CN112206347B - A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application - Google Patents
A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application Download PDFInfo
- Publication number
- CN112206347B CN112206347B CN202011097483.3A CN202011097483A CN112206347B CN 112206347 B CN112206347 B CN 112206347B CN 202011097483 A CN202011097483 A CN 202011097483A CN 112206347 B CN112206347 B CN 112206347B
- Authority
- CN
- China
- Prior art keywords
- molecular weight
- bone cement
- mma
- pmma
- composite bone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002639 bone cement Substances 0.000 title claims abstract description 76
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 67
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 67
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 20
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 19
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229920006132 styrene block copolymer Polymers 0.000 claims abstract description 13
- 239000003999 initiator Substances 0.000 claims abstract description 7
- 230000002708 enhancing effect Effects 0.000 claims abstract description 6
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 9
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical group C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 9
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical group CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 230000000399 orthopedic effect Effects 0.000 claims description 2
- 239000012467 final product Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- -1 trimethylsilyl (TMS) Chemical class 0.000 description 2
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical class [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SYWDWCWQXBUCOP-UHFFFAOYSA-N benzene;ethene Chemical group C=C.C1=CC=CC=C1 SYWDWCWQXBUCOP-UHFFFAOYSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- IWVKTOUOPHGZRX-UHFFFAOYSA-M methyl 2-methylprop-2-enoate;2-methylprop-2-enoate Chemical compound CC(=C)C([O-])=O.COC(=O)C(C)=C IWVKTOUOPHGZRX-UHFFFAOYSA-M 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种分子量匹配增强性能的复合骨水泥及其制备方法和应用。所述分子量匹配增强性能的复合骨水泥,由固体组分和液体组分组成,所述固体组分包含聚甲基丙烯酸甲酯、甲基丙烯酸甲酯‑苯乙烯嵌段共聚物和引发剂;所述液体组分包括甲基丙烯酸甲酯和促进剂;所述甲基丙烯酸甲酯‑苯乙烯嵌段共聚物的分子量小于或等于聚甲基丙烯酸甲酯的
本发明通过PMMA与P(MMA‑co‑St)的分子量匹配可协调PMMA骨水泥粘度的力学性能与粘度变化过快之间的平衡,即可满足临床医生们的操作方面的需求,又可以以较低分子量的PMMA来满足骨水泥的力学性能,且无需再添加其它用于增强力学性能的助剂,具有较大的应用前景。The invention discloses a composite bone cement with molecular weight matching and enhanced performance, and a preparation method and application thereof. The composite bone cement whose molecular weight matches and enhances performance is composed of a solid component and a liquid component, and the solid component comprises polymethyl methacrylate, methyl methacrylate-styrene block copolymer and an initiator; The liquid component includes methyl methacrylate and an accelerator; the molecular weight of the methyl methacrylate-styrene block copolymer is less than or equal to that of polymethyl methacrylate.
Through the molecular weight matching of PMMA and P(MMA-co-St), the present invention can coordinate the balance between the mechanical properties of the viscosity of PMMA bone cement and the excessively rapid change in viscosity, which can meet the operational requirements of clinicians, and can PMMA with lower molecular weight can meet the mechanical properties of bone cement without adding other additives for enhancing mechanical properties, which has great application prospects.Description
技术领域technical field
本发明涉及医用材料技术领域,更具体地,涉及一种尺寸匹配增强性能的复合骨水泥及其制备方法和应用。The present invention relates to the technical field of medical materials, and more particularly, to a composite bone cement with enhanced performance of size matching and a preparation method and application thereof.
背景技术Background technique
聚甲基丙烯酸甲酯(PMMA)骨水泥因具有良好力学特性与可制成任意形状快速成型的优点,是目前应用广泛的椎体成形术材料。目前市场上PMMA骨水泥大约有70多种,被广泛应用于骨科填充材料和固定材料,尤其应用于椎体成形术治疗椎体压缩性骨折,能迅速稳定损伤的椎体,缓解患者的症状。骨水泥主要由聚甲基丙烯酸甲脂(粉剂)和单体丙烯酸甲脂(液剂)聚合而成。PMMA无气味,性能稳定。MMA为无色液体,有刺鼻的气味,易挥发性、易燃性、亲脂性、并有细胞毒性。在一定条件下能自行聚合固化成聚合体PMMA。由于聚合物分子的纤维特性,再加上它的延伸和缠绕能力,使得分子量成为其性能的重要因素,分子量越大,分子间的作用越强、增粘效果越好。高分子量的PMMA虽然可以满足骨水泥的力学性能,但是会导致骨水泥调配和注射时间太短(粘度变化太快)而不利于临床操作,而PMMA的分子量过低又会使得骨水泥的力学性能不达标。因此,需要寻找一种可以协调PMMA骨水泥粘度的力学性能与粘度变化过快之间的平衡,即可满足临床医生们的操作方面的需求,又可以以较低分子量的PMMA来满足骨水泥的力学性能的骨水泥材料。专利CN108096629 A公开了一种聚甲基丙烯酸甲酯骨粘固剂,由固体组分和液体组分组成,包含固体组分A和B,其中固体组分A包含聚甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯嵌段共聚物,固体组分B包含矿化胶原;其通过调控聚甲基丙烯酸甲酯和甲基丙烯酸甲酯-苯乙烯嵌段共聚物等组分的分子量和添加比例来影响聚合反应时间、聚合物的黏稠度以及放出的热量,需额外通过添加具有良好成骨活性的矿化胶原成分来改善骨水泥的机械性能和生物相容性。由于其固体组分A中的聚甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯嵌段共聚物的分子量和添加比例无法满足一定的匹配关系,因此对于骨水泥力学性能方面的提升效果不佳。Polymethyl methacrylate (PMMA) bone cement is a widely used material for vertebroplasty due to its good mechanical properties and the advantages of being able to be made into any shape for rapid prototyping. At present, there are about 70 kinds of PMMA bone cements on the market, which are widely used in orthopedic filling materials and fixation materials, especially in the treatment of vertebral compression fractures by vertebroplasty, which can quickly stabilize the injured vertebral body and relieve the symptoms of patients. Bone cement is mainly composed of polymethyl methacrylate (powder) and monomer methyl acrylate (liquid). PMMA is odorless and has stable performance. MMA is a colorless liquid with a pungent odor, volatile, flammable, lipophilic, and cytotoxic. Under certain conditions, it can self-polymerize and solidify into polymer PMMA. Due to the fiber characteristics of polymer molecules, coupled with its ability to extend and entangle, molecular weight becomes an important factor in its performance. Although high molecular weight PMMA can meet the mechanical properties of bone cement, it will lead to too short bone cement preparation and injection time (the viscosity changes too fast), which is not conducive to clinical operation, and the molecular weight of PMMA is too low, which will make the mechanical properties of bone cement. not to standard. Therefore, it is necessary to find a balance between the mechanical properties that can coordinate the viscosity of PMMA bone cement and the viscosity change too quickly, so as to meet the operational needs of clinicians, and to use PMMA with a lower molecular weight to meet the needs of bone cement. Mechanical properties of bone cement materials. Patent CN108096629 A discloses a polymethyl methacrylate bone cement, consisting of a solid component and a liquid component, including solid components A and B, wherein the solid component A includes polymethyl methacrylate, methyl methacrylate, and Methyl methacrylate-styrene block copolymer, solid component B contains mineralized collagen; it is controlled by regulating the molecular weight and addition of components such as polymethyl methacrylate and methyl methacrylate-styrene block copolymer The ratio of the polymerization reaction time, the viscosity of the polymer and the heat released, it is necessary to additionally improve the mechanical properties and biocompatibility of bone cement by adding mineralized collagen with good osteogenic activity. Because the molecular weight and addition ratio of polymethyl methacrylate and methyl methacrylate-styrene block copolymer in its solid component A cannot meet a certain matching relationship, the improvement effect on the mechanical properties of bone cement is not satisfactory. good.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术中存在的上述缺陷和不足,提供一种分子量匹配增强性能的复合骨水泥。The purpose of the present invention is to overcome the above-mentioned defects and deficiencies in the prior art, and to provide a composite bone cement with molecular weight matching and enhanced performance.
本发明的第二个目的是提供所述分子量匹配增强性能的复合骨水泥的制备方法。The second object of the present invention is to provide a preparation method of the composite bone cement whose molecular weight is matched to enhance performance.
本发明的第三个目的在于提供所述分子量匹配增强性能的复合骨水泥的应用。The third object of the present invention is to provide the application of the composite bone cement whose molecular weight is matched to enhance performance.
本发明的上述目的是通过以下技术方案给予实现的:The above-mentioned purpose of the present invention is achieved by the following technical solutions:
一种分子量匹配增强性能的复合骨水泥,由固体组分和液体组分组成,其特征在于:所述固体组分包含聚甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯嵌段共聚物和引发剂;所述液体组分包括甲基丙烯酸甲酯和促进剂;所述甲基丙烯酸甲酯-苯乙烯嵌段共聚物(P(MMA-co-St))的分子量小于或等于聚甲基丙烯酸甲酯(PMMA)的 A composite bone cement with molecular weight matching and enhancing performance, consisting of a solid component and a liquid component, characterized in that: the solid component comprises polymethyl methacrylate, methyl methacrylate-styrene block copolymer and an initiator; the liquid component includes methyl methacrylate and an accelerator; the molecular weight of the methyl methacrylate-styrene block copolymer (P(MMA-co-St)) is less than or equal to polymethyl methacrylate Methyl methacrylate (PMMA)
本发明通过确定小分子的P(MMA-co-St)共聚物与大分子量的PMMA分子量之间的关系,通过小分子的P(MMA-co-St)共聚物来填充大分子量的PMMA分子之间堆积时留下的分子间缝隙,当P(MMA-co-St)分子量稍小时可以均匀分布在分子量较大的PMMA当中填补分子间的空隙,使骨水泥的压缩强度得到了显著性的提升,当在本发明上述范围内时,复合骨水泥的压缩强度随P(MMA-co-St)聚合物的分子量和用量都呈递增关系,但是又不会使小分子的P(MMA-co-St)填充超过大分子量的PMMA的空隙范围,导致无法填充,从而有效提高骨水泥力学性能,可以协调PMMA骨水泥粘度的力学性能与粘度变化过快之间的平衡,即可满足临床医生们的操作方面的需求,又可以以较低分子量的PMMA来满足骨水泥的力学性能。In the present invention, the relationship between the molecular weight of the small molecular P(MMA-co-St) copolymer and the large molecular weight PMMA is determined, and the small molecular P(MMA-co-St) copolymer is used to fill the relationship between the large molecular weight PMMA molecules. When the molecular weight of P(MMA-co-St) is slightly smaller, it can be evenly distributed in PMMA with a larger molecular weight to fill the intermolecular gap, which significantly improves the compressive strength of bone cement. , when within the above range of the present invention, the compressive strength of the composite bone cement increases with the molecular weight and dosage of the P(MMA-co-St) polymer, but it will not make the small molecular P(MMA-co-St) polymer. St) fills the void range of PMMA with a large molecular weight, which makes it impossible to fill, thereby effectively improving the mechanical properties of bone cement. It can coordinate the balance between the mechanical properties of the viscosity of PMMA bone cement and the viscosity changes too fast, which can meet the needs of clinicians. The mechanical properties of bone cement can be met by PMMA with lower molecular weight according to the operational requirements.
优选地,所述聚甲基丙烯酸甲酯与甲基丙烯酸甲酯-苯乙烯嵌段共聚物的质量比为1:1~2。Preferably, the mass ratio of the polymethyl methacrylate to the methyl methacrylate-styrene block copolymer is 1:1-2.
优选地,所述固体组分和液体组分质量体积比为1:3~4mL。Preferably, the mass-volume ratio of the solid component and the liquid component is 1:3-4 mL.
优选地,所述引发剂为过氧化苯甲酰(BPO)。Preferably, the initiator is benzoyl peroxide (BPO).
优选地,所述促进剂为N,N-二甲基对甲苯胺(DMT)。Preferably, the accelerator is N,N-dimethyl-p-toluidine (DMT).
进一步优选地,所述聚甲基丙烯酸甲酯分子量为750000,甲基丙烯酸甲酯-苯乙烯嵌段共聚物的分子量为60000~116000,骨水泥的压缩强度可以达到75MPa以上。Further preferably, the molecular weight of the polymethyl methacrylate is 750,000, the molecular weight of the methyl methacrylate-styrene block copolymer is 60,000-116,000, and the compressive strength of the bone cement can reach more than 75MPa.
本发明还提供上述任一所述的分子量匹配增强性能的复合骨水泥的制备方法,是将相应比例的固体组分和液体组分混合后搅拌均匀,灌入模具,固化后即得。The present invention also provides a method for preparing any of the above-mentioned composite bone cement with matching and enhancing performance, which is obtained by mixing solid components and liquid components in corresponding proportions, stirring them evenly, pouring them into a mold, and curing.
优选地,所述固体组分和液体组分按质量体积比为1:3~4mL混匀。Preferably, the solid component and the liquid component are mixed uniformly in a mass-to-volume ratio of 1:3-4 mL.
进一步优选地,所述固体组分和液体组分按质量体积比为1:3mL混匀。Further preferably, the solid component and the liquid component are mixed uniformly in a mass-to-volume ratio of 1:3 mL.
另外,本发明还提供上述任一所述的分子量匹配增强性能的复合骨水泥在制备骨科植入材料中的应用。通过研究添加P(MMA-co-St)聚合物的分子量和用量找到了在一定范围内复合骨水泥的压缩强度随P(MMA-co-St)聚合物的分子量和用量都呈递增关系,发现通过一定分子量P(MMA-co-St)和PMMA匹配即可调节骨水泥的力学性能。这为以后研究添加活性组分与抗菌药物骨水泥的研究提供了有力的理论依据。In addition, the present invention also provides the application of any of the above-mentioned composite bone cements with matching and enhancing properties in molecular weight in the preparation of orthopaedic implant materials. By studying the molecular weight and dosage of the added P(MMA-co-St) polymer, it was found that the compressive strength of the composite bone cement increased with the molecular weight and dosage of the P(MMA-co-St) polymer within a certain range. The mechanical properties of bone cement can be adjusted by matching a certain molecular weight P(MMA-co-St) and PMMA. This provides a strong theoretical basis for the future research on adding active components and antibiotics to bone cement.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过调控骨水泥分子量较低的甲基丙烯酸甲酯-苯乙烯嵌段共聚物和分子量较高的聚甲基丙烯酸甲酯聚合物的比例,通过PMMA与P(MMA-co-St)的分子量匹配可协调PMMA骨水泥粘度的力学性能与粘度变化过快之间的平衡,即可满足临床医生们的操作方面的需求,又可以以较低分子量的PMMA来满足骨水泥的力学性能,且无需再添加其它用于增强力学性能的助剂,具有较大的应用前景。In the present invention, the ratio of methyl methacrylate-styrene block copolymer with lower molecular weight of bone cement and polymethyl methacrylate polymer with higher molecular weight is adjusted, and the ratio between PMMA and P(MMA-co-St) is adjusted. Molecular weight matching can coordinate the balance between the mechanical properties of PMMA bone cement viscosity and the viscosity changes too fast, which can meet the operational needs of clinicians, and can meet the mechanical properties of bone cement with lower molecular weight PMMA, and There is no need to add other additives for enhancing mechanical properties, and it has great application prospects.
附图说明Description of drawings
图1为将PMMA和P(MMA-co-St)等效成如下两种不同半径的球体。Figure 1 shows the equivalent of PMMA and P(MMA-co-St) into two spheres with different radii as follows.
图2为较高分子量PMMA的分子与分子之间的空隙来填充较小分子量的P(MMA-co-St)的大致分子量的示意图。Figure 2 is a schematic diagram of the approximate molecular weight of the higher molecular weight PMMA to fill the molecular-to-molecular voids of the lower molecular weight P(MMA-co-St).
图3为单体MMA/St比例按照7:3合成P(MMA-co-St)的1H NMR谱图。FIG. 3 is the 1 H NMR spectrum of the synthesis of P(MMA-co-St) with the monomer MMA/St ratio of 7:3.
图4为单体MMA/St比例按照8:2合成P(MMA-co-St)的1H NMR谱图。FIG. 4 is the 1 H NMR spectrum of the synthesis of P(MMA-co-St) with the monomer MMA/St ratio of 8:2.
图5为不同分子量的P(MMA-co-St)聚合物与PMMA按照不同比例合成骨水泥的压缩强度(其中图中MS表示P(MMA-co-St)聚合物)。Figure 5 shows the compressive strengths of bone cements synthesized with different molecular weights of P(MMA-co-St) polymer and PMMA in different proportions (wherein MS in the figure represents P(MMA-co-St) polymer).
图6为高分子量PMMA分子和分子之间填充P(MMA-co-St)来提供骨水泥的压缩强度的示意图。Figure 6 is a schematic diagram of high molecular weight PMMA molecules and filling P(MMA-co-St) between molecules to provide the compressive strength of bone cement.
图7为rBMSCs在PMMA/P(MMA-co-St)复合骨水泥中的成活率。Figure 7 shows the survival rate of rBMSCs in PMMA/P(MMA-co-St) composite bone cement.
具体实施方式Detailed ways
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The present invention is further described below with reference to the accompanying drawings and specific embodiments, but the embodiments do not limit the present invention in any form. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
除非特别说明,以下实施例所用试剂和材料均为市购。Unless otherwise specified, the reagents and materials used in the following examples are commercially available.
本发明旨在通过调控骨水泥分子量较低和分子量较高聚合物的粉体的比例,寻求最佳粘度和力学性能的骨水泥的调配方法。由于大分子量的PMMA分子之间堆积时留下的分子间缝隙,如果能用小分子的P(MMA-co-St)共聚物填充,则可以大大地增强骨水泥的力学性能。由于高分子链总的自然倾向是成卷曲状态,高分子链越长,分子构象越多,分子链卷成各种形状的可能性越大,分子的柔顺性越好。因此,我们将PMMA和P(MMA-co-St)等效成如图1所示的两种不同半径的球体。The invention aims to seek a method for preparing bone cement with optimal viscosity and mechanical properties by adjusting the ratio of the powders of polymers with lower molecular weight and higher molecular weight of bone cement. Due to the intermolecular gaps left by the stacking of large molecular weight PMMA molecules, the mechanical properties of bone cement can be greatly enhanced if it can be filled with small molecular P(MMA-co-St) copolymers. Since the general natural tendency of the polymer chain is to form a coiled state, the longer the polymer chain, the more molecular conformations, the greater the possibility of the molecular chain being rolled into various shapes, and the better the flexibility of the molecule. Therefore, we equivalent PMMA and P(MMA-co-St) into two spheres with different radii as shown in Fig. 1.
根据聚合物链末端距的平方与分子量的关系r2=CM和分子量足够大时均方末端距与均方旋转半径之间的关系<Rg 2>=<r2>/6,得到等效球体半径与平均分子量的对应关系。通过再计算已知分子量的较高分子量PMMA的分子与分子之间的空隙来填充较小分子量的P(MMA-co-St)的大致分子量,如图2所示:According to the relationship between the square of the distance between the ends of the polymer chain and the molecular weight r 2 =CM and the relationship between the mean square end distance and the mean square radius of rotation when the molecular weight is large enough <R g 2 >=<r 2 >/6, the equivalent Correspondence between sphere radius and average molecular weight. The approximate molecular weight of the smaller molecular weight P(MMA-co-St) is filled by recalculating the molecular-to-molecule gaps of the higher molecular weight PMMA of known molecular weight, as shown in Figure 2:
根据几何关系,P(MMA-co-St)的半径为PMMA的时能刚好嵌入PMMA分子之间的空隙中。已知的PMMA分子量为750000,则要求的P(MMA-co-St)分子量应该大约在116000左右。According to the geometric relationship, the radius of P(MMA-co-St) is the radius of PMMA It can just fit into the space between the PMMA molecules. The known molecular weight of PMMA is 750,000, and the required molecular weight of P(MMA-co-St) should be about 116,000.
临床上应用最多的PMMA骨水泥由粉体和液体两部分组成,粉体主要成分为聚甲基丙烯酸甲酯,液体主要成分是甲基丙烯酸甲酯单体。发明中设计一种PMMA/P(MMA-co-St)复合骨水泥,其中粉体成分为聚苯乙烯甲基丙烯酸甲酯(P(MMA-co-St))、PMMA、过氧化苯甲酰(BPO),液体成分是甲基丙烯酸甲酯(MMA),N,N-二甲基对甲苯胺(DMT)。通过上述计算模型,拟寻求高分子量的PMMA和低分子量的P(MMA-co-St)之间最佳的匹配关系。以下所述聚甲基丙烯酸甲酯购自西格玛(CAS号:9011-14-7),小分子量的P(MMA-co-St)则通过自行合成。The most clinically used PMMA bone cement is composed of powder and liquid. The main component of powder is polymethyl methacrylate, and the main component of liquid is methyl methacrylate monomer. In the invention, a PMMA/P(MMA-co-St) composite bone cement is designed, wherein the powder components are polystyrene methyl methacrylate (P(MMA-co-St)), PMMA, benzoyl peroxide (BPO), the liquid components are methyl methacrylate (MMA), N,N-dimethyl-p-toluidine (DMT). Through the above calculation model, the best matching relationship between high molecular weight PMMA and low molecular weight P(MMA-co-St) is to be sought. The polymethyl methacrylate described below was purchased from Sigma (CAS number: 9011-14-7), and the low molecular weight P(MMA-co-St) was synthesized by itself.
实施例1原料准备Example 1 Preparation of raw materials
1、P(MMA-co-St)的合成:1. Synthesis of P(MMA-co-St):
(1)原料的纯化:(1) Purification of raw materials:
苯乙烯纯化:取150mL苯乙烯于250mL分液漏斗中,用1mol/L NaOH水溶液反复洗涤直至从粉红色变为无色,再用去离子水洗涤直至用pH试纸测得中性。用无水硫酸钠干燥过夜后加少许对叔丁基儿茶酚减压蒸馏。Styrene purification: take 150 mL of styrene into a 250 mL separatory funnel, repeatedly wash with 1 mol/L NaOH aqueous solution until it turns from pink to colorless, and then wash with deionized water until neutrality is measured with pH test paper. After drying with anhydrous sodium sulfate overnight, a little p-tert-butylcatechol was added for distillation under reduced pressure.
MMA纯化:用NaOH水溶液洗涤至无色,再用去离子水洗涤至中性。用无水硫酸钠干燥,然后加少许对苯二酚减压蒸馏。MMA purification: Wash with aqueous NaOH until colorless, then with deionized water until neutral. Dry with anhydrous sodium sulfate, then add a little hydroquinone and distill under reduced pressure.
BPO纯化:在100mL烧杯中加入5g BPO和20mL氯仿,不断搅拌使之溶解,过滤取滤液;在100mL烧杯中加入50mL甲醇,封好置4℃冰箱中冷却;将滤液缓慢滴入冷却后的甲醇中并不断搅拌直至针状结晶不再增加,过滤,真空干燥。BPO purification: add 5g BPO and 20mL chloroform to a 100mL beaker, stir continuously to dissolve it, and filter the filtrate; add 50mL methanol to a 100mL beaker, seal it and place it in a 4°C refrigerator for cooling; slowly drop the filtrate into the cooled methanol and stirring continuously until needle crystals no longer increase, filter, and dry in vacuo.
(2)分散剂的准备:(2) Preparation of dispersant:
1mol/L MgCl2水溶液的制备:取10.15g六水合氯化镁在50mL容量瓶中定容,摇匀后转移至蓝口瓶中。Preparation of 1 mol/L MgCl 2 aqueous solution: take 10.15 g of magnesium chloride hexahydrate to a constant volume in a 50 mL volumetric flask, shake well and transfer to a blue-mouthed bottle.
1mol/L NaOH水溶液的制备:取10g NaOH在250mL容量瓶中定容,摇匀后转移至蓝口瓶中。Preparation of 1 mol/L NaOH aqueous solution: take 10 g of NaOH to a constant volume in a 250 mL volumetric flask, shake well and transfer it to a blue-mouthed bottle.
1%聚乙烯醇(PVA)的制备:取0.5g PVA在100mL的烧杯中搅拌并油浴加热至95℃直至完全溶解,冷却,定容到50mL容量瓶摇匀后转移至蓝口瓶中。Preparation of 1% polyvinyl alcohol (PVA): take 0.5g of PVA in a 100mL beaker, stir and heat to 95°C in an oil bath until completely dissolved, cool, make up to a 50mL volumetric flask, shake well, and transfer to a blue-mouth bottle.
(3)P(MMA-co-St)的合成(3) Synthesis of P(MMA-co-St)
P(MMA-co-St)通过悬浮聚合的方式合成。在三口烧瓶中加入40mL去离子水,3mL1%PVA水溶液、3mL 1mol/L MgCl2水溶液、6mL 1mol/L NaOH水溶液,油浴加热到50℃,机械搅拌转速为300rpm;分别加入7mL MMA,3mL苯乙烯,加热至70℃时加入0.2g BPO,继续升温到80℃反应3-6个小时。同样方法当加入8mL MMA,2mL苯乙烯时,1%PVA水溶液用量为2mL,其他条件不变,最后获得大小均匀,质地较硬的聚甲基丙烯酸甲酯苯乙烯珠粒。用1mol/L盐酸洗涤3次后用去离子水洗至中性,减压干燥。待完全干燥后用球磨机研磨,研磨成粉末后干燥保存。P(MMA-co-St) was synthesized by suspension polymerization. Add 40mL deionized water,
2、P(MMA-co-St)的表征2. Characterization of P(MMA-co-St)
P(MMA-co-St)的分子量表征:采用Waters Breeze凝胶渗透色谱仪GPC测定P(MMA-co-St)共聚物的分子量,四氢呋喃为流动相和溶剂,样品浓度2mg/mL,进样量100μL。Molecular weight characterization of P(MMA-co-St): Waters Breeze GPC was used to determine the molecular weight of P(MMA-co-St) copolymer, tetrahydrofuran was used as mobile phase and solvent, and the sample concentration was 2 mg/mL. Amount of 100 μL.
表1为不同批次单体MMA/St按照7:3时调控PVA用量、转速所合成的P(MMA-co-St),单体MMA/St=8:2时所合成的P(MMA-co-St),其重均分子量Mw分别为60000D、69000D、75000D、129000D。具体如下表1:Table 1 shows the P(MMA-co-St) synthesized by adjusting the amount of PVA and the rotational speed of different batches of monomer MMA/St according to 7:3, and the P(MMA-co-St) synthesized when monomer MMA/St=8:2 co-St), its weight average molecular weight Mw is 60000D, 69000D, 75000D, 129000D respectively. The details are as follows in Table 1:
表1Table 1
这是由于不溶于水的单体和引发剂在含有水的容器中快速搅拌会形成含有引发剂的小液滴,这些小液滴在分散剂的作用下稳定存在并在液滴中进行本体聚合。当反应体系中PVA的用量或者转速增加,颗粒的尺寸减小,分子量则减小;当苯乙烯占比高时,由于苯环结构存在空间位阻,聚合程度比较低,因此提高MMA占比时产物的分子量较原来的高。根据前面预设的最佳分子量116000,则合成的四组中力学性能最好的应该为Mw=75000,由于Mw=129000这组超过预设的最佳分子量,可能会无法有效填充在PMMA分子之间堆积时留下的分子间缝隙中,但确切结果还需结合拉力测试来验证。This is due to the rapid agitation of water-insoluble monomers and initiators in a vessel containing water to form small droplets containing the initiator, which are stabilized by the action of the dispersing agent and undergo bulk polymerization in the droplets . When the amount or rotation speed of PVA in the reaction system increases, the size of the particles decreases, and the molecular weight decreases; when the proportion of styrene is high, due to the steric hindrance of the benzene ring structure, the degree of polymerization is relatively low, so when the proportion of MMA is increased The molecular weight of the product is higher than the original. According to the preset optimal molecular weight of 116000, the best mechanical properties of the four synthesized groups should be Mw=75000. Since the Mw=129000 group exceeds the preset optimal molecular weight, it may not be able to be effectively filled between the PMMA molecules. However, the exact results need to be verified in combination with tensile tests.
P(MMA-co-St)的1H NMR核磁共振:采用德国Bruker Avance III核磁共振仪400MHz测定P(MMA-co-St)聚合物结构,样品浓度为8mg/mL,氘代氯仿(CDCl3)为溶剂,三甲基硅基(TMS)为内标。 1 H NMR nuclear magnetic resonance of P(MMA-co-St): The polymer structure of P(MMA-co-St) was determined by the German Bruker Avance III nuclear magnetic resonance instrument at 400 MHz, the sample concentration was 8 mg/mL, deuterated chloroform (CDCl 3 ) is the solvent, and trimethylsilyl (TMS) is the internal standard.
图3图4分别表示单体MMA/St按照7:3和8:2时所合成的P(MMA-co-St)共聚物的1HNMR的谱图,经计算苯乙烯在占比分别为27.6%、19.7%。Figures 3 and 4 show the 1 HNMR spectra of the P(MMA-co-St) copolymers synthesized by the monomer MMA/St at 7:3 and 8:2, respectively. The calculated proportion of styrene is 27.6 %, 19.7%.
实施例2骨水泥的合成Example 2 Synthesis of bone cement
室温下,将骨水泥的固体组分和液体组分按质量体积比(W/V)为1:3的比例混合后搅拌均匀,灌入模具,完全固化后敲开取出样品。At room temperature, the solid component and the liquid component of the bone cement are mixed in a mass-to-volume ratio (W/V) of 1:3, stirred evenly, poured into the mold, and completely cured, knocked out to take out the sample.
其中固相组分为PMMA、P(MMA-co-St)、BPO,液相组分为MMA、DMT,并使用长杆温度计测其固化温度。原料比、可注射时间、固化时间及其固化温度如下表2。The solid phase components are PMMA, P(MMA-co-St), and BPO, and the liquid phase components are MMA and DMT, and the curing temperature is measured by a long rod thermometer. The raw material ratio, injectable time, curing time and curing temperature are shown in Table 2 below.
表2Table 2
注:上表中重均分子量均表示的是P(MMA-co-St)的分子量Note: The weight-average molecular weight in the above table represents the molecular weight of P(MMA-co-St)
通过记录可注射时间和固化温度发现:添加了P(MMA-co-St)聚合物的骨水泥明显能够延缓其可注射时间和有效降低体系的固化温度。骨水泥不是粘合剂,骨水泥与骨的连接以及骨水泥与假体的连接完全是机械的,没有化学或分子的交互,也没有提供表面粘合。骨水泥渗透入松质骨中,是一种形态匹配连接。当较低分子量的P(MMA-co-St)聚合物作为粉体添加入骨水泥中,能使体系的流动性更好,不仅能延长医生在临床上的注射时间,也能使骨水泥在注射过程中更有效地被松质骨吸收。By recording the injection time and curing temperature, it was found that the bone cement with the addition of P(MMA-co-St) polymer can obviously delay its injection time and effectively reduce the curing temperature of the system. Bone cement is not an adhesive, and the connection of the cement to the bone and the connection of the cement to the prosthesis is entirely mechanical, with no chemical or molecular interactions, and no surface adhesion is provided. Bone cement penetrates into the cancellous bone and is a morphologically matched connection. When the lower molecular weight P(MMA-co-St) polymer is added to the bone cement as a powder, the fluidity of the system can be better, which can not only prolong the clinical injection time of doctors, but also make the bone cement more suitable for injection. It is more efficiently absorbed by cancellous bone during the process.
实施例3力学性能测试Example 3 Mechanical property test
实施例2中骨水泥的力学性能表征主要选择测试成品的压缩性能。测试方法为:压缩实验骨水泥样品打磨成长12mm,直径6mm的圆柱体。使用万能材料试验机(WD-5A),加载速率为5mm/min。记录样品的应力-形变图,取应力-形变曲线中K值为2%时的应力,将其除以圆柱体的横截面积,即可求得压缩强度。所有力学性能的测试均参照ISO 5833国际标准进行。The mechanical property characterization of bone cement in Example 2 mainly chooses to test the compressive property of the finished product. The test method is as follows: the compression test bone cement sample is ground into a cylinder with a length of 12 mm and a diameter of 6 mm. A universal material testing machine (WD-5A) was used with a loading rate of 5 mm/min. Record the stress-deformation diagram of the sample, take the stress when the K value in the stress-deformation curve is 2%, and divide it by the cross-sectional area of the cylinder to obtain the compressive strength. All mechanical property tests are carried out according to ISO 5833 international standard.
本发明中的PMMA/P(MMA-co-St)复合骨水泥的力学性能用压缩强度来表征。从图5加入P(MMA-co-St)聚合物的骨水泥的压缩强度比纯PMMA骨水泥的压缩强度有了显著的增加,并且在一定范围内随着分子量的增加,同种比例的PMMA/P(MMA-co-St)骨水泥压缩强度呈上升趋势,直至分子量增加到116000后,压缩强度反而降低。这是因为分子量稍小时可以均匀分布在分子量较大的PMMA当中填补分子间的空隙,使骨水泥的压缩强度得到了显著性的提升,并且均达到75MPa以上,示意图如图6所示。通过添加的P(MMA-co-St)聚合物分子量与复合骨水泥的压缩强度对应关系来看,该方法也将为后面添加活性组分和抗菌药物的骨水泥提供了强有力的理论支撑。The mechanical properties of the PMMA/P(MMA-co-St) composite bone cement in the present invention are characterized by compressive strength. From Figure 5, the compressive strength of the bone cement with the addition of P(MMA-co-St) polymer is significantly higher than that of the pure PMMA bone cement, and within a certain range, with the increase of molecular weight, the same proportion of PMMA The compressive strength of /P(MMA-co-St) bone cement showed an upward trend, until the molecular weight increased to 116000, the compressive strength decreased instead. This is because when the molecular weight is slightly smaller, it can be evenly distributed in PMMA with a larger molecular weight to fill the gaps between molecules, so that the compressive strength of the bone cement is significantly improved, and both reach above 75MPa, as shown in Figure 6. From the perspective of the corresponding relationship between the molecular weight of the added P(MMA-co-St) polymer and the compressive strength of the composite bone cement, this method will also provide a strong theoretical support for the later addition of active components and antibacterial drugs to the bone cement.
实施例4骨水泥的体外细胞毒性测试Example 4 In vitro cytotoxicity test of bone cement
1、样品的制备与预处理1. Sample preparation and pretreatment
取实施例3中压缩强度最好的一组配比按照实施例2的投料合成PMMA/P(MMA-co-St)复合骨水泥,并打磨成长5mm,直径6mm的圆柱体骨水泥样品,每组设置5个平行样本,称量每个样品的质量y g。在48孔板中,分别用75%酒精和磷酸缓冲液(PBS)中浸泡1天。Get the best one group proportioning of compressive strength in embodiment 3 and synthesize PMMA/P (MMA-co-St) composite bone cement according to the feeding of
2、浸提液的制备2. Preparation of leaching solution
从上述准备的样品中吸出PBS溶液,使用一定体积含血清和双抗的DMEM浸泡样品一天。DMEM用量计算公式:y(g)×5(ml/g)=z ml,其中z为DMEM的体积数。Aspirate the PBS solution from the samples prepared above, and soak the samples in a volume of DMEM containing serum and double antibody for one day. The formula for calculating the amount of DMEM: y(g)×5(ml/g)=z ml, where z is the volume of DMEM.
3、MTT测试3. MTT test
在48孔板中接种P4代鼠骨髓间充质干细胞(rBMSCs),每孔5000个细胞,加入200μl的培养基孵育24小时后,吸出100μl培养基,每孔加入100μl步骤2中制备的骨水泥浸提液,对照组加入100μl新鲜培养基,分别培养24小时和48小时后,吸出培养基,加入20μl MTT和180μl新鲜培养基,37℃下孵育4小时后,加入200μl DMSO孵育10min后,取出150μl于96孔板中,测试570nm波长下的吸光度(OD)。Inoculate P4 generation mouse bone marrow mesenchymal stem cells (rBMSCs) in a 48-well plate, 5000 cells per well, add 200 μl of culture medium and incubate for 24 hours, aspirate 100 μl of culture medium, and add 100 μl of bone cement prepared in
从图7可以看出rBMSCs在PMMA/P(MMA-co-St)复合骨水泥中的成活率均在80%以上。结果说明PMMA/P(MMA-co-St)复合骨水泥无毒副作用。It can be seen from Figure 7 that the survival rate of rBMSCs in the PMMA/P(MMA-co-St) composite bone cement is all above 80%. The results showed that the PMMA/P(MMA-co-St) composite bone cement had no toxic and side effects.
以上结果说明,本发明通过确定小分子的P(MMA-co-St)共聚物与大分子量的PMMA分子量之间的关系,通过小分子的P(MMA-co-St)共聚物来填充大分子量的PMMA分子之间堆积时留下的分子间缝隙来提升骨水泥的压缩强度的方法是可行的,当在一定范围内时,复合骨水泥的压缩强度随P(MMA-co-St)聚合物的分子量和用量都呈递增关系,从而无需再额外添加其它助剂来提高骨水泥的机械性能。The above results show that the present invention fills the large molecular weight with the small molecular P(MMA-co-St) copolymer by determining the relationship between the molecular weight of the small molecular P(MMA-co-St) copolymer and the large molecular weight PMMA. It is feasible to improve the compressive strength of bone cement by leaving intermolecular gaps when the PMMA molecules are stacked. When it is within a certain range, the compressive strength of composite bone cement varies with the P(MMA-co-St) polymer. There is an increasing relationship between the molecular weight and the dosage, so there is no need to add other additives to improve the mechanical properties of bone cement.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011097483.3A CN112206347B (en) | 2020-10-14 | 2020-10-14 | A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011097483.3A CN112206347B (en) | 2020-10-14 | 2020-10-14 | A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112206347A CN112206347A (en) | 2021-01-12 |
CN112206347B true CN112206347B (en) | 2022-06-03 |
Family
ID=74054155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011097483.3A Expired - Fee Related CN112206347B (en) | 2020-10-14 | 2020-10-14 | A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112206347B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101934097A (en) * | 2010-08-19 | 2011-01-05 | 马文 | Injectable composite bone cement of hydroxyapatite-PMMA containing strontium, preparation method and application thereof |
CA2974313A1 (en) * | 2015-02-12 | 2016-08-18 | Tecres S.P.A. | Ternary mixture for a bone cement and method for its realisation |
CN108096629A (en) * | 2018-01-29 | 2018-06-01 | 北京奥精医药科技有限公司 | A kind of polymethyl methacrylate bone cement and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9713654B2 (en) * | 2012-02-29 | 2017-07-25 | Ishihara Sangyo Kaisha, Ltd. | Bone cement composition |
-
2020
- 2020-10-14 CN CN202011097483.3A patent/CN112206347B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101934097A (en) * | 2010-08-19 | 2011-01-05 | 马文 | Injectable composite bone cement of hydroxyapatite-PMMA containing strontium, preparation method and application thereof |
CA2974313A1 (en) * | 2015-02-12 | 2016-08-18 | Tecres S.P.A. | Ternary mixture for a bone cement and method for its realisation |
CN108096629A (en) * | 2018-01-29 | 2018-06-01 | 北京奥精医药科技有限公司 | A kind of polymethyl methacrylate bone cement and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
TJ骨粘固剂的研制及临床应用;卢世璧等;《军医进修学院学报》;19801231;第01卷(第01期);34-39 * |
骨水泥生物材料研究与开发进展;曹德勇等;《化学工业与工程》;20031030;第20卷(第05期);303-309 * |
Also Published As
Publication number | Publication date |
---|---|
CN112206347A (en) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft | |
Zandi et al. | Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications | |
Wang et al. | Facile fabrication and characterization of high-performance Borax-PVA hydrogel | |
Gbureck et al. | Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement | |
Crispim et al. | Hydrogels based on chemically modified poly (vinyl alcohol)(PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization. | |
Christel et al. | Dual setting α-tricalcium phosphate cements | |
CN102633287B (en) | Preparation methods of medical alpha-calcium sulfate hemihydrate powder and calcium sulfate artificial bone material | |
Sabbagh et al. | Physical and chemical characterisation of acrylamide-based hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO | |
Tang et al. | Fabrication of injectable and expandable PMMA/PAASf bone cements | |
CN116139332B (en) | A low-exothermic antibacterial and anti-inflammatory injectable bone cement and its preparation method | |
CN110746516B (en) | Natural polymer hydrogel based on collagen and preparation method thereof | |
Szaloki et al. | Synthesis and characterization of cross-linked polymeric nanoparticles and their composites for reinforcement of photocurable dental resin | |
CN115779147A (en) | A method for the preparation of biotissue engineering scaffolds using double network hydrogels with good mechanical properties and high cell proliferation ability | |
Varshosaz et al. | Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels | |
Li et al. | Injectable hydrogels based on gellan gum promotes in situ mineralization and potential osteogenesis | |
Hernández et al. | Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour | |
CN112206347B (en) | A kind of composite bone cement with molecular weight matching enhanced performance and its preparation method and application | |
Sarabia-Vallejos et al. | Biocompatible and bioactive PEG-Based resin development for additive manufacturing of hierarchical porous bone scaffolds | |
Chen et al. | High water‐absorbent and fast‐expanding PMMA bone cement with double‐bridged structure | |
Ramirez Caballero et al. | Combination of biocompatible hydrogel precursors to apatitic calcium phosphate cements (CPCs): Influence of the in situ hydrogel reticulation on the CPC properties | |
Liu et al. | Fabrication and properties of multifunctional sodium alginate/MXene/nano-hydroxyapatite hydrogel for potential bone defect repair | |
CN106693063B (en) | A kind of anti-collapse calcium-silica-based composite bone cement and its preparation method and application | |
CN114984310B (en) | Organic-inorganic composite bone cement capable of resisting collapse, absorbing water and expanding and preparation method thereof | |
CN109939261B (en) | Curing liquid capable of regulating and controlling injection property of calcium phosphate bone cement and preparation method and application thereof | |
CN107041970A (en) | A kind of compound bone cement of high inorganic component and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220603 |