as the third starting index position; until the calculated starting index position exceeds the ending index position.

优选的,preferably,

所述数据转换模块具体用于根据设定的选定片段位置,在所述心电数据序列中标记所述选定片段;其中,所述选定片段位置包括选定片段起始索引数据和选定片段结束索引数据;所述选定片段起始索引数据和所述选定片段结束索引数据,分别为其对应的所述心电数据在所述心电数据序列中的索引位置信息;The data conversion module is specifically configured to mark the selected segment in the ECG data sequence according to the set selected segment position; wherein, the selected segment position includes the selected segment start index data and the selected segment. Determining segment end index data; the selected segment start index data and the selected segment end index data are respectively the index position information of the corresponding ECG data in the ECG data sequence;

当所述转换模式数据为第一转换模式时,随机生成心电左移数据;并以所述选定片段起始索引数据与所述心电左移数据的差,做为第一心电起始索引数据,以所述选定片段结束索引数据与所述心电左移数据的差,做为第一心电结束索引数据;再从所述心电数据序列中,提取索引位置在所述第一心电起始索引数据和所述第一心电结束索引数据之间的所述心电数据,组成第一转换片段数据序列;再根据所述心电信息集合进行对应的第一转换片段信息转换处理,生成对应的第一转换片段心电信息集合;其中,所述第一转换片段心电信息集合包括第一转换片段心搏类型信息子集、第一转换片段干扰信息子集和第一转换片段低电压信息子集;When the conversion mode data is the first conversion mode, randomly generate ECG left-shift data; and use the difference between the selected segment start index data and the ECG left-shift data as the first ECG start data Start index data, take the difference between the selected segment end index data and the ECG left-shift data as the first ECG end index data; and then extract the index position in the ECG data sequence from the ECG data sequence. The ECG data between the first ECG start index data and the first ECG end index data forms a first conversion segment data sequence; and then perform a corresponding first conversion segment according to the ECG information set information conversion processing, generating a corresponding first conversion segment ECG information set; wherein the first conversion segment ECG information set includes the first conversion segment heartbeat type information subset, the first conversion segment interference information subset and the first conversion segment. a subset of low-voltage information of the conversion segment;

当所述转换模式数据为第二转换模式时,随机生成心电右移数据;并以所述选定片段起始索引数据与所述心电右移数据的和,做为第二心电起始索引数据,以所述选定片段结束索引数据与所述心电右移数据的和,做为第二心电结束索引数据;再从所述心电数据序列中,提取索引位置在所述第二心电起始索引数据和所述第二心电结束索引数据之间的所述心电数据,组成第二转换片段数据序列;再根据所述心电信息集合进行对应的第二转换片段信息转换处理,生成对应的第二转换片段心电信息集合;其中,所述第二转换片段心电信息集合包括第二转换片段心搏类型信息子集、第二转换片段干扰信息子集和第二转换片段低电压信息子集;When the conversion mode data is the second conversion mode, randomly generate ECG right-shift data; and use the sum of the selected segment start index data and the ECG right-shift data as the second ECG start start index data, take the sum of the selected segment end index data and the ECG right-shift data as the second ECG end index data; and then extract the index position in the ECG data sequence from the ECG data sequence. The ECG data between the second ECG start index data and the second ECG end index data forms a second conversion segment data sequence; and then perform a corresponding second conversion segment according to the ECG information set The information conversion process generates a corresponding second conversion segment ECG information set; wherein the second conversion segment ECG information set includes the second conversion segment heartbeat type information subset, the second conversion segment interference information subset and the first conversion segment. Two conversion segment low-voltage information subsets;

当所述转换模式数据为第三转换模式、第四转换模式或第五转换模式时,对所述心电信息集合中的所有所述第一R点位置数据进行排序,生成第一R点位置数据序列;根据所述第一R点位置数据序列,及与每个所述第一R点位置数据对应的所述第一心搏类型数据,进行心搏类型与位置信息统计处理,生成心搏统计数据序列;其中,所述心搏统计数据序列包括多个心搏统计数据组;所述心搏统计数据组包括心搏类型数据、心搏起始数据和心搏结束数据;所述心搏起始数据和所述心搏结束数据分别为其对应的所述心电数据在所述心电数据序列中的索引位置信息;When the conversion mode data is the third conversion mode, the fourth conversion mode or the fifth conversion mode, sort all the first R point position data in the ECG information set to generate a first R point position data sequence; according to the first R point position data sequence and the first heartbeat type data corresponding to each of the first R point position data, perform statistical processing of heartbeat type and position information to generate a heartbeat Statistical data sequence; wherein the heartbeat statistical data sequence includes a plurality of heartbeat statistical data sets; the heartbeat statistical data sets include heartbeat type data, heartbeat start data and heartbeat end data; the heartbeat The start data and the heartbeat end data are respectively the index position information of the corresponding ECG data in the ECG data sequence;

当所述转换模式数据为所述第三转换模式时,在所述心搏统计数据序列中,将所述心搏起始数据和所述心搏结束数据满足所述选定片段起始索引数据的所述心搏统计数据组,做为第一心搏数据组;并将所述第一心搏数据组在所述心搏统计数据序列中对应的索引位置信息,做为第一心搏索引数据;再以所述第一心搏索引数据与设定的心搏左移数据的差,做为第二心搏索引数据;再从所述心搏统计数据序列中,提取与所述第二心搏索引数据对应的所述心搏统计数据组的所述心搏起始数据,做为第三心电起始索引数据;再在所述心电数据序列中,以所述第三心电起始索引数据为提取起始位置,以所述选定片段的数据长度为提取长度,进行心电数据提取处理,组成第三转换片段数据序列;再根据所述心电信息集合进行对应的第三转换片段信息转换处理,生成对应的第三转换片段心电信息集合;其中,所述第三转换片段心电信息集合包括第三转换片段心搏类型信息子集、第三转换片段干扰信息子集和第三转换片段低电压信息子集;When the conversion mode data is the third conversion mode, in the heartbeat statistical data sequence, the heartbeat start data and the heartbeat end data satisfy the selected segment start index data The heartbeat statistical data group is regarded as the first heartbeat data group; and the index position information corresponding to the first heartbeat data group in the heartbeat statistical data sequence is taken as the first heartbeat index data; then use the difference between the first heartbeat index data and the set heartbeat left shift data as the second heartbeat index data; and then extract the second heartbeat index data from the heartbeat statistical data sequence. The heartbeat start data of the heartbeat statistics data group corresponding to the heartbeat index data is used as the third ECG start index data; and then in the ECG data sequence, the third ECG start index data is used The starting index data is the starting position for extraction, and the data length of the selected segment is taken as the extraction length, and ECG data extraction processing is performed to form a third converted segment data sequence; Three conversion segment information conversion processing to generate a corresponding third converted segment ECG information set; wherein the third converted segment ECG information set includes a third converted segment heartbeat type information subset, a third converted segment interference information subset set and the third conversion segment low voltage information subset;

当所述转换模式数据为所述第四转换模式时,在所述心搏统计数据序列中,将所述心搏起始数据和所述心搏结束数据满足所述选定片段起始索引数据的所述心搏统计数据组,做为第二心搏数据组;并将所述第二心搏数据组在所述心搏统计数据序列中对应的索引位置信息,做为第三心搏索引数据;再以所述第三心搏索引数据与设定的心搏右移数据的和,做为第四心搏索引数据;再从所述心搏统计数据序列中,提取与所述第四心搏索引数据对应的所述心搏统计数据组的所述心搏起始数据,做为第四心电起始索引数据;再在所述心电数据序列中,以所述第四心电起始索引数据为提取起始位置,以所述选定片段的数据长度为提取长度,进行心电数据提取处理,组成第四转换片段数据序列;再根据所述心电信息集合进行对应的第四转换片段信息转换处理,生成对应的第四转换片段心电信息集合;其中,所述第四转换片段心电信息集合包括第四转换片段心搏类型信息子集、第四转换片段干扰信息子集和第四转换片段低电压信息子集;When the conversion mode data is the fourth conversion mode, in the heartbeat statistical data sequence, the heartbeat start data and the heartbeat end data satisfy the selected segment start index data The said heartbeat statistical data group is taken as the second heartbeat data group; and the index position information corresponding to the second heartbeat data group in the heartbeat statistical data sequence is taken as the third heartbeat index data; then use the sum of the third heartbeat index data and the set heartbeat right-shift data as the fourth heartbeat index data; and then extract and the fourth heartbeat index data from the heartbeat statistical data sequence The heartbeat start data of the heartbeat statistics data group corresponding to the heartbeat index data is used as the fourth ECG start index data; and then in the ECG data sequence, the fourth ECG start index data is used The starting index data is the starting position for extraction, and the data length of the selected segment is taken as the extraction length, and the ECG data extraction process is performed to form a fourth converted segment data sequence; Four-converted segment information conversion processing to generate a corresponding fourth converted segment ECG information set; wherein the fourth converted segment ECG information set includes a fourth converted segment heartbeat type information subset, a fourth converted segment interference information subset set and the fourth transition segment low voltage information subset;

当所述转换模式数据为所述第五转换模式时,根据预设的子片段长度,对所述选定片段进行子片段划分处理,生成多个子片段;再根据所述心搏统计数据序列,对每个所述子片段,进行片段内相同心搏类型的心搏总长度统计处理,生成多个总长度数据,并将最大总长度数据对应的心搏类型,做为所述子片段对应的片段心搏类型数据;再由所有所述子片段组成第五转换片段数据序列,由所有所述片段心搏类型数据组成第五转换片段心电信息集合。When the conversion mode data is the fifth conversion mode, according to the preset sub-segment length, sub-segment division processing is performed on the selected segment to generate a plurality of sub-segments; and then according to the heartbeat statistical data sequence, For each of the sub-segments, perform statistical processing of the total length of the heartbeat of the same heartbeat type in the segment, generate a plurality of total length data, and use the heartbeat type corresponding to the maximum total length data as the corresponding sub-segment. Fragment heartbeat type data; and then all the sub-segments form a fifth converted fragment data sequence, and all the fragment heartbeat type data form a fifth converted fragment electrocardiographic information set.

本发明实施例提供一种面向心电数据的数据处理系统,通过数据集成模块对收集来的心电数据按受干扰程度进行分类,控制了干扰数据的影响;通过数据清洗模块对不具备训练价值的心电数据进行过滤,提高了心电数据的质量;通过数据分割模块,根据心电数据计算模型的数据需求,对心电数据进行片段分割,拓宽了心电数据的适用性;通过数据转换模块,对心电数据选定片段经由心电数据左右移位、心搏左右移位或者子片段划分等转换得到新的训练数据,增加了心电信号数据的多样性。The embodiment of the present invention provides a data processing system for ECG data. The collected ECG data is classified according to the degree of interference through the data integration module, and the influence of the interference data is controlled; the data cleaning module has no training value. The quality of the ECG data is improved by filtering the ECG data; the data segmentation module, according to the data requirements of the ECG data calculation model, segment the ECG data, which broadens the applicability of the ECG data; through data conversion The module converts the selected segment of the ECG data to obtain new training data through the left-right shift of the ECG data, the left-right shift of the heartbeat, or the division of sub-segments, which increases the diversity of the ECG signal data.

附图说明Description of drawings

图1为本发明实施例提供的一种面向心电数据的数据处理系统的模块结构图。FIG. 1 is a block diagram of a data processing system for ECG data according to an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. . Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明实施例提供一种面向心电数据的数据处理系统,如图1为本发明实施例提供的一种面向心电数据的数据处理系统的模块结构图所示,本数据处理系统1主要包括:数据集成模块11、心电数据库12、数据清洗模块13、数据分割模块14和数据转换模块15;数据处理系统1分别与心电数据源、第一心电数据计算模型和第二心电数据计算模型连接。An embodiment of the present invention provides a data processing system for ECG data. As shown in FIG. 1 , as shown in the module structure diagram of a data processing system for ECG data provided by an embodiment of the present invention, the data processing system 1 mainly includes : data integration module 11, ECG database 12, data cleaning module 13, data segmentation module 14 and data conversion module 15; the data processing system 1 is respectively connected with the ECG data source, the first ECG data calculation model and the second ECG data Computational model connections.

此处,心电数据源为心电信号数据的采集或者存储设备,心电数据源对原始心电信号进行数据采样、分析之后,输出采样后的心电数据序列及与该心电数据序列对应的心电信息集合;第一心电数据计算模型与第二心电数据计算模型为用于心电数据分析的人工智能计算模型,二者均通过数据处理系统1获取用于训练的心电数据及对应的用于验证训练结果的心电信息集合。Here, the ECG data source is a collection or storage device for ECG signal data. After the ECG data source performs data sampling and analysis on the original ECG signal, it outputs a sampled ECG data sequence and a sequence corresponding to the ECG data sequence. ECG information collection; the first ECG data calculation model and the second ECG data calculation model are artificial intelligence calculation models for ECG data analysis, and both of them obtain ECG data for training through the data processing system 1 and the corresponding ECG information set used to verify the training results.

这里,在对数据处理系统1各模块做进一步详细阐述之前,先对数据处理系统1的连接关系进行统一描述,如图1所示:数据处理系统1的数据集成模块11分别与外部心电数据源和内部心电数据库12连接;心电数据库12还与数据清洗模块13连接;数据清洗模块13分别与数据分割模块14和数据转换模块15连接;数据分割模块14与外部第一心电数据计算模型连接;数据转换模块15与外部第二心电数据计算模型连接。Here, before the modules of the data processing system 1 are further elaborated, the connection relationship of the data processing system 1 is first described in a unified manner, as shown in FIG. The source is connected with the internal ECG database 12; the ECG database 12 is also connected with the data cleaning module 13; the data cleaning module 13 is respectively connected with the data segmentation module 14 and the data conversion module 15; Model connection; the data conversion module 15 is connected with the external second ECG data calculation model.

完成连接关系描述之后,下文将对本发明实施例中提及的多个模块的功能及每个模块的具体实现做详细描述。After the description of the connection relationship is completed, the functions of the multiple modules mentioned in the embodiments of the present invention and the specific implementation of each module will be described in detail below.

数据集成模块11用于从心电数据源获取心电数据序列及对应的心电信息集合;并根据心电信息集合,进行心电数据分类处理,生成分类数据;再根据分类数据,将心电数据序列和心电信息集合存入心电数据库12中对应的数据子集。心电数据库12的数据子集具体包括一型干扰数据子集121、二型干扰数据子集122、三型干扰数据子集123、低电压数据子集124和无干扰数据子集125。The data integration module 11 is used to obtain the ECG data sequence and the corresponding ECG information set from the ECG data source; and perform the ECG data classification processing according to the ECG information set to generate classified data; The data sequence and the ECG information set are stored in the corresponding data subset in the ECG database 12 . The data subsets of the ECG database 12 specifically include a type 1 interference data subset 121 , a type 2 interference data subset 122 , a type 3 interference data subset 123 , a low voltage data subset 124 and a non-interference data subset 125 .

此处,心电数据序列包括多个心电数据。这里,心电数据序列为从上述心电数据源获取到的对原始心电信号采样处理后的数据序列,其包括的每个心电数据就是具体的一个信号采样值。Here, the electrocardiographic data sequence includes a plurality of electrocardiographic data. Here, the ECG data sequence is a data sequence obtained from the above-mentioned ECG data source after sampling and processing the original ECG signal, and each ECG data included therein is a specific signal sample value.

此处,心电信息集合包括心搏类型信息子集、干扰信息子集和低电压信息子集;Here, the ECG information set includes a heartbeat type information subset, an interference information subset and a low voltage information subset;

心搏类型信息子集包括多个第一心搏类型信息序列;第一心搏类型信息序列包括第一心搏类型数据和多个第一R点位置数据;第一R点位置数据,为其对应的心电数据在心电数据序列中的索引位置信息;The heartbeat type information subset includes a plurality of first heartbeat type information sequences; the first heartbeat type information sequence includes first heartbeat type data and a plurality of first R point position data; the first R point position data, which is The index position information of the corresponding ECG data in the ECG data sequence;

干扰信息子集包括多个第一干扰信息序列;第一干扰信息序列包括第一干扰类型信息和多个第一干扰位置信息组;第一干扰类型信息为一型干扰信息、二型干扰信息或三型干扰信息,其中,一型干扰信息、二型干扰信息和三型干扰信息的干扰级别依次递增;第一干扰位置信息组包括第一干扰起始信息和第一干扰结束信息;第一干扰起始信息和第一干扰结束信息,分别为其对应的心电数据在心电数据序列中的索引位置信息;The interference information subset includes a plurality of first interference information sequences; the first interference information sequence includes first interference type information and a plurality of first interference location information groups; the first interference type information is type 1 interference information, type 2 interference information or Type 3 interference information, wherein the interference levels of Type 1 interference information, Type 2 interference information and Type 3 interference information increase in sequence; the first interference location information group includes first interference start information and first interference end information; The start information and the first interference end information are respectively the index position information of the corresponding ECG data in the ECG data sequence;

低电压信息子集包括多个第一低电压信息序列;第一低电压信息序列包括多个第一低电压位置信息组;第一低电压位置信息组包括第一低电压起始信息和第一低电压结束信息;第一低电压起始信息和第一低电压结束信息,分别为其对应的心电数据在心电数据序列中的索引位置信息。The low-voltage information subset includes a plurality of first low-voltage information sequences; the first low-voltage information sequence includes a plurality of first low-voltage position information groups; the first low-voltage position information group includes first low-voltage start information and a first Low-voltage end information; the first low-voltage start information and the first low-voltage end information are the index position information of the corresponding ECG data in the ECG data sequence, respectively.

这里,心电信息集合是用于统计对应的心电数据序列的特征信息的数据集合:Here, the ECG information set is a data set used to count the characteristic information of the corresponding ECG data sequence:

1)心搏类型信息子集是用于统计该条心电数据序列中每个R点所在心搏周期对应的心搏类型;子集中,每条心搏类型信息序列对应一种心搏类型数据、以及满足该心搏类型的所有R点的R点位置数据;每个R点位置数据即是心电数据序列中被识别为R点的心电数据的索引位置;1) The heartbeat type information subset is used to count the heartbeat type corresponding to the heartbeat cycle where each R point in the ECG data sequence is located; in the subset, each heartbeat type information sequence corresponds to a heartbeat type data , and the R point position data of all R points that satisfy the heartbeat type; each R point position data is the index position of the ECG data identified as the R point in the ECG data sequence;

2)干扰信息子集是用于统计该条心电数据序列中被识别为干扰信号数据的类型与位置;子集中,每条干扰信息序列对应一种干扰类型信息、以及满足该干扰类型的多个由连续心电数据的起始与结束位置组成的干扰位置信息组;每个干扰位置信息组的干扰起始、结束信息即是一段干扰信号数据的起始、结束位置;每个干扰信号数据的起始、结束位置即是心电数据序列中一个具体的心电数据的索引位置;这里,干扰类型信息分为一型干扰信息、二型干扰信息或三型干扰信息;对于一型干扰,是指一条心电信号采集过程中虽然受到干扰、发生了基线漂移等情况,但能够识别出完整的心搏周期,也即QRS波可见;对于二型干扰,是指一条心电信号采集过程中受到干扰较大、心搏周期的起始与结束位置已经较难识别,但仍能够识别出心搏周期最大峰值点,也即R点可见;对于三型干扰,是指一条心电信号采集过程中受到干扰很大,既不能识别出心搏周期也无法正确识别R点位置;因此,从干扰的严重级别也即干扰级别的角度来说,一型干扰弱于二型干扰,二型干扰弱于三型干扰;2) The interference information subset is used to count the types and positions of the data identified as interference signals in the ECG data sequence. an interference position information group consisting of the start and end positions of continuous ECG data; the interference start and end information of each interference position information group is the start and end position of a piece of interference signal data; each interference signal data The start and end positions of , are the index positions of a specific ECG data in the ECG data sequence; here, the interference type information is divided into type 1 interference information, type 2 interference information or type 3 interference information; for type 1 interference, It means that although an ECG signal is interfered and has baseline drift during the acquisition process, the complete heart cycle can be identified, that is, the QRS wave is visible; for type 2 interference, it means that an ECG signal is interfered during the acquisition process. Larger, the start and end positions of the heartbeat cycle are difficult to identify, but the maximum peak point of the heartbeat cycle can still be identified, that is, the R point is visible; for type III interference, it means that an ECG signal is disturbed during the collection process is very large, neither the heartbeat cycle nor the position of point R can be correctly identified; therefore, from the perspective of the severity of the interference, that is, the interference level, the type 1 interference is weaker than the type 2 interference, and the type 2 interference is weaker than the type 3 interference. interference;

3)低电压信息子集是用于统计该条心电数据序列中被识别为低电压信号数据的位置;子集中,每个低电压位置信息组的低电压起始与结束信息对应一段低电压信号数据的起始与结束位置;每个低电压信号数据的起始、结束位置即是心电数据序列中一个具体的心电数据的索引位置;这里,常规的会以低电压阈值作为判断界限,持续低于该阈值的心电数据都会被当做低电压数据。3) The low-voltage information subset is used to count the positions identified as low-voltage signal data in the ECG data sequence; in the subset, the low-voltage start and end information of each low-voltage position information group corresponds to a segment of low-voltage The start and end positions of the signal data; the start and end positions of each low-voltage signal data are the index positions of a specific ECG data in the ECG data sequence; here, the low-voltage threshold is conventionally used as the judgment limit , ECG data that is continuously lower than this threshold will be regarded as low voltage data.

在本实施例提供的一个具体实现方式中,数据集成模块11具体用于获取从心电数据源发送的心电数据序列及对应的心电信息集合;In a specific implementation provided by this embodiment, the data integration module 11 is specifically configured to acquire the ECG data sequence and the corresponding ECG information set sent from the ECG data source;

并根据心电信息集合的低电压信息子集和干扰信息子集,进行心电数据分类处理,生成分类数据:And according to the low-voltage information subset and the interference information subset of the ECG information set, the ECG data is classified and processed to generate classified data:

当低电压信息子集中有效的第一低电压信息序列的总数为0,且干扰信息子集中有效的第一干扰信息序列的总数不为0时,以所有第一干扰信息序列中干扰级别最高的第一干扰类型信息,做为最高级别干扰信息,并根据最高级别干扰信息,对分类数据进行设置处理;当最高级别干扰信息为一型干扰信息时,设置分类数据为一型干扰类型;当最高级别干扰信息为二型干扰信息时,设置分类数据为二型干扰类型;当最高级别干扰信息为三型干扰信息时,设置分类数据为三型干扰类型;When the total number of valid first low-voltage information sequences in the low-voltage information subset is 0, and the total number of valid first interference information sequences in the interference information subset is not 0, the one with the highest interference level among all the first interference information sequences The first interference type information is used as the highest-level interference information, and the classified data is set and processed according to the highest-level interference information; when the highest-level interference information is type-1 interference information, the classified data is set as type-1 interference type; When the level interference information is type 2 interference information, set the classified data as type 2 interference type; when the highest level interference information is type 3 interference information, set the classified data as type 3 interference type;

当低电压信息子集中有效的第一低电压信息序列的总数不为0时,设置分类数据为低电压类型;When the total number of valid first low-voltage information sequences in the low-voltage information subset is not 0, setting the classification data as a low-voltage type;

当低电压信息子集中有效的第一低电压信息序列的总数为0,且干扰信息子集中有效的第一干扰信息序列的总数也为0时,设置分类数据为无干扰类型;When the total number of valid first low-voltage information sequences in the low-voltage information subset is 0, and the total number of valid first interference information sequences in the interference information subset is also 0, the classification data is set as a non-interference type;

这里,低电压信息子集中有效的第一低电压信息序列的总数为0意味着获取到的心电数据序列中没有低电压信号数据,干扰信息子集中有效的第一干扰信息序列的总数不为0意味着获取到的心电数据序列中有干扰信号数据;统计该心电数据序列中最大级别的干扰类型暨做为最高级别干扰信息,再根据最高级别干扰信息的具体取值设置分类数据:一、二、或三型干扰类型;Here, the total number of valid first low-voltage information sequences in the low-voltage information subset is 0, which means that there is no low-voltage signal data in the acquired ECG data sequence, and the total number of valid first interference information sequences in the interference information subset is not 0 means that there is interference signal data in the obtained ECG data sequence; count the highest-level interference type in the ECG data sequence as the highest-level interference information, and then set the classification data according to the specific value of the highest-level interference information: Type 1, 2, or 3 interference types;

这里,低电压信息子集中有效的第一低电压信息序列的总数不为0意味着获取到的心电数据序列中含有低电压信号数据,本发明实施例规定只要包含了低电压信号数据,不再做进一步的干扰类型识别,其分类数据都统一被设置为低电压类型;Here, the fact that the total number of valid first low-voltage information sequences in the low-voltage information subset is not 0 means that the acquired ECG data sequence contains low-voltage signal data. The embodiment of the present invention stipulates that as long as the low-voltage signal data is included, no low-voltage signal data is included. For further interference type identification, the classification data are uniformly set as low voltage type;

这里,低电压信息子集中有效的第一低电压信息序列的总数为0意味着获取到的心电数据序列中没有低电压信号数据,干扰信息子集中有效的第一干扰信息序列的总数也为0意味着获取到的心电数据序列中没有干扰信号数据,则本发明实施例判定该心电数据序列为未受干扰的心电数据,其分类数据被设置为无干扰类型;Here, the total number of valid first low-voltage information sequences in the low-voltage information subset is 0, which means that there is no low-voltage signal data in the acquired ECG data sequence, and the total number of valid first interference information sequences in the interference information subset is also 0 means that there is no interference signal data in the obtained ECG data sequence, then the embodiment of the present invention determines that the ECG data sequence is undisturbed ECG data, and its classification data is set to a non-interference type;

再根据分类数据,对心电数据序列及对应的心电信息集合进行存储处理;当分类数据为一型干扰类型时,将心电数据序列及对应的心电信息集合存入心电数据库12的一型干扰数据子集121;当分类数据为二型干扰类型时,将心电数据序列及对应的心电信息集合存入心电数据库12的二型干扰数据子集122;当分类数据为三型干扰类型时,将心电数据序列及对应的心电信息集合存入心电数据库12的三型干扰数据子集123;当分类数据为低电压类型时,将心电数据序列及对应的心电信息集合存入心电数据库12的低电压数据子集124;当分类数据为无干扰类型时,将心电数据序列及对应的心电信息集合存入心电数据库12的无干扰数据子集125。Then according to the classified data, the electrocardiographic data sequence and the corresponding electrocardiographic information set are stored and processed; when the classified data is a type of interference type, the electrocardiographic data sequence and the corresponding electrocardiographic information set are stored in the electrocardiographic database 12. Type 1 interference data subset 121; when the classified data is type 2 interference type, the ECG data sequence and the corresponding ECG information set are stored in the type 2 interference data subset 122 of the ECG database 12; when the classified data is type 3 interference data When the type of interference type is classified, the ECG data sequence and the corresponding ECG information set are stored in the type-3 interference data subset 123 of the ECG database 12; when the classified data is of low voltage type, the ECG data sequence and the corresponding The electrical information set is stored in the low-voltage data subset 124 of the ECG database 12; when the classified data is a non-interference type, the ECG data sequence and the corresponding ECG information set are stored in the non-interference data subset of the ECG database 12 125.

这里,本发明实施例的心电数据库12中有多个数据子集,其用途就是对获取的心电数据序列及其对应的心电信息集合进行分类存储;具体的,分类数据为一、二或三型干扰类型时,说明获取到的心电数据序列中含有干扰新型号数据但不含有低电压信号数据,数据集成模块11会将心电数据序列和心电信息集合存入心电数据库12中对应的一型干扰数据子集121、二型干扰数据子集122和三型干扰数据子集123;分类数据为低电压类型时,说明获取到的心电数据序列中含有低电压信号数据,数据集成模块11会将心电数据序列和心电信息集合存入心电数据库12的低电压数据子集124;分类数据为无干扰类型时,数据集成模块11会将心电数据序列和心电信息集合存入心电数据库12的无干扰数据子集125。Here, there are multiple data subsets in the ECG database 12 according to the embodiment of the present invention, the purpose of which is to classify and store the obtained ECG data sequence and the corresponding ECG information set; or three types of interference type, it means that the acquired ECG data sequence contains the new type of interference data but does not contain low-voltage signal data, the data integration module 11 will store the ECG data sequence and the ECG information set in the ECG database 12 Corresponding type 1 interference data subset 121, type 2 interference data subset 122 and type 3 interference data subset 123; when the classified data is of low voltage type, it means that the obtained ECG data sequence contains low voltage signal data, The data integration module 11 will store the ECG data sequence and the ECG information set in the low-voltage data subset 124 of the ECG database 12; when the classified data is of a non-interference type, the data integration module 11 will store the ECG data sequence and the ECG data set. The set of information is stored in the undisturbed data subset 125 of the ECG database 12 .

综上,本发明实施例通过使用数据集成模块11对收集来的心电数据按受干扰程度进行分类存储,对原始数据起到了数据类型与质量的甄别作用,提高了训练数据的准确度。To sum up, the embodiment of the present invention uses the data integration module 11 to classify and store the collected ECG data according to the degree of interference, thereby discriminating the data type and quality of the original data, and improving the accuracy of the training data.

本发明实施例的数据处理系统1是为心电数据计算模型服务的,一方面用于收集心电数据计算模型训练用的心电数据,另一方面也要根据心电数据计算模型的输入数据需求为其准备计算数据。本发明实施例中第一心电数据计算模型,其用于训练的输入数据是由原始数据分割得来的多个心电片段数据,其用于训练结果验证的参考信息来自于对应的心电片段信息集合。为达到这个目的,数据处理系统1使用数据分割模块14对从心电数据库12中获得的心电数据序列进行分割,并对应的产生心电片段信息集合;在数据分割模块14进行数据分割之前,为进一步保证训练数据的质量,还需要先行使用数据清洗模块13对心电数据序列进行数据清洗。具体实现如下文所述。The data processing system 1 of the embodiment of the present invention serves for the calculation model of ECG data. On the one hand, it is used to collect ECG data for training the ECG data calculation model, and on the other hand, it is also used to calculate the input data of the model according to the ECG data. Requirement prepares calculation data for it. In the first ECG data calculation model in the embodiment of the present invention, the input data used for training is a plurality of ECG segment data obtained by dividing the original data, and the reference information used for verification of the training results comes from the corresponding ECG data A collection of fragment information. In order to achieve this purpose, the data processing system 1 uses the data segmentation module 14 to segment the ECG data sequence obtained from the ECG database 12, and correspondingly generates an ECG segment information set; before the data segmentation module 14 performs data segmentation, In order to further ensure the quality of the training data, it is also necessary to use the data cleaning module 13 to clean the ECG data sequence first. The specific implementation is described below.

数据清洗模块13用于在准备第一心电数据计算模型的计算数据时,从心电数据库12中获取心电数据序列及对应的心电信息集合;并根据设定的第一清洗类型数据和心电信息集合,进行可用数据标注处理;再将标注为可用数据的心电数据序列及对应的心电信息集合,向数据分割模块14发送。The data cleaning module 13 is used to obtain the ECG data sequence and the corresponding ECG information set from the ECG database 12 when preparing the calculation data of the first ECG data calculation model; The ECG information set is processed for labeling the available data; and the ECG data sequence marked as available data and the corresponding ECG information set are sent to the data segmentation module 14 .

此处,第一清洗类型数据是用于选择清洗流程的预设值,第一清洗类型数据包括三种清洗类型:快心率清洗类型、干扰清洗类型和快心率与干扰清洗类型。这里,可用数据标注处理的操作流程,就是具体的数据清洗流程,最终,质量合格的数据会被标注为可用数据,不合格的数据会被过滤掉。Here, the first cleaning type data is a preset value for selecting a cleaning process, and the first cleaning type data includes three cleaning types: fast heart rate cleaning type, interference cleaning type, and fast heart rate and interference cleaning type. Here, the operation process of the available data labeling processing is the specific data cleaning process. In the end, the qualified data will be marked as available data, and the unqualified data will be filtered out.

在本实施例提供的另一个具体实现方式中,数据清洗模块13具体用于在准备第一心电数据计算模型的计算数据时,根据第一心电数据计算模型的计算数据要求,从心电数据库12对应的数据子集中,获取心电数据序列及对应的心电信息集合;In another specific implementation provided by this embodiment, the data cleaning module 13 is specifically configured to, when preparing the calculation data of the first ECG data calculation model, In the data subset corresponding to the database 12, obtain the ECG data sequence and the corresponding ECG information set;

再根据第一清洗类型数据和心电信息集合,对心电数据序列,进行可用数据标注处理:Then according to the first cleaning type data and the ECG information set, the available data annotation processing is performed on the ECG data sequence:

当第一清洗类型数据为快心率清洗类型时,根据心电信息集合的心搏类型信息子集,进行心率换算处理生成第一心率数据,当第一心率数据不超过设定的心率上限时,将心电数据序列标注为可用数据;When the first cleaning type data is the fast heart rate cleaning type, heart rate conversion processing is performed according to the heartbeat type information subset of the ECG information set to generate the first heart rate data, and when the first heart rate data does not exceed the set heart rate upper limit, Mark the ECG data sequence as available data;

此处,心率上限是用于识别是否为快心率数据的心率阈值;Here, the heart rate upper limit is the heart rate threshold used to identify whether it is fast heart rate data;

这里,当第一清洗类型数据为快心率清洗类型时,意味着需要对心电数据序列进行快心率数据识别;所谓快心率数据常规是指心率超过某个心率上限的数据,快心率数据会被当做质量不合格数据进行过滤;心率换算处理的操作过程可以是通过统计心搏类型信息子集中第一R点位置数据的总数进行心率换算得到第一心率数据,还可以根据第一R点位置数据计算得到心搏间期均值、并以心搏间期均值进行心率换算得到第一心率数据;Here, when the first cleaning type data is the fast heart rate cleaning type, it means that the fast heart rate data needs to be identified for the ECG data sequence; the so-called fast heart rate data routinely refers to the data whose heart rate exceeds a certain heart rate upper limit, and the fast heart rate data will be It is filtered as unqualified data; the operation process of heart rate conversion processing may be to convert the heart rate to obtain the first heart rate data by counting the total number of the first R point position data in the subset of heartbeat type information, or to obtain the first heart rate data according to the first R point position data. Calculate the mean value of the heartbeat interval, and convert the heart rate with the mean value of the heartbeat interval to obtain the first heart rate data;

例如,心率上限设定为300,当前心电数据序列是一段2秒的心电数据,心搏类型信息子集中包含6个第一R点位置数据,通过心率换算得到第一心率数据=6*(60/2)=180(次/分钟),因为第一心率数据小于心率上限(180<300),则当前心电数据序列被标注为可用数据;For example, the upper limit of the heart rate is set to 300, the current ECG data sequence is a 2-second period of ECG data, the heartbeat type information subset contains 6 first R point position data, and the first heart rate data is obtained by heart rate conversion = 6* (60/2)=180 (times/minute), because the first heart rate data is less than the upper limit of the heart rate (180<300), the current ECG data sequence is marked as available data;

又例如,心率上限设定为300,当前心电数据序列是一段2秒的心电数据,心搏类型信息子集中包含6个第一R点位置数据,对所有第一R点位置数据进行排序得到第一R点位置数据序列,在第一R点位置数据序列中对相邻的第一R点位置数据进行差值计算得到包含了5个差值数据的第一R点差值数据序列,因为第一R点位置数据是心电数据的索引数据,那么使用差值数据乘以已知的心电数据采样频率,就能得到相邻R点间的心搏间期时长,对5个心搏间期时长进行均值计算得到心搏间期均值,以心搏间期均值进行心率换算可以得到第一心率数据=60/心搏间期均值,若第一心率数据小于心率上限,则当前心电数据序列被标注为可用数据;For another example, the upper limit of the heart rate is set to 300, the current ECG data sequence is a 2-second period of ECG data, the heartbeat type information subset contains 6 first R point position data, and all the first R point position data are sorted. The first R point position data sequence is obtained, and the difference value calculation is performed on the adjacent first R point position data in the first R point position data sequence to obtain the first R point difference value data sequence including 5 difference data, Because the position data of the first R point is the index data of the ECG data, then the difference data is multiplied by the known sampling frequency of the ECG data to obtain the duration of the heartbeat interval between adjacent R points. The average value of the heartbeat interval is calculated by calculating the mean value of the heartbeat interval. The first heart rate data = 60/the mean value of the heartbeat interval can be obtained by performing the heart rate conversion with the heartbeat interval mean value. If the first heart rate data is less than the upper limit of the heart rate, the current heart rate Electrical data series are marked as available data;

当第一清洗类型数据为干扰清洗类型时,根据心电信息集合的干扰信息子集,进行三类干扰占比计算处理,生成第一一型占比数据、第一二型占比数据和第一三型占比数据,当第一一型占比数据不超过设定的一型占比上限、且第一二型占比数据不超过设定的二型占比上限、且第一三型占比数据不超过设定的三型占比上限时,将心电数据序列标注为可用数据;When the first cleaning type data is of the interference cleaning type, according to the interference information subset of the ECG information set, three types of interference proportion calculation processing are performed to generate the first type 1 proportion data, the first type 2 proportion data and the third type Type 1 and Type 3 ratio data, when Type 1 Type 1 ratio data does not exceed the set Type 1 ratio upper limit, and Type 1 and Type 2 ratio data does not exceed the set Type 2 ratio upper limit, and Type 1 and Type 3 ratio data does not exceed the set Type 2 ratio upper limit When the proportion data does not exceed the set upper limit of the three-type proportion, the ECG data sequence is marked as available data;

此处,一型占比上限为判断心电数据序列中一型干扰信号数据长度占比是否超长的设定阈值;二型占比上限为判断心电数据序列中二型干扰信号数据长度占比是否超长的设定阈值;三型占比上限为判断心电数据序列中三型干扰信号数据长度占比是否超长的设定阈值;Here, the upper limit of the proportion of type 1 is the set threshold for judging whether the data length of the type 1 interference signal in the ECG data sequence is too long; The set threshold for whether the ratio is too long; the upper limit of the three-type ratio is the set threshold for judging whether the length ratio of the three-type interference signal data in the ECG data sequence is too long;

这里,当第一清洗类型数据为干扰清洗类型时,意味着需要对心电数据序列进行干扰长度是否低于正常阈值的识别;如果心电数据序列中的干扰信号长度超过设定阈值,就说明该心电数据序列的过扰,不能被用于正常数据训练;如果心电数据序列中的干扰信号长度未超过设定阈值,则视为质量达标可被标准为可用数据;三类干扰占比计算处理的操作过程是分别计算三种干扰类型的干扰占比数据:第一一型占比数据、第一二型占比数据和第一三型占比数据;对于其中一种具体的干扰类型占比数据的计算过程是:在干扰信息子集中,使用该类干扰类型对应的所有第一干扰位置信息组的第一干扰结束与起始位置信息计算每个干扰信号的长度,再统计所有干扰信号的长度总和之后,以长度总和与心电数据序列的心电数据总数的比值做为该类干扰类型的干扰占比数据;Here, when the first cleaning type data is the interference cleaning type, it means that it is necessary to identify whether the interference length of the ECG data sequence is lower than the normal threshold; if the length of the interference signal in the ECG data sequence exceeds the set threshold, it means that The over-disturbance of the ECG data sequence cannot be used for normal data training; if the length of the interference signal in the ECG data sequence does not exceed the set threshold, it is considered that the quality meets the standard and can be regarded as available data; the proportion of three types of interference The operation process of the calculation processing is to separately calculate the interference proportion data of three types of interference: the first type 1 proportion data, the first type 2 proportion data and the first 3 type proportion data; for one of the specific interference types The calculation process of the proportion data is: in the interference information subset, use the first interference end and starting position information of all the first interference position information groups corresponding to this type of interference type to calculate the length of each interference signal, and then count all interferences. After the sum of the lengths of the signals, the ratio of the sum of the lengths to the total number of ECG data in the ECG data sequence is used as the interference proportion data of this type of interference;

例如,一型占比上限为20%,二型占比上限为20%,三型占比上限为20%,当前心电数据序列包括100个心电数据,对应的心电信息集合的干扰信息子集包括3条干扰信息序列,每条干扰信息序列都有3个干扰位置信息组,如表一所示,则,第一一型占比数据=((5-1+1)+(10-7+1)+(13-11+1))/100=12%,第一二型占比数据=((16-14+1)+(19-17+1)+(25-21+1))/100=11%,第一三型占比数据=((43-40+1)+(47-45+1)+(50-49+1))/100=9%,因为12%<20%,所以第一一型占比数据小于一型占比上限,因为11%<20%,所以第一二型占比数据小于二型占比上限,因为9%<20%,所以第一三型占比数据小于三型占比上限;因为第一一型占比数据小于一型占比上限、且第一二型占比数据小于二型占比上限、且第一三型占比数据小于三型占比上限,所以当前心电数据序列被标注为可用数据;For example, the upper limit of the proportion of type 1 is 20%, the upper limit of type 2 is 20%, and the upper limit of type 3 is 20%. The current ECG data sequence includes 100 ECG data, and the corresponding interference information of the ECG information set The subset includes 3 interference information sequences, and each interference information sequence has 3 interference location information groups, as shown in Table 1, then, the first type ratio data = ((5-1+1)+(10 -7+1)+(13-11+1))/100=12%, the first and second type proportion data=((16-14+1)+(19-17+1)+(25-21+ 1))/100=11%, the proportion of the first three types = ((43-40+1)+(47-45+1)+(50-49+1))/100=9%, because 12 %<20%, so the proportion of the first type is less than the upper limit of the proportion of the first type, because 11%<20%, so the proportion of the first and second type is less than the upper limit of the proportion of the second type, because 9%<20%, so The proportion of the first and third types of data is less than the upper limit of the proportion of the third type; because the proportion of the first and third types of data is smaller than the upper limit of the proportion of the first and third types, and the proportion of the first and second types of data is less than the upper limit of the proportion of the second and third types, and the proportion of the first and third types of The ratio data is less than the upper limit of the proportion of three types, so the current ECG data sequence is marked as available data;

Figure BDA0002777300850000171
Figure BDA0002777300850000171

表一Table I

当第一清洗类型数据为快心率与干扰清洗类型时,先根据心搏类型信息子集,进行心率换算处理生成第二心率数据,当第二心率数据不超过心率上限时,再根据干扰信息子集,进行三类干扰占比计算处理,生成第二一型占比数据、第二二型占比数据和第二三型占比数据,当第二一型占比数据不超过一型占比上限、且第二二型占比数据不超过二型占比上限、且第一三型占比数据不超过三型占比上限时,将心电数据序列标注为可用数据。When the first cleaning type data is fast heart rate and interference cleaning type, first, according to the heartbeat type information subset, heart rate conversion processing is performed to generate the second heart rate data, and when the second heart rate data does not exceed the upper limit of the heart rate, the second heart rate data is generated according to the heartbeat type information subset. Set, carry out the calculation and processing of the three types of interference proportions, and generate the second type of proportion data, the second type of proportion data and the second and third types of proportion data. When the second type of proportion data does not exceed the first type of proportion data When the upper limit is reached, the second type II proportion data does not exceed the second type proportion upper limit, and the first and third type proportion data does not exceed the third type proportion upper limit, the ECG data sequence is marked as available data.

这里,当第一清洗类型数据为快心率与干扰清洗类型时,是先对心电数据序列进行快心率数据识别,若识别为不是快心率数据,再对其的干扰长度是否低于正常阈值进行识别,实际是上述两种清洗方式的叠加处理流程,这里就不再做进一步赘述。Here, when the first cleaning type data is fast heart rate and interference cleaning type, the fast heart rate data is first identified on the ECG data sequence, and if it is identified as not fast heart rate data, then the interference length is lower than the normal threshold. The identification is actually a superimposed processing flow of the above two cleaning methods, which will not be further described here.

数据清洗模块13还用于对未标注为可用数据的心电数据序列,进行数据过滤处理。The data cleaning module 13 is further configured to perform data filtering processing on the ECG data sequences that are not marked as available data.

这里,是指如果在上文的清洗过程中发现当前心电数据序列的心率超过设定阈值或当前心电数据序列中的干扰信号长度超过设定阈值,应将当前心电数据序列做为过滤数据过滤掉,具体的数据过滤处理可以是抛弃当前心电数据序列并继续对下一个获取的心电数据序列进行清洗,也可以是停止当前的数据准备处理流程,并根据清洗的实际结果报数据错误。Here, it means that if the heart rate of the current ECG data sequence exceeds the set threshold or the length of the interference signal in the current ECG data sequence exceeds the set threshold during the cleaning process above, the current ECG data sequence should be used as a filter The data is filtered out. The specific data filtering process can be to discard the current ECG data sequence and continue to clean the next acquired ECG data sequence, or it can stop the current data preparation process and report the data according to the actual result of the cleaning. mistake.

数据分割模块14用于对心电数据序列与心电信息集合,根据设定的分割长度数据和滑窗长度数据,进行心电数据片段划分处理,生成多个心电片段数据序列与对应的心电片段信息集合;再将多个心电片段数据序列与对应的心电片段信息集合向第一心电数据计算模型发送。The data segmentation module 14 is used for the ECG data sequence and the ECG information set, according to the set segmentation length data and the sliding window length data, to perform ECG data segment division processing, and generate a plurality of ECG segment data sequences and corresponding cardiac segments. electrical segment information set; and then send the multiple electrocardiographic segment data sequences and the corresponding electrocardiographic segment information set to the first electrocardiographic data calculation model.

此处,分割长度数据和滑窗长度数据是预设的片段划分参数。Here, the division length data and the sliding window length data are preset segment division parameters.

这里,分割长度数据与滑窗长度数据相等时,是将心电数据序列顺次均分,相邻的心电片段数据序列之间没有数据重合;分割长度数据大于滑窗长度数据时,是将心电数据序列重叠分段,相邻的心电片段数据序列之间有数据重合。另外,在生成心电片段数据序列的同时也要对心电信息集合进行片段化生成对应的心电片段信息集合,因为心电片段数据序列中心电数据的索引相对于原心电数据序列的索引会发生调整,则心电片段信息集合中与心电数据索引位置对应的信息也需进行对应的调整。Here, when the segmentation length data is equal to the sliding window length data, the ECG data sequence is divided equally, and there is no data overlap between the adjacent ECG segment data sequences; when the segmentation length data is greater than the sliding window length data, it is divided into The ECG data sequence overlaps segments, and there is data overlap between adjacent ECG segment data sequences. In addition, while generating the ECG segment data sequence, the ECG information set should also be fragmented to generate the corresponding ECG segment information set, because the index of the ECG data sequence of the ECG segment data sequence is relative to the index of the original ECG data sequence If adjustment occurs, the information corresponding to the index position of the ECG data in the ECG segment information set also needs to be adjusted accordingly.

在本实施例提供的另一个具体实现方式中,数据分割模块14具体用于设定第一起始索引位置和结束索引位置;并从第一起始索引位置起以分割长度数据为分割长度,从心电数据序列中划分出第1个心电片段数据序列,并根据心电信息集合进行对应的心电片段信息转换处理,生成对应的第1个心电片段信息集合,再将第一起始索引位置与滑窗长度数据的和做为第二起始索引位置;再从第二起始索引位置起以分割长度数据为分割长度,从心电数据序列中划分出第2个心电片段数据序列,并根据心电信息集合进行对应的心电片段信息转换处理,生成对应的第2个心电片段信息集合,再将第二起始索引位置与滑窗长度数据的和做为第三起始索引位置;直到计算出的起始索引位置超过结束索引位置为止。In another specific implementation provided by this embodiment, the data segmentation module 14 is specifically configured to set a first start index position and an end index position; and from the first start index position, the segmentation length data is used as the segmentation length, and The first ECG segment data sequence is divided into the electrical data sequence, and the corresponding ECG segment information conversion processing is performed according to the ECG information set to generate the corresponding first ECG segment information set, and then the first starting index position is set. The sum with the sliding window length data is used as the second starting index position; then from the second starting index position, the segment length data is used as the segmentation length, and the second ECG segment data sequence is divided from the ECG data sequence, And according to the ECG information set, the corresponding ECG segment information conversion processing is performed to generate a corresponding second ECG segment information set, and then the sum of the second starting index position and the sliding window length data is used as the third starting index. position; until the calculated start index position exceeds the end index position.

此处,第一起始索引位置和结束索引位置为预先设定的两个心电所数据索引信息。这里,可以通过修改第一起始索引位置和结束索引位置的设定值,选择原始数据的部分数据进行片段划分,当第一起始索引位置和结束索引位置分别对应原始心电数据序列的第1个和最后1个心电数据时,意味着对原始心电数据序列进行全序列片段划分处理;当第一起始索引位置和结束索引位置不是原始心电数据序列的第1个和最后1个心电数据时,意味着从原始心电数据序列中截取一段中间数据,再对该段中间数据进行片段划分处理。Here, the first start index position and the end index position are preset data index information of two ECGs. Here, by modifying the set values of the first start index position and end index position, part of the original data can be selected for segment division. When the first start index position and end index position respectively correspond to the first one of the original ECG data sequence and the last ECG data, it means that the original ECG data sequence is divided into full sequence segments; when the first start index position and end index position are not the first and last ECG data of the original ECG data sequence When the data is used, it means that a segment of intermediate data is intercepted from the original ECG data sequence, and then segment division processing is performed on the segment of intermediate data.

例如,当前心电数据序列包括100个心电数据,第一起始索引位置为1,结束索引位置为100,分割长度数据与滑窗长度数据均为50,与当前心电数据序列对应的心电信息集合中,低电压信息子集的低电压信息序列的总数为0,干扰信息子集的干扰信息序列的总数为0,心搏类型信息子集有2个心搏类型信息序列,其中,第1个心搏类型信息序列的心搏类型数据为第一心搏类型、包括了5个R点位置数据,第2个心搏类型信息序列的心搏类型数据为第二心搏类型、包括了4个R点位置数据,如表二所示;则在进行心电数据片段划分处理之后,得到的第1个心电片段数据序列的心电数据索引是1到50,对应当前心电数据序列的第1到第50个心电数据,第1个心电片段信息集合的低电压信息子集的低电压信息序列的总数为0、干扰信息子集的干扰信息序列的总数为0、心搏类型信息子集只有1个心搏类型信息序列,如表三所示;第2个心电片段数据序列的心电数据索引是1到50,对应当前心电数据序列的第51到第100个心电数据,第2个心电片段信息集合的低电压信息子集的低电压信息序列的总数为0、干扰信息子集的干扰信息序列的总数为0、心搏类型信息子集只有1个心搏类型信息序列,如表四所示;其中,表三与表四的心搏类型信息序列都少了,是因为当前心电数据序列中第一心搏类型R点对应的心电数据属于第1个心电片段数据序列、第二心搏类型R点对应的心电数据属于第2个心电片段数据序列;表三中第一心搏类型R点位置没发生变化,是因为第1个心电片段数据序列中的心电数据索引不用重置;表四中R点位置数据发生变化,是因为第2个心电片段数据序列中的心电数据索引号发生了重置,新索引号=旧索引号-滑窗长度数据*(心电片段数据序列索引号-1)=旧索引号-50*(2-1)=旧索引号-50,那么对应的第二心搏类型R点位置也要相应重置:第二心搏类型第1个R点位置数据从60减去50变为10、第2个R点位置数据从66变为16、第3个R点位置数据从73变为23、第4个R点位置数据从80变为30。For example, the current ECG data sequence includes 100 ECG data, the first start index position is 1, the end index position is 100, the segmentation length data and the sliding window length data are both 50, and the ECG corresponding to the current ECG data sequence In the information set, the total number of low-voltage information sequences in the low-voltage information subset is 0, the total number of interference information sequences in the interference information subset is 0, and the heartbeat type information subset has two heartbeat type information sequences. The heartbeat type data of one heartbeat type information sequence is the first heartbeat type, including 5 R point position data, and the heartbeat type data of the second heartbeat type information sequence is the second heartbeat type, including The position data of the 4 R points are shown in Table 2; after the ECG data segment division processing, the ECG data index of the first ECG segment data sequence obtained is 1 to 50, corresponding to the current ECG data sequence The 1st to 50th ECG data, the total number of low-voltage information sequences of the low-voltage information subset of the first ECG segment information set is 0, and the total number of interference information sequences of the interference information subset is 0. There is only one heartbeat type information sequence in the type information subset, as shown in Table 3; the ECG data index of the second ECG segment data sequence is 1 to 50, corresponding to the 51st to 100th of the current ECG data sequence ECG data, the total number of low-voltage information sequences in the low-voltage information subset of the second ECG segment information set is 0, the total number of interference information sequences in the interference information subset is 0, and the heartbeat type information subset is only 1 The heartbeat type information sequence is shown in Table 4; among them, the heartbeat type information sequences in Tables 3 and 4 are less, because the ECG data corresponding to the first heartbeat type R point in the current ECG data sequence belongs to The first ECG segment data sequence and the ECG data corresponding to point R of the second heartbeat type belong to the second ECG segment data sequence; the position of point R of the first heartbeat type in Table 3 has not changed, because the first The ECG data index in each ECG segment data sequence does not need to be reset; the change in the position data of point R in Table 4 is because the ECG data index number in the second ECG segment data sequence is reset, and the new index Number = old index number - sliding window length data * (ECG segment data sequence index number - 1) = old index number - 50 * (2-1) = old index number - 50, then the corresponding second heartbeat type R The position of the points should also be reset accordingly: the first R point position data of the second heartbeat type is changed from 60 minus 50 to 10, the second R point position data is changed from 66 to 16, the third R point position data is changed from 73 becomes 23, and the 4th R point position data changes from 80 to 30.

心搏类型信息序列索引Heartbeat Type Information Sequence Index 心搏类型数据heartbeat type data R点位置数据R point position data 11 第一心搏类型first heartbeat type 17、26、34、42、5017, 26, 34, 42, 50 22 第二心搏类型second heartbeat type 60、66、73、8060, 66, 73, 80

表二Table II

心搏类型信息序列索引Heartbeat Type Information Sequence Index 心搏类型数据heartbeat type data R点位置数据R point position data 11 第一心搏类型first heartbeat type 17、26、34、42、5017, 26, 34, 42, 50

表三Table 3

心搏类型信息序列索引Heartbeat Type Information Sequence Index 心搏类型数据heartbeat type data R点位置数据R point position data 11 第二心搏类型second heartbeat type 10、16、23、3010, 16, 23, 30

表四Table 4

综上,本发明实施例通过使用数据清洗模块13对第一心电数据计算模型所需计算数据的原始数据进行清洗,提高了心电数据的质量;通过数据分割模块14提供灵活的分割方式,满足了第一心电数据计算模型对计算数据的不同分割要求,拓宽了心电数据的适用性。To sum up, in the embodiment of the present invention, the quality of the ECG data is improved by using the data cleaning module 13 to clean the original data of the calculation data required by the first ECG data calculation model; the data segmentation module 14 provides a flexible segmentation method, The different segmentation requirements of the first ECG data calculation model for the calculation data are met, and the applicability of the ECG data is broadened.

本发明实施例中第二心电数据计算模型,其用于训练的输入数据是原始数据的一部分选定片段,其用于训练结果验证的参考信息来自于对应的选定片段心电信息集合。为达到这个目的,数据处理系统1只需根据选定片段的位置截取数据片段即可,但是,在实际应用中因为心电数据的总量(尤其是一些稀有心电特征的心电数据)并不能全满足模型训练的大数据量要求,所以本发明实施例通过数据转换模块15对选定片段提供心电数据左右位移(第一、二转换模式)、心搏数据位移左右位移(第三、四转换模式)等方式来达到增加心电信号数据多样性的目的,这四种转换方式中涉及到的心电信息集合其结构继承于原始心电数据序列的心电信息集合,其转换规则与前文分割转换类似;另外,数据转换模块15还提供一种特殊转换方式(第五转换模式),对原始心电数据序列先行片段划分,再获取每段子片段的片段心搏类型,并由片段心搏类型数据组成新的片段心电信息集合,这种转换方式下产生的片段心电信息集合其结构与原始心电数据序列的心电信息集合没有继承关系。在数据转换模块15进行数据转换之前,为进一步保证训练数据的质量,还需要先行使用数据清洗模块13对心电数据序列进行数据清洗。具体实现如下文所述。In the second ECG data calculation model in the embodiment of the present invention, the input data used for training is a selected segment of the original data, and the reference information used for verification of the training result comes from the corresponding ECG information set of the selected segment. In order to achieve this purpose, the data processing system 1 only needs to intercept the data segment according to the position of the selected segment. However, in practical applications, due to the total amount of ECG data (especially the ECG data of some rare ECG characteristics) and the The large data volume requirements of model training cannot be fully met, so in the embodiment of the present invention, the data conversion module 15 provides the left and right displacement of the ECG data (the first and second conversion modes), the left and right displacement of the heartbeat data (third, Four conversion modes) and other methods to achieve the purpose of increasing the diversity of ECG signal data, the structure of the ECG information set involved in these four conversion methods is inherited from the ECG information set of the original ECG data sequence, and its conversion rules are the same as The previous segmentation and conversion are similar; in addition, the data conversion module 15 also provides a special conversion method (the fifth conversion mode), which divides the original ECG data sequence into segments first, and then obtains the segment heartbeat type of each sub-segment, and converts the segment by segment heart rate. The beat type data constitutes a new segment ECG information set. The segment ECG information set generated in this conversion mode has no inheritance relationship with the ECG information set of the original ECG data sequence. Before the data conversion module 15 performs data conversion, in order to further ensure the quality of the training data, the data cleaning module 13 needs to be used to clean the ECG data sequence. The specific implementation is described below.

数据清洗模块13还用于在准备第二心电数据计算模型的计算数据时,从心电数据库12中获取心电数据序列及对应的心电信息集合;并根据设定的第二清洗类型数据和心电信息集合,对心电数据序列,进行可用数据标注处理;再将标注为可用数据的心电数据序列及对应的心电信息集合,向数据转换模块15发送。The data cleaning module 13 is also used to obtain the ECG data sequence and the corresponding ECG information set from the ECG database 12 when preparing the calculation data of the second ECG data calculation model; and according to the set second cleaning type data and the ECG information set, perform available data labeling processing on the ECG data sequence; and then send the ECG data sequence marked as available data and the corresponding ECG information set to the data conversion module 15 .

此处,与前文数据清洗模块13在数据分割之前的清洗处理流程类似,这里就不再做进一步赘述。Here, the cleaning process flow of the data cleaning module 13 before data segmentation is similar to that described above, and will not be further described here.

数据转换模块15用于对心电数据序列进行片段标记处理,得到选定片段;再以选定片段为基础,根据设定的转换模式数据与心电信息集合,进行数据转换处理,生成转换片段数据序列及对应的转换片段心电信息集合;再将转换片段数据序列及对应的转换片段心电信息集合,向第二心电数据计算模型发送。The data conversion module 15 is used to perform segment marking processing on the ECG data sequence to obtain the selected segment; and then based on the selected segment, perform data conversion processing according to the set conversion mode data and the ECG information set to generate the converted segment The data sequence and the corresponding converted segment ECG information set; and then the converted segment data sequence and the corresponding converted segment ECG information set are sent to the second ECG data calculation model.

在本实施例提供的另一个具体实现方式中,数据转换模块15具体用于根据设定的选定片段位置,在心电数据序列中标记选定片段;In another specific implementation provided by this embodiment, the data conversion module 15 is specifically configured to mark the selected segment in the ECG data sequence according to the set selected segment position;

其中,选定片段位置包括选定片段起始索引数据和选定片段结束索引数据;选定片段起始索引数据和选定片段结束索引数据,分别为其对应的心电数据在心电数据序列中的索引位置信息;Wherein, the position of the selected segment includes the start index data of the selected segment and the end index data of the selected segment; the start index data of the selected segment and the end index data of the selected segment are respectively the corresponding ECG data in the ECG data sequence index location information;

这里,选定片段位置即为设定的用于标记选定片段的位置信息,其选定片段起始索引数据为该选定片段在心电数据序列中片段起始心电数据的索引,选定片段结束索引数据为该选定片段在心电数据序列中片段结束心电数据的索引;例如,当前心电数据序列包括100个心电数据,选定片段位置的选定片段起始索引数据为10、选定片段结束索引数据为80,则选定片段为当前心电数据序列中第10个到第80个心电数据间的数据序列;Here, the position of the selected segment is the set position information for marking the selected segment, and the start index data of the selected segment is the index of the segment start ECG data of the selected segment in the ECG data sequence. The segment end index data is the index of the segment end ECG data in the ECG data sequence of the selected segment; for example, the current ECG data sequence includes 100 ECG data, and the selected segment start index data at the selected segment position is 10 , the selected segment end index data is 80, then the selected segment is the data sequence between the 10th to the 80th ECG data in the current ECG data sequence;

当转换模式数据为第一转换模式时,随机生成心电左移数据;并以选定片段起始索引数据与心电左移数据的差,做为第一心电起始索引数据,以选定片段结束索引数据与心电左移数据的差,做为第一心电结束索引数据;再从心电数据序列中,提取索引位置在第一心电起始索引数据和第一心电结束索引数据之间的心电数据,组成第一转换片段数据序列;再根据心电信息集合进行对应的第一转换片段信息转换处理,生成对应的第一转换片段心电信息集合;其中,第一转换片段心电信息集合包括第一转换片段心搏类型信息子集、第一转换片段干扰信息子集和第一转换片段低电压信息子集;When the conversion mode data is the first conversion mode, the ECG left-shift data is randomly generated; and the difference between the selected segment start index data and the ECG left-shift data is used as the first ECG start index data to select The difference between the segment end index data and the ECG left-shift data is determined as the first ECG end index data; and from the ECG data sequence, the index positions are extracted between the first ECG start index data and the first ECG end index data. The ECG data between the index data forms a first conversion segment data sequence; and then perform the corresponding first conversion segment information conversion processing according to the ECG information set to generate a corresponding first conversion segment ECG information set; wherein, the first The conversion segment ECG information set includes a first conversion segment heartbeat type information subset, a first conversion segment interference information subset, and a first conversion segment low voltage information subset;

这里,当转换模式数据为第一转换模式时,以选定片段位置为原始位置,保持片段长度不变的情况下,将起始位置与结束位置分别向左位移一个长度,该长度即是心电左移数据,并由此产生由第一心电起始索引数据、第一心电结束索引数据标记的新的片段位置,并从心电数据序列重新按新的片段位置进行片段提取,就可以得到与选定片段长度一致、特征近似但又不重合的第一转换片段数据序列,再类似分割处理那样进行心电信息集合的索引位置调整,就可得到新的第一转换片段心电信息集合;Here, when the conversion mode data is the first conversion mode, the position of the selected segment is taken as the original position, and the length of the segment is kept unchanged, and the start position and the end position are shifted to the left by a length respectively, and this length is the center The data is shifted to the left, and a new segment position marked by the first ECG start index data and the first ECG end index data is generated, and the segment extraction is performed again according to the new segment position from the ECG data sequence. The first converted segment data sequence with the same length as the selected segment and similar features but not overlapping can be obtained, and then the index position of the ECG information set is adjusted similarly to the segmentation process, and the new ECG information of the first converted segment can be obtained. gather;

这里,心电左移数据是随机生成的,常规是在一个较小的范围内做随机数计算,例如在1-10之间随机产生位移长度,这样的目的是通过位移随机性增加转换片段的多样性;Here, the ECG left-shift data is randomly generated. Conventionally, random number calculation is performed in a small range, for example, the displacement length is randomly generated between 1 and 10. The purpose of this is to increase the conversion segment through the randomness of the displacement. diversity;

当转换模式数据为第二转换模式时,随机生成心电右移数据;并以选定片段起始索引数据与心电右移数据的和,做为第二心电起始索引数据,以选定片段结束索引数据与心电右移数据的和,做为第二心电结束索引数据;再从心电数据序列中,提取索引位置在第二心电起始索引数据和第二心电结束索引数据之间的心电数据,组成第二转换片段数据序列;再根据心电信息集合进行对应的第二转换片段信息转换处理,生成对应的第二转换片段心电信息集合;其中,第二转换片段心电信息集合包括第二转换片段心搏类型信息子集、第二转换片段干扰信息子集和第二转换片段低电压信息子集;When the conversion mode data is the second conversion mode, the ECG right-shift data is randomly generated; and the sum of the selected segment start index data and the ECG right-shift data is used as the second ECG start index data to select The sum of the end index data of the fixed segment and the right-shifted ECG data is used as the second ECG end index data; and then from the ECG data sequence, the index positions are extracted from the second ECG start index data and the second ECG end index data. The ECG data between the index data forms a second conversion segment data sequence; and then perform the corresponding second conversion segment information conversion processing according to the ECG information set to generate a corresponding second conversion segment ECG information set; wherein, the second The conversion segment ECG information set includes a second conversion segment heartbeat type information subset, a second conversion segment interference information subset and a second conversion segment low voltage information subset;

这里,当转换模式数据为第二转换模式时,以选定片段位置为原始位置,保持片段长度不变的情况下,将起始位置与结束位置分别向右位移一个长度,该长度即是心电右移数据,并由此产生由第二心电起始索引数据、第二心电结束索引数据标记的新的片段位置,并从心电数据序列重新按新的片段位置进行片段提取,就可以得到与选定片段长度一致、特征近似但又不重合的第二转换片段数据序列,再类似分割处理那样进行心电信息集合的索引位置调整,就可得到新的第二转换片段心电信息集合;Here, when the conversion mode data is the second conversion mode, the position of the selected segment is taken as the original position, and the length of the segment is kept unchanged, and the start position and the end position are respectively shifted to the right by a length, and this length is the center The data is shifted to the right, and a new segment position marked by the second ECG start index data and the second ECG end index data is generated, and the segment extraction is performed again according to the new segment position from the ECG data sequence. A second converted segment data sequence with the same length as the selected segment and similar features but not overlapping can be obtained, and then the index position of the ECG information set is adjusted like a segmentation process, and a new second converted segment ECG information can be obtained. gather;

这里,心电右移数据也是随机生成的,与心电左移数据的目的一致,也是为了通过位移随机性增加转换片段的多样性;Here, the ECG right-shift data is also randomly generated, which is consistent with the purpose of the ECG left-shift data, which is also to increase the diversity of conversion segments through the randomness of displacement;

当转换模式数据为第三转换模式、第四转换模式或第五转换模式时,对心电信息集合中的所有第一R点位置数据进行排序,生成第一R点位置数据序列;根据第一R点位置数据序列,及与每个第一R点位置数据对应的第一心搏类型数据,进行心搏类型与位置信息统计处理,生成心搏统计数据序列;When the conversion mode data is the third conversion mode, the fourth conversion mode or the fifth conversion mode, sort all the first R point position data in the ECG information set to generate a first R point position data sequence; The R point position data sequence, and the first heartbeat type data corresponding to each first R point position data, perform statistical processing of the heartbeat type and position information to generate a heartbeat statistical data sequence;

其中,心搏统计数据序列包括多个心搏统计数据组;心搏统计数据组包括心搏类型数据、心搏起始数据和心搏结束数据;心搏起始数据和心搏结束数据分别为其对应的心电数据在心电数据序列中的索引位置信息;The heartbeat statistical data sequence includes multiple heartbeat statistical data groups; the heartbeat statistical data group includes heartbeat type data, heartbeat start data, and heartbeat end data; the heartbeat start data and heartbeat end data are respectively The index position information of the corresponding ECG data in the ECG data sequence;

这里,第三转换模式、第四转换模式或第五转换模式转换处理时,均需要参考心电数据序列的心搏位置关系,所以预先通过对原始心电数据序列的R点进行排序与统计,得到心搏统计数据序列;在具体实现心搏类型与位置信息统计处理时,可以在相邻的R点位置之间,设定一个百分比数据,以这个百分比数据来确定R点对应的心搏周期的起始与结束位置,例如,百分比数据为80%,有4个R点:第1、2、3、4R点,则第1心搏周期的起始位置在第1R点到第2R点方向80%的位置,第1心搏周期的结束位置在第2R点到第3R点方向80%的位置;第2心搏周期的起始位置与第1心搏周期的结束位置相同,第2心搏周期的结束位置在第3R点到第4R点方向80%的位置;Here, when the third conversion mode, the fourth conversion mode or the fifth conversion mode is converted, it is necessary to refer to the heartbeat position relationship of the ECG data sequence, so by sorting and counting the R points of the original ECG data sequence in advance, Obtain the heartbeat statistical data sequence; when implementing the statistical processing of heartbeat type and position information, a percentage data can be set between the adjacent R point positions, and this percentage data can be used to determine the heartbeat cycle corresponding to the R point For example, if the percentage data is 80% and there are 4 R points: 1, 2, 3, and 4R points, the starting position of the first heart cycle is in the direction from the 1R point to the 2R point. 80% position, the end position of the first heart cycle is at the 80% position in the direction from point 2R to point 3R; the start position of the second heart cycle is the same as the end position of the first heart cycle, the second heart The end position of the stroke cycle is 80% of the direction from point 3R to point 4R;

当转换模式数据为第三转换模式时,在心搏统计数据序列中,将心搏起始数据和心搏结束数据满足选定片段起始索引数据的心搏统计数据组,做为第一心搏数据组;并将第一心搏数据组在心搏统计数据序列中对应的索引位置信息,做为第一心搏索引数据;再以第一心搏索引数据与设定的心搏左移数据的差,做为第二心搏索引数据;再从心搏统计数据序列中,提取与第二心搏索引数据对应的心搏统计数据组的心搏起始数据,做为第三心电起始索引数据;再在心电数据序列中,以第三心电起始索引数据为提取起始位置,以选定片段的数据长度为提取长度,进行心电数据提取处理,组成第三转换片段数据序列;再根据心电信息集合进行对应的第三转换片段信息转换处理,生成对应的第三转换片段心电信息集合;其中,第三转换片段心电信息集合包括第三转换片段心搏类型信息子集、第三转换片段干扰信息子集和第三转换片段低电压信息子集;When the conversion mode data is the third conversion mode, in the heartbeat statistical data sequence, the heartbeat statistical data group whose heartbeat start data and heartbeat end data satisfy the selected segment start index data is taken as the first heartbeat data group; take the index position information corresponding to the first heartbeat data group in the heartbeat statistical data sequence as the first heartbeat index data; and then use the first heartbeat index data and the set heartbeat left shift data The second heartbeat index data is used as the second heartbeat index data; and the heartbeat start data of the heartbeat statistical data group corresponding to the second heartbeat index data is extracted from the heartbeat statistical data sequence, and used as the third ECG start index data; then in the ECG data sequence, take the third ECG start index data as the extraction start position, and use the data length of the selected segment as the extraction length, perform ECG data extraction processing, and form a third converted segment data sequence and then perform the corresponding third conversion segment information conversion processing according to the ECG information set to generate a corresponding third conversion segment ECG information set; wherein, the third conversion segment ECG information set includes the third conversion segment heartbeat type information element. set, a third conversion segment interference information subset, and a third conversion segment low voltage information subset;

这里,当转换模式数据为第三转换模式时,在心搏统计数据序列中,每组心搏统计数据组的心搏起始数据和心搏结束数据组成一个心搏范围,心搏范围包含了选定片段起始位置的心搏统计数据组,就是与选定片段对应的第一心搏数据组,其在心搏统计数据序列中的索引位置即是第一心搏索引数据;再从第一心搏数据组开始向左位移心搏左移数据,得到第二心搏索引数据;再根据第二心搏索引数据,通过查询心搏统计数据序列中对应心搏统计数据组的起始位置得到第三心电起始索引数据;再在保证数据片段不变的前提下,从心电数据序列的第三心电起始索引数据起,重新进行片段提取,得到与选定片段长度一致、特征近似但又不重合的第三转换片段数据序列,再类似分割处理那样进行心电信息集合的索引位置调整,就可得到新的第三转换片段心电信息集合;Here, when the conversion mode data is the third conversion mode, in the heartbeat statistical data sequence, the heartbeat start data and the heartbeat end data of each heartbeat statistical data group form a heartbeat range, and the heartbeat range includes the selected heartbeat range. The heartbeat statistical data group at the starting position of the segment is the first heartbeat data group corresponding to the selected segment, and its index position in the heartbeat statistical data sequence is the first heartbeat index data; The heartbeat data group starts to shift the heartbeat data to the left, and the second heartbeat index data is obtained; then according to the second heartbeat index data, the first position of the corresponding heartbeat statistical data group in the heartbeat statistical data sequence is inquired to obtain the second heartbeat index data. Three ECG start index data; then, on the premise of ensuring that the data segment remains unchanged, start from the third ECG start index data of the ECG data sequence, and re-extract the segment to obtain the same length and similar characteristics as the selected segment. However, for the data sequence of the third conversion segment that does not overlap, the index position of the ECG information set is adjusted similarly to the segmentation process, and a new ECG information set of the third conversion segment can be obtained;

这里,心搏左移数据是预设的,因为一个心电数据序列中可能包含的心搏数量并不多,在特定情况下,例如长时心电数据序列时,也可以通过随机生成的方式来设置,通过心搏左移生成新的训练数据其目的也是为了增加转换片段的多样性;Here, the left-shift data of the heartbeat is preset, because the number of heartbeats that may be included in an ECG data sequence is not many. To set, the purpose of generating new training data by left-shifting the heartbeat is also to increase the diversity of conversion segments;

当转换模式数据为第四转换模式时,在心搏统计数据序列中,将心搏起始数据和心搏结束数据满足选定片段起始索引数据的心搏统计数据组,做为第二心搏数据组;并将第二心搏数据组在心搏统计数据序列中对应的索引位置信息,做为第三心搏索引数据;再以第三心搏索引数据与设定的心搏右移数据的和,做为第四心搏索引数据;再从心搏统计数据序列中,提取与第四心搏索引数据对应的心搏统计数据组的心搏起始数据,做为第四心电起始索引数据;再在心电数据序列中,以第四心电起始索引数据为提取起始位置,以选定片段的数据长度为提取长度,进行心电数据提取处理,组成第四转换片段数据序列;再根据心电信息集合进行对应的第四转换片段信息转换处理,生成对应的第四转换片段心电信息集合;其中,第四转换片段心电信息集合包括第四转换片段心搏类型信息子集、第四转换片段干扰信息子集和第四转换片段低电压信息子集;When the conversion mode data is the fourth conversion mode, in the heartbeat statistical data sequence, the heartbeat statistical data group whose heartbeat start data and heartbeat end data satisfy the selected segment start index data is used as the second heartbeat data group; and use the index position information corresponding to the second heartbeat data group in the heartbeat statistical data sequence as the third heartbeat index data; and then use the third heartbeat index data and the set heartbeat right shift data and, as the fourth heartbeat index data; then, from the heartbeat statistical data sequence, extract the heartbeat start data of the heartbeat statistical data group corresponding to the fourth heartbeat index data, and use it as the fourth ECG start index data; in the ECG data sequence, the fourth ECG start index data is used as the extraction start position, and the data length of the selected segment is used as the extraction length, and the ECG data extraction process is performed to form a fourth conversion segment data sequence and then perform the corresponding fourth conversion segment information conversion processing according to the ECG information set to generate a corresponding fourth conversion segment ECG information set; wherein, the fourth conversion segment ECG information set includes the fourth conversion segment heartbeat type information element set, a fourth conversion segment interference information subset, and a fourth conversion segment low voltage information subset;

这里,当转换模式数据为第四转换模式时,每组心搏统计数据组的心搏起始数据和心搏结束数据组成一个心搏范围,心搏范围包含了选定片段起始位置的心搏统计数据组,就是与选定片段对应的第二心搏数据组,其在心搏统计数据序列中的索引位置即是第三心搏索引数据;再从起始心搏开始向右位移心搏右移数据,得到第四心搏索引数据;再根据第四心搏索引数据,通过查询心搏统计数据序列中对应心搏统计数据组的起始位置得到第四心电起始索引数据;再在保证数据片段不变的前提下,从心电数据序列的第四心电起始索引数据起,重新进行片段提取,得到与选定片段长度一致、特征近似但又不重合的第四转换片段数据序列,再类似分割处理那样进行心电信息集合的索引位置调整,就可得到新的第四转换片段心电信息集合;Here, when the conversion mode data is the fourth conversion mode, the heartbeat start data and the heartbeat end data of each heartbeat statistical data group form a heartbeat range, and the heartbeat range includes the heartbeat at the start position of the selected segment. The heartbeat statistics data group is the second heartbeat data group corresponding to the selected segment, and its index position in the heartbeat statistics data sequence is the third heartbeat index data; and then the heartbeat is shifted to the right from the initial heartbeat Shift the data to the right to obtain the fourth heartbeat index data; then according to the fourth heartbeat index data, obtain the fourth ECG start index data by querying the starting position of the corresponding heartbeat statistical data group in the heartbeat statistical data sequence; On the premise of ensuring that the data segment remains unchanged, starting from the fourth ECG start index data of the ECG data sequence, segment extraction is performed again to obtain a fourth converted segment with the same length as the selected segment and similar features but not overlapping. data sequence, and then adjust the index position of the ECG information set similar to the segmentation process, and then a new fourth conversion segment ECG information set can be obtained;

这里,心搏右移数据是预设的,与心搏左移数据近似,通过心搏右移生成新的训练数据,增加转换片段的多样性;Here, the heartbeat right-shift data is preset, which is similar to the heartbeat left-shift data, and new training data is generated by the heartbeat right-shift to increase the diversity of conversion segments;

当转换模式数据为第五转换模式时,根据预设的子片段长度,对选定片段进行子片段划分处理,生成多个子片段;再根据心搏统计数据序列,对每个子片段,进行片段内相同心搏类型的心搏总长度统计处理,生成多个总长度数据,并将最大总长度数据对应的心搏类型,做为子片段对应的片段心搏类型数据;再由所有子片段组成第五转换片段数据序列,由所有片段心搏类型数据组成第五转换片段心电信息集合。When the conversion mode data is the fifth conversion mode, according to the preset sub-segment length, sub-segment division processing is performed on the selected segment to generate multiple sub-segments; The total length of the heartbeat of the same heartbeat type is statistically processed to generate multiple total length data, and the heartbeat type corresponding to the maximum total length data is used as the segment heartbeat type data corresponding to the sub-segment; The five converted segment data sequences are composed of all segments of heartbeat type data to form a fifth converted segment ECG information set.

此处,子片段长度是预先设定用于子片段划分的,这里的子片段划分与前文的片段分割不同之处在于,这里的子片段划分就是对选定片段进行顺次划分,没有滑动步长参数。Here, the sub-segment length is preset for the sub-segment division. The difference between the sub-segment division here and the previous segment division is that the sub-segment division here is to divide the selected segment in sequence, and there is no sliding step. long parameter.

例如,当前心电数据序列包括100个心电数据,当前心电数据序列对应的心电信息集合中,低电压信息子集的低电压信息序列的总数为0,干扰信息子集的干扰信息序列的总数为0,心搏类型信息子集有2个心搏类型信息序列,如表五所示。For example, the current ECG data sequence includes 100 pieces of ECG data. In the ECG information set corresponding to the current ECG data sequence, the total number of low-voltage information sequences in the low-voltage information subset is 0, and the interference information sequences in the interference information subset are 0. The total number is 0, and the heartbeat type information subset has 2 heartbeat type information sequences, as shown in Table 5.

心搏类型信息序列索引Heartbeat Type Information Sequence Index 心搏类型数据heartbeat type data R点位置数据R point position data 11 第一心搏类型first heartbeat type 15、30、4515, 30, 45 22 第二心搏类型second heartbeat type 60、7560, 75

表五Table 5

计算心搏位置的百分比数据为80%,则当前心电数据序列对应的据心搏统计数据序列中包含了3个心搏统计数据组,如表六所示。If the percentage data of the calculated heartbeat position is 80%, then the heartbeat statistical data sequence corresponding to the current electrocardiographic data sequence includes 3 heartbeat statistical data groups, as shown in Table 6.

心搏统计数据组索引Heartbeat Statistics Group Index 心搏类型数据heartbeat type data 心搏起始数据heart attack data 心搏结束数据end-of-beat data 11 第一心搏类型first heartbeat type 2727 4242 22 第一心搏类型first heartbeat type 4242 5757 33 第二心搏类型second heartbeat type 5757 7272

表六Table 6

选定片段为其中第11到第80个心电数据组成的数据序列,选定片段包括了70个心电数据,子片段长度为35,将选定片段划分为两个子片段:第1、2子片段,其中,第1子片段对应当前心电数据序列的第11个到第45个心电数据,第2子片段对应当前心电数据序列的第46个到第80个心电数据,第五转换片段数据序列由第1、2子片段组成。The selected segment is a data sequence composed of the 11th to 80th ECG data. The selected segment includes 70 ECG data, and the sub-segment length is 35. The selected segment is divided into two sub-segments: 1st, 2nd Sub-segments, where the first sub-segment corresponds to the 11th to 45th ECG data of the current ECG data sequence, the second sub-segment corresponds to the 46th to 80th ECG data of the current ECG data sequence, and the second The five-transition segment data sequence consists of the first and second sub-segments.

在第1子片段中,参考表六,只有1种心搏类型:第一心搏类型,所以对应的第1子片段的第一心搏类型的心搏总长度为45-10=35,第1子片段的片段心搏类型数据为第一心搏类型;在第2子片段中,参考表六,有2种心搏类型:第一心搏类型和第二心搏类型,其中第一心搏类型的心搏总长度为57-45=12,第二心搏类型的心搏总长度为72-57=15,这里,15>12,所以最大总长度数据为第二心搏类型的心搏总长度,第2子片段的片段心搏类型数据为第二心搏类型;由此,得到第五转换片段心电信息集合,如表七所示。In the first sub-segment, referring to Table 6, there is only one heartbeat type: the first heartbeat type, so the total heartbeat length of the first heartbeat type of the first sub-segment is 45-10=35, the first heartbeat type The segment heartbeat type data of sub-segment 1 is the first heartbeat type; in the second sub-segment, referring to Table 6, there are two heartbeat types: the first heartbeat type and the second heartbeat type, where the first heartbeat type The total length of the heartbeat of the second heartbeat type is 57-45=12, and the total length of the heartbeat of the second heartbeat type is 72-57=15. Here, 15>12, so the maximum total length data is the heartbeat of the second heartbeat type. is the total length of the stroke, and the segment heartbeat type data of the second sub-segment is the second heartbeat type; thus, a fifth converted segment ECG information set is obtained, as shown in Table 7.

子片段索引subsegment index 片段心搏类型数据Fragment beat type data 11 第一心搏类型first heartbeat type 22 第二心搏类型second heartbeat type

表七Table 7

综上,本发明实施例通过使用数据清洗模块13对第二心电数据计算模型所需计算数据的原始数据进行清洗,提高了心电数据的质量;通过数据转换模块15提供多种数据转换处理流程,满足了第二心电数据计算模型对计算数据的多样性要求。To sum up, the embodiment of the present invention improves the quality of the ECG data by using the data cleaning module 13 to clean the original data of the calculation data required by the second ECG data calculation model; the data conversion module 15 provides a variety of data conversion processing The process satisfies the diversity requirements of the second ECG data calculation model for the calculation data.

需要说明的是,应理解以上系统的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,数据集成模块可以为单独设立的处理元件,也可以集成在上述系统的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述系统的存储器中,由上述系统的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所描述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。It should be noted that it should be understood that the division of each module of the above system is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated. And these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware. For example, the data integration module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned system to realize, in addition, it may also be stored in the memory of the above-mentioned system in the form of program code, and processed by one of the above-mentioned systems. The element calls and executes the functions of the above-determined modules. The implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently. The processing element described herein may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.

例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个数字信号处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(CentralProcessing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(System-on-a-chip,SOC)的形式实现。For example, the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more digital signal processors ( Digital Signal Processor, DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc. For another example, when one of the above modules is implemented in the form of a processing element scheduling program code, the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can invoke program codes. For another example, these modules can be integrated together and implemented in the form of a System-on-a-chip (SOC).

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本发明实施例所描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。上述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,上述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线路(Digital Subscriber Line,DSL))或无线(例如红外、无线、蓝牙、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。上述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。上述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the procedures or functions described in accordance with the embodiments of the present invention are generated in whole or in part. The aforementioned computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices. The above-mentioned computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the above-mentioned computer instructions may be transmitted from a website site, computer, server, or data center via wired communication. (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, bluetooth, microwave, etc.) means to another website site, computer, server or data center. The above-mentioned computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, etc. that includes one or more available media integrated. The above-mentioned usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), and the like.

本发明实施例提供一种面向心电数据的数据处理系统,通过数据集成模块对收集来的心电数据按受干扰程度进行分类,控制了干扰数据的影响;通过数据清洗模块对不具备训练价值的心电数据进行过滤,提高了心电数据的质量;通过数据分割模块,根据不同心电数据计算模型的需求,对心电数据进行二次分割,拓宽了心电数据的适用性;通过数据转换模块,对心电数据经由左右心电数据移位、左右心搏移位或者子片段划分等转换得到新的训练数据,增加了心电信号数据的多样性。The embodiment of the present invention provides a data processing system for ECG data. The collected ECG data is classified according to the degree of interference through the data integration module, and the influence of the interference data is controlled; the data cleaning module has no training value. The quality of ECG data is improved by filtering the ECG data; through the data segmentation module, according to the needs of different ECG data calculation models, the ECG data is divided twice, which broadens the applicability of ECG data; The conversion module converts the ECG data through left and right ECG data shift, left and right heart beat shift or sub-segment division to obtain new training data, which increases the diversity of ECG signal data.

专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals should be further aware that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two. Interchangeability, the above description has generally described the components and steps of each example in terms of function. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.

结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of a method or algorithm described in connection with the embodiments disclosed herein may be implemented in hardware, a software module executed by a processor, or a combination of the two. A software module can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (5)

1. A data processing system for electrocardiographic data, the data processing system comprising: the system comprises a data integration module, an electrocardiogram database, a data cleaning module, a data segmentation module and a data conversion module; the data processing system is respectively connected with the electrocardiogram data source, the first electrocardiogram data calculation model and the second electrocardiogram data calculation model;
the data integration module is respectively connected with the electrocardio data source and the electrocardio database; the data integration module is used for acquiring an electrocardiogram data sequence and a corresponding electrocardiogram information set from the electrocardiogram data source; according to the electrocardio information set, carrying out electrocardio data classification processing to generate classification data; then according to the classified data, storing the electrocardio data sequence and the electrocardio information set into a corresponding data subset in the electrocardio database;
the data cleaning module is respectively connected with the electrocardio database and the data segmentation module; the data cleaning module is used for acquiring the electrocardiogram data sequence and the corresponding electrocardiogram information set from the electrocardiogram database when preparing the calculation data of the first electrocardiogram data calculation model; marking available data according to the set first cleaning type data and the electrocardio information set; then sending the electrocardiogram data sequence marked as available data and the corresponding electrocardiogram information set to the data segmentation module;
the data segmentation module is connected with the first electrocardiogram data calculation model; the data segmentation module is used for carrying out segmentation processing on the electrocardio data sequences and the electrocardio information set according to set segmentation length data and sliding window length data to generate a plurality of electrocardio fragment data sequences and corresponding electrocardio fragment information sets; then sending the plurality of electrocardiogram fragment data sequences and the corresponding electrocardiogram fragment information sets to the first electrocardiogram data calculation model;
the data cleaning module is also connected with the data conversion module; the data cleaning module is further used for acquiring the electrocardiogram data sequence and the corresponding electrocardiogram information set from the electrocardiogram database when preparing the calculation data of the second electrocardiogram data calculation model; according to the set second cleaning type data and the electrocardio information set, carrying out available data labeling processing on the electrocardio data sequence; then sending the electrocardiogram data sequence marked as the available data and the corresponding electrocardiogram information set to the data conversion module;
the data conversion module is also connected with the second electrocardiogram data calculation model; the data conversion module is used for carrying out fragment marking processing on the electrocardiogram data sequence to obtain a selected fragment; then based on the selected segment, carrying out data conversion processing according to set conversion mode data and the electrocardio information set to generate a conversion segment data sequence and a corresponding conversion segment electrocardio information set; then sending the conversion segment data sequence and the corresponding conversion segment electrocardio information set to the second electrocardio data calculation model;
wherein the electrocardiogram data sequence comprises a plurality of electrocardiogram data;
the electrocardio information set comprises a heart beat type information subset, an interference information subset and a low voltage information subset;
the heart beat type information subset comprises a plurality of first heart beat type information sequences; the first heart beat type information sequence comprises first heart beat type data and a plurality of first R point position data; the first R point position data is index position information of the corresponding electrocardiogram data in the electrocardiogram data sequence;
the subset of interference information comprises a plurality of first interference information sequences; the first interference information sequence comprises first interference type information and a plurality of first interference position information groups; the first interference type information is type I interference information, type II interference information or type III interference information, wherein the interference levels of the type I interference information, the type II interference information and the type III interference information are sequentially increased; the first interference position information group comprises first interference starting information and first interference ending information; the first interference starting information and the first interference ending information are respectively index position information of the corresponding electrocardiogram data in the electrocardiogram data sequence;
the subset of low voltage information comprises a plurality of first low voltage information sequences; the first low voltage information sequence includes a plurality of first low voltage position information groups; the first low-voltage position information group includes first low-voltage start information and first low-voltage end information; the first low-voltage starting information and the first low-voltage ending information are respectively index position information of the electrocardiogram data corresponding to the first low-voltage starting information and the first low-voltage ending information in the electrocardiogram data sequence;
the electrocardio database comprises a first type interference data subset, a second type interference data subset, a third type interference data subset, a low voltage data subset and an interference-free data subset;
the data integration module is specifically used for acquiring the electrocardiogram data sequence sent from the electrocardiogram data source and the corresponding electrocardiogram information set;
according to the low-voltage information subset and the interference information subset of the electrocardio information set, carrying out electrocardio data classification processing to generate classification data; when the total number of the first low-voltage information sequences effective in the low-voltage information subset is 0 and the total number of the first interference information sequences effective in the interference information subset is not 0, taking the first interference type information with the highest interference level in all the first interference information sequences as highest-level interference information, and setting and processing the classification data according to the highest-level interference information; when the highest-level interference information is the type-I interference information, setting the classification data as a type-I interference type; when the highest-level interference information is the second-type interference information, setting the classified data as a second-type interference type; when the highest-level interference information is the type III interference information, setting the classification data as a type III interference type; setting the classification data to a low voltage type when a total number of the first low voltage information sequences that are valid in the low voltage information subset is not 0; when the total number of the first low-voltage information sequences effective in the low-voltage information subset is 0 and the total number of the first interference information sequences effective in the interference information subset is also 0, setting the classification data as an interference-free type;
then, according to the classification data, storing and processing the electrocardio data sequence and the corresponding electrocardio information set; when the classified data is the type I interference type, storing the electrocardio data sequence and the corresponding electrocardio information set into the type I interference data subset of the electrocardio database; when the classified data is the type II interference type, storing the electrocardio data sequence and the corresponding electrocardio information set into the type II interference data subset of the electrocardio database; when the classified data is of the triple-type interference type, storing the electrocardio data sequence and the corresponding electrocardio information set into the triple-type interference data subset of the electrocardio database; when the classified data is the low-voltage type, storing the electrocardio data sequence and the corresponding electrocardio information set into the low-voltage data subset of the electrocardio database; and when the classified data is the non-interference type, storing the electrocardio data sequence and the corresponding electrocardio information set into the non-interference data subset of the electrocardio database.
2. The system for processing electrocardiographic data according to claim 1,
the data cleaning module is specifically used for acquiring the electrocardiogram data sequence and the corresponding electrocardiogram information set from the data subset corresponding to the electrocardiogram database according to the calculation data requirement of the first electrocardiogram data calculation model when the calculation data of the first electrocardiogram data calculation model is prepared;
then according to the first cleaning type data and the electrocardio information set, carrying out available data labeling processing on the electrocardio data sequence; when the first cleaning type data is a fast heart rate cleaning type, performing heart rate conversion processing according to the heart beat type information subset of the electrocardio information set to generate first heart rate data, and when the first heart rate data does not exceed a set heart rate upper limit, marking the electrocardio data sequence as the available data; when the first cleaning type data is an interference cleaning type, performing three types of interference proportion calculation processing according to the interference information subset of the electrocardio information set to generate first type proportion data, first type proportion data and first type proportion data, and marking the electrocardio data sequence as the available data when the first type proportion data does not exceed a set first type proportion upper limit, the first type proportion data does not exceed a set second type proportion upper limit, and the first type proportion data does not exceed a set third type proportion upper limit; when the first cleaning type data is a fast heart rate and interference cleaning type, firstly performing heart rate conversion processing according to the heart beat type information subset to generate second heart rate data, when the second heart rate data does not exceed the upper limit of the heart rate, then performing three types of interference ratio calculation processing according to the interference information subset to generate second type one ratio data, second type two ratio data and second type three ratio data, and when the second type one ratio data does not exceed the upper limit of the type one ratio, the second type two ratio data does not exceed the upper limit of the type two ratio, and the first type three ratio data does not exceed the upper limit of the type three ratio, marking the electrocardiogram data sequence as the available data.
3. The system for processing electrocardiographic data according to claim 2,
and the data cleaning module is also used for carrying out data filtering processing on the electrocardio data sequence which is not marked as the available data.
4. The system for processing electrocardiographic data according to claim 1,
the data segmentation module is specifically used for setting a first starting index position and an ending index position; dividing the 1 st electrocardiogram fragment data sequence from a first initial index position by taking the division length data as a division length, performing corresponding electrocardiogram fragment information conversion processing according to the electrocardiogram information set to generate a corresponding 1 st electrocardiogram fragment information set, and taking the sum of the first initial index position and the sliding window length data as a second initial index position; dividing a 2 nd electrocardio segment data sequence from a second initial index position by taking the division length data as a division length, carrying out corresponding electrocardio segment information conversion processing according to the electrocardio information set to generate a corresponding 2 nd electrocardio segment information set, and taking the sum of the second initial index position and the sliding window length data as a third initial index position; until the calculated start index position exceeds the end index position.
5. The system for processing electrocardiographic data according to claim 1,
the data conversion module is specifically used for marking the selected segment in the electrocardiogram data sequence according to the set position of the selected segment; wherein the selected segment position comprises selected segment start index data and selected segment end index data; the selected segment start index data and the selected segment end index data are respectively index position information of the corresponding electrocardiogram data in the electrocardiogram data sequence;
when the conversion mode data is a first conversion mode, randomly generating electrocardiogram left shift data; taking the difference between the selected segment initial index data and the electrocardiogram left shift data as first electrocardiogram initial index data, and taking the difference between the selected segment end index data and the electrocardiogram left shift data as first electrocardiogram end index data; extracting the electrocardiogram data with an index position between the first electrocardiogram starting index data and the first electrocardiogram ending index data from the electrocardiogram data sequence to form a first conversion segment data sequence; then, carrying out corresponding first conversion fragment information conversion processing according to the electrocardio information set to generate a corresponding first conversion fragment electrocardio information set; wherein the first conversion segment cardiac electrical information set comprises a first conversion segment heart beat type information subset, a first conversion segment interference information subset and a first conversion segment low voltage information subset;
when the conversion mode data is a second conversion mode, randomly generating right electrocardio shift data; taking the sum of the selected segment initial index data and the electrocardiogram right shift data as second electrocardiogram initial index data, and taking the sum of the selected segment ending index data and the electrocardiogram right shift data as second electrocardiogram ending index data; extracting the electrocardiogram data with an index position between the second electrocardiogram starting index data and the second electrocardiogram ending index data from the electrocardiogram data sequence to form a second conversion fragment data sequence; then, carrying out corresponding second conversion fragment information conversion processing according to the electrocardio information set to generate a corresponding second conversion fragment electrocardio information set; wherein the second conversion segment electrocardio information set comprises a second conversion segment heart beat type information subset, a second conversion segment interference information subset and a second conversion segment low voltage information subset;
when the conversion mode data is a third conversion mode, a fourth conversion mode or a fifth conversion mode, sorting all the first R point position data in the electrocardiogram information set to generate a first R point position data sequence; performing heart beat type and position information statistical processing according to the first R point position data sequence and the first heart beat type data corresponding to each first R point position data to generate a heart beat statistical data sequence; wherein the heart beat statistics sequence comprises a plurality of heart beat statistics groups; the heartbeat statistic data group comprises heartbeat type data, heartbeat starting data and heartbeat ending data; the heartbeat starting data and the heartbeat ending data are respectively index position information of the corresponding electrocardiogram data in the electrocardiogram data sequence;
when the conversion mode data is the third conversion mode, taking the heartbeat statistical data group in which the heartbeat start data and the heartbeat end data meet the selected segment start index data as a first heartbeat data group in the heartbeat statistical data sequence; index position information corresponding to the first heart beat data group in the heart beat statistical data sequence is used as first heart beat index data; then taking the difference between the first heart beat index data and the set heart beat left shift data as second heart beat index data; extracting the heart beat starting data of the heart beat statistic data group corresponding to the second heart beat index data from the heart beat statistic data sequence to be used as third electrocardiogram starting index data; then in the electrocardiogram data sequence, taking the third electrocardiogram starting index data as an extraction starting position and the data length of the selected segment as an extraction length, and carrying out electrocardiogram data extraction processing to form a third conversion segment data sequence; then, carrying out corresponding third conversion fragment information conversion processing according to the electrocardio information set to generate a corresponding third conversion fragment electrocardio information set; wherein the third conversion segment electrocardio information set comprises a third conversion segment heart beat type information subset, a third conversion segment interference information subset and a third conversion segment low voltage information subset;
when the conversion mode data is the fourth conversion mode, the heartbeat statistical data group of which the heartbeat starting data and the heartbeat ending data meet the selected segment starting index data is used as a second heartbeat data group in the heartbeat statistical data sequence; index position information corresponding to the second heart beat data group in the heart beat statistic data sequence is used as third heart beat index data; taking the sum of the third heartbeat index data and the set heartbeat right shift data as fourth heartbeat index data; then extracting the heart beat initial data of the heart beat statistical data group corresponding to the fourth heart beat index data from the heart beat statistical data sequence to be used as fourth electrocardio initial index data; then in the electrocardiogram data sequence, taking the fourth electrocardiogram starting index data as an extraction starting position and the data length of the selected segment as an extraction length, and carrying out electrocardiogram data extraction processing to form a fourth conversion segment data sequence; then, performing corresponding fourth conversion fragment information conversion processing according to the electrocardiogram information set to generate a corresponding fourth conversion fragment electrocardiogram information set; the fourth conversion segment electrocardio information set comprises a fourth conversion segment heart beat type information subset, a fourth conversion segment interference information subset and a fourth conversion segment low-voltage information subset;
when the conversion mode data is the fifth conversion mode, performing sub-segment division processing on the selected segment according to the preset sub-segment length to generate a plurality of sub-segments; then according to the heart beat statistical data sequence, carrying out total heart beat length statistical processing on the same heart beat type in each sub-segment to generate a plurality of total length data, and taking the heart beat type corresponding to the maximum total length data as the segment heart beat type data corresponding to the sub-segment; and then all the sub-segments form a fifth conversion segment data sequence, and all the segment heartbeat type data form a fifth conversion segment electrocardio information set.
CN202011269659.9A 2020-11-13 2020-11-13 Electrocardio data-oriented data processing system Active CN112244855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011269659.9A CN112244855B (en) 2020-11-13 2020-11-13 Electrocardio data-oriented data processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011269659.9A CN112244855B (en) 2020-11-13 2020-11-13 Electrocardio data-oriented data processing system

Publications (2)

Publication Number Publication Date
CN112244855A CN112244855A (en) 2021-01-22
CN112244855B true CN112244855B (en) 2022-08-26

Family

ID=74265658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011269659.9A Active CN112244855B (en) 2020-11-13 2020-11-13 Electrocardio data-oriented data processing system

Country Status (1)

Country Link
CN (1) CN112244855B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108478209A (en) * 2018-02-24 2018-09-04 乐普(北京)医疗器械股份有限公司 Ecg information dynamic monitor method and dynamic monitor system
CN109222963A (en) * 2018-11-21 2019-01-18 燕山大学 A kind of anomalous ecg method for identifying and classifying based on convolutional neural networks
CN109411042A (en) * 2018-02-24 2019-03-01 深圳市凯沃尔电子有限公司 Ecg information processing method and electro cardio signal workstation
CN111259820A (en) * 2020-01-17 2020-06-09 上海优加利健康管理有限公司 Heart beat data classification method and device based on R point
CN111275093A (en) * 2020-01-17 2020-06-12 上海优加利健康管理有限公司 Heart beat classification method and device for multi-label labeling electrocardiosignals
EP3692903A1 (en) * 2017-11-27 2020-08-12 Lepu Medical Technology (Beijing) Co., Ltd. Artificial intelligence self-learning-based automatic electrocardiography analysis method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441896B1 (en) * 2012-09-14 2021-04-21 InteraXon Inc. Systems and methods for collecting, analyzing, and sharing bio-signal and non-bio-signal data
CN107981858B (en) * 2017-11-27 2020-12-01 上海优加利健康管理有限公司 Automatic recognition and classification method of electrocardiogram and heartbeat based on artificial intelligence
CN107951485B (en) * 2017-11-27 2019-06-11 深圳市凯沃尔电子有限公司 Dynamic electrocardiogram analysis method and device based on artificial intelligence self-learning
CN111161874A (en) * 2019-12-23 2020-05-15 乐普(北京)医疗器械股份有限公司 An intelligent electrocardiogram analysis device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3692903A1 (en) * 2017-11-27 2020-08-12 Lepu Medical Technology (Beijing) Co., Ltd. Artificial intelligence self-learning-based automatic electrocardiography analysis method and apparatus
CN108478209A (en) * 2018-02-24 2018-09-04 乐普(北京)医疗器械股份有限公司 Ecg information dynamic monitor method and dynamic monitor system
CN109411042A (en) * 2018-02-24 2019-03-01 深圳市凯沃尔电子有限公司 Ecg information processing method and electro cardio signal workstation
CN109222963A (en) * 2018-11-21 2019-01-18 燕山大学 A kind of anomalous ecg method for identifying and classifying based on convolutional neural networks
CN111259820A (en) * 2020-01-17 2020-06-09 上海优加利健康管理有限公司 Heart beat data classification method and device based on R point
CN111275093A (en) * 2020-01-17 2020-06-12 上海优加利健康管理有限公司 Heart beat classification method and device for multi-label labeling electrocardiosignals

Also Published As

Publication number Publication date
CN112244855A (en) 2021-01-22

Similar Documents

Publication Publication Date Title
CN110046604B (en) A single-lead ECG arrhythmia detection and classification method based on residual network
CN111259820B (en) Method and device for classifying cardiac data based on R point
CN118759298A (en) A transformer multi-parameter monitoring and analysis method, device and transformer
CN117171157B (en) Clearing data acquisition and cleaning method based on data analysis
CN109124620A (en) A kind of atrial fibrillation detection method, device and equipment
CN110362829A (en) Method for evaluating quality, device and the equipment of structured patient record data
CN113645182A (en) Random forest detection method for denial of service attack based on secondary feature screening
CN113067724B (en) Periodic flow forecasting method based on random forest
CN103970646A (en) Automatic analysis method and system for operation sequence
CN114664426A (en) Analysis method for work schedule of medical equipment
CN112244855B (en) Electrocardio data-oriented data processing system
CN109887547B (en) Gene sequence comparison filtering acceleration processing method, system and device
CN110008205A (en) A method for cleaning redundant data of monitoring system
CN111507964B (en) Integrated learning grading method for new coronary pneumonia, electronic equipment and storage medium
CN113705625A (en) Method and device for identifying abnormal life guarantee application families and electronic equipment
CN113288161A (en) Single-lead ECG signal classification method and system based on improved residual error network
CN118692658A (en) Disease decision-making assistance method and device, electronic device, and storage medium
CN111932399A (en) Intelligent processing method for power transmission and transformation project cost data
CN117195006A (en) Veterinary drug residue data management system for chicken
CN108510298B (en) Target user identification method and device
CN103067300B (en) Network traffics automation feature mining method
CN115687974A (en) Intelligent interactive blackboard application evaluation system and method based on big data
CN108763289A (en) A kind of analytic method of magnanimity heterogeneous sensor formatted data
CN116560955A (en) Data analysis method and related equipment
CN118568455B (en) Network security big data state evaluation method based on pattern recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai

Applicant after: Shanghai Lepu Yunzhi Technology Co.,Ltd.

Address before: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai

Applicant before: SHANGHAI YOCALY HEALTH MANAGEMENT Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant