[go: up one dir, main page]

CN112210365B - Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method - Google Patents

Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method Download PDF

Info

Publication number
CN112210365B
CN112210365B CN201910626197.2A CN201910626197A CN112210365B CN 112210365 B CN112210365 B CN 112210365B CN 201910626197 A CN201910626197 A CN 201910626197A CN 112210365 B CN112210365 B CN 112210365B
Authority
CN
China
Prior art keywords
composite material
quantum dot
carbon quantum
dot composite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910626197.2A
Other languages
Chinese (zh)
Other versions
CN112210365A (en
Inventor
冯亚凯
汪中洋
谭晓华
韩颖
刘东顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECORE SYNCHEM Inc
Tianjin University
Original Assignee
TECORE SYNCHEM Inc
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECORE SYNCHEM Inc, Tianjin University filed Critical TECORE SYNCHEM Inc
Priority to CN201910626197.2A priority Critical patent/CN112210365B/en
Publication of CN112210365A publication Critical patent/CN112210365A/en
Application granted granted Critical
Publication of CN112210365B publication Critical patent/CN112210365B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/854Encapsulations characterised by their material, e.g. epoxy or silicone resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开一锅法制备纳米二氧化锆碳量子点复合材料的方法,将氧氯化锆八水化合物加入到去离子水中,使用氢氧化钠水溶液调节pH至1.5~2.5,加热进行反应并滴加含氨基硅烷偶联剂的水溶液,继续搅拌后加入柠檬酸,搅拌均匀,并转移到高温反应釜中进行反应,冷却至室温,冻干。本发明通过一步水热法制备了固态稳定的二氧化锆碳量子点复合材料,通过含氨基的烷氧基硅烷化合物制备碳量子点,能提高复合材料与LED封装材料之间的相容性,减少光散射,复合材料具有的高折射率能提高封装材料的折射率,从而提高LED出光效率。复合材料具有稳定的荧光性质,在紫外或高温条件处理一个月荧光性质基本不变,耐酸碱腐蚀。

Figure 201910626197

The invention discloses a one-pot method for preparing nano-zirconia-carbon quantum dot composite materials. The zirconium oxychloride octahydrate is added to deionized water, the pH is adjusted to 1.5-2.5 with an aqueous sodium hydroxide solution, and the reaction is carried out by heating and dripping. Add an aqueous solution containing an aminosilane coupling agent, continue stirring, and then add citric acid, stir evenly, transfer to a high-temperature reaction kettle for reaction, cool to room temperature, and freeze-dry. The present invention prepares solid-state stable zirconium dioxide carbon quantum dot composite material by one-step hydrothermal method, and prepares carbon quantum dot by amino-containing alkoxysilane compound, which can improve the compatibility between composite material and LED packaging material, To reduce light scattering, the high refractive index of the composite material can increase the refractive index of the packaging material, thereby improving the light extraction efficiency of the LED. The composite material has stable fluorescent properties, and the fluorescent properties are basically unchanged after one month of ultraviolet or high temperature treatment, and it is resistant to acid and alkali corrosion.

Figure 201910626197

Description

一锅法制备纳米二氧化锆碳量子点复合材料的方法One-pot method for preparing nano-zirconia carbon quantum dot composites

技术领域technical field

本发明属于复合材料技术领域,更加具体地说,涉及一种碳量子点与高折无机金属氧化物复合材料及制备方法与在LED封装领域的应用。The invention belongs to the technical field of composite materials, and more particularly relates to a composite material of carbon quantum dots and a high-fold inorganic metal oxide, a preparation method and an application in the field of LED packaging.

背景技术Background technique

碳量子点由于其优异的光学性质,可调的荧光性质,环境友好性等优点,广泛用于光电器件,生物研究,光学催化等领域。其中,碳量子点用于白光LED方面拥有广泛的研究前景,可以替代重金属量子点,降低LED封装的成本。但碳量子点存在光效低,光学性能差,发光效率低,荧光量子产率不高,具有聚集诱导淬灭等性质,限制了其在光电器件中的应用。从碳量子点在白光LED中替代荧光粉的研究角度来讲,获得更高的出光效率与稳定的出光颜色需要解决的问题是(1)获得固态稳定的荧光碳量子点(2)提高碳量子点与封装材料的相容性。Due to their excellent optical properties, tunable fluorescence properties, and environmental friendliness, carbon quantum dots are widely used in optoelectronic devices, biological research, optical catalysis and other fields. Among them, carbon quantum dots have broad research prospects for white light LEDs, which can replace heavy metal quantum dots and reduce the cost of LED packaging. However, carbon quantum dots have properties such as low light efficiency, poor optical properties, low luminous efficiency, low fluorescence quantum yield, and aggregation-induced quenching, which limit their application in optoelectronic devices. From the perspective of carbon quantum dots replacing phosphors in white LEDs, the problems that need to be solved to obtain higher light-emitting efficiency and stable light-emitting color are (1) to obtain solid-state stable fluorescent carbon quantum dots (2) to improve carbon quantum dots Compatibility with encapsulation material.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一锅法制备纳米二氧化锆碳量子点复合材料的方法,通过含氨基的烷氧基硅烷化合物制备碳量子点,能提高复合材料与LED封装材料之间的相容性,减少光散射,复合材料具有的高折射率能提高封装材料的折射率,从而提高LED出光效率。复合材料具有稳定的荧光性质,在紫外或高温条件处理一个月荧光性质基本不变,耐酸碱腐蚀。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a one-pot method for preparing nano-zirconia carbon quantum dot composite materials. The carbon quantum dots are prepared by an amino-containing alkoxysilane compound, which can improve the performance of composite materials and LED packaging. The compatibility between materials reduces light scattering, and the high refractive index of the composite material can increase the refractive index of the packaging material, thereby improving the light extraction efficiency of the LED. The composite material has stable fluorescent properties, and the fluorescent properties are basically unchanged after one month of ultraviolet or high temperature treatment, and it is resistant to acid and alkali corrosion.

本发明的技术目的通过下述技术方案予以实现。The technical purpose of the present invention is achieved through the following technical solutions.

一锅法制备纳米二氧化锆碳量子点复合材料的方法,将可溶性锆源化合物均匀分散在去离子水中并使用碱液调解pH至1~3,加热至60—80摄氏度保温进行反应;反应结束后,向体系中滴加均匀分散含氨基的硅烷偶联剂的水溶液,再加入柠檬酸并分散均匀,之后转移到高温反应釜中密闭,升温至170~210℃保温进行水热反应后,自然冷却至室温20—25摄氏度,将产物冻干后得到二氧化锆碳量子点复合材料;可溶性锆源化合物、含氨基的硅烷偶联剂和柠檬酸的质量(份)比为(1—10):(1—10):(0.1—1),即可溶性锆源化合物1—10质量份、含氨基的硅烷偶联剂1—10质量份、柠檬酸0.1—1质量份,每一质量份为1g。The one-pot method for preparing nano-zirconia carbon quantum dot composite materials is to disperse the soluble zirconium source compound evenly in deionized water, adjust the pH to 1-3 with alkaline solution, and heat to 60-80 degrees Celsius for the reaction; the reaction is over. Then, dropwise add the aqueous solution of the amino group-containing silane coupling agent to the system, and then add citric acid and disperse it evenly, then transfer it to a high-temperature reaction kettle and seal it, and heat it up to 170-210 °C for a hydrothermal reaction. Cool to room temperature at 20-25 degrees Celsius, freeze-dry the product to obtain a zirconium dioxide carbon quantum dot composite material; the mass (parts) ratio of the soluble zirconium source compound, the amino-containing silane coupling agent and the citric acid is (1-10) : (1-10): (0.1-1), namely 1-10 parts by mass of soluble zirconium source compound, 1-10 parts by mass of amino-containing silane coupling agent, 0.1-1 part by mass of citric acid, each part by mass is 1g.

在上述技术方案中,可溶性锆源化合物为八水氧氯化锆、硝酸锆(五水合硝酸锆)或者硫酸锆(五水合硫酸锆)。In the above technical solution, the soluble zirconium source compound is zirconium oxychloride octahydrate, zirconium nitrate (zirconium nitrate pentahydrate) or zirconium sulfate (zirconium sulfate pentahydrate).

在上述技术方案中,碱液为氢氧化钠或者氢氧化钾的水溶液,浓度为0.1—0.3mol/L。In the above technical solution, the alkali solution is an aqueous solution of sodium hydroxide or potassium hydroxide, and the concentration is 0.1-0.3 mol/L.

在上述技术方案中,使用碱液调节pH为1.5~2.5。In the above technical solution, the pH is adjusted to 1.5-2.5 by using the alkaline solution.

在上述技术方案中,选择水浴,自室温20—25摄氏度以每分钟1—5摄氏度的速度升温至60—80摄氏度进行保温反应,反应温度优选70—80摄氏度,反应时间为1—5小时,优选3—5小时。In the above technical scheme, a water bath is selected, and the temperature is raised from a room temperature of 20-25 degrees Celsius to 60-80 degrees Celsius at a rate of 1-5 degrees Celsius per minute to carry out the insulation reaction, the reaction temperature is preferably 70-80 degrees Celsius, and the reaction time is 1-5 hours, Preferably 3-5 hours.

在上述技术方案中,含氨基的烷氧基硅烷偶联剂为N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷,N-(β-氨乙基)-γ-氨丙基甲基二乙氧基硅烷,N-(β-氨乙基)-γ-氨丙三甲氧基硅烷,γ-氨丙基甲基二甲氧基硅烷,γ-氨丙基甲基二乙氧基硅烷或者γ-氨丙基三甲氧基硅烷。In the above technical scheme, the amino-containing alkoxysilane coupling agent is N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, N-(β-aminoethyl)- γ-Aminopropylmethyldiethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyl Methyldiethoxysilane or gamma-aminopropyltrimethoxysilane.

在上述技术方案中,在去离子水中的可溶性锆源化合物在60—80摄氏度保温反应结束后自然冷却至室温20—25摄氏度,向其中滴加均匀分散含氨基的硅烷偶联剂的水溶液,滴加速度为每分钟0.1—0.5ml,在滴加完毕后采用机械或者超声进行搅拌,以分散均匀,搅拌时间为30~120分钟;再加入柠檬酸,采用机械或者超声进行搅拌,以分散均匀,搅拌时间为30~120分钟。In the above technical scheme, the soluble zirconium source compound in deionized water is naturally cooled to room temperature of 20-25 degrees Celsius after the heat preservation reaction is completed at 60-80 degrees Celsius, and an aqueous solution of the silane coupling agent containing amino groups is uniformly dispersed dropwise. The acceleration is 0.1-0.5ml per minute. After the dripping is completed, use mechanical or ultrasonic stirring to disperse evenly. The stirring time is 30 to 120 minutes; then add citric acid and use mechanical or ultrasonic stirring to disperse uniformly and stir. The time is 30 to 120 minutes.

在上述技术方案中,高温反应釜为聚四氟乙烯内衬的高温反应釜。In the above technical solution, the high temperature reaction kettle is a high temperature reaction kettle lined with polytetrafluoroethylene.

在上述技术方案中,自室温20—25摄氏度以每分钟1—5摄氏度的速度升温至170~210℃保温进行水热反应,反应时间为3—12小时;反应温度为180—200摄氏度,反应时间为6—10小时。In the above technical scheme, the temperature is raised from 20-25 degrees Celsius at room temperature to 170-210 degrees Celsius at a rate of 1-5 degrees Celsius per minute for hydrothermal reaction, and the reaction time is 3-12 hours; the reaction temperature is 180-200 degrees Celsius, and the reaction The time is 6-10 hours.

本发明公开了依据上述一锅法制备的二氧化锆碳量子点复合材料及其作为LED封装材料的应用(即荧光填充物),尤其是在白光LED中的应用。The invention discloses a zirconium dioxide carbon quantum dot composite material prepared according to the above-mentioned one-pot method and its application as an LED packaging material (ie, a fluorescent filler), especially its application in white light LEDs.

依据本发明一锅法制备的ZrO2/CD粉末的荧光量子产率可达到23—25%。The fluorescence quantum yield of the ZrO2/CD powder prepared by the one-pot method of the present invention can reach 23-25%.

在本发明中通过简单的一步水热法制备了固态稳定的二氧化锆—碳量子点复合材料,通过含氨基的烷氧基硅烷化合物制备碳量子点,能提高复合材料与LED封装材料之间的相容性,减少光散射,复合材料具有的高折射率能提高封装材料的折射率,从而提高LED出光效率。复合材料具有稳定的荧光性质,在紫外或高温条件处理一个月荧光性质基本不变,耐酸碱腐蚀。In the present invention, the solid-state stable zirconium dioxide-carbon quantum dot composite material is prepared by a simple one-step hydrothermal method, and the carbon quantum dot is prepared by an amino group-containing alkoxysilane compound, which can improve the gap between the composite material and the LED packaging material. The compatibility of the composite material can reduce light scattering, and the high refractive index of the composite material can improve the refractive index of the packaging material, thereby improving the light extraction efficiency of the LED. The composite material has stable fluorescent properties, and the fluorescent properties are basically unchanged after one month of ultraviolet or high temperature treatment, and it is resistant to acid and alkali corrosion.

附图说明Description of drawings

图1是本发明制备的纳米二氧化锆碳量子点复合材料的扫描电镜照片。Fig. 1 is the scanning electron microscope photograph of the nanometer zirconium dioxide carbon quantum dot composite material prepared by the present invention.

图2是本发明制备的纳米二氧化锆碳量子点复合材料在日光与紫外光(365nm)下的照片,其中左侧黄色为日光下的照片,右侧蓝色为紫外光下的照片。2 is a photo of the nano-zirconia carbon quantum dot composite prepared by the present invention under sunlight and ultraviolet light (365 nm), wherein the yellow on the left is the photo under sunlight, and the blue on the right is the photo under ultraviolet light.

图3是利用本发明制备的纳米二氧化锆碳量子点复合材料与环氧树脂复合得到的树脂在日光与紫外光(365nm)下的照片,其中左侧黄色为日光下的照片,右侧蓝色为紫外光下的照片。3 is a photo of the resin obtained by compounding the nano zirconium dioxide carbon quantum dot composite material prepared by the present invention and epoxy resin under sunlight and ultraviolet light (365nm), wherein the yellow on the left is the photo under sunlight, and the blue on the right Colors are photos under UV light.

图4是本发明制备的ZrO2/CD粉末在不同激发光下的荧光发射光谱图(激发光波长为320—440nm)。Fig. 4 is the fluorescence emission spectrum of the ZrO2/CD powder prepared by the present invention under different excitation light (the excitation light wavelength is 320-440 nm).

图5是本发明制备的ZrO2/CD粉末在380nm激发光下的发射荧光强度(相对荧光强度)的温度依赖性曲线图。Fig. 5 is a temperature-dependent curve diagram of the emission fluorescence intensity (relative fluorescence intensity) of the ZrO2/CD powder prepared by the present invention under excitation light of 380 nm.

图6是本发明制备的ZrO2/CD粉末在380nm激发光下的发射荧光强度与pH值的依赖性荧光光谱图。Fig. 6 is a fluorescence spectrum diagram of the pH-dependent fluorescence intensity of the ZrO2/CD powder prepared by the present invention under excitation light of 380 nm.

图7是本发明制备的纳米二氧化锆碳量子点复合材料的投射电镜照片。FIG. 7 is a transmission electron microscope photograph of the nano-zirconia carbon quantum dot composite material prepared by the present invention.

图8是利用本发明制备的纳米二氧化锆碳量子点复合材料与环氧树脂复合得到的树脂的荧光发射光谱图(激发光波长为340—400nm)。Fig. 8 is the fluorescence emission spectrum diagram of the resin obtained by compounding the nano-zirconia carbon quantum dot composite material prepared by the present invention and epoxy resin (excitation light wavelength is 340-400 nm).

图9是利用本发明制备的纳米二氧化锆碳量子点复合材料与环氧树脂复合得到的树脂在460nm白光LED芯片上的测试图,其中(a)为芯片封装照片,发光偏蓝,0.5g环氧树脂、0.1g固化剂三乙烯四胺和0.5g纳米二氧化锆碳量子点复合材料;(b)为芯片封装照片,发光偏黄,0.5g环氧树脂、0.1g固化剂三乙烯四胺和1.0g纳米二氧化锆碳量子点复合材料(c)芯片封装后的CIE色度坐标,a和b分别对应两种芯片封装情况。Fig. 9 is the test chart of the resin obtained by compounding the nano-zirconia carbon quantum dot composite material and epoxy resin prepared by the present invention on a 460nm white light LED chip, wherein (a) is a photo of the chip package, the light is bluish, 0.5g Epoxy resin, 0.1g curing agent triethylenetetramine and 0.5g nano-zirconia carbon quantum dot composite material; (b) is the chip package photo, the light is yellowish, 0.5g epoxy resin, 0.1g curing agent triethylenetetramine CIE chromaticity coordinates of amine and 1.0 g nano-zirconia-carbon quantum dot composites (c) after chip packaging, a and b correspond to two kinds of chip packaging, respectively.

具体实施方式Detailed ways

下面结合具体实施例进一步说明本发明的技术方案。The technical solutions of the present invention are further described below in conjunction with specific embodiments.

实施例1Example 1

一锅法制备二氧化锆碳量子点复合材料One-pot preparation of zirconia-carbon quantum dot composites

将4g氧氯化锆八水化合物加入到50ml去离子水中,搅拌均匀,取0.1mol/l氢氧化钠水溶液调节上述溶液pH至2,加热至50℃,反应3h,逐滴加30ml浓度为0.1g/mlN-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷水溶液,继续搅拌60分钟,再加入0.3g柠檬酸,搅拌均匀,并转移到聚四氟乙烯内衬的高温反应釜中,在180℃反应6h,冷却至室温,将产物冻干得到二氧化锆碳量子点复合材料。Add 4g of zirconium oxychloride octahydrate into 50ml of deionized water, stir well, take 0.1mol/l sodium hydroxide aqueous solution to adjust the pH of the above solution to 2, heat to 50°C, react for 3h, add 30ml dropwise to a concentration of 0.1 g/ml N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane aqueous solution, continue to stir for 60 minutes, then add 0.3 g of citric acid, stir evenly, and transfer to the polytetrafluoroethylene lining In the high-temperature reaction kettle of 180°C, the reaction was carried out at 180° C. for 6 h, cooled to room temperature, and the product was freeze-dried to obtain a zirconia carbon quantum dot composite material.

实施例2Example 2

一锅法制备二氧化锆碳量子点复合材料One-pot preparation of zirconia-carbon quantum dot composites

将6g氧氯化锆八水化合物加入到100ml去离子水中,搅拌均匀,取0.1mol/l氢氧化钠水溶液调节上述溶液pH至1.5,加热至70℃,反应2h,逐滴加60ml浓度为0.1g/mlN-(β-氨乙基)-γ-氨丙基甲基二乙氧基硅烷水溶液,继续搅拌80分钟,再加入0.6g柠檬酸,搅拌均匀,并转移到聚四氟乙烯内衬的高温反应釜中,在200℃反应5h,冷却至室温,将产物冻干得到二氧化锆碳量子点复合材料。Add 6g of zirconium oxychloride octahydrate into 100ml of deionized water, stir evenly, take 0.1mol/l sodium hydroxide aqueous solution to adjust the pH of the above solution to 1.5, heat to 70°C, react for 2h, add 60ml dropwise to a concentration of 0.1 g/ml N-(β-aminoethyl)-γ-aminopropylmethyldiethoxysilane aqueous solution, continue to stir for 80 minutes, then add 0.6g of citric acid, stir evenly, and transfer to the polytetrafluoroethylene lining In the high temperature reaction kettle of 200°C, the reaction was carried out at 200 °C for 5 h, cooled to room temperature, and the product was freeze-dried to obtain a zirconia carbon quantum dot composite material.

实施例3Example 3

一锅法制备二氧化锆碳量子点复合材料One-pot preparation of zirconia-carbon quantum dot composites

将1g氧氯化锆八水化合物加入到30ml去离子水中,搅拌均匀,取0.1mol/l氢氧化钠水溶液调节上述溶液pH至2.5,加热至80℃反应1h,逐滴加80ml浓度为0.1g/mlγ-氨丙基甲基二甲氧基硅烷水溶液,继续搅拌120分钟,再加入0.8g柠檬酸,搅拌均匀,并转移到聚四氟乙烯内衬的高温反应釜中,在210℃反应10h,冷却至室温,将产物冻干得到二氧化锆碳量子点复合材料。Add 1g of zirconium oxychloride octahydrate into 30ml of deionized water, stir evenly, take 0.1mol/l sodium hydroxide aqueous solution to adjust the pH of the above solution to 2.5, heat to 80 °C and react for 1h, add 80ml dropwise to a concentration of 0.1g /ml γ-aminopropylmethyldimethoxysilane aqueous solution, continue to stir for 120 minutes, then add 0.8g of citric acid, stir evenly, and transfer to a high-temperature reaction kettle lined with PTFE, and react at 210 ° C for 10 hours , cooled to room temperature, and the product was freeze-dried to obtain a zirconium dioxide carbon quantum dot composite material.

实施例4Example 4

一锅法制备二氧化锆碳量子点复合材料One-pot preparation of zirconia-carbon quantum dot composites

将10g氧氯化锆八水化合物加入到300ml去离子水中,搅拌均匀,取0.1mol/l氢氧化钠水溶液调节上述溶液pH至2,加热至60℃反应4h,逐滴加100ml浓度为0.1g/mlγ-氨丙基三甲氧基硅烷水溶液,继续搅拌30~120分钟,再加入1g柠檬酸,搅拌均匀,并转移到聚四氟乙烯内衬的高温反应釜中,在170℃反应12h,冷却至室温,将产物冻干得到二氧化锆碳量子点复合材料。Add 10g of zirconium oxychloride octahydrate into 300ml of deionized water, stir well, take 0.1mol/l sodium hydroxide aqueous solution to adjust the pH of the above solution to 2, heat to 60 °C for 4h reaction, add 100ml dropwise to a concentration of 0.1g /ml γ-aminopropyltrimethoxysilane aqueous solution, continue to stir for 30 to 120 minutes, then add 1 g of citric acid, stir evenly, and transfer to a high-temperature reaction kettle lined with PTFE, react at 170 ° C for 12 h, and cool At room temperature, the product was freeze-dried to obtain a zirconium dioxide carbon quantum dot composite material.

实施例5Example 5

一种二氧化锆碳量子点复合材料的应用Application of a zirconium dioxide carbon quantum dot composite material

取0.5g二氧化锆碳量子点复合材料,加入在0.5ml甲醇中,搅拌均匀,然后将上述悬浊液加入到1g环氧树脂与0.2g三乙烯四胺混合物中,继续搅拌,真空脱除气泡,加入到聚四氟乙烯模具中,室温固化12h,得到固态荧光树脂。Take 0.5g of zirconium dioxide carbon quantum dot composite material, add it into 0.5ml of methanol, stir evenly, then add the above suspension to the mixture of 1g of epoxy resin and 0.2g of triethylenetetramine, continue to stir and remove in vacuo The bubbles were added into a polytetrafluoroethylene mold, and cured at room temperature for 12 hours to obtain a solid fluorescent resin.

对利用本发明技术方案得到的二氧化锆碳量子点复合材料进行表征,如图1—2和7所示,纳米二氧化锆碳量子点复合材料在日光与紫外光(365nm)下分别表现为黄色和蓝色,从晶格和大小判断,在复合材料中存在大量碳量子点(4—5nm)。Characterize the zirconium dioxide carbon quantum dot composite material obtained by using the technical solution of the present invention. As shown in Figures 1-2 and 7, the nanometer zirconium dioxide carbon quantum dot composite material under sunlight and ultraviolet light (365nm) respectively behave as: Yellow and blue, judging from the lattice and size, a large number of carbon quantum dots (4–5 nm) are present in the composite.

从图4—6可知,二氧化锆碳量子点复合材料在不同波长激发光下表现出不同的发生荧光性能,且在380nm激发光下,荧光发射强度最大,故选择激发光为380nm。从室温20摄氏度到100摄氏度下,复合材料的荧光发射强度逐渐下降;选择不同pH环境进行检测,在pH为6—7下,具有较好的荧光发射强度,明显高于碱性环境和强酸性环境。故在选择适用环境时,可根据温度和pH进行相应调整,需要说明的是本发明复合材料具有稳定的荧光性质,即便在高温、酸碱条件(达到1个月)下荧光性能仍能予以保留。It can be seen from Figure 4-6 that the zirconium dioxide carbon quantum dot composite material exhibits different fluorescence properties under different wavelengths of excitation light, and under the excitation light of 380nm, the fluorescence emission intensity is the largest, so the excitation light of 380nm is selected. From room temperature of 20 degrees Celsius to 100 degrees Celsius, the fluorescence emission intensity of the composite material gradually decreased; different pH environments were selected for detection, and at pH 6-7, the fluorescence emission intensity was better, which was significantly higher than that of alkaline environment and strong acidity. surroundings. Therefore, when selecting the applicable environment, it can be adjusted according to the temperature and pH. It should be noted that the composite material of the present invention has stable fluorescence properties, and the fluorescence properties can be retained even under high temperature, acid-base conditions (up to 1 month). .

在实施例5中选择将二氧化锆碳量子点复合材料和环氧树脂、固化剂(三乙烯四胺)进行混合后,得到固态荧光树脂,如附图3所示,在日光与紫外光(365nm)下分别表现为黄色和蓝色,基本与本发明的二氧化锆碳量子点复合材料的性能一致。从图8可知,固态荧光树脂在不同波长激发光下表现出不同的发生荧光性能,且在380nm激发光下,荧光发射强度最大,与本发明的二氧化锆碳量子点复合材料的性能一致。使用460nm白光LED芯片为检测设备对固态荧光树脂进行芯片封装和检测,如附图9,(a)中下方为封装样品,位于中央的黄色物质为固态荧光树脂(0.5g环氧树脂、0.1g固化剂三乙烯四胺和0.5g纳米二氧化锆碳量子点复合材料),上方为荧光检测状态,可见位于中央的固态荧光树脂发光偏蓝;同理(b)中,位于中央的黄色物质为固态荧光树脂(0.5g环氧树脂、0.1g固化剂三乙烯四胺和1.0g纳米二氧化锆碳量子点复合材料),发光偏黄,下表为检测数据。In Example 5, after the zirconium dioxide carbon quantum dot composite material was selected to be mixed with epoxy resin and curing agent (triethylenetetramine), solid fluorescent resin was obtained, as shown in accompanying drawing 3, under sunlight and ultraviolet light ( 365nm), respectively appear yellow and blue, which is basically consistent with the performance of the zirconium dioxide carbon quantum dot composite material of the present invention. It can be seen from Figure 8 that the solid fluorescent resin exhibits different fluorescence properties under excitation light of different wavelengths, and under excitation light of 380 nm, the fluorescence emission intensity is the highest, which is consistent with the performance of the zirconium dioxide carbon quantum dot composite material of the present invention. Use a 460nm white light LED chip as a detection device to package and detect the solid fluorescent resin. As shown in Figure 9, the bottom part of (a) is the package sample, and the yellow substance in the center is the solid fluorescent resin (0.5g epoxy resin, 0.1g Curing agent triethylenetetramine and 0.5g nano-zirconia carbon quantum dot composite material), the top is the fluorescent detection state, and the solid fluorescent resin in the center can be seen to emit blue light; in the same way (b), the yellow substance in the center is Solid fluorescent resin (0.5g epoxy resin, 0.1g curing agent triethylenetetramine and 1.0g nano zirconium dioxide carbon quantum dot composite material), the light is yellowish, and the following table shows the test data.

Figure BDA0002127188600000051
Figure BDA0002127188600000051

将本发明的二氧化锆碳量子点复合材料与环氧树脂进行复合,调整两者比例即可实现在白光LED中调整发光颜色的目的。如环氧树脂用量为0.5—1质量份,二氧化锆碳量子点复合材料用量为0.5—1质量份,固化剂用量为0.1—0.3质量份。The zirconium dioxide carbon quantum dot composite material of the present invention is compounded with epoxy resin, and the purpose of adjusting the luminous color in the white LED can be realized by adjusting the ratio of the two. For example, the dosage of epoxy resin is 0.5-1 mass part, the dosage of zirconium dioxide carbon quantum dot composite material is 0.5-1 mass part, and the dosage of curing agent is 0.1-0.3 mass part.

根据本发明内容进行工艺参数的调整,均可实现复合材料的制备,且表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。By adjusting the process parameters according to the content of the present invention, the preparation of the composite material can be realized, and the performance is basically consistent with that of the present invention. The present invention has been exemplarily described above. It should be noted that, without departing from the core of the present invention, any simple deformation, modification, or other equivalent replacements that can be performed by those skilled in the art without any creative effort fall into the scope of the present invention. the scope of protection of the invention.

Claims (10)

1.一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,将可溶性锆源化合物均匀分散在去离子水中并使用碱液调解pH至1~3,加热至60—80摄氏度保温进行反应;反应结束后,向体系中滴加均匀分散含氨基的烷氧基硅烷偶联剂的水溶液,再加入柠檬酸并分散均匀,之后转移到高温反应釜中密闭,升温至170~210℃保温进行水热反应后,自然冷却至20—25摄氏度,将产物冻干后得到二氧化锆碳量子点复合材料;可溶性锆源化合物、含氨基的烷氧基硅烷偶联剂和柠檬酸的质量比为(1—10):(1—10):(0.1—1)。1. the method for preparing nanometer zirconium dioxide carbon quantum dot composite material by one-pot method, it is characterized in that, disperse soluble zirconium source compound evenly in deionized water and adjust pH to 1~3 using lye, heat to 60-80 degrees Celsius Incubate the reaction; after the reaction, add dropwise an aqueous solution of the alkoxysilane coupling agent containing amino groups uniformly dispersed in the system, then add citric acid and disperse evenly, then transfer to a high-temperature reaction kettle to seal, and heat up to 170-210 After the hydrothermal reaction is carried out at ℃, it is naturally cooled to 20-25 degrees Celsius, and the product is freeze-dried to obtain a zirconium dioxide carbon quantum dot composite material; The mass ratio is (1-10):(1-10):(0.1-1). 2.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,可溶性锆源化合物为八水氧氯化锆、五水合硝酸锆或者五水合硫酸锆。2. the method for preparing nano-zirconia carbon quantum dot composite material by one-pot method according to claim 1, is characterized in that, soluble zirconium source compound is zirconium oxychloride octahydrate, zirconium nitrate pentahydrate or zirconium sulfate pentahydrate . 3.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,含氨基的烷氧基硅烷偶联剂为N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷,N-(β-氨乙基)-γ-氨丙基甲基二乙氧基硅烷,N-(β-氨乙基)-γ-氨丙三甲氧基硅烷,γ-氨丙基甲基二甲氧基硅烷,γ-氨丙基甲基二乙氧基硅烷或者γ-氨丙基三甲氧基硅烷。3. the method for preparing nano-zirconia carbon quantum dot composite material by one-pot method according to claim 1, is characterized in that, the alkoxysilane coupling agent containing amino group is N-(β-aminoethyl)- γ-Aminopropylmethyldimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldiethoxysilane, N-(β-aminoethyl)-γ-aminopropyl Trimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane or γ-aminopropyltrimethoxysilane. 4.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,碱液为氢氧化钠或者氢氧化钾的水溶液,浓度为0.1—0.3mol/L;使用碱液调节pH为1.5~2.5。4. the method for preparing nanometer zirconium dioxide carbon quantum dot composite material by one-pot method according to claim 1, is characterized in that, lye is the aqueous solution of sodium hydroxide or potassium hydroxide, and concentration is 0.1-0.3mol/L ; Use lye to adjust pH to 1.5~2.5. 5.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,选择水浴自20—25摄氏度以每分钟1—5摄氏度的速度升温至60—80摄氏度进行保温反应,反应时间为1—5小时。5. the method for preparing nano-zirconia carbon quantum dot composite material by one-pot method according to claim 1, is characterized in that, selecting water bath from 20-25 degrees Celsius to be warmed up to 60-80 degrees Celsius at a speed of 1-5 degrees Celsius per minute The reaction is carried out at a temperature of 100 degrees Celsius, and the reaction time is 1-5 hours. 6.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,在去离子水中的可溶性锆源化合物在60—80摄氏度保温反应结束后自然冷却至20—25摄氏度,向其中滴加均匀分散含氨基的烷氧基硅烷偶联剂的水溶液,滴加速度为每分钟0.1—0.5ml,在滴加完毕后采用机械或者超声进行搅拌,以分散均匀,搅拌时间为30~120分钟;再加入柠檬酸,采用机械或者超声进行搅拌,以分散均匀,搅拌时间为30~120分钟。6. the method for preparing nano-zirconia carbon quantum dot composite material by one-pot method according to claim 1, is characterized in that, the soluble zirconium source compound in deionized water is naturally cooled to 60-80 degrees Celsius after the thermal insulation reaction finishes. 20-25 degrees Celsius, dropwise add the aqueous solution of the alkoxysilane coupling agent containing amino group to it, the dropping rate is 0.1-0.5ml per minute, after the dropping is completed, use mechanical or ultrasonic stirring to disperse evenly, The stirring time is 30-120 minutes; then citric acid is added, and mechanical or ultrasonic stirring is used to disperse uniformly, and the stirring time is 30-120 minutes. 7.根据权利要求1所述的一锅法制备纳米二氧化锆碳量子点复合材料的方法,其特征在于,自20—25摄氏度以每分钟1—5摄氏度的速度升温至170~210℃保温进行水热反应,反应时间为3—12小时。7. The method for preparing nano-zirconia carbon quantum dot composites by one-pot method according to claim 1, wherein the temperature is increased to 170-210°C at a rate of 1-5°C per minute from 20-25°C. The hydrothermal reaction is carried out, and the reaction time is 3-12 hours. 8.如权利要求1—7之一所述的方法制备的二氧化锆碳量子点复合材料,其特征在于,荧光量子产率可达到23—25%。8 . The zirconium dioxide carbon quantum dot composite material prepared by the method according to claim 1 , wherein the fluorescence quantum yield can reach 23-25%. 9 . 9.如权利要求1—7之一所述的方法制备的二氧化锆碳量子点复合材料作为LED封装材料或者荧光填充物的应用。9. Application of the zirconium dioxide carbon quantum dot composite material prepared by the method according to any one of claims 1 to 7 as an LED packaging material or a fluorescent filler. 10.根据权利要求9所述的应用,其特征在于,二氧化锆碳量子点复合材料与环氧树脂进行复合,调整两者比例实现在白光LED中调整发光颜色的目的,环氧树脂用量为0.5—1质量份,二氧化锆碳量子点复合材料用量为0.5—1质量份,固化剂用量为0.1—0.3质量份。10. The application according to claim 9, wherein the zirconium dioxide carbon quantum dot composite material is compounded with the epoxy resin, and the ratio of the two is adjusted to realize the purpose of adjusting the luminous color in the white LED, and the amount of the epoxy resin is: 0.5-1 part by mass, the amount of zirconia carbon quantum dot composite material is 0.5-1 part by mass, and the amount of curing agent is 0.1-0.3 part by mass.
CN201910626197.2A 2019-07-11 2019-07-11 Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method Active CN112210365B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910626197.2A CN112210365B (en) 2019-07-11 2019-07-11 Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910626197.2A CN112210365B (en) 2019-07-11 2019-07-11 Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method

Publications (2)

Publication Number Publication Date
CN112210365A CN112210365A (en) 2021-01-12
CN112210365B true CN112210365B (en) 2022-08-19

Family

ID=74047673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910626197.2A Active CN112210365B (en) 2019-07-11 2019-07-11 Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method

Country Status (1)

Country Link
CN (1) CN112210365B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961669A (en) * 2021-02-01 2021-06-15 苏州星烁纳米科技有限公司 Preparation method of solid-phase carbon quantum dot, solid-phase carbon quantum dot prepared by same and light-emitting device
CN115873596B (en) * 2022-11-10 2023-11-17 重庆医科大学 Luminescent carbon nanomaterials and their application in the detection of bone-derived alkaline phosphatase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106565219A (en) * 2016-11-07 2017-04-19 安徽中威光电材料有限公司 Magnesium fluoride-doped and fluorescent ceramic base for high-power LED and preparation method for ceramic base
CN106590640A (en) * 2016-10-27 2017-04-26 华南农业大学 Application of carbon dots in light conversion of agricultural production as agricultural light conversion material
CN109722244A (en) * 2018-12-12 2019-05-07 东北林业大学 A novel manufacturing method of blue phosphor with visible light response
CN109980100A (en) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 Luminescent material and preparation method thereof and QLED device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054425A1 (en) * 2013-08-21 2015-02-26 Cree, Inc. Nanocomposite compositions and methods of making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590640A (en) * 2016-10-27 2017-04-26 华南农业大学 Application of carbon dots in light conversion of agricultural production as agricultural light conversion material
CN106565219A (en) * 2016-11-07 2017-04-19 安徽中威光电材料有限公司 Magnesium fluoride-doped and fluorescent ceramic base for high-power LED and preparation method for ceramic base
CN109980100A (en) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 Luminescent material and preparation method thereof and QLED device
CN109722244A (en) * 2018-12-12 2019-05-07 东北林业大学 A novel manufacturing method of blue phosphor with visible light response

Also Published As

Publication number Publication date
CN112210365A (en) 2021-01-12

Similar Documents

Publication Publication Date Title
CN110205124B (en) Fluorescent and phosphorescent dual-emission white light carbon quantum dot and preparation method and application thereof
TW201430100A (en) Phosphor surface treatment method
CN111040755B (en) Quantum dot composite luminescent material, preparation thereof and application thereof in LED light source
CN112210365B (en) Method for preparing nano zirconium dioxide carbon quantum dot composite material by one-pot method
CN102079978B (en) Preparation method of quantum dot nanomaterial and method for coating silicon dioxide on its surface
CN110452683B (en) Quantum dot composite light conversion material and preparation method thereof
CN109233809B (en) Preparation of composite bifunctional perovskite material combining thermoluminescence and photoluminescence performance
CN112680213A (en) Preparation method of perovskite nanocrystalline coated by ethyl orthosilicate
CN106986626B (en) A kind of hydroxyapatite-based fluorescent ceramic material and preparation method thereof
CN110922966A (en) A method of improving the luminous efficiency of LED lighting
CN107686730A (en) A kind of Tb3+Adulterate tungstates novel green fluorescent material
CN106590657A (en) Lutetium aluminate green fluorescent powder and preparation method and application thereof
CN110527508A (en) A kind of nitride red fluorescent powder for white light LED and preparation method thereof
CN114316957B (en) Blue light excited red fluorescent material and preparation method and application thereof
CN103805173A (en) Gram-scale preparation of core-shell structure quantum dot and method for coating silicon dioxide on surface of core-shell structure quantum dot
CN106995702B (en) Gallogermanate-based deep red light-emitting material and preparation method thereof
CN105331360A (en) Industrialized preparation method of LED red phosphor powder and composition of LED red phosphor powder and product and application
CN104974752B (en) White-light fluorescent material as well as preparation method and application thereof
CN111849471B (en) A kind of double emission carbon nanomaterial, its preparation method and application
CN101555405A (en) Adjustable photochromic phosphor powder, phosphor thin film, preparation method and application thereof
CN105950144B (en) A kind of Dy3+、Eu3+TiAlON fluorescent materials of doping and preparation method thereof
CN105295915B (en) Method for preparing high-performance YAG yellow fluorescent powder by graphene oxide coprecipitation
CN111100631A (en) Multicolor luminous solid silicon dot powder and multifunctional application of preparation method thereof
CN108300478A (en) A kind of terbium doped lanthanum fluoride nano-particle of water solubility and preparation method thereof
CN104531151B (en) A kind of magnolia flower-shaped preparation method of europium-doped lanthanum hydroxide red fluorescent powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant