CN112187261B - Digital-to-analog converter and compensation circuit - Google Patents
Digital-to-analog converter and compensation circuit Download PDFInfo
- Publication number
- CN112187261B CN112187261B CN201910597486.4A CN201910597486A CN112187261B CN 112187261 B CN112187261 B CN 112187261B CN 201910597486 A CN201910597486 A CN 201910597486A CN 112187261 B CN112187261 B CN 112187261B
- Authority
- CN
- China
- Prior art keywords
- compensation
- code
- current
- digital
- switches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种数字模拟转换装置以及补偿电路,尤其涉及一种具有恒定的参考电压值的数字模拟转换装置以及补偿电路。The invention relates to a digital-to-analog conversion device and a compensation circuit, in particular to a digital-to-analog conversion device and a compensation circuit with a constant reference voltage value.
背景技术Background technique
请参考图1,图1是现有的一种阶梯型数字模拟转换器的电路示意图。一般来说,现行的阶梯型数字模拟转换器(R2R digital-to-analog converter,R2R DAC)410是通过参考电压Vref以及数字码Din来产生对应于数字码Din的模拟输出信号Aout。对于具有高解析度需求的阶梯型数字模拟转换器410而言,参考电压Vref是影响阶梯型数字模拟转换器410性能的重要参数。参考电压Vref是由参考电流Iref、系统电源VDD以及布线电阻Rp所决定。然而,参考电流Iref会依据数字码Din而产生电流值的起伏。这样的参考电流Iref起伏会造成参考电压Vref不稳定,进而降低阶梯型数字模拟转换器410的解析度以及性能,例如是信号噪声和失真比(signal plus noise and distortion,SINAD)、无杂散动态范围(spurious free dynamic range,SFDR)等。Please refer to FIG. 1 . FIG. 1 is a schematic circuit diagram of a conventional ladder-type digital-to-analog converter. Generally speaking, the current ladder-type digital-to-analog converter (R2R DAC) 410 generates an analog output signal Aout corresponding to the digital code Din through the reference voltage Vref and the digital code Din. For the ladder-
发明内容Contents of the invention
本发明提供一种具有恒定的参考电压的数字模拟转换装置以及补偿电路。The invention provides a digital-to-analog conversion device and a compensation circuit with a constant reference voltage.
本发明的数字模拟转换装置包括阶梯型数字模拟转换器以及补偿电路。阶梯型数字模拟转换器经配置以接收具有多个比特的数字码以及接收参考电压,并依据参考电压将数字码转换为模拟输出信号。参考电压是依据参考电流而被产生。参考电流具有对应于数字码的电流值起伏。补偿电路耦接于阶梯型数字模拟转换器。补偿电路经配置以接收数字码,依据电流值起伏对数字码进行解码以产生具有多个比特的补偿码,并且依据补偿码对参考电流的电流值进行补偿以产生经补偿参考电流。经补偿参考电流对应于不同的数字码具有恒定的电流值。The digital-to-analog conversion device of the present invention includes a ladder-type digital-to-analog converter and a compensation circuit. The ladder-type digital-to-analog converter is configured to receive a digital code with a plurality of bits and a reference voltage, and convert the digital code into an analog output signal according to the reference voltage. The reference voltage is generated according to the reference current. The reference current has a current value fluctuation corresponding to the digital code. The compensation circuit is coupled to the ladder-type digital-to-analog converter. The compensation circuit is configured to receive the digital code, decode the digital code according to the fluctuation of the current value to generate a compensation code with a plurality of bits, and compensate the current value of the reference current according to the compensation code to generate a compensated reference current. The compensated reference current has a constant current value corresponding to different digital codes.
本发明的补偿电路适用于阶梯型数字模拟转换器。阶梯型数字模拟转换器经配置以接收具有多个比特的数字码以及接收参考电压并依据参考电压将数字码转换为模拟输出信号。参考电压是依参考电流而被产生。参考电流具有对应于数字码的电流值起伏。补偿电路经配置以接收数字码并依据电流值起伏对数字码进行解码以产生具有多个比特的补偿码。补偿电路还经配置以依据补偿码对参考电流的电流值进行补偿以产生经补偿参考电流。经补偿参考电流对应于不同的数字码具有恒定的电流值。The compensation circuit of the present invention is suitable for ladder-type digital-to-analog converters. The ladder-type digital-to-analog converter is configured to receive a digital code with a plurality of bits and receive a reference voltage and convert the digital code into an analog output signal according to the reference voltage. The reference voltage is generated according to the reference current. The reference current has a current value fluctuation corresponding to the digital code. The compensation circuit is configured to receive the digital code and decode the digital code according to the fluctuation of the current value to generate a compensation code with a plurality of bits. The compensation circuit is also configured to compensate the current value of the reference current according to the compensation code to generate a compensated reference current. The compensated reference current has a constant current value corresponding to different digital codes.
基于上述,本发明的数字模拟转换装置以及补偿电路依据参考电流对应于数字码的电流值起伏对数字码进行解码以产生补偿码,并且依据补偿码对参考电流的电流值进行补偿以产生经补偿参考电流。参考电流可具有对应于不同的数字码的恒定电流值。如此一来,参考电压可具有恒定的电压值。Based on the above, the digital-to-analog conversion device and the compensation circuit of the present invention decode the digital code according to the current value fluctuation of the reference current corresponding to the digital code to generate a compensation code, and compensate the current value of the reference current according to the compensation code to generate a compensated reference current. The reference current may have constant current values corresponding to different digital codes. In this way, the reference voltage can have a constant voltage value.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1是现有的一种阶梯型数字模拟转换器的电路示意图。FIG. 1 is a schematic circuit diagram of an existing ladder-type digital-to-analog converter.
图2是依据本发明的第一实施例的数字模拟转换装置的电路示意图。FIG. 2 is a schematic circuit diagram of a digital-to-analog conversion device according to a first embodiment of the present invention.
图3是依据本发明的第二实施例的数字模拟转换装置的电路示意图。FIG. 3 is a schematic circuit diagram of a digital-to-analog conversion device according to a second embodiment of the present invention.
图4是依据本发明一实施例所示出的参考电流、第一补偿电流以及经补偿参考电流对应于数字码值的电流值示意图。FIG. 4 is a schematic diagram showing current values corresponding to digital code values of the reference current, the first compensation current and the compensated reference current according to an embodiment of the present invention.
图5是依据本发明的第三实施例的数字模拟转换装置的电路示意图。FIG. 5 is a schematic circuit diagram of a digital-to-analog conversion device according to a third embodiment of the present invention.
图6是依据本发明一实施例所示出的参考电流、第一补偿电流、第二补偿电流以及经补偿参考电流对应于数字码值的电流值示意图。FIG. 6 is a schematic diagram showing current values of the reference current, the first compensation current, the second compensation current and the compensated reference current corresponding to digital code values according to an embodiment of the present invention.
附图标号说明:Explanation of reference numbers:
100、200、300:数字模拟转换装置100, 200, 300: digital to analog conversion device
110、410:阶梯型数字模拟转换器110, 410: Ladder-type digital-to-analog converter
120、220、320:补偿电路120, 220, 320: compensation circuit
Dcmp:补偿码Dcmp: compensation code
Iref_cmp:经补偿参考电流Iref_cmp: Compensated reference current
Icmp:补偿电流Icmp: compensation current
Vref:参考电压Vref: reference voltage
D1:第一数字码值D1: first digital code value
D2:第二数字码值D2: second digital code value
Din:数字码Din: digital code
Aout:模拟输出信号Aout: Analog output signal
Iref:参考电流Iref: reference current
VDD:系统电源VDD: system power supply
Rp:布线电阻Rp: wiring resistance
222、322:第一解码器222, 322: first decoder
224、324:第一补偿电流产生器224, 324: the first compensation current generator
Ain:第一补偿码Ain: first compensation code
Icmp1:第一补偿电流Icmp1: first compensation current
SW1_0~SW1_m:第一开关SW1_0~SW1_m: first switch
R1_0~R1_m:第一补偿电阻R1_0~R1_m: the first compensation resistor
326:第二解码器326: second decoder
328:第二补偿电流产生器328: second compensation current generator
Bin:第二补偿码Bin: the second compensation code
Icmp2:第二补偿电流Icmp2: second compensation current
SW2_0~SW2_n:第二开关SW2_0~SW2_n: the second switch
R2_0~R2_n:第二补偿电阻R2_0~R2_n: the second compensation resistor
具体实施方式Detailed ways
请参考图2,图2是依据本发明的第一实施例的数字模拟转换装置的示意图。在本实施例中,数字模拟转换装置100包括阶梯型数字模拟转换器110以及补偿电路120。阶梯型数字模拟转换器110经配置以接收具有多个比特的数字码Din以及接收参考电压Vref,并依据参考电压Vref将数字码Din转换为模拟输出信号Aout。阶梯型数字模拟转换器110经由参考电压输入端接收参考电压Vref。参考电压Vref是依据参考电流Iref而被产生。举例来说,参考电流Iref流经布线电阻Rp会产生一电压降。参考电压Vref是系统电源VDD与上述电压降的差值。参考电流Iref具有对应于数字码Din的电流值起伏。上述的电流值起伏可例如是阶梯型数字模拟转换器110在制作过程中被获得、在测试过程中被获得、或者是由模拟获得。补偿电路120耦接于阶梯型数字模拟转换器110。补偿电路120经配置以接收数字码Din,依据电流值起伏对数字码Din进行解码以产生具有多个比特的补偿码Dcmp,并且依据补偿码Dcmp对参考电流Iref的电流值进行补偿以产生经补偿参考电流Iref_cmp。举例来说,补偿电路120耦接于参考电压输入端。补偿电路120会依据补偿码Dcmp产生补偿电流Icmp。数字模拟转换装置100则加总补偿电流Icmp以及参考电流Iref以产生经补偿参考电流Iref_cmp。Please refer to FIG. 2 , which is a schematic diagram of a digital-to-analog conversion device according to a first embodiment of the present invention. In this embodiment, the digital-to-
在本实施例中,经补偿参考电流Iref_cmp对应于不同的数字码Din具有恒定的电流值。也就是说,经补偿参考电流Iref_cmp的电流值不会随着数字码Din的改变而改变。In this embodiment, the compensated reference current Iref_cmp has a constant current value corresponding to different digital codes Din. That is to say, the current value of the compensated reference current Iref_cmp will not change with the change of the digital code Din.
在本实施例中,由于经补偿参考电流Iref_cmp的电流值对应于不同的数字码Din是恒定的,因此经补偿参考电流Iref_cmp流经布线电阻Rp所造成的电压降也是恒定的。如此一来,阶梯型数字模拟转换器110可接收到恒定的参考电压Vref。阶梯型数字模拟转换器可接收到恒定的参考电压,藉以提高阶梯型数字模拟转换器的解析度以及信号噪声和失真比(signal plus noise and distortion,SINAD)、无杂散动态范围(spurious freedynamic range,SFDR)等性能。In this embodiment, since the current value of the compensated reference current Iref_cmp is constant corresponding to different digital codes Din, the voltage drop caused by the compensated reference current Iref_cmp flowing through the wiring resistor Rp is also constant. In this way, the ladder-type digital-to-
在本实施例中,阶梯型数字模拟转换器110以及补偿电路120是连接到参考接地端,并将参考接地端的电位作为参考低电压电平。在一些实施例中,数字模拟转换装置100还可以包括布线参考电阻(未示出)。布线参考电阻的第一端耦接至阶梯型数字模拟转换器110以及补偿电路120。布线参考电阻的第二端耦接至参考接地端。布线参考电阻用以依据布线参考电阻的电阻值在布线参考电阻的第一端提供参考低电压电平。阶梯型数字模拟转换器110以及补偿电路120接收到较为稳定的参考低电压电平。In this embodiment, the ladder-type digital-to-
进一步来说明,请同时参考图3以及图4,图3是依据本发明的第二实施例的数字模拟转换装置的电路示意图。图4是依据本发明一实施例所示出的参考电流、第一补偿电流以及经补偿参考电流对应于数字码值的电流值示意图。在本实施例中,数字模拟转换装置200包括阶梯型数字模拟转换器110以及补偿电路220。补偿电路220包括第一解码器222以及第一补偿电流产生器224。第一解码器222经配置以接收数字码Din,并且对数字码Din进行解码以产生补偿码(如第一实施例的补偿码Dcmp)的第一补偿码Ain。第一补偿码Ain具有多个比特。第一补偿码Ain的比特数与数字码Din的比特数可以是相同的或者是不相同的。在本实施例中,第一解码器222的设计中,所需要的逻辑门的阶数(gate stage)低于6阶。如此一来,数字模拟转换装置200能够在高频(7.2GHz以上)条件下工作。第一补偿电流产生器224耦接于第一解码器222以及参考电压输入端。第一补偿电流产生器224经配置以接收第一补偿码Ain,并依据第一补偿码Ain产生对应于数字码Din的第一补偿电流Icmp1。For further explanation, please refer to FIG. 3 and FIG. 4 at the same time. FIG. 3 is a schematic circuit diagram of a digital-to-analog conversion device according to a second embodiment of the present invention. FIG. 4 is a schematic diagram showing current values corresponding to digital code values of the reference current, the first compensation current and the compensated reference current according to an embodiment of the present invention. In this embodiment, the digital-to-
在本实施例中,参考电流Iref在数字码Din的数字码值中的第一数字码值D1与第二数字码值D2之间的数字码值区段具有电流值起伏的第一阶电流值起伏。在此举例来说,在上述的数字码值区段中,参考电流Iref的电流值会随着数字码值的增加而增加,例如是由5.5毫安培增加到7.5毫安培。接下来,则随着数字码值的增加而降低,例如是由7.5毫安培降低到5.5毫安培。在上述的第一阶电流值起伏被获知后,第一解码器222以及第一补偿电流产生器224会依据上述的第一阶电流值起伏被设计为提供如图4所示的第一补偿电流Icmp1的电流值的结果。第一补偿电流Icmp1可用以补偿参考电流Iref,藉以消除第一阶电流值起伏。不同的阶梯型数字模拟转换器110的设计可能会有不同的第一补偿码Ain。第一解码器222以及第一补偿电流产生器224的设计可能也不同。In this embodiment, the digital code value section between the first digital code value D1 and the second digital code value D2 of the reference current Iref in the digital code value of the digital code Din has a first-order current value with current value fluctuations ups and downs. For example, in the above-mentioned digital code value section, the current value of the reference current Iref increases with the increase of the digital code value, for example, increases from 5.5 mA to 7.5 mA. Next, it decreases as the value of the digital code increases, for example, from 7.5 milliamperes to 5.5 milliamperes. After the above-mentioned first-order current value fluctuation is known, the
在本实施例中,第一补偿电流Icmp1的电流值起伏被设计为与第一阶电流值起伏呈现负相关。如此一来,数字模拟转换装置200可加总第一补偿电流Icmp1以及参考电流Iref以产生经补偿参考电流Iref_cmp。经补偿参考电流Iref_cmp在不同的数字码值具有相同的电流值,例如是7.5或8毫安培。In this embodiment, the current fluctuation of the first compensation current Icmp1 is designed to be negatively correlated with the first-order current fluctuation. In this way, the digital-to-
详细来说明第一补偿电流Icmp1的产生方式,在本实施例中,第一补偿电流产生器224包括m+1个第一开关SW1_0~SW1_m以及m+1个第一补偿电阻R1_0~R1_m。第一开关SW1_0~SW1_m的第一端分别耦接于参考电压输入端。第一开关SW1_0~SW1_m的控制端分别耦接于第一解码器222以接收第一补偿码Ain的不同比特码。举例来说,第一开关SW1_0~SW1_m的数量等于第一补偿码Ain的比特数。第一开关SW1_0的控制端用以接收第一补偿码Ain的第0比特码。第一开关SW1_1的控制端用以接收第一补偿码Ain的第1比特码。第一开关SW1_2的控制端用以接收第一补偿码Ain的第2比特码。第一开关SW1_m的控制端用以接收第一补偿码Ain的第m比特码。本发明并不受限于此例。To describe the generation method of the first compensation current Icmp1 in detail, in this embodiment, the first compensation
第一补偿电阻R1_0~R1_m的第一端与第一开关SW1_0~SW1_m的第二端进行一对一的耦接。第一补偿电阻R1_0~R1_m的第二端分别耦接到参考接地端。举例来说,第一补偿电阻R1_0的第一端耦接到第一开关SW1_0的第二端。第一补偿电阻R1_1的第一端耦接到第一开关SW1_1的第二端。第一补偿电阻R1_2的第一端耦接到第一开关SW1_2的第二端。第一补偿电阻R1_m的第一端耦接到第一开关SW1_m的第二端。The first ends of the first compensation resistors R1_0 ˜ R1_m are coupled to the second ends of the first switches SW1_0 ˜ SW1_m in a one-to-one manner. The second ends of the first compensation resistors R1_0˜R1_m are respectively coupled to the reference ground. For example, the first end of the first compensation resistor R1_0 is coupled to the second end of the first switch SW1_0 . A first end of the first compensation resistor R1_1 is coupled to a second end of the first switch SW1_1. A first end of the first compensation resistor R1_2 is coupled to a second end of the first switch SW1_2. A first end of the first compensation resistor R1_m is coupled to a second end of the first switch SW1_m.
在本实施例中,第一开关SW1_0~SW1_m可以是由至少一个晶体管开关来实现。第一开关SW1_0~SW1_m分别会依据第一补偿码Ain被导通或被断开。第一补偿电流产生器224会依据第一补偿码Ain导通或断开第一开关SW1_0~SW1_m,并且通过被导通的第一开关决定出第一补偿电阻的并联数量以提供第一补偿电阻值。第一补偿电流产生器224可依据第一补偿电阻值提供第一补偿电流Icmp1。第一补偿电流Icmp1会从参考电压输入端流经第一补偿电流产生器224,并且流向参考接地端。举例来说,在第一数字码值D1与第二数字码值D2之间的数字码值区段中,当参考电流Iref对应于第三数字码值具有较低的电流值时,第一解码器222会对第三数字码值进行解码以产生用以指示提高第一补偿电流Icmp1的电流值的第一补偿码Ain。第一补偿电流产生器224会依据第一补偿码Ain提高第一补偿电阻的并联数量以提供较低的第一补偿电阻值,藉以提高第一补偿电流Icmp1的电流值。另一方面,当参考电流Iref对应于第四数字码值具有较低的电流值时,第一解码器222会对第四数字码值进行解码以产生用以指示降低第一补偿电流Icmp1的电流值的第一补偿码Ain。第一补偿电流产生器224会依据第一补偿码Ain降低第一补偿电阻的并联数量以提供较高的第一补偿电阻值,藉以降低第一补偿电流Icmp1的电流值。In this embodiment, the first switches SW1_0 - SW1_m may be implemented by at least one transistor switch. The first switches SW1_0 - SW1_m are respectively turned on or turned off according to the first compensation code Ain. The first compensation
请同时参考图5以及图6,图5是依据本发明的第三实施例的数字模拟转换装置的电路示意图。图6是依据本发明一实施例所示出的参考电流、第一补偿电流、第二补偿电流以及经补偿参考电流对应于数字码值的电流值示意图。在本实施例中,数字模拟转换装置300包括阶梯型数字模拟转换器110以及补偿电路320。补偿电路320包括第一解码器322、第一补偿电流产生器324、第二解码器326以及第二补偿电流产生器328。第一解码器322以及第一补偿电流产生器324的实施细节以及第一补偿电流Icmp1的产生方式可以在第二实施例的实施内容中获致足够的教示,因此不在此重述。在本实施例中,参考电流Iref的第一阶电流值起伏中具有多个第二阶电流值起伏包(pack)。多个第二阶电流值起伏包的产生是因为阶梯型数字模拟转换器110的设计被改变,例如是阶梯型数字模拟转换器110增加了热码编码(thermometer-coded)电路。因此,相对于第二实施例,本实施例为了消除第二阶电流值起伏包则增加了第二解码器326以及第二补偿电流产生器328。Please refer to FIG. 5 and FIG. 6 at the same time. FIG. 5 is a schematic circuit diagram of a digital-to-analog conversion device according to a third embodiment of the present invention. FIG. 6 is a schematic diagram showing current values of the reference current, the first compensation current, the second compensation current and the compensated reference current corresponding to digital code values according to an embodiment of the present invention. In this embodiment, the digital-to-
上述的第一阶电流值起伏以及第二阶电流值起伏包可例如是阶梯型数字模拟转换器110在制作过程中被获得、在测试过程中被获得、或者是由模拟获得。上述的第一阶电流值起伏以及第二阶电流值起伏包被获知后,第一解码器322、第一补偿电流产生器324、第二解码器326以及第二补偿电流产生器328会依据上述的第一阶电流值起伏以及第二阶电流值起伏包被设计为提供如图6所示的第一补偿电流Icmp1的电流值的结果以及第二补偿电流Icmp2的电流值的结果。The above-mentioned first-order current fluctuation and second-order current fluctuation package can be obtained, for example, during the manufacturing process of the ladder-type digital-to-
在本实施例中,第二解码器326经配置以接收数字码Din,并且对数字码Din进行解码以产生补偿码(如第一实施例的补偿码Dcmp)的第二补偿码Bin。第二补偿码Bin具有多个比特。在本实施例中,第二解码器326的设计中,所需要的逻辑门的阶数低于6阶。如此一来,数字模拟转换装置300能够在高频(7.2GHz以上)条件下工作。第二补偿电流产生器328耦接于第二解码器326以及参考电压输入端。第二补偿电流产生器328经配置以接收第二补偿码Bin,并依据第二补偿码Bin产生对应于数字码Din的第二补偿电流Icmp2。第二补偿电流Icmp2用以消除第二阶电流值起伏包。In this embodiment, the
在本实施例中,第二补偿电流Icmp2的电流值起伏被设计为与第二阶电流值起伏包呈现负相关。因此,数字模拟转换装置300可加总第二补偿电流Icmp2以及如图6所示的参考电流Iref以消除第二阶电流值起伏包。参考电流Iref的第二阶电流值起伏包被消除后,参考电流Iref对应于数字码值的电流值的结果会相等或相似于如图4所示的参考电流Iref对应于数字码值的电流值的结果。也就是说,数字模拟转换装置300可加总如图6所示的第一补偿电流Icmp1、第二补偿电流Icmp2以及参考电流Iref以产生经补偿参考电流Iref_cmp。在本实施例中,不同的阶梯型数字模拟转换器110的设计可能会有不同的第一补偿码Ain以及不同的第二补偿码Bin。第一解码器322、第一补偿电流产生器324、第二解码器326以及第二补偿电流产生器328的设计可能也不同。In this embodiment, the current fluctuation of the second compensation current Icmp2 is designed to be negatively correlated with the second-order current fluctuation. Therefore, the digital-to-
详细来说明第二补偿电流Icmp2的产生方式,在本实施例中,第二补偿电流产生器328包括n+1个第二开关SW2_0~SW2_n以及n+1个第二补偿电阻R2_0~R2_n。第二开关SW2_0~SW2_n的第一端分别耦接于参考电压输入端。第二开关SW2_0~SW2_n的控制端分别耦接于第二解码器326以接收第二补偿码Bin的不同比特码。举例来说,第二开关SW2_0~SW2_n的数量等于第二补偿码Bin的比特数。第二开关SW2_0的控制端用以接收第二补偿码Bin的第0比特码。第二开关SW2_1的控制端用以接收第二补偿码Bin的第1比特码。第二开关SW2_2的控制端用以接收第二补偿码Bin的第2比特码。第二开关SW2_n的控制端用以接收第二补偿码Bin的第n比特码。本发明并不受限于此例。To describe the generation method of the second compensation current Icmp2 in detail, in this embodiment, the second compensation
第二补偿电阻R2_0~R2_n的第一端与第二开关SW2_0~SW2_n的第二端进行一对一的耦接。第二补偿电阻R2_0~R2_n的第二端分别耦接到参考接地端。举例来说,第二补偿电阻R2_0的第一端耦接到第二开关SW2_0的第二端。第二补偿电阻R2_1的第一端耦接到第二开关SW2_1的第二端。第二补偿电阻R2_2的第一端耦接到第二开关SW2_2的第二端。第二补偿电阻R2_n的第一端耦接到第二开关SW2_n的第二端。The first ends of the second compensation resistors R2_0 ˜ R2_n are coupled to the second ends of the second switches SW2_0 ˜ SW2_n in a one-to-one manner. Second ends of the second compensation resistors R2_0˜R2_n are respectively coupled to the reference ground. For example, the first end of the second compensation resistor R2_0 is coupled to the second end of the second switch SW2_0 . A first end of the second compensation resistor R2_1 is coupled to a second end of the second switch SW2_1. A first end of the second compensation resistor R2_2 is coupled to a second end of the second switch SW2_2. A first end of the second compensation resistor R2_n is coupled to a second end of the second switch SW2_n.
在本实施例中,第二开关SW2_0~SW2_n可以是由至少一个晶体管开关来实现。第二开关SW2_0~SW2_n分别会依据第二补偿码Bin被导通或被断开。第二补偿电流产生器328会依据第二补偿码Bin导通或断开第二开关SW2_0~SW2_n,并且通过被导通的第二开关决定出第二补偿电阻的并联数量以提供第二补偿电阻值。第二补偿电流产生器328可依据第二补偿电阻值提供第二补偿电流Icmp2。第二补偿电流Icmp2会从参考电压输入端流经第二补偿电流产生器328,并且流向参考接地端。In this embodiment, the second switches SW2_0 - SW2_n may be implemented by at least one transistor switch. The second switches SW2_0˜SW2_n are respectively turned on or turned off according to the second compensation code Bin. The second compensation
在一些实施例中,第一解码器322以及第二解码器326可以被整合为单一个解码电路。也就是说,上述的解码电路能依据对数字码Din进行解码以产生第一补偿码Ain以及第二补偿码Bin。In some embodiments, the
综上所述,本发明的数字模拟转换装置以及补偿电路依据参考电流对应于数字码的电流值起伏对数字码进行解码以产生补偿码,并且依据补偿码对参考电流的电流值进行补偿以产生经补偿参考电流。因此,参考电流可具有对应于不同的数字码的恒定电流值。如此一来,阶梯型数字模拟转换器可接收到恒定的参考电压,藉以提高阶梯型数字模拟转换器的解析度,以及SINAD、SFDR等性能。In summary, the digital-to-analog conversion device and the compensation circuit of the present invention decode the digital code according to the current value fluctuation of the reference current corresponding to the digital code to generate a compensation code, and compensate the current value of the reference current according to the compensation code to generate Compensated reference current. Therefore, the reference current may have constant current values corresponding to different digital codes. In this way, the ladder-type DAC can receive a constant reference voltage, thereby improving the resolution of the ladder-type DAC, as well as the performance of SINAD and SFDR.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中的技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视权利要求所界定的为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be defined by the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910597486.4A CN112187261B (en) | 2019-07-04 | 2019-07-04 | Digital-to-analog converter and compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910597486.4A CN112187261B (en) | 2019-07-04 | 2019-07-04 | Digital-to-analog converter and compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112187261A CN112187261A (en) | 2021-01-05 |
CN112187261B true CN112187261B (en) | 2022-11-01 |
Family
ID=73914683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910597486.4A Active CN112187261B (en) | 2019-07-04 | 2019-07-04 | Digital-to-analog converter and compensation circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112187261B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113702707B (en) * | 2021-08-05 | 2024-10-22 | 芯海科技(深圳)股份有限公司 | Load impedance measuring circuit, system and electronic equipment |
CN115833841A (en) * | 2022-12-09 | 2023-03-21 | 圣邦微电子(北京)股份有限公司 | Digital-to-analog converter, chip and electronic equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101686057B (en) * | 2008-09-28 | 2012-02-29 | 扬智科技股份有限公司 | Digital to Analog Converter |
CN101990071B (en) * | 2009-07-29 | 2014-09-10 | 晨星软件研发(深圳)有限公司 | Demodulator and method capable of automatically calibrating output and television receiver thereof |
US8325072B2 (en) * | 2011-01-10 | 2012-12-04 | Intel Mobile Communications GmbH | Calibration circuit and method for calibrating capacitive compensation in digital-to-analog converters |
US8350739B2 (en) * | 2011-03-28 | 2013-01-08 | National Semiconductor Corporation | Reference current compensation circuit for D/A converter |
JP6088269B2 (en) * | 2013-01-31 | 2017-03-01 | 新日本無線株式会社 | D / A converter |
-
2019
- 2019-07-04 CN CN201910597486.4A patent/CN112187261B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112187261A (en) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6914547B1 (en) | Triple resistor string DAC architecture | |
US9124296B2 (en) | Multi-stage string DAC | |
CN104065382B (en) | For the digital calibration circuit of segmented current steering DAC | |
US11133818B2 (en) | Interpolation digital-to-analog converter (DAC) | |
JPH0884077A (en) | Analog/digital converter | |
CN112187261B (en) | Digital-to-analog converter and compensation circuit | |
CN103095303A (en) | Current mode and voltage mode combined digital analog converter | |
JPH11330967A (en) | Digital-analog converter | |
US8937568B2 (en) | D/A converter | |
CN108540135B (en) | Digital-to-analog converter and conversion circuit | |
US7733257B1 (en) | Digital-to-analog converter having efficient switch configuration | |
CN114650061A (en) | Integrated circuit, digital-to-analog converter and driving method thereof | |
US8912939B2 (en) | String DAC leakage current cancellation | |
TWI696350B (en) | Digital-to-analog conversion device and compensation circuit | |
JP4671766B2 (en) | Digital-analog converter and digital-analog conversion method | |
CN116800272A (en) | High-speed sectional digital-to-analog conversion circuit, electronic circuit and electronic equipment | |
EP0681372A1 (en) | Digital-to-analog conversion circuit and analog-to-digital conversion device using the circuit | |
CN104184476B (en) | Digital transmitter and method for compensating mismatch of the same | |
CN114650059A (en) | Threshold adjustable comparator, threshold adjustment method and parallel analog-to-digital converter | |
JP3723362B2 (en) | Flash analog / digital converter | |
US8676873B2 (en) | Digital waveform synthesis | |
Hatamzadeh et al. | A New 12-bit 100-MS/Sec Resistor String DAC in 0.35-μm CMOS Process | |
Kumar | A 1-V, 10-bit, 250 MS/s, Current-Steering Segmented DAC for Video Applications | |
CN112305294B (en) | Two-section type resistor network and digital-to-analog converter based on two-section type resistor network | |
CN117375613B (en) | Calibration circuit and method for current source array in multichannel current steering DAC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |