CN112191111B - An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application - Google Patents
An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application Download PDFInfo
- Publication number
- CN112191111B CN112191111B CN201910609556.3A CN201910609556A CN112191111B CN 112191111 B CN112191111 B CN 112191111B CN 201910609556 A CN201910609556 A CN 201910609556A CN 112191111 B CN112191111 B CN 112191111B
- Authority
- CN
- China
- Prior art keywords
- ionic liquid
- zif
- composite membrane
- solvent
- organic framework
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明属于膜分离技术领域,提供了一种离子液体/ZIF‑8复合膜的制备方法和应用。本发明采用一锅法,得到致密无缺陷的厚度为1μm的离子液体/ZIF‑8复合膜;所得复合膜可应用于气体分离。本发明制备过程简单,且开发的复合膜具有良好的气体渗透分离性能及稳定性,其H2渗透率达到1.5×10–6mol m‑2s‑1Pa‑1,H2/CO2混合气分离因子为55,超过了Robeson上限(2008)。
The invention belongs to the technical field of membrane separation, and provides a preparation method and application of an ionic liquid/ZIF-8 composite membrane. The invention adopts a one-pot method to obtain a dense and defect-free ionic liquid/ZIF-8 composite membrane with a thickness of 1 μm; the obtained composite membrane can be applied to gas separation. The preparation process of the invention is simple, and the developed composite membrane has good gas permeation separation performance and stability . The gas separation factor was 55, which exceeded the Robeson upper limit (2008).
Description
技术领域technical field
本发明属于膜分离技术领域,具体涉及一种离子液体/金属有机框架ZIF-8复合膜及其制备方法和应用The invention belongs to the technical field of membrane separation, and in particular relates to an ionic liquid/metal organic framework ZIF-8 composite membrane and a preparation method and application thereof
背景技术Background technique
H2、CO2及CH4气体常常以混合气的形式存在于水煤气变换制氢(H2/CO2)、天然气(CO2/CH4)及沼气(CO2/CH4)等能源气及工业过程中,因此高效气体分离对环境、能源、化工等领域意义重大。膜分离技术具有占地面积小、易线性放大、节能降耗、操作简单等优点,在气体分离领域已经引起了高度重视。膜分离技术的关键在于具有高选择性、高渗透性及高稳定性的膜材料的开发。H 2 , CO 2 and CH 4 gases often exist in the form of mixed gas in the water gas shift hydrogen production (H 2 /CO 2 ), natural gas (CO 2 /CH 4 ) and biogas (CO 2 /CH 4 ) and other energy gases and industrial Therefore, high-efficiency gas separation is of great significance to the environment, energy, chemical industry and other fields. Membrane separation technology has the advantages of small footprint, easy linear amplification, energy saving and consumption reduction, and simple operation, and has attracted great attention in the field of gas separation. The key to membrane separation technology lies in the development of membrane materials with high selectivity, high permeability and high stability.
金属有机框架材料(Metal-organic framework,MOF)是由金属离子和有机配体通过自组装形成的具有周期性网络结构的多孔晶体材料。其丰富的框架结构、可调控的孔道结构及表面功能化使其成为新一代的膜材料。ZIF-8是MOF中的典型材料,由金属离子Zn2+和2-甲基咪唑酯自组装而成,被广泛用于膜材料的研究。目前ZIF-8膜的生长方法主要为:原位生长法、二次生长法、层层自组装法、对扩散法、电化学生长法(一种金属有机骨架ZIF-8膜的制备方法[P].中国发明专利,CN201210269544,2012-8-1;一种金属有机框架膜及其制备方法和应用P].中国发明专利,CN201310373159,2013-8-23)等,但ZIF-8膜普遍存在膜厚较大(16-60μm)、渗透分离性能较差的问题。目前MOF/离子液体相关复合膜的报道较少,O.Tzialla等人以片状α-Al2O3为基底制备了ZIF-69/离子液体[omim][TCM]复合膜(J.Phys.Chem.C,2013,117,18434),其采用晶种二次生长法制备了厚度为60μm的ZIF-69膜层,然后采用浸涂法将离子液体负载在ZIF-69膜层中及膜层表面(表面离子液体厚度高达240μm,由于该复合膜的膜厚高达300μm,因此其CO2渗透率仅为5.6×10-11mol m-2s-1Pa-1。目前金属有机框架膜及离子液体/金属有机框架复合膜普遍存在膜厚较大、渗透分离性能有待改善的问题。Metal-organic frameworks (MOFs) are porous crystalline materials with periodic network structures formed by self-assembly of metal ions and organic ligands. Its rich framework structure, tunable pore structure and surface functionalization make it a new generation of membrane materials. ZIF-8 is a typical material in MOFs, which is self-assembled from metal ions Zn 2+ and 2-methylimidazolate, and is widely used in the study of membrane materials. At present, the growth methods of ZIF-8 films are mainly: in-situ growth method, secondary growth method, layer-by-layer self-assembly method, pair diffusion method, electrochemical growth method (a preparation method of metal-organic framework ZIF-8 film [P ]. Chinese invention patent, CN201210269544, 2012-8-1; a metal-organic framework film and its preparation method and application [P]. Chinese invention patent, CN201310373159, 2013-8-23), etc., but ZIF-8 films are ubiquitous The problem of large film thickness (16-60μm) and poor osmotic separation performance. At present, there are few reports on MOF/ionic liquid related composite membranes. Chem.C, 2013, 117, 18434), which uses a seed crystal secondary growth method to prepare a ZIF-69 film with a thickness of 60 μm, and then uses a dip coating method to support the ionic liquid in the ZIF-69 film layer and the film layer The surface (the thickness of the surface ionic liquid is as high as 240 μm, because the film thickness of the composite membrane is as high as 300 μm, the CO 2 permeability is only 5.6×10 -11 mol m -2 s -1 Pa -1 . At present, the metal organic framework membrane and ionic Liquid/metal-organic framework composite membranes generally have the problems of large membrane thickness and osmotic separation performance to be improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种离子液体/ZIF-8复合膜及其制备方法和应用。The purpose of the present invention is to provide an ionic liquid/ZIF-8 composite membrane and its preparation method and application.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:
一种离子液体/金属有机框架ZIF-8复合膜的制备方法,将离子液体、ZIF-8溶胶和ZIF-8的金属前驱体与有机配体混合,其中离子液体和ZIF-8溶胶的比例为0.2g-0.7g离子液体/10mL ZIF-8溶胶,离子液体和ZIF-8的质量比例为1:1-2:1,ZIF-8的金属前驱体和有机配体的质量比例为1:5-2:1,将上述混合液注入到装有载体的反应釜中,通过溶剂进行至少两次的热晶化,获得复合膜。A method for preparing an ionic liquid/metal organic framework ZIF-8 composite membrane, comprising mixing ionic liquid, ZIF-8 sol and ZIF-8 metal precursor with organic ligands, wherein the ratio of ionic liquid to ZIF-8 sol is 0.2g-0.7g ionic liquid/10mL ZIF-8 sol, the mass ratio of ionic liquid and ZIF-8 is 1:1-2:1, and the mass ratio of metal precursor and organic ligand of ZIF-8 is 1:5 -2:1, inject the above mixed solution into a reactor equipped with a carrier, and perform thermal crystallization at least twice through a solvent to obtain a composite membrane.
上述方法进一步的促进ZIF-8颗粒的交互生长,在APTES-修饰的片状多孔氧化铝基底上形成连续的纳米复合膜。The above method further promotes the interactive growth of ZIF-8 particles to form continuous nanocomposite films on APTES-modified sheet-like porous alumina substrates.
所述离子液体为1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐[Bmim][Tf2N];The ionic liquid is 1-butyl-3-methylimidazole bis-trifluoromethanesulfonimide salt [Bmim][Tf 2 N];
所述ZIF-8的金属前驱体与有机配体的混合液为含锌离子的溶液和含2-甲基咪唑配体的溶液;其中,所述无机锌盐和2-甲基咪唑的质量比例为:1:4-1:1。The mixed solution of the metal precursor of ZIF-8 and the organic ligand is a solution containing zinc ions and a solution containing 2-methylimidazole ligand; wherein, the mass ratio of the inorganic zinc salt and 2-methylimidazole For: 1:4-1:1.
进一步的说:Going further:
(1)ZIF-8溶胶的制备:(1) Preparation of ZIF-8 sol:
1)将无机锌盐和有机配体2-甲基咪唑分别溶于溶剂中,而后将获得两种溶解于溶剂中溶液于室温下搅拌反应,剧烈搅拌10min-24h待用;1) Dissolve the inorganic zinc salt and the organic ligand 2-methylimidazole in the solvent respectively, then obtain two solutions dissolved in the solvent and stir at room temperature for reaction, and stir vigorously for 10min-24h for use;
2)将上述反应物离心收集沉淀,洗涤后将沉淀物分散在溶剂中;进一步离心收集上清液,得到浓度为0.5-3mg/mLZIF-8溶胶;2) the above-mentioned reactant is centrifuged to collect the precipitate, and after washing, the precipitate is dispersed in the solvent; the supernatant is further collected by centrifugation to obtain a ZIF-8 sol with a concentration of 0.5-3 mg/mL;
(2)溶剂热晶化:(2) Solvent thermal crystallization:
1)反应混合液的配制:将咪唑配体溶液加入到锌离子溶液中,剧烈搅拌,形成均匀混合物;再将离子液体和上述ZIF-8溶胶加入上述混合物中,搅拌均匀;1) Preparation of the reaction mixture: adding the imidazole ligand solution to the zinc ion solution, stirring vigorously to form a uniform mixture; then adding the ionic liquid and the above-mentioned ZIF-8 sol to the above-mentioned mixture, and stirring uniformly;
2)晶化:将上述反应混合液转移到固定有预处理基底的反应釜内进行晶化,降至室温后为一次晶化,至少两次晶化反应,而后取出,用溶剂冲洗并干燥,即于基底表面形成复合膜。2) Crystallization: the above-mentioned reaction mixture is transferred to the reaction kettle fixed with the pretreatment substrate for crystallization, and after being lowered to room temperature, it is a crystallization, and at least two crystallization reactions are carried out, and then taken out, rinsed with a solvent and dried, That is, a composite film is formed on the surface of the substrate.
所述预处理基底为将基底表面打磨至表面光滑,洗涤后干燥;干燥后经HCl溶液活化,而后在惰性气体作用下经3-氨丙基三乙氧基硅烷(APTES)甲苯溶液处理1-5h,真空干燥2-5h,待用。The pretreatment substrate is to polish the surface of the substrate until the surface is smooth, wash and then dry; after drying, it is activated by HCl solution, and then treated with 3-aminopropyltriethoxysilane (APTES) toluene solution under the action of inert gas for 1- 5h, vacuum-dried for 2-5h, set aside.
所述步骤(1)中1)所述无机锌盐为六水合硝酸锌、四水合硝酸锌、乙酸锌中一种或几种;所述无机锌盐和2-甲基咪唑的质量比例为:1:4-1:1;所述溶剂和2-甲基咪唑的质量比例为20:1-60:1。In the step (1), 1) the inorganic zinc salt is one or more of zinc nitrate hexahydrate, zinc nitrate tetrahydrate, and zinc acetate; the mass ratio of the inorganic zinc salt and 2-methylimidazole is: 1:4-1:1; the mass ratio of the solvent and 2-methylimidazole is 20:1-60:1.
所述步骤(2)中1)咪唑配体溶液为2-甲基咪唑溶解至溶剂中,锌离子溶液为无机锌盐溶解至溶剂中;所述无机锌盐和2-甲基咪唑的质量比例为1:4-1:1;溶剂和2-甲基咪唑的质量比例为20:1-60:1;其中,无机锌盐为六水合硝酸锌、四水合硝酸锌、乙酸锌中的一种或几种;溶剂为水、乙醇、甲醇中的一种或几种。In the step (2), 1) the imidazole ligand solution is that 2-methylimidazole is dissolved in the solvent, and the zinc ion solution is that the inorganic zinc salt is dissolved in the solvent; the mass ratio of the inorganic zinc salt and 2-methylimidazole is It is 1:4-1:1; the mass ratio of solvent and 2-methylimidazole is 20:1-60:1; wherein, the inorganic zinc salt is a kind of zinc nitrate hexahydrate, zinc nitrate tetrahydrate and zinc acetate or several; the solvent is one or more of water, ethanol and methanol.
所述步骤(1)中1)和2)所述溶剂为水、乙醇、甲醇中的一种或几种的混合。In the step (1), the solvent in 1) and 2) is one or a mixture of water, ethanol and methanol.
所述晶化温度为100-180℃,晶化时间为4-10h。The crystallization temperature is 100-180° C., and the crystallization time is 4-10 h.
所述干燥温度为50-150℃,干燥时间为1-10h。The drying temperature is 50-150° C., and the drying time is 1-10 h.
按所述的制备方法制得的离子液体/金属有机框架ZIF-8复合膜。The ionic liquid/metal organic framework ZIF-8 composite membrane prepared according to the described preparation method.
一种纳米离子液体/ZIF-8复合膜的应用,所述复合膜在气体分离中的应用。An application of a nano-ionic liquid/ZIF-8 composite membrane, the application of the composite membrane in gas separation.
本发明具有如下优点:The present invention has the following advantages:
本发明采用一锅法,得到厚度为1μm的离子液体/ZIF-8复合膜;所得复合膜可应用于气体分离。本发明的制备方法过程简单,且开发的复合膜具有良好的气体渗透分离性能及稳定性;具体为:The invention adopts a one-pot method to obtain an ionic liquid/ZIF-8 composite membrane with a thickness of 1 μm; the obtained composite membrane can be applied to gas separation. The preparation method of the present invention has a simple process, and the developed composite membrane has good gas permeation separation performance and stability; specifically:
(1)本发明通过一锅法制备获得致密连续离子液体/ZIF-8复合膜,具体将离子液体、ZIF-8溶胶和ZIF-8的金属前驱体与有机配体混合后溶剂热晶化。该方法采用的一锅法过程简单,便于操作。离子液体的加入有利于ZIF-8颗粒之间的交互生长。(1) The present invention prepares a dense continuous ionic liquid/ZIF-8 composite membrane by a one-pot method. Specifically, the ionic liquid, ZIF-8 sol and ZIF-8 metal precursor are mixed with organic ligands and then solvothermally crystallized. The one-pot method adopted by the method is simple and easy to operate. The addition of ionic liquid is beneficial to the interactive growth between ZIF-8 particles.
(2)本发明得到的复合膜厚度仅为1μm,超薄的膜厚使其具有较高的气体渗透率及具分离因子,其H2渗透率达到1.5×10–6mol m-2s-1Pa-1,H2/CO2混合气分离因子为55,超过了Robeson上限(2008)。同时复合膜具有良好的运行稳定性,复合膜运行120h后,其H2/CO2选择分离性能保持不变。(2) The thickness of the composite membrane obtained by the present invention is only 1 μm, and the ultra-thin membrane thickness enables it to have high gas permeability and separation factor, and its H 2 permeability reaches 1.5×10 -6 mol m -2 s - 1 Pa -1 , the separation factor of H 2 /CO 2 mixture is 55, which exceeds the Robeson upper limit (2008). At the same time, the composite membrane has good operating stability, and its H 2 /CO 2 selective separation performance remains unchanged after the composite membrane runs for 120 h.
附图说明Description of drawings
图1为本发明的具体实施例1的纳米ZIF-8溶胶的TEM图片;Fig. 1 is the TEM picture of the nano ZIF-8 sol of the
图2为本发明的具体实施例1的晶化一次的离子液体/ZIF-8复合膜的SEM图像;Fig. 2 is the SEM image of the ionic liquid/ZIF-8 composite film crystallized once in the
图3为本发明的具体实施例2的晶化两次的离子液体/ZIF-8复合膜的SEM图像。FIG. 3 is a SEM image of the ionic liquid/ZIF-8 composite film crystallized twice in the specific example 2 of the present invention.
图4为本发明的具体实施例2的晶化两次的离子液体/ZIF-8复合膜的XRD谱图;Fig. 4 is the XRD spectrum of the ionic liquid/ZIF-8 composite film crystallized twice of the
图5为本发明的具体实施例2的晶化两次的离子液体/ZIF-8复合膜对单一气体(H2、CO2、N2及CH4)的渗透速率及选择性;5 is the permeation rate and selectivity of the ionic liquid/ZIF-8 composite membrane crystallized twice to a single gas (H 2 , CO 2 , N 2 and CH 4 ) according to the
图6为本发明的具体实施例2的晶化两次的ZIF-8/离子液体复合膜对H2/CO2渗透分离的稳定性(VH2:VCO2=1:1);FIG. 6 is the stability of the ZIF-8/ionic liquid composite membrane crystallized twice to H 2 /CO 2 permeation separation (V H2 : V CO2 =1:1) according to the
具体实施方式Detailed ways
本发明复合材料的制备方法包括如下步骤:ZIF-8溶胶的制备、片状多孔氧化铝基底的预处理及溶剂热晶化。本发明的复合膜具有良好的气体渗透分离性能及稳定性。The preparation method of the composite material of the present invention includes the following steps: preparation of ZIF-8 sol, pretreatment of sheet-like porous alumina substrate, and solvothermal crystallization. The composite membrane of the invention has good gas permeation separation performance and stability.
实施例1Example 1
(1)ZIF-8溶胶的制备:(1) Preparation of ZIF-8 sol:
1)将六水合硝酸锌(1.47g)和2-甲基咪唑(3.25g)分别溶于100ml无水甲醇中,即分别获得硝酸锌的甲醇溶液和2-甲基咪唑的甲醇溶液,将硝酸锌的甲醇溶液倒入2-甲基咪唑的甲醇溶液中,室温搅拌1h。1) Dissolve zinc nitrate hexahydrate (1.47g) and 2-methylimidazole (3.25g) in 100ml of anhydrous methanol, respectively, to obtain a methanol solution of zinc nitrate and a methanol solution of 2-methylimidazole, respectively. The methanol solution of zinc was poured into methanol solution of 2-methylimidazole, and the solution was stirred at room temperature for 1 h.
2)将上述反应物进行至少一次的离心使得未反应的前驱体完全去除,每次离心条件为8000-10000rpm下离心10min,收集沉淀经甲醇洗涤,洗涤后分散在甲醇中;进一步以离心条件为8000-10000rpm下离心10min收集上清液,得到ZIF-8溶胶(参见图1),其浓度为1.5mg/mL。2) The above-mentioned reactant is centrifuged at least once to completely remove the unreacted precursor, and each centrifugation condition is centrifugation at 8000-10000rpm for 10min, and the collected precipitate is washed with methanol and dispersed in methanol after washing; further, the centrifugation condition is: The supernatant was collected by centrifugation at 8000-10000 rpm for 10 min to obtain a ZIF-8 sol (see Figure 1 ) with a concentration of 1.5 mg/mL.
由图1表明,胶体溶液中的ZIF-8颗粒基本呈现单晶分散状态,ZIF-8颗粒的大小约为45nm。As shown in Figure 1, the ZIF-8 particles in the colloidal solution basically presented a single crystal dispersion state, and the size of the ZIF-8 particles was about 45 nm.
(2)片状多孔氧化铝基底的预处理:(2) Pretreatment of flaky porous alumina substrate:
1)将基底表面依次用1000目、2000目及3000目的砂纸打磨,至基底表面光滑。用乙醇和去离子水洗涤,105℃干燥10h。1) Sand the substrate surface with 1000-mesh, 2000-mesh and 3000-mesh sandpaper in turn until the substrate surface is smooth. Wash with ethanol and deionized water, and dry at 105 °C for 10 h.
2)用1mol L-1的HCl溶液对基底进行活化,然后用2mmol L-1的3-氨丙基三乙氧基硅烷(APTES)甲苯溶液在氩气保护下110℃处理2h,真空干燥2h。2) The substrate was activated with 1 mol L -1 of HCl solution, then treated with 2 mmol L -1 of 3-aminopropyltriethoxysilane (APTES) toluene solution at 110 °C for 2 h under argon protection, and vacuum dried for 2 h .
(3)溶剂热晶化:(3) Solvent thermal crystallization:
1)反应混合液的配制:0.3g六水合硝酸锌溶解在11.2g甲醇溶液中,0.66g 2-甲基咪唑加入11.2g甲醇溶液中,将所得咪唑配体溶液加入到上述锌离子溶液中,搅拌5min,混匀后得含有配体和金属离子的混合溶液;再将10mL含有离子液体[Bmim][Tf2N](0.5g)的ZIF-8溶胶加入含有配体和金属离子的混合溶液中,搅拌均匀。1) preparation of reaction mixture: 0.3g zinc nitrate hexahydrate is dissolved in 11.2g methanol solution, 0.66g 2-methylimidazole is added in 11.2g methanol solution, gained imidazole ligand solution is added in above-mentioned zinc ion solution, Stir for 5 min, and after mixing, a mixed solution containing ligands and metal ions was obtained; then 10 mL of ZIF-8 sol containing ionic liquid [Bmim][Tf 2 N] (0.5 g) was added to the mixed solution containing ligands and metal ions , stir well.
2)晶化:将上述反应混合液转移到固定有基底的反应釜内,150℃晶化5h,降至室温,晶化一次取出,用甲醇冲洗,100℃干燥2h,即于基底表面形成复合膜。2) Crystallization: The above reaction mixture was transferred to a reaction kettle with a fixed substrate, crystallized at 150°C for 5 hours, lowered to room temperature, taken out for crystallization once, rinsed with methanol, and dried at 100°C for 2 hours, that is, a composite was formed on the surface of the substrate. membrane.
由图2表明,晶化一次后,基底表面形成了一层不致密的ZIF-8膜层,存在大孔缺陷。As shown in Figure 2, after one crystallization, a non-dense ZIF-8 film layer was formed on the surface of the substrate, and there were macroporous defects.
实施例2Example 2
(1)ZIF-8溶胶的制备:(1) Preparation of ZIF-8 sol:
1)将六水合硝酸锌(1.47g)和2-甲基咪唑(3.25g)分别溶于100ml无水甲醇中,即分别获得硝酸锌的甲醇溶液和2-甲基咪唑的甲醇溶液,将硝酸锌的甲醇溶液倒入2-甲基咪唑的甲醇溶液中,室温搅拌1h。1) Dissolve zinc nitrate hexahydrate (1.47g) and 2-methylimidazole (3.25g) in 100ml of anhydrous methanol, respectively, to obtain a methanol solution of zinc nitrate and a methanol solution of 2-methylimidazole, respectively. The methanol solution of zinc was poured into the methanol solution of 2-methylimidazole, and the solution was stirred at room temperature for 1 h.
2)上述反应物进行至少一次的离心使得未反应的前驱体完全去除,每次离心条件为8000-10000rpm下离心10min,收集沉淀经甲醇洗涤,洗涤后分散在甲醇中;进一步以离心条件为8000-10000rpm下离心10min收集上清液,得到ZIF-8溶胶(参见图1),其浓度为1.5mg/mL。2) The above-mentioned reactants are centrifuged at least once so that the unreacted precursors are completely removed, and each centrifugation condition is 8000-10000rpm for 10min, and the collected precipitate is washed with methanol, and dispersed in methanol after washing; further, the centrifugation condition is 8000 rpm. The supernatant was collected by centrifugation at -10000 rpm for 10 min to obtain a ZIF-8 sol (see Figure 1 ) with a concentration of 1.5 mg/mL.
由图1表明,胶体溶液中的ZIF-8颗粒基本呈现单晶分散状态,ZIF-8颗粒的大小约为45nm。It is shown from Figure 1 that the ZIF-8 particles in the colloidal solution are basically in a single crystal dispersion state, and the size of the ZIF-8 particles is about 45 nm.
(2)片状多孔氧化铝基底的预处理:(2) Pretreatment of flaky porous alumina substrate:
1)将基底表面依次用1000目、2000目及3000目的砂纸打磨,至基底表面光滑。用乙醇和去离子水洗涤,105℃干燥10h。1) Sand the substrate surface with 1000-mesh, 2000-mesh and 3000-mesh sandpaper in turn until the substrate surface is smooth. Wash with ethanol and deionized water, and dry at 105 °C for 10 h.
2)用1mol L-1的HCl溶液对基底进行活化,然后用2mmol L-1的3-氨丙基三乙氧基硅烷(APTES)甲苯溶液在氩气保护下110℃处理2h,真空干燥2h。2) The substrate was activated with 1 mol L -1 of HCl solution, then treated with 2 mmol L -1 of 3-aminopropyltriethoxysilane (APTES) toluene solution at 110 °C for 2 h under argon protection, and vacuum dried for 2 h .
(3)溶剂热晶化:(3) Solvent thermal crystallization:
1)反应混合液的配制:0.3g六水合硝酸锌溶解在11.2g甲醇溶液中,0.66g 2-甲基咪唑加入11.2g甲醇溶液中,将所得咪唑配体溶液加入到上述锌离子溶液中,搅拌5min,混匀后得含有配体和金属离子的混合溶液;再将10mL含有离子液体[Bmim][Tf2N](0.5g)的ZIF-8溶胶加入含有配体和金属离子的混合溶液中,搅拌均匀。1) preparation of reaction mixture: 0.3g zinc nitrate hexahydrate is dissolved in 11.2g methanol solution, 0.66g 2-methylimidazole is added in 11.2g methanol solution, gained imidazole ligand solution is added in above-mentioned zinc ion solution, Stir for 5 min, and after mixing, a mixed solution containing ligands and metal ions was obtained; then 10 mL of ZIF-8 sol containing ionic liquid [Bmim][Tf 2 N] (0.5 g) was added to the mixed solution containing ligands and metal ions , stir well.
2)晶化:将反应混合液转移到固定有基底的反应釜内,150℃晶化5h,降至室温为一次晶化,而后再次按照该过程进行晶化,晶化后取出两次晶化后产物,用甲醇冲洗,100℃干燥2h,即于基底表面形成复合膜。2) Crystallization: transfer the reaction mixture into a reaction kettle with a fixed substrate, crystallize at 150° C. for 5 hours, then drop to room temperature for one crystallization, and then perform crystallization again according to this process, and take out two crystallizations after crystallization The final product was rinsed with methanol and dried at 100 °C for 2 h, that is, a composite film was formed on the surface of the substrate.
由图3表明离子液体/金属有机框架ZIF-8复合膜层连续致密,复合膜的厚度约为1μm,膜层与基底之间没有明显的分层界面。Figure 3 shows that the ionic liquid/metal organic framework ZIF-8 composite film layer is continuous and dense, the thickness of the composite film is about 1 μm, and there is no obvious delamination interface between the film layer and the substrate.
由图4表明复合膜中的ZIF-8具有非常高的纯度及结晶度,并且少量的离子液体的加入对ZIF-8的晶体结构无影响。Figure 4 shows that the ZIF-8 in the composite membrane has very high purity and crystallinity, and the addition of a small amount of ionic liquid has no effect on the crystal structure of ZIF-8.
对离子液体/金属有机框架ZIF-8复合膜进行单一气体(H2、CO2、N2或CH4)的渗透分离性能测试,测试条件:温度25℃,进气侧压力为1bar。The permeation separation performance test of single gas (H 2 , CO 2 , N 2 or CH 4 ) was carried out on the ionic liquid/metal organic framework ZIF-8 composite membrane.
由图5表明,复合膜具有良好的H2/CO2分离性能,复合膜对H2具有较高的渗透率1.43×10-6mol m-2s-1Pa-1,H2/CO2、H2/N2、H2/CH4理想分离因子分别为68.6、25、25.5。Figure 5 shows that the composite membrane has good H 2 /CO 2 separation performance, the composite membrane has a high permeability to H 2 1.43×10 -6 mol m -2 s -1 Pa -1 , H 2 /CO 2 The ideal separation factors of , H 2 /N 2 and H 2 /CH 4 are 68.6, 25 and 25.5, respectively.
对离子液体/金属有机框架ZIF-8复合膜进行H2/CO2混合气体分离运行稳定性的测试,测试条件:H2/CO2混合气体积比为1:1,温度25℃,进气侧压力为1bar。The ionic liquid/metal organic framework ZIF-8 composite membrane was tested for the operation stability of H 2 /CO 2 mixed gas separation. Test conditions: H 2 /CO 2 mixed gas volume ratio of 1:1,
由图6表明,复合膜运行120h后H2/CO2选择分离性能保持不变,具有良好的稳定性。It is shown in Figure 6 that the selective separation performance of H 2 /CO 2 remains unchanged after the composite membrane runs for 120 h, with good stability.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910609556.3A CN112191111B (en) | 2019-07-08 | 2019-07-08 | An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910609556.3A CN112191111B (en) | 2019-07-08 | 2019-07-08 | An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112191111A CN112191111A (en) | 2021-01-08 |
CN112191111B true CN112191111B (en) | 2022-06-28 |
Family
ID=74004789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910609556.3A Active CN112191111B (en) | 2019-07-08 | 2019-07-08 | An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112191111B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113813801B (en) * | 2021-09-28 | 2023-06-06 | 浙江工商大学 | A mixed matrix ultrafiltration membrane doped with ZIFs@polyionic liquid composite and its preparation method |
CN114177788A (en) * | 2021-12-01 | 2022-03-15 | 河北大学 | ZIF-8 tube-modified ultrathin nanocomposite film, its preparation method and application |
CN114272726B (en) * | 2021-12-22 | 2023-01-17 | 惠州市绿色能源与新材料研究院 | Method for efficiently separating ammonia-containing gas based on ionic liquid mixed matrix membrane |
CN116351265B (en) * | 2022-01-17 | 2024-06-07 | 中国科学院过程工程研究所 | Preparation and application of a high-performance mixed matrix gas separation membrane based on ionic liquid coordination |
CN116426272B (en) * | 2023-02-23 | 2024-07-09 | 华南理工大学 | Fluorescent Au NCs@ZIF-8 cellulose paper base and preparation method and application thereof |
CN118054046B (en) * | 2024-01-18 | 2024-09-27 | 江苏大学 | A hybrid metal organic framework high temperature proton exchange membrane and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101890305A (en) * | 2010-04-01 | 2010-11-24 | 大连理工大学 | A kind of preparation method of metal organic framework film |
CN104108722A (en) * | 2013-04-18 | 2014-10-22 | 中国科学院大连化学物理研究所 | Preparation method for ZIF-8 membrane supported by porous alumina carrier |
CN104772165A (en) * | 2014-04-22 | 2015-07-15 | 北京林业大学 | A kind of hydrogenation catalyst based on ZIF-8 material and its synthesis method |
CN109069986A (en) * | 2015-09-30 | 2018-12-21 | 挪威科技大学 | For separating CO from mixed gaseous feeding flow2The composite membrane comprising porous layer and non-porous selective polymerisation nitride layer membrane contactor |
CN109663512A (en) * | 2018-12-13 | 2019-04-23 | 石河子大学 | The mixed substrate membrane containing nano-grade molecular sieve and preparation method and application of ionic liquid@hollow polyhedron filling |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100864313B1 (en) * | 2007-05-21 | 2008-10-20 | 한국화학연구원 | Surface functionalization and application of porous organic-inorganic hybrids or mesoporous bodies having unsaturated metal sites |
-
2019
- 2019-07-08 CN CN201910609556.3A patent/CN112191111B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101890305A (en) * | 2010-04-01 | 2010-11-24 | 大连理工大学 | A kind of preparation method of metal organic framework film |
CN104108722A (en) * | 2013-04-18 | 2014-10-22 | 中国科学院大连化学物理研究所 | Preparation method for ZIF-8 membrane supported by porous alumina carrier |
CN104772165A (en) * | 2014-04-22 | 2015-07-15 | 北京林业大学 | A kind of hydrogenation catalyst based on ZIF-8 material and its synthesis method |
CN109069986A (en) * | 2015-09-30 | 2018-12-21 | 挪威科技大学 | For separating CO from mixed gaseous feeding flow2The composite membrane comprising porous layer and non-porous selective polymerisation nitride layer membrane contactor |
CN109663512A (en) * | 2018-12-13 | 2019-04-23 | 石河子大学 | The mixed substrate membrane containing nano-grade molecular sieve and preparation method and application of ionic liquid@hollow polyhedron filling |
Non-Patent Citations (2)
Title |
---|
"Room temperature ionic liquid/ZIF-8mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture";Lin Hao et al.,;《Journal of Membrane Science》;20130601;第436卷;第221-231页 * |
"离子热合成金属-有机骨架材料最新研究进展";肖冰心等;《化工进展》;20140905;第33卷(第9期);第2363-2371页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112191111A (en) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112191111B (en) | An ionic liquid/metal organic framework ZIF-8 composite membrane and its preparation method and application | |
Shamsaei et al. | Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support | |
Ataee-Esfahani et al. | Rational synthesis of Pt spheres with hollow interior and nanosponge shell using silica particles as template | |
Guo et al. | Combining coordination modulation with acid–base adjustment for the control over size of metal–organic frameworks | |
CN105126638B (en) | A kind of preparation method of reverse diffusion primary reconstruction MOFs NF membranes | |
Zhang et al. | Self-assembly of defect-free polymer-based zeolite imidazolate framework composite membranes with metal-phenolic networks for high efficient H2/CH4 separation | |
CN105233702B (en) | A kind of utilization cobalt nano-array layer conversion forms the preparation method of the films of metal organic framework ZIF 67 | |
CN108295672B (en) | A kind of preparation method of metal organic framework ZIF-8 film | |
CN107158964B (en) | Composite membrane material based on metal organic framework nanosheets and graphene oxide, preparation method and application in gas separation | |
CN107215863A (en) | The method that one kind prepares the composite porous hydrogels of graphene/MOF and aeroge | |
Pan et al. | Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets | |
CN105879708B (en) | A kind of method for preparing the metal organic framework films of Co ZIF 67 using not homologous zinc oxide film induction | |
CN105797594A (en) | Simple solvothermal growth method for preparing oriented growing metal organic skeleton nanometer slice film | |
CN111282405A (en) | Modified metal organic framework nanosheet and preparation method thereof | |
CN108409979A (en) | A kind of cuprous oxide-metal organic frame composite material and preparation method | |
Nian et al. | Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation | |
CN110270234A (en) | A kind of graphene oxide/metal organic frame composite membrane and preparation method and application | |
CN111715254A (en) | A kind of preparation method of nitrogen-modified porous carbon-coated cobalt nanoparticle catalyst | |
Guo et al. | Self–confined synthesis of HKUST‐1 membranes from CuO nanosheets at room temperature | |
CN108704491A (en) | The method that steam gel method prepares laminated metal organic framework film | |
CN107602474A (en) | A kind of method that template prepares the metal organic framework film with specific orientation | |
WO2021090103A1 (en) | Mxene-derived metal-organic frameworks and method | |
CN111533921A (en) | Preparation method of ZIF-8 nano platelet and ultrathin film thereof | |
Shi et al. | Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions | |
Kim et al. | Nucleation and growth of oriented metal-organic framework thin films on thermal SiO2 surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |