[go: up one dir, main page]

CN112152649A - 射频电路、终端设备、信号传输方法及存储介质 - Google Patents

射频电路、终端设备、信号传输方法及存储介质 Download PDF

Info

Publication number
CN112152649A
CN112152649A CN202010975329.5A CN202010975329A CN112152649A CN 112152649 A CN112152649 A CN 112152649A CN 202010975329 A CN202010975329 A CN 202010975329A CN 112152649 A CN112152649 A CN 112152649A
Authority
CN
China
Prior art keywords
signal
transmitting
transmission
module
communication mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010975329.5A
Other languages
English (en)
Other versions
CN112152649B (zh
Inventor
武小勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN202010975329.5A priority Critical patent/CN112152649B/zh
Publication of CN112152649A publication Critical patent/CN112152649A/zh
Application granted granted Critical
Publication of CN112152649B publication Critical patent/CN112152649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种射频电路、终端设备、信号传输方法及存储介质,该射频电路,包括发射模组、第一发射通路、第二发射通路及控制单元;控制单元用于在处于第一通信模式时,控制发射模组向第一发射通路传输发射信号;第一发射通路用于对发射模组传输的发射信号进行处理,并向网络设备发送处理后的发射信号;控制单元还用于在处于第二通信模式时,控制发射模组向第二发射通路传输发射信号,在第二通信模式下的发射信号不对接收信号产生干扰;第二发射通路用于将所述发射模组传输的发射信号发送到所述网络设备。上述射频电路、终端设备、信号传输方法及存储介质,能够降低发射信号在发射通路上的插损,减少信号传输时产生的功耗。

Description

射频电路、终端设备、信号传输方法及存储介质
技术领域
本申请涉及通信技术领域,具体涉及一种射频电路、终端设备、信号传输方法及存储介质。
背景技术
随着通信技术的快速发展,5G(5th generation mobile networks,第五代移动通信技术)已逐渐进入互联网用户的生活中,越来越多的终端设备支持接入5G网络。为了能够支持5G信号的传输,终端设备需要对传统的射频模块进行改进,在射频模块中增加器件以支持5G信号传输,导致传输通路上的插损增加,如何降低信号传输时的功耗已成为当下亟需解决的问题。
发明内容
本申请实施例公开了一种射频电路、终端设备、信号传输方法及存储介质,能够降低发射信号在发射通路上的插损,减少信号传输时产生的功耗。
本申请实施例公开一种射频电路,包括发射模组、第一发射通路、第二发射通路及控制单元,所述发射模组分别与所述第一发射通路及第二发射通路电连接,所述控制单元与所述发射模组电连接,所述第二通路包括的器件数量小于所述第一通路包括的器件数量;
所述控制单元,用于在处于第一通信模式时,控制所述发射模组向所述第一发射通路传输发射信号;
所述第一发射通路,用于对所述发射模组传输的发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在所述第一通信模式下的发射信号对接收信号的干扰;
所述控制单元,还用于在处于第二通信模式时,控制所述发射模组向所述第二发射通路传输发射信号,在第二通信模式下的发射信号不对接收信号产生干扰;
所述第二发射通路,用于将所述发射模组传输的发射信号发送到所述网络设备。
本申请实施例公开一种终端设备,包括如上所述的电路。
本申请实施例公开一种信号传输方法,应用于终端设备,所述方法包括:
当所述终端设备处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在所述第一通信模式下的发射信号对接收信号的干扰;
当所述终端设备处于第二通信模式时,通过第二发射通路向所述网络设备发送发射信号,其中,在所述第二通信模式下的发射信号不对接收信号产生干扰,所述第二通路包括的器件数量小于所述第一通路包括的器件数量。
本申请实施例公开一种终端设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如上所述的方法。
本申请实施例公开一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的方法。
本申请实施例公开的射频电路、终端设备、信号传输方法及存储介质,在处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,能够抑制在第一通信模式下的发射信号对接收信号的干扰,在处于第二通信模式时,由于在第二通信模式下的发射信号不对接收信号产生干扰,可通过第二发射通路向网络设备发射信号,能够对通信模式进行区分,不同通信模式下采用不同的发射通路发送发射信号,在不需要抑制发射信号对接收信号的干扰时,可通过器件更少的第二发射通路发送发射信号,能够降低发射信号在发射通路上的插损,减少了信号传输时产生的功耗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中信号传输方法的应用场景图;
图2为一个实施例中射频电路的结构框图;
图3为另一个实施例中射频电路的结构框图;
图4为一个实施例中第一发射通路的结构框图;
图5为另一个实施例中射频电路的结构框图;
图6为另一个实施例中射频电路的结构框图;
图7为一个实施例中终端设备的结构框图;
图8为一个实施例中信号传输方法的流程图;
图9为一个实施例中信号传输装置的框图;
图10为另一个实施例中终端设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一发射通路称为第二发射通路,且类似地,可将第二发射通路称为第一发射通路。第一发射通路和第二发射通路两者都是射频信号的发射通路,但其不是相同的发射通路。
图1为一个实施例中信号传输方法的应用场景图。如图1所示,终端设备110与网络设备120之间建立通信连接,可选地,终端设备110可与网络设备120通过第四代、第五代等通信技术建立通信连接,其通信连接方式在本申请实施例中不作限定。
在一些实施例中,终端设备110可以称之为用户设备(user equipment,UE)。该终端设备可以为个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless localloop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备,该终端设备也可以为手机、移动台(mobile station,MS)、终端设备(mobile terminal)和笔记本电脑等,该终端设备110可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备110可以是移动电话(或称为“蜂窝”电话)或具有终端设备的计算机等,例如,终端设备110还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。终端设备110还可以为有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来演进的网络中的终端设备等,本申请实施不作限定。
在一些实施例中,网络设备120可以是长期演进(long term evolution,LTE)系统、NR通信系统或者授权辅助接入长期演进(authorized auxiliary access long-termevolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。上述网络设备120还可以是未来演进网络中的其他类网络设备,本申请实施不作限定。
在相关的技术中,5G有NSA(non-standalone,非独立组网)和SA(standalone,独立组网)两大部署方案,现阶段大部分的5G采用NSA部署方案,通过在4G(4th generationmobile networks,第四代移动通信技术)基站上进行改造,实现5G信号的传输。为了提高数据传输速率并保证信号传输的稳定性,终端设备可采用ENDC(E-UTRAN,新无线电双连接)、CA(Carrier Aggregation,载波聚合)等多连接技术。其中,ENDC是4G和5G双连接,终端设备同时与4G基站及5G基站连接,同时支持4G信号和5G信号的传输;CA技术可以将多个载波聚合在一起,从而提高上下行传输速率。对于ENDC和CA等多连接技术而言,可采用不同的频段组合,支持发射在多个(至少两个)不同频段的信号。
对于某些特定的频段组合,终端设备可能会存在自干扰的问题,发射信号对接收信号存在谐波干扰等问题。例如,以B3(发射频率1710-1785MHz(兆赫兹))频段及N78(频率3300-3800MHz)频段的组合为例,在B3频段的发射信号的二次谐波会影响N78频段的接收信号(B3频段的二次谐波正好落在N78的频段内)。为了解决该问题,需要在功率放大器(PowerAmplifier,PA)后的发射通路上增加滤波器、合路器等器件来满足5G射频指标要求。但是目标终端设备可支持几十个频段,某些频段组合是满足射频要求的,也需要通过包含有滤波器、合路器等器件的发射通路,导致发射通路的插损增加,PA的功耗增加。
本申请实施例提供一种射频电路、终端设备、信号传输方法及存储介质,能够对通信模式进行区分,不同通信模式下采用不同的发射通路发送发射信号,在不需要抑制发射信号对接收信号的干扰时,可通过器件更少的第二发射通路发送发射信号,能够降低发射信号在发射通路上的插损,减少了信号传输时产生的功耗。
图2为一个实施例中射频电路的结构框图。如图2所示,在一个实施例中,射频电路200可包括控制单元210、发射模组220、第一发射通路230及第二发射通路240。其中,控制单元210与发射模组220电连接,发射模组220分别与第一发射通路230及第二发射通路240电连接。
控制单元210,用于在处于第一通信模式时,控制发射模组220向第一发射通路230传输发射信号。
第一发射通路230,用于对发射模组220传输的发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在第一通信模式下的发射信号对接收信号的干扰。
可选地,控制单元可以是基带芯片、调制解调器(modem)芯片等。控制单元210可获取当前的通信模式,该通信模式可用于表示终端设备当前与网络设备的通信方式。在一些实施例中,通信模式可包括但不限于ENDC模式、AC模式、单载波模式等。其中,ENDC模式为4G和5G双连接模式,终端设备同时与4G的网络设备以及5G的网络设备建立通信连接。AC模式为同一网络接入技术下的多个载波聚合,终端设备与同一宏站下的不同小区的网络设备建立通信连接。单载波模式为仅在一个频段上进行单载波的信号传输,终端设备与一个网络设备建立通信连接。
对于ENDC模式、AC模式等多连接模式,可定义一个或多个不同的频段组合。目前全球范围内LTE存在LB(Low Band,低频)/MB(Middle Band,中频)/HB(High Band,高频)等多个频段,5G也存在LB/MB/HB/SUB6G等多个频段,所以对于ENDC模式、AC模式等多连接模式而言,可能会存在很多种不同的频段组合方案,例如,对于ENDC模式,可包括B1(发射频率1920-1980MHz)+N41(频率2496MHz-2690MHz)、B3(发射频率1710-1785MHz)+N78(频率3300-3800MHz)等,对于AC模式,可包括B1+B3、B2+B39(频率1880-1920MHz)等,在此不作限定。
对于某些频段组合,可能会存在自干扰的问题,即其中第一频段的发射信号会对第二频段的接收信号产生干扰,该干扰可包括但不限于谐波干扰,即第一频段的发射频段的倍数(该倍数可为大于或等于2的正整数)会落入第二频段的接收频段中。在本申请实施例中,第一通信模式可指的是发射信号会对接收信号产生干扰的通信模式,可包括但不限于具有上述存在自干扰问题的频段组合的ENDC模式、AC模式等。
控制单元210获取当前的通信模式后,可判断当前的通信模式为第一通信模式还是第二通信模式。在一些实施例中,可将各个第一通信模式及各个第二通信模式写入驱动文件中。当控制单元210接收到网络接入指令时,可根据该网络接入指令确定选择使用的网络连接模式(如ENDC模式、AC模式、单载波模式等),以及在该网络连接模式下的发射频段、接收频段等,从而可在驱动文件中找到与选择使用的网络连接模式、发射频段、接收频段匹配的通信模式。若该匹配的通信模式属于第一通信模式,则确定当前的通信模式为第一通信模式,若该匹配的通信模式属于第二通信模式,则可确定当前的通信模式为第二通信模式。
作为另一种实施方式,控制单元210在确定选择使用的网络连接模式后,可判断该网络连接模式是否为ENDC、AC等多连接模式,若是,则可进一步获取在该网络连接模式下的发射频段、接收频段,并根据发射频段、接收频段判断是否存在谐波干扰,若发射频段的倍数处于接收频段内,则确定存在谐波干扰,可确定当前的通信模式为第一通信模式。若不存在谐波干扰,或则该网络连接模式不为多连接模式,则可确定当前的通信模式为第二通信模式。
若当前的通信模式为第一通信模式,则可控制发射模组220向第一发射通路230发射信号。第一发射通路230可包括对发射模组220传输的发射信号进行处理,可选地,该处理可包括滤除发射信号中会对接收信号产生干扰的分量,得到的处理后的发射信号不会对接收信号产生干扰,从而能够抑制在第一通信模式下的发射信号对接收信号的干扰。
在一些实施例中,发射模组220可包括射频收发机及PA,控制单元210对所需发送的数据信号进行编码、调制等处理,得到发射信号,并通过射频收发机将发射信号发送给PA。PA可对该发射信号进行放大处理,获得足够功率电流,使发射信号能够经天线转化为电磁波辐射出去。在第一通信模式下,发射模组220可将放大后的发射信号发送到第一发射通路230。可选地,射频电路200还可包括天线(图1中未示出),第一发射通路230可与天线电连接,第一发射通路230对发射信号进行干扰抑制处理后,可将处理后的发射信号发送至天线,再由天线转化为电磁波辐射出去,网络设备即可接收到该发射信号。
控制单元210,还用于在处于第二通信模式时,控制发射模组220向第二发射通路240传输发射信号,在第二通信模式下的发射信号不对接收信号产生干扰。
第二发射通路240,用于将发射模组220传输的发射信号发送到网络设备。
第二通信模式可指的是发射信号不对接收信号产生干扰的通信模式,可包括但不限于不存在自干扰问题的频段组合的ENDC模式、AC模式及单载波模式等,例如,ENDC模式的B1(发射频率1920-1980MHz)+N41(频率2496MHz-2690MHz)的频段组合不会出现谐波干扰,该频段组合本身已满足射频要求,则可确定为第二通信模式。又例如,在单载波模式下的有些频段的发射信号也是满足射频要求的,也可确定为第二通信模式等。
若当前的通信模式为第二通信模式,则发射模组220可将发射信号发送至第二发射通路,由于第二通信模式下的发射信号不对接收信号产生干扰,不需要对发射信号对接收信号产生的谐波干扰进行抑制处理,因此第二发射通路240可包括比第一发射通路230更少的器件。在一些实施例中,第二发射通路240也可与天线电连接,第二发射通路240可将发射模组220中的PA发送的发射信号直接传输至天线,再由天线转化为电磁波辐射出去,网络设备即可接收到该发射信号。
针对不同的通信模式可分别采用不同的发射通路,在频段/频段组合本身就满足射频指标要求的前提下,可直接通过器件更少的发射通路发送信号,而不是所有通信模式下都采用相同的发射通路,可解决相关技术中为了使得某些CA、ENDC等多连接技术的频段组合满足射频指标要求,牺牲其他频段组合、单载波模式等的通路插损的问题。
作为一种具体实施方式,第二发射通路240可为纯阻抗电路,第二发射通路240可不包括任何器件,发射模组210发送的发射信号通过第二发射通路240后可直接被传输到天线,能够有效降低第二通信模式下发射信号产生的插损,且降低了PA的发射电流,而在同样的PA发射功率下,第二发射通路240可输出更高的功率,可使得天线发送的射频信号的覆盖范围更广。
在本申请实施例中,在处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,能够抑制在第一通信模式下的发射信号对接收信号的干扰,在处于第二通信模式时,由于在第二通信模式下的发射信号不对接收信号产生干扰,可通过第二发射通路向网络设备发射信号,能够对通信模式进行区分,不同通信模式下采用不同的发射通路发送发射信号,在不需要抑制发射信号对接收信号的干扰时,可通过器件更少的第二发射通路发送发射信号,能够降低发射信号在发射通路上的插损,减少了信号传输时产生的功耗。
图3为另一个实施例中射频电路的结构框图。如图3所示,在一个实施例中,上述的射频电路200还包括开关模块250,开关模块250可分别与发射模组220、第一发射通路230及第二发射通路240电连接,控制单元210可与开关模块250电连接。
控制单元210,还用于在处于第一通信模式时,向开关模块250发送第一切换信号。开关模块250,用于在接收到第一切换信号时,根据第一切换信号切换至第一闭合状态,使发射模组220与第一发射通路230导通。
在一些实施例中,可通过物理器件控制选择发射通路。在处于第一通信模式时,控制单元210可控制开关模块250切换至第一闭合状态。在该第一闭合状态下,发射模组220与第一发射通路230之间导通,发射模组220与第二发射通路240之间断开,发射模组220即可通过第一发射通路230传输发射信号。
控制单元210,还用于在处于第二通信模式时,向开关模块250发送第二切换信号。开关模块250,还用于在接收到第二切换信号时,根据第二切换信号切换至第二闭合状态,使发射模组220与第二发射通路240导通。
在处于第二通信模式时,控制单元210可控制开关模块250切换至第二闭合状态。在该第二闭合状态下,发射模组220与第一发射通路230之间断开,发射模组220与第二发射通路240之间导通,发射模组220即可通过第二发射通路240传输发射信号。
作为一种实施方式,开关模块250可包括单刀双掷开关,控制单元210可分别通过第一切换信号及第二切换信号控制单刀双掷开关的闭合状态。可选地,单刀双掷开关的第一端可与发射模组220连接,第二端可与第一发射通路230连接,第三端可与第二发射通路240电路。控制单元210在第一通信模式下,可控制单刀双掷开关的第一端与第二端闭合,在第二通信模式下,可控制单刀双掷开关的第一端与第三端闭合。
作为另一种实施方式,开关模块250也可包括第一开关和第二开关,其中,第一开关可分别与发射模组220及第一发射通路230连接,第二开关可分别与发射模组220及第二发射通路240连接。控制单元210在第一通信模式下,可控制第一开关闭合,第二开关断开,在第二通信模式下,可控制第二开关闭合,第一开关断开。需要说明的是,开关模块250也可采用其它的开关器件,并不仅限于上述的几种方式。
在一些实施例中,控制单元210也可直接通过程序控制的方式控制发射模组210在不同通信模式下时传输发射信号的发射通路。
在本申请实施例中,可通过开关模块对采用的发射通路进行选择切换,直接采用物理的方式进行切换,切换逻辑简单、方便,且准确性更高。
图4为一个实施例中第一发射通路的结构框图。如图4所示,在一个实施例中,第一发射通路230可包括滤波器类器件232、开关类器件234、合路器236及测试座238,其中,滤波器类器件232可分别与开关类器件234及发射模组220电连接,合路器236可分别与开关类器件234及测试座238电连接。
滤波器类器件232可用于对发射模组220传输的发射信号进行滤波处理。
在一个实施例中,滤波器类器件232可包括第一滤波器,第一滤波器可用于对发射模组220传输的发射信号进行第一滤波处理,以衰减发射信号中的谐波。在第一通信模式下,发射频段的倍数处于接收频段中,发射信号产生的谐波会对接收端造成干扰。通过第一滤波器可抑制第一通信模式下的发射信号对接收信号产生的谐波干扰,防止接收端的灵敏度下降,可使得发射信号满足射频指标要求。可选地,第一滤波器可包括谐波滤波器,该谐波滤波器可消除发射信号中会对接收信号产生干扰的谐波,如B3+N78的ENDC模式,B3频段的发射信号的二次谐波会对N78频段的接收信号产生干扰,则谐波滤波器可消除B3频段的发射信号的二次谐波。
需要说明的是,滤波器类器件232还可包括其它滤波器,例如带通滤波器等,并不仅限于上述的第一滤波器。
开关类器件234可用于支持上行探测参考信号(Sounding Reference Signal,SRS)功能,SRS可以进行信道质量和估计、波束管理等,以辅助进行上行调度、上行功控等。
合路器236可用于将多个不同频段的发射信号合路后并向天线输出,合路后的发射信号通过一个天线即可发射到网络设备,而不需要在多个不同的天线之间切换。
测试座238可用于对发射通路上的各个器件的性能、电气连接等进行测试,保证各个器件满足功能指标。
需要说明的是,第一发射通路230还可包括其它的器件,并不仅限于图4中的几种,对于某些器件(如测试座238)也可以省略。
如图5所示,在一个实施例中,第一发射通路230可包括第一子通路510及第二子通路520,其中,第一子通路510可与发射模组220电连接,第一子通路520可与发射模组220电连接,进一步地,第一子通路510可与开关模块250电连接,第二子通路510可与开关模块250电连接。
在一个实施例中,第一子通路510用于支持第一网络制式的发射信号,第二子通路520用于支持第二网络制式的发射信号,第一网络制式与第二网络制式不同。网络制式指的是接入的网络类型,第一子通路510及第二子通路520可分别支持不同网络制式的信号传输,例如,第一子通路510可用于发射4G信号,第二子通路520可用于发射5G信号等,但不限于此。
在另一个实施例中,第一子通路510用于支持第一发射频段的发射信号,第二子通路520用于支持第二发射频段的发射信号,第一发射频段与第二发射频段不同。在第一通信模式下,通常采用多个不同频段组合,第一子通路510和第二子通路520可分别支持不同发射频段的信号传输,例如,第一子通路510可用于发射LB、MB信号,第二子通路520可用于发射HB信号等。
可选地,第一子通路510及第二子通路520可与同一天线电连接,也可分别连接不同的天线,其中,第一子通路510与第一天线电连接,第二子通路与第二天线电连接。通过不同的天线传输不同网络制式或不同频段的信号,可提高信号传输的成功率及稳定性。
可选地,第一子通路510及第二子通路520包括的器件可相同也可不同,例如,第一通信模式为频段组合为B3+N78的ENDC模式,其中,第一子通路510可用于支持B3频段信号的传输,第二子通路520可用于支持N78频段信号的传输,由于B3频段的发射信号会对N78的接收信号产生谐波干扰,因此,第一子通路510中可包括第一滤波器,而第二子通路可不包括第一滤波器。
可选地,第一子通路510及第二子通路520也可共用某些特定的器件,例如,第一子通路510及第二子通路520可共用上述的合路器及测试座,合路器可将两个子通路的发射信号合路后传输到同一天线,通过该天线向网络设备发射信号,能够降低硬件成本。
在一些实施例中,第一发射通路230可不仅仅包括两路子通路,可包括数量更多的子通路,用于支持不同网络制式下不同频段的信号传输,例如,子通路1支持4G中的LB、MB信号,子通路2支持4G中的HB信号,子通路3支持5G的LB、MB信号,子通路4支持5G中的HB信号等,但不限于此。具体的子通路数量设置可根据实施需求进行设定。
在本申请实施例中,第一发射通路中可包括用于支持不同网络制式或不同频段的子通路,采用不同的子通路发射第一通信模式下不同网络制式或不同频段的信号,可降低不同网络制式或不同频段之间的发射信号的干扰,保证信号传输的稳定性。
在一些实施例中,第二发射通路240也可不是纯阻抗电路,第二发射通路240中可包括一个或多个器件。图6为另一个实施例中射频电路的结构框图。如图6所示,第二发射通路240可包括第二滤波器242,该第二滤波器可与发射模组220电连接。进一步地,第二滤波器242可与开关模块250电连接。
在第二通信模式下,开关模块250处于第二闭合状态,发射模组220与第二发射通路240之间导通。第二滤波器242,用于对发射模组220传输的发射信号进行第二滤波处理,以衰减发射信号中除目标发射频段以外的分量。其中,目标发射频段为第二通信模式下的发射频段。
可选地,第二滤波器242可包括带通滤波器,该带通滤波器可用于允许目标发射频段的发射信号通过,滤除发射信号中除目标发射频段以外的分量,可减少第二发射通路上传输的发射信号受其它频段信号的干扰,提高传输的成功率及稳定性。
在一些实施例中,为了节省硬件成本,第一发射通路230与第二发射通路240可共用器件。示例性地,第一发射通路230与第二发射通路240可共用测试座238,若第二发射通路240为纯阻抗电路,则该纯阻抗电路的一端可与开关模块250连接,另一端与第一发射通路230中的测试座238连接。在第二通信模式下,发射模组220发送的发射信号可直接通过纯阻抗电路到达测试座238,再传输到天线。
可选地,如图6所示,第二发射通路240包括第二滤波器242,第二滤波器242可与第一发射通路230的测试座238电连接。第二滤波器242对发射模组220发送的发射信号进行第二滤波处理后,可将滤波处理后的发射信号发送至测试座238,再传输到天线。
在一些实施例中,第二发射通路240也可包括用于支持不同网络制式或不同频段的发射信号的子通路,第二发射通路240中多个子通路的设置方式可与第一发射通路230中子通路的设置方式相似,在此不再重复赘述。采用不同的子通路发射第二通信模式下的不同网络制式或不同频段的信号,可降低不同网络制式或不同频段之间的发射信号的干扰,保证信号传输的稳定性。
在本申请实施例中,在第二通信模式下,可通过第二发射通路240中的第二滤波器对发射信号进行滤波处理,以滤除第二通信模式下发射频段以外的信号,可保证信号传输的成功率及稳定性。
如图7所示,在一个实施例中,提供一种终端设备700,可包括如上述各个实施例所描述的射频电路200。
如图8所示,在一个实施例中,提供一种信号传输方法,可应用于上述的终端设备,该终端设备可包括上述各个实施例所描述的射频电路200。该信号传输方法可包括以下步骤:
步骤810,当终端设备处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在第一通信模式下的发射信号对接收信号的干扰。
步骤820,当终端设备处于第二通信模式时,通过第二发射通路向网络设备发送发射信号。其中,在第二通信模式下的发射信号不对接收信号产生干扰,第二通路包括的器件数量小于第一通路包括的器件数量。
在本申请实施例中,在处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,能够抑制在第一通信模式下的发射信号对接收信号的干扰,在处于第二通信模式时,由于在第二通信模式下的发射信号不对接收信号产生干扰,可通过第二发射通路向网络设备发射信号,能够对通信模式进行区分,不同通信模式下采用不同的发射通路发送发射信号,在不需要抑制发射信号对接收信号的干扰时,可通过器件更少的第二发射通路发送发射信号,能够降低发射信号在发射通路上的插损,减少了信号传输时产生的功耗。
在一个实施例中,步骤810,包括:当终端设备处于第一通信模式时,控制开关模块切换至第一闭合状态,使发射模组与第一发射通路导通,并通过第一发射通路对发射模组传输的发射信号进行处理,再向网络设备发送处理后的发射信号。
步骤820,包括:当终端设备处于第二通信模式时,控制开关模块切换至第二闭合状态,使发射模组与第二发射通路导通,并通过第二发射通路对发射模组传输的发射信号进行处理,再向网络设备发送处理后的发射信号。
在本申请实施例中,可通过开关模块对采用的发射通路进行选择切换,直接采用物理的方式进行切换,切换逻辑简单、方便,且准确性更高。
在一个实施例中,步骤通过第一发射通路对发射模组传输的发射信号进行处理,包括:通过第一发射通路中的第一滤波器对发射信号进行第一滤波处理,以衰减发射信号中的谐波,发射信号中的谐波处于第一通信模式下的接收频段中。
在一个实施例中,第一发射通路包括第一子通路及第二子通路。
步骤810,包括:当终端设备处于第一通信模式时,通过第一子通路对第一网络制式/第一发射频段的发射信号进行处理,并向网络设备发送处理后的发射信号,以及通过第二子通路对第二网络制式/第二发射频段的发射信号进行处理,并向网络设备发送处理后的发射信号。
在本申请实施例中,第一发射通路中可包括用于支持不同网络制式或不同频段的子通路,采用不同的子通路发射第一通信模式下不同网络制式或不同频段的信号,可降低不同网络制式或不同频段之间的发射信号的干扰,保证信号传输的稳定性。
在一个实施例中,第二发射通路包括第二滤波器。步骤820,包括:当终端设备处于第二通信模式时,通过第二发射通路中的第二滤波器对发射信号进行第二滤波处理,以衰减发射信号中除目标发射频段以外的分量,并向网络设备发送滤波处理后的发射信号。
在本申请实施例中,在第二通信模式下,可通过第二发射通路中的第二滤波器对发射信号进行滤波处理,以滤除第二通信模式下发射频段以外的信号,可保证信号传输的成功率及稳定性。
如图9所示,在一个实施例中,提供一种信号传输装置900,可适用于上述的终端设备,该终端设备可包括上述各个实施例所描述的射频电路200。该信号传输装置900可包括第一发射模块910及第二发射模块920。
第一发射模块910,用于当终端设备处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在第一通信模式下的发射信号对接收信号的干扰。
第二发射模块920,用于当终端设备处于第二通信模式时,通过第二发射通路向网络设备发送发射信号。其中,在第二通信模式下的发射信号不对接收信号产生干扰,第二通路包括的器件数量小于第一通路包括的器件数量。
在本申请实施例中,在处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,能够抑制在第一通信模式下的发射信号对接收信号的干扰,在处于第二通信模式时,由于在第二通信模式下的发射信号不对接收信号产生干扰,可通过第二发射通路向网络设备发射信号,能够对通信模式进行区分,不同通信模式下采用不同的发射通路发送发射信号,在不需要抑制发射信号对接收信号的干扰时,可通过器件更少的第二发射通路发送发射信号,能够降低发射信号在发射通路上的插损,减少了信号传输时产生的功耗。
在一个实施例中,第一发射模块910,还用于当终端设备处于第一通信模式时,控制开关模块切换至第一闭合状态,使发射模组与第一发射通路导通,并通过第一发射通路对发射模组传输的发射信号进行处理,再向网络设备发送处理后的发射信号。
第二发射模块920,还用于当终端设备处于第二通信模式时,控制开关模块切换至第二闭合状态,使发射模组与第二发射通路导通,并通过第二发射通路对发射模组传输的发射信号进行处理,再向网络设备发送处理后的发射信号。
在本申请实施例中,可通过开关模块对采用的发射通路进行选择切换,直接采用物理的方式进行切换,切换逻辑简单、方便,且准确性更高。
在一个实施例中,第一发射模块910,还用于通过第一发射通路中的第一滤波器对发射信号进行第一滤波处理,以衰减发射信号中的谐波,发射信号中的谐波处于第一通信模式下的接收频段中。
在一个实施例中,第一发射通路包括第一子通路及第二子通路。第一发射模块910,包括第一发射单元及第二发射单元。
第一发射单元,用于当终端设备处于第一通信模式时,通过第一子通路对第一网络制式/第一发射频段的发射信号进行处理,并向网络设备发送处理后的发射信号。
第二发射单元,用于通过第二子通路对第二网络制式/第二发射频段的发射信号进行处理,并向网络设备发送处理后的发射信号。
在本申请实施例中,第一发射通路中可包括用于支持不同网络制式或不同频段的子通路,采用不同的子通路发射第一通信模式下不同网络制式或不同频段的信号,可降低不同网络制式或不同频段之间的发射信号的干扰,保证信号传输的稳定性。
在一个实施例中,第二发射模块920,还用于当终端设备处于第二通信模式时,通过第二发射通路中的第二滤波器对发射信号进行第二滤波处理,以衰减发射信号中除目标发射频段以外的分量,并向网络设备发送滤波处理后的发射信号。
在本申请实施例中,在第二通信模式下,可通过第二发射通路中的第二滤波器对发射信号进行滤波处理,以滤除第二通信模式下发射频段以外的信号,可保证信号传输的成功率及稳定性。
图10为另一个实施例中终端设备的结构框图。如图10所示,终端设备可以包括:射频模块1010、存储器1020、输入单元1030、显示单元1040、传感器1050、音频电路1060、WiFi(Wireless Fidelity,无线保真)模块1070、处理器1080、以及电源1090等部件。本领域技术人员可以理解,图10中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频模块1010可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1080处理;另外,将设计上行的数据发送给基站。通常,射频模块1010包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noiseamplifier,LNA)、双工器等。此外,射频模块1010还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(globalsystem of mobile communication,GSM)、通用分组无线服务(general packet radioservice,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进、电子邮件、短消息服务(short messaging service,SMS)等。
存储器1020可用于存储软件程序以及模块,处理器1080通过运行存储在存储器1020的软件程序以及模块,从而执行终端设备的各种功能应用以及数据处理。存储器1020可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1020可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1030可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元1030可包括触控面板1032以及其他输入设备1034。触控面板1032,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1032上或在触控面板1032附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1032可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1080,并能接收处理器1080发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1032。除了触控面板1032,输入单元1030还可以包括其他输入设备1034。具体地,其他输入设备1034可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1040可用于显示由用户输入的信息或提供给用户的信息以及终端设备的各种菜单。显示单元1040可包括显示面板1042,可选的,可以采用液晶显示器(liquidcrystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板1042。进一步的,触控面板1032可覆盖显示面板1042,当触控面板1032检测到在其上或附近的触摸操作后,传送给处理器1080以确定触摸事件的类型,随后处理器1080根据触摸事件的类型在显示面板1042上提供相应的视觉输出。虽然在图10中,触控面板1032与显示面板1042是作为两个独立的部件来实现终端设备的输入和输入功能,但是在某些实施例中,可以将触控面板1032与显示面板1042集成而实现终端设备的输入和输出功能。
终端设备还可包括至少一种传感器1050,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1042的亮度,接近传感器可在终端设备移动到耳边时,关闭显示面板1042和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1060、扬声器1062,传声器1064可提供用户与终端设备之间的音频接口。音频电路1060可将接收到的音频数据转换后的电信号,传输到扬声器1062,由扬声器1062转换为声音信号输出;另一方面,传声器1064将收集的声音信号转换为电信号,由音频电路1060接收后转换为音频数据,再将音频数据输出处理器1080处理后,经射频模块1010以发送给比如另一终端设备,或者将音频数据输出至存储器1020以便进一步处理。
WiFi属于短距离无线传输技术,终端设备通过WiFi模块1070可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。
处理器1080是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器1020内的软件程序和/或模块,以及调用存储在存储器1020内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选的,处理器1080可包括一个或多个处理单元;优选的,处理器1080可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1080中。
在一个实施例中,调制解调处理器与射频模块1010可组成本申请实施例中的射频电路,射频模块1010中可设置有第一发射通路及第二发射通路,调制解调处理器可作为射频电路中的控制单元。
终端设备还包括给各个部件供电的电源1090(比如电池),优选的,电源可以通过电源管理系统与处理器1080逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,终端设备还可以包括摄像头、蓝牙模块等,在此不再赘述。
在一个实施例中,存储器1020中存储的计算机程序被处理器1080执行时,使得处理器1080实现如上述各实施例中描述的方法。
本申请实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序被处理器执行时实现如上述各实施例描述的方法。
本申请实施例公开一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可被处理器执行时实现如上述各实施例描述的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
如此处所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请的各个实施例上述方法的部分或全部步骤。
以上对本申请实施例公开的一种射频电路、终端设备、信号传输方法及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

1.一种射频电路,其特征在于,包括发射模组、第一发射通路、第二发射通路及控制单元,所述发射模组分别与所述第一发射通路及第二发射通路电连接,所述控制单元与所述发射模组电连接,所述第二通路包括的器件数量小于所述第一通路包括的器件数量;
所述控制单元,用于在处于第一通信模式时,控制所述发射模组向所述第一发射通路传输发射信号;
所述第一发射通路,用于对所述发射模组传输的发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在所述第一通信模式下的发射信号对接收信号的干扰;
所述控制单元,还用于在处于第二通信模式时,控制所述发射模组向所述第二发射通路传输发射信号,在第二通信模式下的发射信号不对接收信号产生干扰;
所述第二发射通路,用于将所述发射模组传输的发射信号发送到所述网络设备。
2.根据权利要求1所述的电路,其特征在于,所述射频电路还包括开关模块,所述开关模块分别与所述发射模组、第一发射通路及第二发射通路电连接,所述控制单元与所述开关模块电连接;
所述控制单元,还用于在处于第一通信模式时,向所述开关模块发送第一切换信号;
所述开关模块,用于在接收到所述第一切换信号时,根据所述第一切换信号切换至第一闭合状态,使所述发射模组与所述第一发射通路导通;
所述控制单元,还用于在处于第二通信模式时,向所述开关模块发送第二切换信号;
所述开关模块,还用于在接收到所述第二切换信号时,根据所述第二切换信号切换至第二闭合状态,使所述发射模组与所述第二发射通路导通。
3.根据权利要求1所述的电路,其特征在于,所述第一发射通路包括第一滤波器,所述第一滤波器与所述发射模组电连接;
所述第一滤波器,用于对所述发射模组传输的发射信号进行第一滤波处理,以衰减所述发射信号中的谐波,所述发射信号中的谐波处于所述第一通信模式下的接收频段中。
4.根据权利要求1至3任一所述的电路,其特征在于,所述第一发射通路包括第一子通路及第二子通路,所述第一子通路与所述发射模组电连接,所述第二子通路与所述发射模组电连接;
所述第一子通路用于支持第一网络制式的发射信号,所述第二子通路用于支持第二网络制式的发射信号,所述第一网络制式与所述第二网络制式不同;或
所述第一子通路用于支持第一发射频段的发射信号,所述第二子通路用于支持第二发射频段的发射信号,所述第一发射频段与所述第二发射频段不同。
5.根据权利要求1所述的电路,其特征在于,所述第二发射通路为纯阻抗电路。
6.根据权利要求1所述的电路,其特征在于,所述第二发射通路包括第二滤波器,所述第二滤波器与所述发射模组电连接;
所述第二滤波器,用于对所述发射模组传输的发射信号进行第二滤波处理,以衰减所述发射信号中除目标发射频段以外的分量,所述目标发射频段为所述第二通信模式下的发射频段。
7.一种终端设备,其特征在于,包括如权利要求1至6任一所述的电路。
8.一种信号传输方法,其特征在于,应用于终端设备,所述方法包括:
当所述终端设备处于第一通信模式时,通过第一发射通路对发射信号进行处理,并向网络设备发送处理后的发射信号,以抑制在所述第一通信模式下的发射信号对接收信号的干扰;
当所述终端设备处于第二通信模式时,通过第二发射通路向所述网络设备发送发射信号,其中,在所述第二通信模式下的发射信号不对接收信号产生干扰,所述第二通路包括的器件数量小于所述第一通路包括的器件数量。
9.一种终端设备,其特征在于,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如权利要求8所述的方法。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求8所述的方法。
CN202010975329.5A 2020-09-16 2020-09-16 射频电路、终端设备、信号传输方法及存储介质 Active CN112152649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010975329.5A CN112152649B (zh) 2020-09-16 2020-09-16 射频电路、终端设备、信号传输方法及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010975329.5A CN112152649B (zh) 2020-09-16 2020-09-16 射频电路、终端设备、信号传输方法及存储介质

Publications (2)

Publication Number Publication Date
CN112152649A true CN112152649A (zh) 2020-12-29
CN112152649B CN112152649B (zh) 2022-04-12

Family

ID=73893936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010975329.5A Active CN112152649B (zh) 2020-09-16 2020-09-16 射频电路、终端设备、信号传输方法及存储介质

Country Status (1)

Country Link
CN (1) CN112152649B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844522A (zh) * 2022-04-28 2022-08-02 Oppo广东移动通信有限公司 通信电路及其干扰抑制方法、终端设备
CN114845389A (zh) * 2022-05-17 2022-08-02 山东闻远通信技术有限公司 一种基于5g通信的终端确认装置及便携式设备
CN118054807A (zh) * 2022-11-17 2024-05-17 荣耀终端有限公司 确定目标传输线的方法、传输线组件及相关产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365860A (zh) * 2018-01-10 2018-08-03 西安易朴通讯技术有限公司 一种终端设备
CN108988903A (zh) * 2018-07-23 2018-12-11 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN108988904A (zh) * 2018-07-23 2018-12-11 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN111277296A (zh) * 2020-02-25 2020-06-12 Oppo广东移动通信有限公司 射频电路、射频芯片和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365860A (zh) * 2018-01-10 2018-08-03 西安易朴通讯技术有限公司 一种终端设备
CN108988903A (zh) * 2018-07-23 2018-12-11 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN108988904A (zh) * 2018-07-23 2018-12-11 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN108988877A (zh) * 2018-07-23 2018-12-11 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN111277296A (zh) * 2020-02-25 2020-06-12 Oppo广东移动通信有限公司 射频电路、射频芯片和电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844522A (zh) * 2022-04-28 2022-08-02 Oppo广东移动通信有限公司 通信电路及其干扰抑制方法、终端设备
CN114845389A (zh) * 2022-05-17 2022-08-02 山东闻远通信技术有限公司 一种基于5g通信的终端确认装置及便携式设备
CN118054807A (zh) * 2022-11-17 2024-05-17 荣耀终端有限公司 确定目标传输线的方法、传输线组件及相关产品

Also Published As

Publication number Publication date
CN112152649B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN112448734A (zh) 射频模块、终端设备及信号发射方法
CN106301462B (zh) 射频控制电路及移动终端
CN107734586B (zh) 天线的切换方法及移动终端
CN112152649B (zh) 射频电路、终端设备、信号传输方法及存储介质
CN108063646A (zh) 电子设备的抗干扰方法及相关产品
CN109769224B (zh) 一种车联网信息传输方法、网络设备、介质及终端
CN108513718B (zh) 一种网络通信方法和终端
WO2021114699A1 (zh) 信号强度上报方法、装置、存储介质及终端设备
CN107947894A (zh) 电子设备的抗干扰方法及相关产品
CN108600520B (zh) 接收状态控制方法、移动终端及计算机可读存储介质
CN110635878B (zh) 一种命令处理方法及终端设备
CN110856246B (zh) 功率控制方法及电子设备
CN108124056A (zh) 电子设备的抗干扰方法及相关产品
US12156068B2 (en) Cell measurement method based on frequency point optimization and terminal device
CN109714488A (zh) 终端设备工作模式调节方法、装置、终端设备和存储介质
WO2021000776A1 (zh) 干扰处理方法、终端及网络侧设备
CN108471630B (zh) 传输速率调整方法、装置、移动终端及计算机可读介质
CN110166065A (zh) 信号处理方法、网络配置方法和相关设备
WO2021238199A1 (zh) 数据传输方法、电子设备及计算机可读存储介质
CN112135321B (zh) 通路切换方法及相关产品
CN113079536A (zh) 一种定时提前量的更新方法、装置及移动终端
CN114828187B (zh) 电子设备功率调整的方法、电子设备及存储介质
CN106656803A (zh) 一种更新路由表项的方法、装置及系统
CN112740827B (zh) 网络通信处理方法、计算机可读存储介质和电子设备
CN114301550A (zh) 射频测试方法、智能终端及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant