CN112180501A - Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof - Google Patents
Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof Download PDFInfo
- Publication number
- CN112180501A CN112180501A CN201910600341.5A CN201910600341A CN112180501A CN 112180501 A CN112180501 A CN 112180501A CN 201910600341 A CN201910600341 A CN 201910600341A CN 112180501 A CN112180501 A CN 112180501A
- Authority
- CN
- China
- Prior art keywords
- silicon
- optical waveguide
- waveguide structure
- substrate
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 227
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 135
- 239000010703 silicon Substances 0.000 title claims abstract description 135
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 230000008878 coupling Effects 0.000 title claims abstract description 45
- 238000010168 coupling process Methods 0.000 title claims abstract description 45
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000012212 insulator Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 16
- 238000005253 cladding Methods 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229910018503 SF6 Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 4
- 229960000909 sulfur hexafluoride Drugs 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000004341 Octafluorocyclobutane Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12002—Three-dimensional structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本申请提供一种硅基光耦合结构、硅基单片集成光器件及其制造方法。该硅基光耦合结构包括:第一凹槽部,其形成于绝缘体上的硅(SOI)衬底的衬底硅中;第一光波导结构,其形成于所述绝缘体上的硅(SOI)衬底的顶层硅中;第二光波导结构,其在横向上与所述第一光波导结构连接,在横向的第一方向上延伸,并且,所述第二光波导结构位于所述第一凹槽部上方;以及贯通槽,其形成于所述第二光波导结构在横向的第二方向的两侧,所述第二方向与所述第一方向垂直,所述贯通槽与所述第一凹槽部连通,其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。本申请能够提高光场的耦合效率。
The present application provides a silicon-based optical coupling structure, a silicon-based monolithic integrated optical device, and a manufacturing method thereof. The silicon-based optical coupling structure includes: a first groove portion formed in the substrate silicon of a silicon-on-insulator (SOI) substrate; and a first optical waveguide structure formed in the silicon-on-insulator (SOI) substrate In the top layer silicon of the substrate; a second optical waveguide structure, which is connected to the first optical waveguide structure in the lateral direction and extends in a first direction in the lateral direction, and the second optical waveguide structure is located in the first optical waveguide structure above the groove portion; and through grooves, which are formed on both sides of the second optical waveguide structure in a lateral second direction, the second direction is perpendicular to the first direction, and the through grooves are parallel to the first direction. A groove portion is connected, wherein the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure. The present application can improve the coupling efficiency of the light field.
Description
技术领域technical field
本申请涉及半导体技术领域,尤其涉及一种硅基光耦合结构及其制造方法,以及硅基单片集成光器件及其制造方法。The present application relates to the field of semiconductor technology, and in particular, to a silicon-based optical coupling structure and a manufacturing method thereof, as well as a silicon-based monolithic integrated optical device and a manufacturing method thereof.
背景技术Background technique
硅光子实用化面临的一大技术难题在于光源,由于硅是间接带隙材料,发光效率低,带边吸收系数低,难以实现硅发光器件。A major technical difficulty in the practical application of silicon photonics is the light source. Since silicon is an indirect band gap material, it has low luminous efficiency and low band-edge absorption coefficient, making it difficult to realize silicon light-emitting devices.
利用耦合器将外部光源的光引入芯片和采用Ⅲ-Ⅴ族混合集成激光器是目前最主流的引入光源的方法。Using a coupler to introduce light from an external light source into the chip and using a III-V group hybrid integrated laser are currently the most mainstream methods for introducing light sources.
除去以上方法,以英特尔(Intel)为首研究的全硅拉曼激光器和以美国麻省理工学院、美国加州大学为首研究的硅上锗、III-V量子点单片集成激光器也在近年取得了一系列突破,激光器性能逐步达到实用要求,为未来实现完全CMOS工艺兼容的硅基光互连提供了技术储备。In addition to the above methods, the all-silicon Raman lasers led by Intel and the monolithic integrated lasers of germanium on silicon and III-V quantum dots led by the Massachusetts Institute of Technology and the University of California have also achieved one in recent years. With a series of breakthroughs, the laser performance has gradually reached practical requirements, providing technical reserves for the realization of silicon-based optical interconnects that are fully compatible with CMOS processes in the future.
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above description of the technical background is only for the convenience of clearly and completely describing the technical solutions of the present application and facilitating the understanding of those skilled in the art. It should not be assumed that the above-mentioned technical solutions are known to those skilled in the art simply because these solutions are described in the background section of this application.
发明内容SUMMARY OF THE INVENTION
硅基单片集成激光器需要在硅或绝缘体上硅上外延生长锗、III-V等直接带隙材料,因为材料体系与材料高度的差异,实现激光器与硅光芯片的高效光场耦合极具挑战,是目前硅基单片集成激光器实用化面对的重要挑战之一。Silicon-based monolithic integrated lasers require epitaxial growth of germanium, III-V and other direct bandgap materials on silicon or silicon-on-insulator. Due to the difference in material systems and material heights, it is extremely challenging to achieve efficient optical field coupling between lasers and silicon photonic chips. , is one of the important challenges facing the practical application of silicon-based monolithic integrated lasers.
本申请实施例提供一种硅基光耦合结构及其制造方法,以及硅基单片集成光器件及其制造方法,该硅基光耦合结构具有悬空的结构,由此,能够实现光场的高效耦合。Embodiments of the present application provide a silicon-based optical coupling structure and a manufacturing method thereof, as well as a silicon-based monolithic integrated optical device and a manufacturing method thereof. The silicon-based optical coupling structure has a suspended structure, thereby achieving high efficiency of the optical field. coupling.
根据本申请实施例的一个方面,提供一种硅基光耦合结构,包括:According to an aspect of the embodiments of the present application, a silicon-based optical coupling structure is provided, including:
第一凹槽部,其形成于绝缘体上的硅(SOI)衬底的衬底硅中;a first groove portion formed in the substrate silicon of a silicon-on-insulator (SOI) substrate;
第一光波导结构,其形成于所述绝缘体上的硅(SOI)衬底的顶层硅中;a first optical waveguide structure formed in the top layer silicon of the silicon-on-insulator (SOI) substrate;
第二光波导结构,其在横向上与所述第一光波导结构连接,在横向的第一方向上延伸,并且,所述第二光波导结构位于所述第一凹槽部上方;以及a second optical waveguide structure connected to the first optical waveguide structure in the lateral direction and extending in a first direction in the lateral direction, and the second optical waveguide structure is located above the first groove portion; and
贯通槽,其形成于所述第二光波导结构在横向的第二方向的两侧,所述第二方向与所述第一方向垂直,所述贯通槽与所述第一凹槽部连通,其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。a through groove is formed on both sides of the second optical waveguide structure in a lateral second direction, the second direction is perpendicular to the first direction, and the through groove communicates with the first groove portion, Wherein, the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure.
根据本申请实施例的另一方面,其中,所述硅基光耦合结构还具有:According to another aspect of the embodiments of the present application, the silicon-based light coupling structure further has:
支撑结构,其形成于所述贯通槽中,在第二方向上与所述贯通槽尺寸相同,从所述第二方向上支撑所述第二光波导结构。A support structure, formed in the through groove, has the same size as the through groove in a second direction, and supports the second optical waveguide structure from the second direction.
根据本申请实施例的另一方面,其中,第二光波导结构具有:According to another aspect of the embodiments of the present application, wherein the second optical waveguide structure has:
矩形波导,其在横向上为矩形,沿所述第一方向延伸;a rectangular waveguide, which is rectangular in the lateral direction and extends along the first direction;
锥形波导,其在横向上为锥形,沿所述第一方向延伸,并且在第一方向上的两端部的宽度不同,其中,在所述第一方向上,所述矩形波导与所述锥形波导的较宽的端部连接。A tapered waveguide, which is tapered in the lateral direction, extends along the first direction, and has different widths at both ends in the first direction, wherein the rectangular waveguide is different from the first direction in the first direction. The wider ends of the tapered waveguide are connected.
根据本申请实施例的另一方面,其中,所述第二光波导结构的材料是氧化硅。According to another aspect of the embodiments of the present application, the material of the second optical waveguide structure is silicon oxide.
根据本申请实施例的另一方面,所述第一光波导结构在靠近所述第二光波导结构的一侧具有反锥形结构。According to another aspect of the embodiments of the present application, the first optical waveguide structure has an inverse tapered structure on a side close to the second optical waveguide structure.
根据本申请实施例的另一方面,其中,According to another aspect of the embodiments of the present application, wherein,
所述第一光波导结构的至少一部分位于所述第一凹槽部上方。At least a portion of the first optical waveguide structure is located above the first groove portion.
根据本申请实施例的另一方面,提供一种硅基单片集成光器件,具有:According to another aspect of the embodiments of the present application, a silicon-based monolithic integrated optical device is provided, which has:
如上述任一方面所述的硅基光耦合结构;以及The silicon-based light coupling structure of any of the above aspects; and
形成于所述绝缘体上的硅(SOI)衬底的衬底硅的第二凹槽部的底面上的激光器,和/或形成于所述绝缘体上的硅(SOI)衬底的所述顶层硅中的硅光芯片,A laser formed on the bottom surface of the second groove portion of the substrate silicon of the silicon-on-insulator (SOI) substrate, and/or the top layer silicon of the silicon-on-insulator (SOI) substrate silicon photonics chips in
其中,in,
所述激光器的发光层与所述第一光波导结构在纵向上位置相同,并在横向上朝向所述第二光波导结构,The light-emitting layer of the laser is at the same position in the longitudinal direction as the first optical waveguide structure, and faces the second optical waveguide structure in the lateral direction,
所述硅光芯片的受光部在横向上朝向所述第一光波导结构,所述受光部被所述外包层覆盖。The light-receiving part of the silicon photonic chip faces the first optical waveguide structure in the lateral direction, and the light-receiving part is covered by the outer cladding.
根据本申请实施例的另一方面,提供一种硅基光耦合结构的制造方法,包括:According to another aspect of the embodiments of the present application, a method for manufacturing a silicon-based optical coupling structure is provided, including:
在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;forming a first optical waveguide structure in the top layer silicon of a silicon-on-insulator (SOI) substrate, and forming an outer cladding longitudinally and laterally covering the first optical waveguide structure;
从所述外包层刻蚀至所述绝缘体上的硅衬底的衬底硅,以形成在横向上与所述第一光波导结构连接的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及The substrate silicon of the silicon-on-insulator substrate is etched from the outer cladding to form a second optical waveguide structure laterally connected to the first optical waveguide structure, the second optical waveguide structure in the extending in the first lateral direction, and forming through grooves on both sides of the second optical waveguide structure in the lateral second direction; and
通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,The second optical waveguide structure and the substrate silicon under at least a part of the first optical waveguide structure are etched through the through groove to form a first groove portion in the substrate silicon,
其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。Wherein, the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure.
根据本申请实施例的另一方面,其中,通过所述贯通槽刻蚀所述衬底硅以形成第一凹槽部,包括:According to another aspect of the embodiments of the present application, wherein the silicon substrate is etched through the through groove to form a first groove portion, comprising:
使用各向同性刻蚀法刻蚀所述衬底硅,使所述第二光波导结构和至少部分第一光波导结构悬空。The silicon substrate is etched using an isotropic etching method, so that the second optical waveguide structure and at least part of the first optical waveguide structure are suspended.
根据本申请实施例的另一方面,提供一种硅基单片集成光器件的制造方法,该方法包括:According to another aspect of the embodiments of the present application, a method for manufacturing a silicon-based monolithic integrated optical device is provided, the method comprising:
在绝缘体上的硅(SOI)衬底的顶层硅中形成第一光波导结构,并形成在纵向和横向上覆盖所述第一光波导结构的外包层;forming a first optical waveguide structure in the top layer silicon of a silicon-on-insulator (SOI) substrate, and forming an outer cladding longitudinally and laterally covering the first optical waveguide structure;
在所述绝缘体上的硅(SOI)衬底中定义沟槽区域,并刻蚀所述沟槽区域至所述沟槽区域下方的衬底硅被刻蚀预定厚度,以形成第二凹槽部;A trench region is defined in the silicon-on-insulator (SOI) substrate, and the trench region is etched until the substrate under the trench region is etched to a predetermined thickness to form a second groove portion ;
在所述第二凹槽部的底面上形成激光器,所述激光器的发光层与所述第一光波导结构在纵向上位置相同;A laser is formed on the bottom surface of the second groove portion, and the light-emitting layer of the laser is at the same longitudinal position as the first optical waveguide structure;
从所述激光器与所述第一光波导结构之间的所述外包层刻蚀至所述绝缘体上的硅衬底的所述衬底硅,以形成在横向上连接于所述第一光波导结构和所述激光器之间的第二光波导结构,所述第二光波导结构在横向的第一方向上延伸,并且在所述第二光波导结构在横向的第二方向的两侧形成有贯通槽;以及The substrate silicon of the silicon-on-insulator substrate is etched from the outer cladding between the laser and the first optical waveguide structure to form a lateral connection to the first optical waveguide a second optical waveguide structure between the structure and the laser, the second optical waveguide structure extends in the first lateral direction, and is formed on both sides of the second optical waveguide structure in the lateral second direction through grooves; and
通过所述贯通槽刻蚀所述第二光波导结构和至少部分第一光波导结构下方的所述衬底硅,以在所述衬底硅中形成第一凹槽部,The second optical waveguide structure and the substrate silicon under at least a part of the first optical waveguide structure are etched through the through groove to form a first groove portion in the substrate silicon,
其中,所述第二光波导结构的材料的折射率低于所述第一光波导结构的材料的折射率。Wherein, the refractive index of the material of the second optical waveguide structure is lower than the refractive index of the material of the first optical waveguide structure.
本申请的有益效果在于:该硅基光耦合结构具有悬空的结构,由此,能够实现光场的高效耦合。The beneficial effect of the present application is that the silicon-based light coupling structure has a suspended structure, thereby enabling efficient coupling of light fields.
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。With reference to the following description and drawings, specific embodiments of the present application are disclosed in detail, indicating the manner in which the principles of the present application may be employed. It should be understood that the embodiments of the present application are not thereby limited in scope. Embodiments of the present application include many changes, modifications and equivalents within the spirit and scope of the appended claims.
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated for one embodiment may be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.
附图说明Description of drawings
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:The accompanying drawings, which are included to provide a further understanding of the embodiments of the present application, constitute a part of the specification, are used to illustrate the embodiments of the present application, and together with the written description, serve to explain the principles of the present application. Obviously, the drawings in the following description are only some embodiments of the present application, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort. In the attached image:
图1是具有本申请实施例1的硅基光耦合结构的硅基单片集成光器件的一个截面示意图;1 is a schematic cross-sectional view of a silicon-based monolithic integrated optical device having a silicon-based optical coupling structure according to Embodiment 1 of the present application;
图2a是本申请实施例1的硅基光耦合结构的一个立体图;2a is a perspective view of the silicon-based optical coupling structure of Embodiment 1 of the present application;
图2b是本申请实施例1中第一光波导结构和第二光波导结构的一个平面图;2b is a plan view of the first optical waveguide structure and the second optical waveguide structure in Embodiment 1 of the present application;
图3是本申请实施例2的硅基光耦合结构的制造方法的一个示意图;3 is a schematic diagram of a method for manufacturing a silicon-based optical coupling structure according to Embodiment 2 of the present application;
图4是本申请实施例2的硅基单片集成光器件的制造方法的一个示意图。FIG. 4 is a schematic diagram of the manufacturing method of the silicon-based monolithic integrated optical device according to the second embodiment of the present application.
具体实施方式Detailed ways
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。The foregoing and other features of the present application will become apparent from the following description with reference to the accompanying drawings. In the specification and drawings, specific embodiments of the present application are specifically disclosed, which are indicative of some embodiments in which the principles of the present application may be employed, it being understood that the present application is not limited to the described embodiments, on the contrary, the present The application includes all modifications, variations and equivalents falling within the scope of the appended claims.
在本申请各实施例的说明中,为描述方便,将平行于衬底的表面的方向称为“横向”,将垂直于衬底的表面的方向称为“纵向”,其中,各部件的“厚度”是指该部件在“纵向”的尺寸,在“纵向”上,从衬底的衬底硅指向顶层硅的方向称为“上”方向,与“上”方向相反的为“下”方向。In the description of the various embodiments of the present application, for the convenience of description, the direction parallel to the surface of the substrate is referred to as the "transverse direction", and the direction perpendicular to the surface of the substrate is referred to as the "longitudinal direction". Thickness" refers to the dimension of the component in the "longitudinal" direction, in which the direction from the substrate silicon of the substrate to the top layer silicon is called the "upper" direction, and the opposite of the "upper" direction is the "down" direction .
实施例1Example 1
本申请实施例提供一种硅基光耦合结构。Embodiments of the present application provide a silicon-based optical coupling structure.
图1是具有本实施例的硅基光耦合结构的硅基单片集成光器件的一个截面示意图,图2a是硅基光耦合结构的一个立体示意图。FIG. 1 is a schematic cross-sectional view of a silicon-based monolithic integrated optical device having the silicon-based optical coupling structure of the present embodiment, and FIG. 2a is a schematic perspective view of the silicon-based optical coupling structure.
如图1和图2a所示,硅基光耦合结构1包括:第一凹槽部11,第一光波导结构12,第二光波导结构13,以及贯通槽14(图1未示出,图2a示出)。As shown in FIG. 1 and FIG. 2a, the silicon-based optical coupling structure 1 includes: a
在本实施例中,第一凹槽部11形成于绝缘体上的硅(SOI)衬底10的衬底硅101中。In the present embodiment, the
在本实施例中,如图1和图2a所示,第一光波导结构12形成于绝缘体上的硅(SOI)衬底10的顶层硅102中,第一光波导结构12的至少一部分可以位于第一凹槽部11的上方。In the present embodiment, as shown in FIGS. 1 and 2a, the first
在本实施例中,如图1和图2a所示,第二光波导结构13在横向上与第一光波导结构12连接,并且,第二光波导结构13在横向的第一方向L1上延伸,并且,第二光波导结构13位于第一凹槽部11上方。此外,如图2a所示,第二光波导结构13还可以在横向的第二方向L2上包围第一光波导结构12的一部分,其中,第二方向L2与第一方向L1垂直。In this embodiment, as shown in FIGS. 1 and 2 a , the second
在本实施例中,如图2a所示,贯通槽14可以形成于第二光波导结构13在横向的第二方向L2的两侧,并且,贯通槽14与第一凹槽部11连通。In this embodiment, as shown in FIG. 2 a , the through
根据本实施例,第一光波导结构12和第二光波导结构13能够形成为悬空的结构,从而避免光从衬底泄漏,提高了光场耦合的效率;此外,第二光波导结构13的两侧形成有贯通槽14,能够避免光从第二光波导结构13的侧面泄漏。According to the present embodiment, the first
在本实施例中,第二光波导结构13的材料的折射率可以低于第一光波导结构12的材料的折射率,由此,在第二光波导结构13从第二方向上包围第一光波导结构12的部分中,能够使光高效地从第二光波导结构13耦合到第一光波导结构12中。在本实施例中,第一光波导结构12是利用SOI衬底10的顶层硅102形成的,其材料为硅;而第二光波导结构13可以由SOI衬底10的埋氧层103以及覆盖第一光波导结构12的外包层15所形成,该第二光波导结构13的材料可以是氧化硅,例如二氧化硅(SiO2)。In this embodiment, the refractive index of the material of the second
在本实施例中,如图1所示,外包层15可以在横向和纵向上覆盖第一光波导结构12。此外,第一光波导结构12的下方可以由SOI衬底10的埋氧层103覆盖。由此,第一光波导结构12在围绕第一方向L1的整个周向上被较低折射率的材料包围,减少光从第一光波导结构12中的泄漏。In this embodiment, as shown in FIG. 1 , the
在本实施例中,如图2a所示,硅基光耦合结构1还可以具有支撑结构16,支撑结构16形成于贯通槽14中,在第二方向L2上与贯通槽14尺寸相同。支撑结构16在第二方向L2上固定连接在贯通槽14的两壁之间,由此,能够从第二方向L2上支撑第二光波导结构13,提高第二光波导结构13的结构稳定性。In this embodiment, as shown in FIG. 2a , the silicon-based light coupling structure 1 may further have a support structure 16 , the support structure 16 is formed in the through
在本实施例中,如图2a所示,第二光波导结构13具有:第一矩形波导131和锥形波导132。其中,第一矩形波导131在横向上为矩形,沿第一方向L1延伸;锥形波导132在横向上为锥形,沿第一方向L1延伸,并且,在第一方向上的两端部的宽度不同,其中,在第一方向L1上,锥形波导132的较宽的端部132a与第一矩形波导131连接。此外,第二光波导结构13还具有宽度较窄的第二矩形波导133,该第二矩形波导133与锥形波导132的较窄的端部连接。In this embodiment, as shown in FIG. 2 a , the second
图2b是本申请实施例1中第一光波导结构12和第二光波导结构13在平行于衬底10的表面的平面中的一个平面示意图。FIG. 2 b is a schematic plan view of the first
在本实施例中,如图2b所示,第一光波导结构12在L1方向上具有反锥形结构121,其中,该反锥形结构121位于第一光波导结构12在L1方向上的靠近第二光波导结构13的一侧。In this embodiment, as shown in FIG. 2b , the first
如图2b所示,反锥形结构121在横向上可以被包在第二光波导结构13中,例如,反锥形结构121可以被包在锥形波导132和第二矩形波导133中。其中,反锥形结构121在第二方向L2上的宽度可以为:反锥形结构121的朝向第一矩形波导131的一端宽度最窄,沿着L1方向越远离第一矩形波导131的位置宽度逐渐增加。As shown in FIG. 2 b , the reverse
光在从SiO2波导进入硅波导中时,SiO2波导与硅波导的模场存在较大的差异,会增加耦合的损耗。而在本申请,由于第一光波导结构12具有反锥形结构121,这种反锥形结构121能够增加第一光波导结构12中的模场,因而,光在从第二光波导结构13进入第一光波导结构12时,能够实现模场的匹配,减小耦合损耗。When light enters the silicon waveguide from the SiO2 waveguide, the mode fields of the SiO2 waveguide and the silicon waveguide are quite different, which will increase the coupling loss. In the present application, since the first
此外,在本实施例中,如图2b所示,第一光波导结构12在L1方向上还可以具有矩形结构122,其中,该矩形结构122在L1方向上比反锥形结构121更远离第一矩形波导131的一侧。In addition, in this embodiment, as shown in FIG. 2b , the first
此外,在本实施例中,第一光波导结构12的厚度可以在L1方向的各处保持相同或者不同。In addition, in this embodiment, the thickness of the first
如图1所示,硅基单片集成光器件100可以具有:硅基光耦合结构1,激光器2,以及硅光芯片3。As shown in FIG. 1 , the silicon-based monolithic integrated
如图1所示,激光器2可以形成于绝缘体上的硅(SOI)衬底10的衬底硅101的第二凹槽部17表面,硅光芯片3可以形成于该绝缘体上的硅(SOI)衬底10的顶层硅102中。As shown in FIG. 1 , the laser 2 can be formed on the surface of the
在本实施例中,激光器2例如可以是边发射激光器,其中,激光器2可以通过外延III-V、Ge(Sn)等直接带隙材料堆栈制备。激光器2的发光层21与第一光波导结构12的高度相同,即,激光器2的发光层21与第一光波导结构12在纵向上的位置相同。此外,激光器2的发光层21在横向上朝向第二光波导结构13,并且,发光层21在横向上可以被外包层15覆盖,由此,发光层21发射的光可以经由外包层15耦合到第二光波导结构13中。In this embodiment, the laser 2 may be, for example, an edge-emitting laser, wherein the laser 2 may be fabricated by stacking direct bandgap materials such as epitaxy III-V, Ge(Sn), or the like. The height of the
在本实施例中,硅光芯片3的受光部(未图示)在横向上可以朝向第一光波导结构12,并且,该受光部的上表面可以被外包层15覆盖。由此,耦合到第一光波导结构12中的光可以被耦合到硅光芯片3中。In this embodiment, the light-receiving part (not shown) of the
如图1所示,在本实施例中,激光器2的发光层21发出的光耦合到第二光波导结构13,并传输到第一光波导结构12,进而被导入硅光芯片3。可见,尽管激光器2的厚度较厚,但是,本申请将激光器2形成在SOI衬底10的衬底硅101的第二凹槽部17表面,能够使激光器2成为下沉式激光器,从而在纵向上能够与第一光波导结构12对齐,可以有效降低激光器2的发光层21与硅光芯片3间的高度差,降低耦合难度。As shown in FIG. 1 , in this embodiment, the light emitted by the
需要说明的是,在图1中,硅基单片集成光器件100中具有激光器2和硅光芯片3这二者,本实施例可以不限于此,例如,硅基单片集成光器件100除了具有硅基光耦合结构1之外,也可以仅具有激光器2和硅光芯片3中的任一者。此外,在本实施例中,激光器2和硅光芯片3仅是举例,本实施例可以不限于此,例如,激光器2和硅光芯片3可以是其它的光器件。It should be noted that, in FIG. 1 , the silicon-based monolithic integrated
实施例2Example 2
实施例2提供一种硅基光耦合结构的制造方法,用于制造实施例1所述的硅基光耦合结构。Embodiment 2 provides a method for manufacturing a silicon-based optical coupling structure, which is used to manufacture the silicon-based optical coupling structure described in Embodiment 1.
图3是本实施例的硅基光耦合结构的制造方法的一个示意图,如图3所示,在本实施例中,该制造方法可以包括:FIG. 3 is a schematic diagram of a manufacturing method of a silicon-based optical coupling structure in this embodiment. As shown in FIG. 3 , in this embodiment, the manufacturing method may include:
步骤301、在绝缘体上的硅(SOI)衬底10的顶层硅102中形成第一光波导结构12,例如,通过光刻和刻蚀形成第一光波导结构12;并且,形成在纵向和横向上覆盖所述第一光波导结构的外包层15,例如,沉积SiO2材料以形成外包层15;
步骤302、从外包层15刻蚀至绝缘体上的硅衬底10的衬底硅101,以形成在横向上与第一光波导结构12连接的第二光波导结构13,该第二光波导结构13在横向的第一方向上延伸,并且在第二光波导结构13在横向的第二方向的两侧形成有贯通槽14,衬底硅101表面暴露于贯通槽14,例如,利用光刻和刻蚀工艺,从外包层15开始向下刻蚀,形成贯通槽14,直到露出衬底硅101,停止刻蚀;以及
步骤303、通过贯通槽14刻蚀第二光波导结构13和至少部分第一光波导结构12下方的衬底硅101,以在衬底硅10中形成第一凹槽部11。
在本实施例中,第二光波导结构13的材料的折射率低于第一光波导结构12的材料的折射率。In this embodiment, the refractive index of the material of the second
在本实施例中,步骤303可以包括如下的步骤:In this embodiment, step 303 may include the following steps:
步骤3031、使用各向同性刻蚀法刻蚀衬底硅101,使第二光波导结构13和至少部分第一光波导结构12悬空。Step 3031 , etching the
其中,步骤3031的各向同性刻蚀法例如是各向同性干法刻蚀,可以采用六氟化硫(SF6)作为刻蚀气体。The isotropic etching method in step 3031 is, for example, isotropic dry etching, and sulfur hexafluoride (SF6) can be used as the etching gas.
此外,在本实施例中,步骤303还可以在步骤3031之后,进一步包括如下的步骤:In addition, in this embodiment, step 303 may further include the following steps after step 3031:
步骤3032、使用各向异性刻蚀法继续刻蚀衬底硅101,以增加第一凹槽部11的深度。Step 3032 , continue to etch the
其中,步骤3032的各向异性刻蚀法例如是各向异性干法刻蚀,可以采用六氟化硫(SF6)和八氟环丁烷(C4F8)的混合气体作为刻蚀气体。此外,步骤3032德克士深度例如可以是100微米。The anisotropic etching method in step 3032 is, for example, anisotropic dry etching, and a mixed gas of sulfur hexafluoride (SF6) and octafluorocyclobutane (C4F8) may be used as the etching gas. In addition, the step 3032 Dicos depth may be, for example, 100 microns.
在本实施例中,图3所示的硅基光耦合结构的制造方法可以被包含于硅基单片集成光器件的制造方法中,用于制造实施例1所述的硅基单片集成光器件100。In this embodiment, the manufacturing method of the silicon-based optical coupling structure shown in FIG. 3 can be included in the manufacturing method of the silicon-based monolithic integrated optical device for manufacturing the silicon-based monolithic integrated optical device described in Embodiment 1
图4是本实施例的硅基单片集成光器件的制造方法的一个示意图。如图4所示,在本实施例中,该制造方法可以包括:FIG. 4 is a schematic diagram of the manufacturing method of the silicon-based monolithic integrated optical device of the present embodiment. As shown in FIG. 4, in this embodiment, the manufacturing method may include:
步骤401、在绝缘体上的硅(SOI)衬底10的顶层硅102中形成第一光波导结构12,并形成在纵向和横向上覆盖第一光波导结构12的外包层15,该步骤401可以参考上述步骤301;
步骤402、在绝缘体上的硅(SOI)衬底10中定义沟槽区域,并刻蚀沟槽区域至沟槽区域下方的衬底硅被刻蚀预定厚度,该预定厚度例如是2微米,以形成第二凹槽部17;Step 402: Define a trench region in the silicon-on-insulator (SOI)
步骤403、在第二凹槽部17的底面上形成激光器2,激光器2的发光层21与第一光波导结构12在纵向上位置相同,例如,在第二凹槽部17的底面的硅上外延III-V族材料以及Ge(Sn)等有源区材料堆栈,并制备激光器2;
步骤404、从激光器2与第一光波导结构12之间的外包层15向下刻蚀至绝缘体上的硅衬底10的衬底硅101,以形成在横向上连接于第一光波导结构12和激光器2之间的第二光波导结构13,第二光波导结构13在横向的第一方向上延伸,并且在第二光波导结构13在横向的第二方向的两侧形成有贯通槽14,步骤404的具体实施方式可以参考步骤302;以及Step 404: Etch down from the
步骤405、通过贯通槽14刻蚀第二光波导结构13和至少部分第一光波导结构12下方的衬底硅101,以在衬底硅101中形成第一凹槽部11,步骤404的具体实施方式可以参考步骤303。
在图4的实施方式中,第二光波导结构13的材料的折射率低于第一光波导结构12的材料的折射率。In the embodiment of FIG. 4 , the refractive index of the material of the second
此外,在本实施例中,在步骤403形成了激光器2之后,还可以补充沉积外包层15,从而使激光器覆盖于外包层15中,并且,在激光器3和第一光波导结构12之间填充外包层15,便于在步骤404中形成第二光波导结构13.In addition, in this embodiment, after the laser 2 is formed in
此外,在本实施例中,在形成第一光波导结构12之前,也可以先形成硅光芯片3,并且,该硅光芯片可以被覆盖于外包层15。In addition, in this embodiment, before forming the first
根据本实施例,根据本实施例,第一光波导结构12和第二光波导结构13能够形成为悬空的结构,从而避免光从衬底泄漏,提高了光场耦合的效率;此外,第二光波导结构13的两侧形成有贯通槽14,能够避免光从第二光波导结构13的侧面泄漏;此外,将激光器2形成在SOI衬底10的衬底硅101的第二凹槽部17表面,能够使激光器2成为下沉式激光器,从而在纵向上能够与第一光波导结构12对齐,可以有效降低激光器2的发光层21与硅光芯片3间的高度差,降低耦合难度。According to the present embodiment, according to the present embodiment, the first
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。The present application has been described above with reference to the specific embodiments, but those skilled in the art should understand that these descriptions are all exemplary and do not limit the protection scope of the present application. Those skilled in the art can make various variations and modifications to the present application according to the spirit and principles of the present application, and these variations and modifications are also within the scope of the present application.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910600341.5A CN112180501A (en) | 2019-07-04 | 2019-07-04 | Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof |
PCT/CN2019/096424 WO2021000350A1 (en) | 2019-07-04 | 2019-07-17 | Silicon-based optical coupling structure, silicon-based monolithic integrated optical device, and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910600341.5A CN112180501A (en) | 2019-07-04 | 2019-07-04 | Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112180501A true CN112180501A (en) | 2021-01-05 |
Family
ID=73914592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910600341.5A Pending CN112180501A (en) | 2019-07-04 | 2019-07-04 | Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112180501A (en) |
WO (1) | WO2021000350A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113917613A (en) * | 2021-10-14 | 2022-01-11 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN114397730A (en) * | 2022-01-26 | 2022-04-26 | 北京邮电大学 | Double-cantilever inverted cone spot conversion structure for waveguide coupling |
CN114594548A (en) * | 2022-03-24 | 2022-06-07 | 上海交通大学 | Silicon Nitride Waveguide Assisted Cantilever End Coupler |
CN115755290A (en) * | 2022-11-03 | 2023-03-07 | 北京大学 | Coupling structure and method for optical waveguide in edge-emitting laser chip and silicon optical chip |
CN116840972A (en) * | 2023-08-30 | 2023-10-03 | 深圳市速腾聚创科技有限公司 | Optical chips, lidar and mobile devices |
CN116840987A (en) * | 2023-08-30 | 2023-10-03 | 深圳市速腾聚创科技有限公司 | End face coupler, optical chip, laser radar and movable equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025101120A1 (en) * | 2023-11-06 | 2025-05-15 | Advanced Micro Foundry Pte. Ltd. | Edge coupler having suspended waveguide with improved mechanical rigidity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080193141A1 (en) * | 2006-10-02 | 2008-08-14 | Takuya Shinoda | Optical transmitter-receiver module |
CN105180917A (en) * | 2015-09-22 | 2015-12-23 | 浙江大学 | Silica-based hybrid integrated homotaxial fiber-optic gyroscope optical chip and preparing method thereof |
CN106405752A (en) * | 2015-07-29 | 2017-02-15 | 财团法人工业技术研究院 | Optical element |
CN107561640A (en) * | 2017-08-18 | 2018-01-09 | 中国科学院半导体研究所 | Silicon nanowires waveguide and optical coupling structure and preparation method thereof |
CN210123484U (en) * | 2019-07-04 | 2020-03-03 | 上海新微技术研发中心有限公司 | Silicon-based optical coupling structure and silicon-based monolithic integrated optical device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10262984B1 (en) * | 2018-07-05 | 2019-04-16 | Stmicroelectronics S.R.L. | Optical integrated circuit systems, devices, and methods of fabrication |
-
2019
- 2019-07-04 CN CN201910600341.5A patent/CN112180501A/en active Pending
- 2019-07-17 WO PCT/CN2019/096424 patent/WO2021000350A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080193141A1 (en) * | 2006-10-02 | 2008-08-14 | Takuya Shinoda | Optical transmitter-receiver module |
CN106405752A (en) * | 2015-07-29 | 2017-02-15 | 财团法人工业技术研究院 | Optical element |
CN105180917A (en) * | 2015-09-22 | 2015-12-23 | 浙江大学 | Silica-based hybrid integrated homotaxial fiber-optic gyroscope optical chip and preparing method thereof |
CN107561640A (en) * | 2017-08-18 | 2018-01-09 | 中国科学院半导体研究所 | Silicon nanowires waveguide and optical coupling structure and preparation method thereof |
CN210123484U (en) * | 2019-07-04 | 2020-03-03 | 上海新微技术研发中心有限公司 | Silicon-based optical coupling structure and silicon-based monolithic integrated optical device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113917613A (en) * | 2021-10-14 | 2022-01-11 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN113917613B (en) * | 2021-10-14 | 2023-03-14 | 中国科学院半导体研究所 | Silicon waveguide end face coupling structure and preparation method thereof |
CN114397730A (en) * | 2022-01-26 | 2022-04-26 | 北京邮电大学 | Double-cantilever inverted cone spot conversion structure for waveguide coupling |
CN114594548A (en) * | 2022-03-24 | 2022-06-07 | 上海交通大学 | Silicon Nitride Waveguide Assisted Cantilever End Coupler |
CN115755290A (en) * | 2022-11-03 | 2023-03-07 | 北京大学 | Coupling structure and method for optical waveguide in edge-emitting laser chip and silicon optical chip |
CN115755290B (en) * | 2022-11-03 | 2024-05-17 | 北京大学 | Coupling structure and method of optical waveguide in edge-emitting laser chip and silicon photonic chip |
CN116840972A (en) * | 2023-08-30 | 2023-10-03 | 深圳市速腾聚创科技有限公司 | Optical chips, lidar and mobile devices |
CN116840987A (en) * | 2023-08-30 | 2023-10-03 | 深圳市速腾聚创科技有限公司 | End face coupler, optical chip, laser radar and movable equipment |
CN116840987B (en) * | 2023-08-30 | 2023-12-12 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar and mobile device |
CN116840972B (en) * | 2023-08-30 | 2023-12-12 | 深圳市速腾聚创科技有限公司 | Optical chip, laser radar and mobile device |
Also Published As
Publication number | Publication date |
---|---|
WO2021000350A1 (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210123484U (en) | Silicon-based optical coupling structure and silicon-based monolithic integrated optical device | |
CN112180501A (en) | Silicon-based optical coupling structure, silicon-based monolithic integrated optical device and manufacturing method thereof | |
CN110954998B (en) | Laser and silicon optical chip integrated structure and preparation method thereof | |
WO2020062704A1 (en) | Laser and silicon optical chip integrated structure | |
KR102208468B1 (en) | Optical coupler | |
KR102037759B1 (en) | optical coupler and optical device module used the same | |
US9791641B2 (en) | Inverted 45° mirror for photonic integrated circuits | |
CN210123485U (en) | Silicon-based optical coupling structure and silicon-based monolithic integrated optical device | |
US8437585B2 (en) | Low-cost passive optical waveguide using Si substrate | |
US20170285265A1 (en) | Facet optical coupler | |
CN106164722A (en) | Edge Coupling device manufactures | |
CN110325900A (en) | Waveguide photoelectric device | |
US9202951B2 (en) | Integrated optoelectronic device and system with waveguide and manufacturing process thereof | |
CN106461872A (en) | Apparatus and method for optical waveguide edge coupler for photonic integrated chips | |
CN220040800U (en) | Edge coupler | |
CN103487883B (en) | The optical fiber facula conversion coupling mechanism of the passive line waveguide of InP-base and preparation method | |
CN111129941B (en) | A silicon-based integrated laser chip flip-chip coupling structure | |
CN113848609A (en) | Photonic integrated coupling structure and photonic integrated device | |
CN113917613B (en) | Silicon waveguide end face coupling structure and preparation method thereof | |
CN104900749B (en) | Optical coupling device and forming method thereof | |
KR20150062231A (en) | A semiconductor laser and method of forming the same | |
WO2023065573A1 (en) | Photodetector | |
CN110471140A (en) | Photoelectric device and its manufacturing method | |
CN1589415A (en) | Optical waveguide termination with vertical and horizontal mode shaping | |
GB2373342A (en) | Optical waveguide structure with etch stop layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |