CN112148352A - Component configuration method, device, equipment and computer readable medium - Google Patents
Component configuration method, device, equipment and computer readable medium Download PDFInfo
- Publication number
- CN112148352A CN112148352A CN202010975054.5A CN202010975054A CN112148352A CN 112148352 A CN112148352 A CN 112148352A CN 202010975054 A CN202010975054 A CN 202010975054A CN 112148352 A CN112148352 A CN 112148352A
- Authority
- CN
- China
- Prior art keywords
- target
- neural network
- network model
- component
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
- G06F8/71—Version control; Configuration management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0641—Shopping interfaces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Computational Linguistics (AREA)
- Finance (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Accounting & Taxation (AREA)
- Computer Security & Cryptography (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本申请涉及一种组件配置方法、装置、设备及计算机可读介质。该方法包括:获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;根据第一行为数据确定目标对象的第一行为特征;配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。本申请能够根据用户在电商平台产生的行为数据智能分析出用户的喜好特征,进而智能展示与用户喜好特征匹配的页面组件,解决了组件配置模式单一,与用户需求不匹配,导致用户点击转化率低的问题。
The present application relates to a component configuration method, apparatus, device, and computer-readable medium. The method includes: acquiring first behavior data of a target object, where the first behavior data is generated by the operation of the target object on an Internet platform; determining a first behavior feature of the target object according to the first behavior data; configuring matching with the first behavior feature The target component of the , and display the target component to the target object. The application can intelligently analyze the user's preference characteristics according to the behavior data generated by the user on the e-commerce platform, and then intelligently display the page components that match the user's preference characteristics, which solves the problem that the component configuration mode is single and does not match the user's needs, which leads to the user's click conversion. low rate problem.
Description
技术领域technical field
本申请涉及互联网技术领域,尤其涉及一种组件配置方法、装置、设备及计算机可读介质。The present application relates to the field of Internet technologies, and in particular, to a component configuration method, apparatus, device, and computer-readable medium.
背景技术Background technique
随着互联网技术的迅捷发展,电商购物平台已成为众多用户购买商品的主要途径。电商购物平台为了吸引用户不仅需要迎合用户的喜好而推荐商品,还需要向不同的用户提供足以引起视觉冲击和其感兴趣的页面组件,使用户产生点击冲动。With the rapid development of Internet technology, e-commerce shopping platforms have become the main way for many users to purchase goods. In order to attract users, the e-commerce shopping platform not only needs to recommend products to meet the user's preferences, but also needs to provide different users with page components that are enough to arouse visual impact and interest, so that users have the urge to click.
目前,相关技术中,页面样式以feed流来将内容呈现给用户并持续更新,更新内容依照程序提供,组件的输出模式较为单一,与用户需求不匹配,导致用户点击转化率低。At present, in the related art, the page style uses a feed stream to present the content to the user and continuously update the content, and the updated content is provided according to the program.
针对上述的问题,目前尚未提出有效的解决方案。For the above problems, no effective solution has been proposed yet.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种组件配置方法、装置、设备及计算机可读介质,以解决组件配置模式单一,与用户需求不匹配的技术问题。The present application provides a component configuration method, apparatus, device, and computer-readable medium to solve the technical problem of a single component configuration mode that does not match user requirements.
根据本申请实施例的一个方面,本申请提供了一种组件配置方法,包括:获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;根据第一行为数据确定目标对象的第一行为特征;配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。According to an aspect of the embodiments of the present application, the present application provides a component configuration method, including: acquiring first behavior data of a target object, where the first behavior data is generated by the operation of the target object on an Internet platform; according to the first behavior The data determines the first behavioral feature of the target object; configures the target component matching the first behavioral feature, and displays the target component to the target object.
可选地,根据第一行为数据确定目标对象的第一行为特征包括:利用第一神经网络模型对第一行为数据进行识别;根据第一神经网络模型对第一行为数据的识别结果确定目标对象的第一行为特征,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据对应的用户行为特征,识别结果用于指示第一行为数据与第一行为特征的关联关系。Optionally, determining the first behavioral feature of the target object according to the first behavioral data includes: using a first neural network model to identify the first behavioral data; determining the target object according to a recognition result of the first neural network model on the first behavioral data. The first behavioral feature of the first neural network model is obtained after training the second neural network model by using the training data with labeling information. The labeling information is used to label the user behavioral characteristics corresponding to the training data, and the recognition result is used to indicate the first An association relationship between the behavior data and the first behavior feature.
可选地,利用第一神经网络模型对第一行为数据进行识别之前,该方法还包括按照如下方式获取第一神经网络模型:通过训练数据对第二神经网络模型内各参数进行初始化,得到第三神经网络模型;在第三神经网络模型对测试数据的识别准确度达到目标阈值的情况下,将第三神经网络模型作为第一神经网络模型;在第三神经网络模型对测试数据的识别准确度未达到目标阈值的情况下,继续使用训练数据对第三神经网络模型进行训练,以调整第三神经网络模型内各参数的数值,直至第三神经网络模型对测试数据的识别准确度达到目标阈值。Optionally, before using the first neural network model to identify the first behavioral data, the method further includes acquiring the first neural network model in the following manner: initializing each parameter in the second neural network model through the training data to obtain the first neural network model. Three neural network models; when the recognition accuracy of the test data by the third neural network model reaches the target threshold, the third neural network model is used as the first neural network model; when the recognition accuracy of the test data by the third neural network model is accurate If the degree of accuracy does not reach the target threshold, continue to use the training data to train the third neural network model to adjust the values of the parameters in the third neural network model until the recognition accuracy of the test data by the third neural network model reaches the target threshold.
可选地,将第三神经网络模型作为第一神经网络模型之前,该方法还包括按照如下方式训练第三神经网络模型,直至第三神经网络模型收敛:将每一个训练数据输入第三神经网络模型,得到用户行为特征的训练预测值;根据多个训练预测值和训练数据对应的实际的户行为特征之间的差异确定损失值;利用多个损失值修正第三神经网络模型,直至第三神经网络模型输出结果的精度达到目标阈值。Optionally, before using the third neural network model as the first neural network model, the method further includes training the third neural network model as follows until the third neural network model converges: inputting each training data into the third neural network model to obtain the training prediction value of user behavior characteristics; determine the loss value according to the difference between multiple training prediction values and the actual user behavior characteristics corresponding to the training data; use multiple loss values to modify the third neural network model until the third The accuracy of the output of the neural network model reaches the target threshold.
可选地,配置与第一行为特征匹配的目标组件包括:获取与第一行为特征匹配的目标代码块,目标代码块为代码仓库中的独立代码块;在与目标页面对应的目标框架中执行目标代码块,以生成第一组件,目标页面为目标对象当前浏览的页面,目标框架为目标页面应用的技术框架;在第一组件与目标显示屏适配的情况下,将第一组件作为目标组件,并在目标页面上展示目标组件,目标显示屏为目标对象使用的终端上的显示屏。Optionally, configuring the target component that matches the first behavioral feature includes: acquiring a target code block that matches the first behavioral feature, where the target code block is an independent code block in the code warehouse; executing in the target frame corresponding to the target page The target code block is to generate the first component, the target page is the page currently browsed by the target object, and the target frame is the technical framework applied by the target page; in the case that the first component is adapted to the target display screen, the first component is used as the target component, and display the target component on the target page, and the target display screen is the display screen on the terminal used by the target object.
可选地,在第一组件与目标显示屏适配的情况下,将第一组件作为目标组件之前,该方法还包括按照如下方式调整第一组件:获取目标显示屏的第一分辨率;计算第一分辨率和预设分辨率之间的缩放系数,预设分辨率为第一组件在原始设计时所用的显示屏分辨率;按照缩放系数对第一组件进行调整。Optionally, when the first component is adapted to the target display screen, before using the first component as the target component, the method further includes adjusting the first component in the following manner: obtaining the first resolution of the target display screen; calculating A scaling factor between the first resolution and a preset resolution, where the preset resolution is the display screen resolution used by the first component in the original design; the first component is adjusted according to the scaling factor.
可选地,在目标组件运行异常的情况下,该方法还包括:屏蔽目标代码块,以移除目标组件;将目标代码块和异常信息发送至异常处理队列进行处理。Optionally, when the target component runs abnormally, the method further includes: shielding the target code block to remove the target component; sending the target code block and exception information to an exception processing queue for processing.
根据本申请实施例的另一方面,本申请提供了一种组件配置装置,包括:数据获取模块,用于获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;特征确定模块,用于根据第一行为数据确定目标对象的第一行为特征;组件配置模块,用于配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。According to another aspect of the embodiments of the present application, the present application provides a component configuration device, including: a data acquisition module configured to acquire first behavior data of a target object, where the first behavior data is an operation of the target object on an Internet platform generated; a feature determination module for determining a first behavioral feature of the target object according to the first behavioral data; a component configuration module for configuring a target component matching the first behavioral feature and displaying the target component to the target object.
根据本申请实施例的另一方面,本申请提供了一种电子设备,包括存储器、处理器、通信接口及通信总线,存储器中存储有可在处理器上运行的计算机程序,存储器、处理器通过通信总线和通信接口进行通信,处理器执行计算机程序时实现上述方法的步骤。According to another aspect of the embodiments of the present application, the present application provides an electronic device, including a memory, a processor, a communication interface, and a communication bus, the memory stores a computer program that can run on the processor, and the memory and the processor pass through The communication bus communicates with the communication interface, and the processor implements the steps of the above method when executing the computer program.
根据本申请实施例的另一方面,本申请还提供了一种具有处理器可执行的非易失的程序代码的计算机可读介质,程序代码使处理器执行上述的方法。According to another aspect of the embodiments of the present application, the present application further provides a computer-readable medium having a non-volatile program code executable by a processor, the program code causing the processor to execute the above method.
本申请实施例提供的上述技术方案与相关技术相比具有如下优点:Compared with the related art, the above-mentioned technical solutions provided in the embodiments of the present application have the following advantages:
本申请技术方案为获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;根据第一行为数据确定目标对象的第一行为特征;配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。本申请能够根据用户在电商平台产生的行为数据智能分析出用户的喜好特征,进而智能展示与用户喜好特征匹配的页面组件,解决了组件配置模式单一,与用户需求不匹配,导致用户点击转化率低的问题。The technical solution of the present application is to obtain the first behavior data of the target object, and the first behavior data is generated by the operation of the target object on the Internet platform; the first behavior feature of the target object is determined according to the first behavior data; the configuration and the first behavior feature The matching target component and present the target component to the target object. The application can intelligently analyze the user's preference characteristics according to the behavior data generated by the user on the e-commerce platform, and then intelligently display the page components that match the user's preference characteristics, which solves the problem that the component configuration mode is single and does not match the user's needs, resulting in the user's click conversion. low rate problem.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or related technologies, the accompanying drawings required for describing the embodiments or related technologies will be briefly introduced below. Obviously, for those skilled in the art, On the premise of no creative labor, other drawings can also be obtained from these drawings.
图1为根据本申请实施例提供的一种可选的组件配置方法硬件环境示意图;FIG. 1 is a schematic diagram of a hardware environment of an optional component configuration method provided according to an embodiment of the present application;
图2为根据本申请实施例提供的一种可选的组件配置方法流程图;FIG. 2 is a flowchart of an optional component configuration method provided according to an embodiment of the present application;
图3为根据本申请实施例提供的一种可选的特征识别方法流程图;3 is a flowchart of an optional feature identification method provided according to an embodiment of the present application;
图4为根据本申请实施例提供的一种可选的解耦合组件配置方法流程图;FIG. 4 is a flowchart of an optional decoupling component configuration method provided according to an embodiment of the present application;
图5为根据本申请实施例提供的一种可选的组件配置装置框图;FIG. 5 is a block diagram of an optional component configuration apparatus provided according to an embodiment of the present application;
图6为根据本申请实施例提供的一种可选的电子设备的结构示意图。FIG. 6 is a schematic structural diagram of an optional electronic device provided according to an embodiment of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present application.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。In the following description, suffixes such as 'module', 'component' or 'unit' used to represent elements are used only to facilitate the description of the present application, and have no specific meaning per se. Therefore, "module" and "component" can be used interchangeably.
相关技术中,页面样式以feed流来将内容呈现给用户并持续更新,更新内容依照程序提供,组件的输出模式较为单一,与用户需求不匹配。并且页面动态组件只能运用在一种框架比如单独的vue或者react或者原生javascript中开发,跨框架性较弱,无法保证页面兼容性和页面美观。In the related art, the page style uses a feed stream to present the content to the user and continuously update the content. The updated content is provided according to the program, and the output mode of the component is relatively simple, which does not match the user's needs. And page dynamic components can only be developed in a framework such as a separate vue or react or native javascript, and the cross-framework is weak, which cannot guarantee page compatibility and page beauty.
为了解决背景技术中提及的问题,根据本申请实施例的一方面,提供了一种组件配置方法的实施例。In order to solve the problems mentioned in the background art, according to an aspect of the embodiments of the present application, an embodiment of a component configuration method is provided.
可选地,在本申请实施例中,上述组件配置方法可以应用于如图1所示的由终端101和服务器102所构成的硬件环境中。如图1所示,服务器102通过网络与终端101进行连接,可用于为终端或终端上安装的客户端提供服务,可在服务器上或独立于服务器设置数据库103,用于为服务器102提供数据存储服务,上述网络包括但不限于:广域网、城域网或局域网,终端101包括但不限于PC、手机、平板电脑等。Optionally, in this embodiment of the present application, the foregoing component configuration method may be applied to a hardware environment composed of a terminal 101 and a server 102 as shown in FIG. 1 . As shown in FIG. 1 , the server 102 is connected to the terminal 101 through the network, which can be used to provide services for the terminal or the client installed on the terminal, and a database 103 can be set on the server or independent of the server to provide data storage for the server 102 Services, the above-mentioned network includes but is not limited to: wide area network, metropolitan area network or local area network, and the terminal 101 includes but is not limited to PC, mobile phone, tablet computer, etc.
本申请实施例中的一种组件配置方法可以由服务器102来执行,还可以是由服务器102和终端101共同执行,如图2所示,该方法可以包括以下步骤:A component configuration method in this embodiment of the present application may be performed by the server 102, or may be performed jointly by the server 102 and the terminal 101. As shown in FIG. 2, the method may include the following steps:
步骤S201,获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的。Step S201, acquiring first behavior data of the target object, where the first behavior data is generated by the operation of the target object on the Internet platform.
本申请实施例中,上述互联网平台可以是社交媒体平台、电商购物平台等,上述目标对象为用户,第一行为数据可以是该用户在社交媒体平台、电商购物平台上一系列操作生成的数据,以电商购物平台为例,第一行为数据可以是用户对页面中各个组件的点击、滑动、长按等操作。用户对页面中的组件的上述操作不仅是因为组件对应的商品吸引用户,还可能是组件的视觉效果与用户的喜好相符,使用户感兴趣从而产生了点击的冲动。因此获取用户在浏览页面过程中产生的行为数据,能够进一步分析用户的喜好、兴趣偏好等。In the embodiment of the present application, the above-mentioned Internet platform may be a social media platform, an e-commerce shopping platform, etc., the above-mentioned target object is a user, and the first behavior data may be generated by a series of operations performed by the user on a social media platform or an e-commerce shopping platform Data, taking an e-commerce shopping platform as an example, the first behavior data can be the user's operations such as clicking, sliding, and long pressing on various components on the page. The above operations of the user on the components on the page are not only because the products corresponding to the components attract the users, but also because the visual effects of the components are consistent with the user's preferences, which makes the user interested and thus generates an impulse to click. Therefore, the behavior data generated by the user in the process of browsing the page can be obtained to further analyze the user's preferences, interest preferences, and the like.
本申请实施例中,还可以获取用户在单个页面上停留的时长。用户在单个页面上停留的时长能够反映该用户对该页面中的商品、组件按钮等感兴趣的程度。为了避免将用户远离设备而页面停留时间长误判为用户对该页面中的内容较感兴趣,可以监测用户操作,若长时间无操作,则可以将当前情况判定为用户远离设备,从而降低误判的风险,提升用户分析的准确率。In this embodiment of the present application, the length of time that the user stays on a single page may also be acquired. The length of time a user stays on a single page can reflect the user's interest in the products, component buttons, etc. on the page. In order to avoid misjudging that the user is far away from the device and the page stays for a long time as the user is more interested in the content on the page, the user operation can be monitored. The risk of judgment is improved, and the accuracy of user analysis is improved.
本申请实施例中,还可以获取用户的个人数据,例如年龄、性别等。通过年龄、性别等数据能够一定程度上缩小用户所在的群体范围,提升用户分析的准确率。In this embodiment of the present application, the user's personal data, such as age, gender, etc., may also be acquired. Data such as age and gender can narrow the range of user groups to a certain extent and improve the accuracy of user analysis.
本申请实施例中,还可以获取用户反馈的调整数据。用户在页面浏览过程中,对于非常喜欢的商品、活动,可以进行收藏、点赞等行为,对于不感兴趣的内容可以反馈以减少相关内容。这些用户反馈的调整数据可以直观地反映出用户的兴趣偏好,从而使得用户分析更加精确。In this embodiment of the present application, adjustment data fed back by the user may also be obtained. In the process of page browsing, users can collect and like the products and activities they like very much, and can feedback the content they are not interested in to reduce the relevant content. The adjustment data fed back by these users can intuitively reflect the interests and preferences of users, thereby making user analysis more accurate.
步骤S202,根据第一行为数据确定目标对象的第一行为特征。Step S202, determining a first behavior feature of the target object according to the first behavior data.
本申请实施例中,可以基于大数据分析来定位用户的兴趣偏好。具体可以收集大量数据来训练神经网络模型,利用神经网络模型提取用户行为数据的特征,从而定位用户的兴趣偏好。上述神经网络模型可以是深度置信网络模型、卷积神经网络模型、循环神经网络模型等。In this embodiment of the present application, the user's interest preference may be located based on big data analysis. Specifically, a large amount of data can be collected to train the neural network model, and the features of user behavior data can be extracted by using the neural network model, so as to locate the user's interest preference. The above-mentioned neural network model may be a deep belief network model, a convolutional neural network model, a recurrent neural network model, or the like.
步骤S203,配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。Step S203, configure a target component matching the first behavioral feature, and display the target component to the target object.
本申请实施例中,可以在定位用户的兴趣偏好后配置与用户兴趣偏好相匹配的组件,从而向用户提供较能引起用户兴趣的组件,可以是不同的视觉效果,还可以以内容为导向的组件。在配置和向用户展示的过程中,可以根据对用户的分析实时切换组件,从而动态配置更加贴合用户需求的组件,提升用户的点击转化率。In this embodiment of the present application, after locating the user's interest preference, a component that matches the user's interest preference may be configured, so as to provide the user with a component that can arouse the user's interest, which may be different visual effects or content-oriented components. In the process of configuration and display to users, components can be switched in real time according to the analysis of users, so as to dynamically configure components that are more suitable for users' needs and improve the user's click conversion rate.
本申请实施例中,还可以收集用户以往的操作记录,生成页面组件的热点图,点击次数越多的组件其热点图上的点越多越密集,从而可以配置相同或相似的组件向用户展示,以吸引用户点击,提高用户的点击转化率。In this embodiment of the present application, the user's previous operation records can also be collected to generate a heat map of the page components. The more clicks the component has, the more points on the heat map will be denser, so that the same or similar components can be configured to be displayed to the user. , in order to attract users to click and improve the click conversion rate of users.
本申请实施例中,以电商购物平台为例,提高用户的点击转化率的最终目的,是吸引用户购买商品。In the embodiments of the present application, taking an e-commerce shopping platform as an example, the ultimate purpose of improving the click conversion rate of users is to attract users to purchase commodities.
采用本申请技术方案,能够根据用户在电商平台产生的行为数据智能分析出用户的喜好特征,进而智能展示与用户喜好特征匹配的页面组件,解决了组件配置模式单一,与用户需求不匹配,导致用户点击转化率低的问题。By adopting the technical solution of the present application, the user's preference characteristics can be intelligently analyzed according to the behavior data generated by the user on the e-commerce platform, and then the page components matching the user's preference characteristics can be intelligently displayed, which solves the problem that the component configuration mode is single and does not match the user's needs. Problems that lead to low user click conversion rates.
本申请提供一种采用神经网络模型来确定用户兴趣偏好特征的方法,下面结合图3所示的步骤对该方法进行详细说明。The present application provides a method for determining a user's interest preference feature using a neural network model, and the method is described in detail below with reference to the steps shown in FIG. 3 .
可选地,根据第一行为数据确定目标对象的第一行为特征包括:Optionally, determining the first behavioral feature of the target object according to the first behavioral data includes:
步骤S301,利用第一神经网络模型对第一行为数据进行识别。Step S301, using the first neural network model to identify the first behavior data.
本申请实施例中,可以将上述第一行为数据作为第一神经网络模型的输入,第一神经网络模型对第一行为数据进行识别后,输出识别结果。识别结果包括与第一行为数据对应的各个用户兴趣偏好特征的预测值。In the embodiment of the present application, the above-mentioned first behavior data may be used as the input of the first neural network model, and after the first neural network model recognizes the first behavior data, the recognition result is output. The identification result includes the predicted value of each user's interest preference feature corresponding to the first behavior data.
步骤S302,根据第一神经网络模型对第一行为数据的识别结果确定目标对象的第一行为特征,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据对应的用户行为特征,识别结果用于指示第一行为数据与第一行为特征的关联关系。Step S302, determining the first behavioral feature of the target object according to the recognition result of the first behavioral data by the first neural network model, where the first neural network model is obtained after training the second neural network model with training data with label information , the marking information is used to mark the user behavior feature corresponding to the training data, and the identification result is used to indicate the association relationship between the first behavior data and the first behavior feature.
本申请实施例中,可以将预测值最大的用户兴趣偏好特征作为与该第一行为数据匹配的上述第一行为特征。In this embodiment of the present application, the user interest preference feature with the largest predicted value may be used as the first behavior feature matching the first behavior data.
本申请实施例中,以上述第一神经网络模型、第二神经网络模型为深度置信网络模型为例。深度置信网络模型(DBN)是一种概率生成模型,生成模型是建立一个观察数据和各个标签之间的联合分布。在本申请实施例中,即建立用户行为数据(观察数据)和不同的用户兴趣偏好特征(标签)之间的联合分布。In the embodiment of the present application, the above-mentioned first neural network model and the second neural network model are used as an example of a deep belief network model. A deep belief network model (DBN) is a probabilistic generative model that establishes a joint distribution between observed data and individual labels. In this embodiment of the present application, a joint distribution between user behavior data (observation data) and different user interest preference features (tags) is established.
可选地,还可以建立用户在单个页面上停留的时长、年龄、性别等(观察数据)和不同的设备控制参数用户兴趣偏好特征(标签)之间的联合分布。Optionally, a joint distribution between the user's stay on a single page, age, gender, etc. (observation data) and user interest preference features (tags) of different device control parameters can also be established.
本申请实施例中,标记信息至少标识出各个训练数据中的用户行为数据和该用户行为数据对应的用户兴趣偏好特征,例如,标记用户经常点击实时动作的动态组件和该用户对动态的东西感兴趣的特征,标记用户经常点击颜色较深的组件和该用户对深色的东西感兴趣的特征等。标记信息还可以标识出各个训练数据中的用户年龄、性别及在单个页面停留时长与相应的用户兴趣偏好特征等。In the embodiment of the present application, the tag information at least identifies the user behavior data in each training data and the user interest preference feature corresponding to the user behavior data. Interesting features, marking the components that users often click on darker colors and the features that the user is interested in dark things, etc. The tag information can also identify the user's age, gender, length of stay on a single page, and corresponding user interest preference characteristics in each training data.
可选地,利用第一神经网络模型对第一行为数据进行识别之前,该方法还包括按照如下方式获取第一神经网络模型:Optionally, before using the first neural network model to identify the first behavior data, the method further includes acquiring the first neural network model as follows:
通过训练数据对第二神经网络模型内各参数进行初始化,得到第三神经网络模型。The parameters in the second neural network model are initialized through the training data to obtain a third neural network model.
在第三神经网络模型对测试数据的识别准确度达到目标阈值的情况下,将第三神经网络模型作为第一神经网络模型。When the recognition accuracy of the test data by the third neural network model reaches the target threshold, the third neural network model is used as the first neural network model.
在第三神经网络模型对测试数据的识别准确度未达到目标阈值的情况下,继续使用训练数据对第三神经网络模型进行训练,以调整第三神经网络模型内各参数的数值,直至第三神经网络模型对测试数据的识别准确度达到目标阈值。In the case that the recognition accuracy of the third neural network model on the test data does not reach the target threshold, continue to use the training data to train the third neural network model to adjust the values of the parameters in the third neural network model until the third The recognition accuracy of the neural network model on the test data reaches the target threshold.
本申请实施例中,可以利用训练数据初始化未经训练的第二神经网络模型得到第三神经网络模型,再对该第三神经网络模型进行训练,在将第三神经网络模型训练至收敛的情况下利用测试数据对第三神经网络模型进行测试,测试结果的精度达到目标阈值的情况下,将第三神经网络模型作为第一神经网络模型,投入使用。在测试结果的精度未达到目标阈值的情况下,调整收敛的阈值,继续训练第三神经网络模型。In the embodiment of the present application, the training data can be used to initialize the untrained second neural network model to obtain a third neural network model, and then the third neural network model is trained. When the third neural network model is trained to convergence Next, the third neural network model is tested by using the test data, and when the accuracy of the test result reaches the target threshold, the third neural network model is used as the first neural network model and put into use. If the accuracy of the test result does not reach the target threshold, adjust the convergence threshold and continue to train the third neural network model.
可选地,将第三神经网络模型作为第一神经网络模型之前,该方法还包括按照如下方式训练第三神经网络模型,直至第三神经网络模型收敛:Optionally, before using the third neural network model as the first neural network model, the method further includes training the third neural network model as follows until the third neural network model converges:
将每一个训练数据输入第三神经网络模型,得到用户行为特征的训练预测值;Input each training data into the third neural network model to obtain the training prediction value of user behavior characteristics;
根据多个训练预测值和训练数据对应的实际的户行为特征之间的差异确定损失值;Determine the loss value according to the difference between the multiple training prediction values and the actual household behavior characteristics corresponding to the training data;
利用多个损失值修正第三神经网络模型,直至第三神经网络模型输出结果的精度达到目标阈值。The third neural network model is modified by using multiple loss values until the accuracy of the output result of the third neural network model reaches the target threshold.
本申请实施例中,模型训练阶段是对模型参数不断调整的阶段,调整的依据在于不断减小误差。In the embodiment of the present application, the model training phase is a phase in which the model parameters are continuously adjusted, and the adjustment is based on the continuous reduction of errors.
本申请实施例中,以深度置信网络模型为例,说明一种可选的模型训练的整体方法。In the embodiment of the present application, a deep belief network model is taken as an example to illustrate an optional overall method of model training.
首先,需要采集大量数据,包括但不限于以下参数:用户对各个组件的点击次数、对页面的滑动速度、年龄、性别、在单个页面上的停留时长等。First, a large amount of data needs to be collected, including but not limited to the following parameters: the number of user clicks on each component, the sliding speed of the page, age, gender, and the length of stay on a single page, etc.
接着对采集到的参数进行汇总并简单处理,以供在模型训练时能够及时使用。所述简单处理可以是对采集到的参数进行数据清洗。数据清洗(Data cleaning)是对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。The collected parameters are then summarized and simply processed for timely use during model training. The simple processing may be performing data cleaning on the collected parameters. Data cleaning is the process of re-examining and verifying data in order to remove duplicate information, correct existing errors, and provide data consistency.
然后可以采用主成分分析法对采集的数据进行降维,以选择出主要特征,去除部分冗余数据。将降维后的数据输入深度置信网络模型(DBN),设定深度置信网络模型的隐藏层数N和学习率ε,并通过遗传算法确定各个隐藏层中的节点数,同时使用Adam优化算法进行学习率ε的自适应调节。然后利用误差反向传播算法调节模型的权值和偏置,以建立预测模型。Then, principal component analysis method can be used to reduce the dimension of the collected data to select the main features and remove some redundant data. Input the dimension-reduced data into the deep belief network model (DBN), set the number of hidden layers N and learning rate ε of the deep belief network model, and determine the number of nodes in each hidden layer through the genetic algorithm, and use the Adam optimization algorithm to carry out Adaptive adjustment of the learning rate ε. Then use the error back propagation algorithm to adjust the weights and biases of the model to build a predictive model.
本申请提供一种具体如何配置组件的方法,下面结合图4所示的步骤对该方法进行详细说明。The present application provides a specific method of how to configure components, which will be described in detail below with reference to the steps shown in FIG. 4 .
可选地,配置与第一行为特征匹配的目标组件包括:Optionally, configuring a target component that matches the first behavioral feature includes:
步骤S401,获取与第一行为特征匹配的目标代码块,目标代码块为代码仓库中的独立代码块。Step S401, acquiring a target code block matching the first behavioral feature, where the target code block is an independent code block in the code warehouse.
步骤S402,在与目标页面对应的目标框架中执行目标代码块,以生成第一组件,目标页面为目标对象当前浏览的页面,目标框架为目标页面应用的技术框架;Step S402, executing the target code block in the target frame corresponding to the target page to generate the first component, the target page is the page currently browsed by the target object, and the target frame is the technical framework applied by the target page;
步骤S403,在第一组件与目标显示屏适配的情况下,将第一组件作为目标组件,并在目标页面上展示目标组件,目标显示屏为目标对象使用的终端上的显示屏。Step S403, when the first component is adapted to the target display screen, the first component is used as the target component, and the target component is displayed on the target page, and the target display screen is the display screen on the terminal used by the target object.
本申请实施例中,可以采用代码补丁技术,每个代码块可以实现一个独立功能模块,各个代码块及功能模块之间没有依赖关系,实现完全解耦合,上述独立功能模块在本申请实施例中即为一个独立组件。可在跨平台代码编辑器中编写代码,以在需要执行上述目标代码块时可以基于不同的平台、不同的框架运行。In the embodiment of the present application, the code patch technology may be used, each code block may implement an independent function module, there is no dependency between each code block and the function module, and complete decoupling is realized. The above-mentioned independent function module is in the embodiment of the present application. is an independent component. Code can be written in a cross-platform code editor to run on different platforms and different frameworks when the above target code blocks need to be executed.
上述目标框架可以是前端开发中常用的用户接口框架,例如vue、react等。The above target framework may be a user interface framework commonly used in front-end development, such as vue, react, etc.
本申请实施例中,可以根据确定用户兴趣偏好特征,从代码仓库中调用相关的代码块运行,生成目标组件向用户展示,以提供用户感兴趣、具有视觉冲击的组件,提升用户点击的转化率。In the embodiment of the present application, according to the user's interest preference feature, the relevant code block can be called from the code warehouse to run, and the target component can be generated and displayed to the user, so as to provide the user's interest and visual impact component, and improve the conversion rate of the user's click. .
如图5所示,本申请还提供了一种组件适配的方法。As shown in FIG. 5 , the present application also provides a method for component adaptation.
可选地,在第一组件与目标显示屏适配的情况下,将第一组件作为目标组件之前,该方法还包括按照如下方式调整第一组件:Optionally, when the first component is adapted to the target display screen, before using the first component as the target component, the method further includes adjusting the first component as follows:
获取目标显示屏的第一分辨率;计算第一分辨率和预设分辨率之间的缩放系数,预设分辨率为第一组件在原始设计时所用的显示屏分辨率;按照缩放系数对第一组件进行调整。Obtain the first resolution of the target display screen; calculate the scaling factor between the first resolution and the preset resolution, and the preset resolution is the display screen resolution used by the first component in the original design; A component to adjust.
本申请实施例中,可以根据用户实际使用的设备来适当调整组件的显示位置、大小,从而避免不同设备展现的组件样式不一致的问题。适配时,可以采用等比缩放的方式,还可以采用调整水平间距的方式。例如,预设分辨率为320*480像素,此时组件展示采用的是一倍图,即屏幕中一个点用一个像素表示。320*480像素大小的分辨率屏幕的像素密度(Pixels Per Inch,PPI)是163,即每英寸长度包含163个像素点。若用户使用的设备为640*960像素的分辨率,640*960像素大小的分辨率屏幕的像素密度是326,则由以上两个像素密度,可以得到缩放系数为2,因此可以确定在用户的设备上采用二倍图展示组件,所述二倍图即为屏幕中一个点用两个像素表示。In the embodiment of the present application, the display position and size of the components can be appropriately adjusted according to the device actually used by the user, thereby avoiding the problem of inconsistent styles of the components displayed by different devices. When adapting, the proportional scaling method can be adopted, and the horizontal spacing adjustment method can also be adopted. For example, the default resolution is 320*480 pixels. At this time, the component display uses a double image, that is, a point on the screen is represented by one pixel. The pixel density (Pixels Per Inch, PPI) of a screen with a resolution of 320*480 pixels is 163, that is, each inch of length contains 163 pixels. If the device used by the user has a resolution of 640*960 pixels, and the pixel density of the screen with a resolution of 640*960 pixels is 326, then from the above two pixel densities, the scaling factor can be obtained as 2, so it can be determined that the user's A double image is used to display components on the device, and the double image is that a point on the screen is represented by two pixels.
可选地,在目标组件运行异常的情况下,该方法还包括:屏蔽目标代码块,以移除目标组件;将目标代码块和异常信息发送至异常处理队列进行处理。Optionally, when the target component runs abnormally, the method further includes: shielding the target code block to remove the target component; sending the target code block and exception information to an exception processing queue for processing.
本申请实施例中,由于采用代码补丁技术进行解耦合,各个组件之间没有依赖关系,因此组件出现异常的情况下,可以屏蔽组件,并交由工作人员进行异常处理,以降低运营风险。In the embodiment of the present application, since the code patching technology is used for decoupling, there is no dependency between components. Therefore, when a component is abnormal, the component can be shielded and handed over to the staff for abnormal processing to reduce operational risks.
本申请实施例中,通过代码补丁技术,不仅可以实现各个组件解耦合,还可以对长页面的各个楼层解耦合,楼层数据一旦异常则自动隐藏,由工作人员进行异常处理。In this embodiment of the present application, through the code patch technology, not only can each component be decoupled, but also each floor of a long page can be decoupled. Once the floor data is abnormal, it will be automatically hidden, and the staff will handle the abnormality.
本申请技术方案为获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;根据第一行为数据确定目标对象的第一行为特征;配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。本申请能够根据用户在电商平台产生的行为数据智能分析出用户的喜好特征,进而智能展示与用户喜好特征匹配的页面组件,解决了组件配置模式单一,与用户需求不匹配,导致用户点击转化率低的问题。The technical solution of the present application is to obtain the first behavior data of the target object, and the first behavior data is generated by the operation of the target object on the Internet platform; the first behavior feature of the target object is determined according to the first behavior data; the configuration and the first behavior feature The matching target component and present the target component to the target object. The application can intelligently analyze the user's preference characteristics according to the behavior data generated by the user on the e-commerce platform, and then intelligently display the page components that match the user's preference characteristics, which solves the problem that the component configuration mode is single and does not match the user's needs, resulting in the user's click conversion. low rate problem.
根据本申请实施例的又一方面,如图5所示,提供了一种组件配置装置,包括:数据获取模块501,用于获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;特征确定模块502,用于根据第一行为数据确定目标对象的第一行为特征;组件配置模块503,用于配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。According to another aspect of the embodiments of the present application, as shown in FIG. 5 , a component configuration device is provided, including: a data acquisition module 501 configured to acquire first behavior data of a target object, where the first behavior data is that the target object is in Generated by operations on the Internet platform; the feature determination module 502 is used to determine the first behavioral feature of the target object according to the first behavioral data; the component configuration module 503 is used to configure the target component that matches the first behavioral feature, and report to the target The object represents the target component.
需要说明的是,该实施例中的数据获取模块501可以用于执行本申请实施例中的步骤S201,该实施例中的特征确定模块502可以用于执行本申请实施例中的步骤S202,该实施例中的组件配置模块503可以用于执行本申请实施例中的步骤S203。It should be noted that the data acquisition module 501 in this embodiment may be used to perform step S201 in this embodiment of the present application, and the feature determination module 502 in this embodiment may be used to perform step S202 in this embodiment of the present application, the The component configuration module 503 in this embodiment may be used to execute step S203 in this embodiment of the present application.
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现。It should be noted here that the examples and application scenarios implemented by the foregoing modules and corresponding steps are the same, but are not limited to the contents disclosed in the foregoing embodiments. It should be noted that, as a part of the device, the above modules may run in the hardware environment as shown in FIG. 1 , and may be implemented by software or hardware.
可选地,该特征确定模块,具体用于:利用第一神经网络模型对第一行为数据进行识别;根据第一神经网络模型对第一行为数据的识别结果确定目标对象的第一行为特征,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据对应的用户行为特征,识别结果用于指示第一行为数据与第一行为特征的关联关系。Optionally, the feature determination module is specifically configured to: identify the first behavior data by using the first neural network model; determine the first behavior feature of the target object according to the recognition result of the first behavior data by the first neural network model, The first neural network model is obtained after training the second neural network model by using training data with label information, the label information is used to label the user behavior characteristics corresponding to the training data, and the identification result is used to indicate that the first behavior data is related to the first behavior data. The relationship between behavioral characteristics.
可选地,该组件配置装置,还包括模型训练模块,用于:通过训练数据对第二神经网络模型内各参数进行初始化,得到第三神经网络模型;在第三神经网络模型对测试数据的识别准确度达到目标阈值的情况下,将第三神经网络模型作为第一神经网络模型;在第三神经网络模型对测试数据的识别准确度未达到目标阈值的情况下,继续使用训练数据对第三神经网络模型进行训练,以调整第三神经网络模型内各参数的数值,直至第三神经网络模型对测试数据的识别准确度达到目标阈值。Optionally, the component configuration device further includes a model training module for: initializing parameters in the second neural network model through training data to obtain a third neural network model; When the recognition accuracy reaches the target threshold, use the third neural network model as the first neural network model; when the recognition accuracy of the third neural network model on the test data does not reach the target threshold, continue to use the training data for the first neural network model. The three neural network models are trained to adjust the value of each parameter in the third neural network model until the recognition accuracy of the test data by the third neural network model reaches the target threshold.
可选地,该模型训练模块,还用于:将每一个训练数据输入第三神经网络模型,得到用户行为特征的训练预测值;根据多个训练预测值和训练数据对应的实际的户行为特征之间的差异确定损失值;利用多个损失值修正第三神经网络模型,直至第三神经网络模型输出结果的精度达到目标阈值。Optionally, the model training module is also used to: input each training data into a third neural network model to obtain a training prediction value of user behavior characteristics; according to the actual user behavior characteristics corresponding to multiple training prediction values and training data The difference between them determines the loss value; the third neural network model is modified by using multiple loss values, until the accuracy of the output result of the third neural network model reaches the target threshold.
可选地,该组件配置模块,具体用于:获取与第一行为特征匹配的目标代码块,目标代码块为代码仓库中的独立代码块;在与目标页面对应的目标框架中执行目标代码块,以生成第一组件,目标页面为目标对象当前浏览的页面,目标框架为目标页面应用的技术框架;在第一组件与目标显示屏适配的情况下,将第一组件作为目标组件,并在目标页面上展示目标组件,目标显示屏为目标对象使用的终端上的显示屏。Optionally, the component configuration module is specifically used to: obtain a target code block that matches the first behavioral feature, where the target code block is an independent code block in the code warehouse; execute the target code block in the target frame corresponding to the target page , to generate the first component, the target page is the page currently browsed by the target object, and the target frame is the technical framework applied by the target page; in the case that the first component is adapted to the target display screen, the first component is used as the target component, and The target component is displayed on the target page, and the target display screen is the display screen on the terminal used by the target object.
可选地,该组件配置装置,还包括适配模块,用于:获取目标显示屏的第一分辨率;计算第一分辨率和预设分辨率之间的缩放系数,预设分辨率为第一组件在原始设计时所用的显示屏分辨率;按照缩放系数对第一组件进行调整。Optionally, the component configuration device further includes an adaptation module for: acquiring the first resolution of the target display screen; calculating a scaling factor between the first resolution and a preset resolution, where the preset resolution is the The display resolution used by a component when it was originally designed; the first component is adjusted according to the scaling factor.
可选地,该组件配置装置,还包括异常处理模块,用于:屏蔽目标代码块,以移除目标组件;将目标代码块和异常信息发送至异常处理队列进行处理。Optionally, the component configuration apparatus further includes an exception processing module, configured to: shield the target code block to remove the target component; send the target code block and exception information to an exception processing queue for processing.
根据本申请实施例的另一方面,本申请提供了一种电子设备,如图6所示,包括存储器601、处理器602、通信接口603及通信总线604,存储器601中存储有可在处理器602上运行的计算机程序,存储器601、处理器602通过通信接口603和通信总线604进行通信,处理器602执行计算机程序时实现上述方法的步骤。According to another aspect of the embodiments of the present application, the present application provides an electronic device, as shown in FIG. 6 , including a
上述电子设备中的存储器、处理器通过通信总线和通信接口进行通信。所述通信总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。The memory and the processor in the above electronic device communicate through a communication bus and a communication interface. The communication bus may be a Peripheral Component Interconnect (PCI for short) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA for short) bus or the like. The communication bus can be divided into an address bus, a data bus, a control bus, and the like.
存储器可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include random access memory (Random Access Memory, RAM for short), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory. Optionally, the memory may also be at least one storage device located away from the aforementioned processor.
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application SpecificIntegrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; may also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field-Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
根据本申请实施例的又一方面还提供了一种具有处理器可执行的非易失的程序代码的计算机可读介质。According to yet another aspect of the embodiments of the present application, there is also provided a computer-readable medium having non-volatile program code executable by a processor.
可选地,在本申请实施例中,计算机可读介质被设置为存储用于所述处理器执行以下步骤的程序代码:Optionally, in this embodiment of the present application, a computer-readable medium is configured to store program codes for the processor to perform the following steps:
获取目标对象的第一行为数据,第一行为数据为目标对象在互联网平台上的操作生成的;Obtain the first behavior data of the target object, and the first behavior data is generated by the operation of the target object on the Internet platform;
根据第一行为数据确定目标对象的第一行为特征;Determine the first behavioral feature of the target object according to the first behavioral data;
配置与第一行为特征匹配的目标组件,并向目标对象展示目标组件。Configure the target component that matches the first behavioral feature, and display the target component to the target object.
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。Optionally, for specific examples in this embodiment, reference may be made to the examples described in the foregoing embodiments, and details are not described herein again in this embodiment.
本申请实施例在具体实现时,可以参阅上述各个实施例,具有相应的技术效果。When the embodiments of the present application are specifically implemented, reference may be made to the above-mentioned embodiments, which have corresponding technical effects.
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable LogicDevice,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。It will be appreciated that the embodiments described herein may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof. For hardware implementation, the processing unit may be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Device (DSP Device, DSPD), programmable logic Devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general purpose processors, controllers, microcontrollers, microprocessors, other electronic units for performing the functions described in this application or a combination thereof.
对于软件实现,可通过执行本文所述功能的单元来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。For a software implementation, the techniques described herein may be implemented by means of units that perform the functions described herein. Software codes may be stored in memory and executed by a processor. The memory can be implemented in the processor or external to the processor.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the system, device and unit described above may refer to the corresponding process in the foregoing method embodiments, which will not be repeated here.
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the modules is only a logical function division. In actual implementation, there may be other division methods. For example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。The functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes. It should be noted that, in this document, relational terms such as "first" and "second" etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these Any such actual relationship or sequence exists between entities or operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific embodiments of the present application, so that those skilled in the art can understand or implement the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, this application is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features claimed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010975054.5A CN112148352A (en) | 2020-09-16 | 2020-09-16 | Component configuration method, device, equipment and computer readable medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010975054.5A CN112148352A (en) | 2020-09-16 | 2020-09-16 | Component configuration method, device, equipment and computer readable medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112148352A true CN112148352A (en) | 2020-12-29 |
Family
ID=73893906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010975054.5A Pending CN112148352A (en) | 2020-09-16 | 2020-09-16 | Component configuration method, device, equipment and computer readable medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112148352A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114168132A (en) * | 2021-11-11 | 2022-03-11 | 北京达佳互联信息技术有限公司 | Method, apparatus, electronic device, and storage medium for managing component styles |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107153887A (en) * | 2017-04-14 | 2017-09-12 | 华南理工大学 | A kind of mobile subscriber's behavior prediction method based on convolutional neural networks |
CN107516235A (en) * | 2016-06-17 | 2017-12-26 | 阿里巴巴集团控股有限公司 | Commodity preference predictor method and device |
CN107817976A (en) * | 2016-09-12 | 2018-03-20 | 阿里巴巴集团控股有限公司 | Page info processing system and page generation, page info provide method and device |
CN108228887A (en) * | 2018-01-31 | 2018-06-29 | 百度在线网络技术(北京)有限公司 | For generating the method and apparatus of information |
CN108665064A (en) * | 2017-03-31 | 2018-10-16 | 阿里巴巴集团控股有限公司 | Neural network model training, object recommendation method and device |
CN109241431A (en) * | 2018-09-07 | 2019-01-18 | 腾讯科技(深圳)有限公司 | A kind of resource recommendation method and device |
CN109766502A (en) * | 2018-12-13 | 2019-05-17 | 平安普惠企业管理有限公司 | Page improved method, device, computer equipment and storage medium |
CN110489655A (en) * | 2019-09-16 | 2019-11-22 | 浙江同花顺智能科技有限公司 | Hot content determination, recommended method, device, equipment and readable storage medium storing program for executing |
CN110865807A (en) * | 2018-08-27 | 2020-03-06 | 北京京东金融科技控股有限公司 | Active page creation system, method, device and storage medium |
CN111177575A (en) * | 2020-04-07 | 2020-05-19 | 腾讯科技(深圳)有限公司 | Content recommendation method and device, electronic equipment and storage medium |
CN111523044A (en) * | 2020-07-06 | 2020-08-11 | 南京梦饷网络科技有限公司 | Method, computing device, and computer storage medium for recommending target objects |
US20210174230A1 (en) * | 2018-10-25 | 2021-06-10 | Advanced New Technologies Co., Ltd. | Service recommendation method, apparatus, and device |
-
2020
- 2020-09-16 CN CN202010975054.5A patent/CN112148352A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107516235A (en) * | 2016-06-17 | 2017-12-26 | 阿里巴巴集团控股有限公司 | Commodity preference predictor method and device |
CN107817976A (en) * | 2016-09-12 | 2018-03-20 | 阿里巴巴集团控股有限公司 | Page info processing system and page generation, page info provide method and device |
CN108665064A (en) * | 2017-03-31 | 2018-10-16 | 阿里巴巴集团控股有限公司 | Neural network model training, object recommendation method and device |
CN107153887A (en) * | 2017-04-14 | 2017-09-12 | 华南理工大学 | A kind of mobile subscriber's behavior prediction method based on convolutional neural networks |
CN108228887A (en) * | 2018-01-31 | 2018-06-29 | 百度在线网络技术(北京)有限公司 | For generating the method and apparatus of information |
CN110865807A (en) * | 2018-08-27 | 2020-03-06 | 北京京东金融科技控股有限公司 | Active page creation system, method, device and storage medium |
CN109241431A (en) * | 2018-09-07 | 2019-01-18 | 腾讯科技(深圳)有限公司 | A kind of resource recommendation method and device |
US20210174230A1 (en) * | 2018-10-25 | 2021-06-10 | Advanced New Technologies Co., Ltd. | Service recommendation method, apparatus, and device |
CN109766502A (en) * | 2018-12-13 | 2019-05-17 | 平安普惠企业管理有限公司 | Page improved method, device, computer equipment and storage medium |
CN110489655A (en) * | 2019-09-16 | 2019-11-22 | 浙江同花顺智能科技有限公司 | Hot content determination, recommended method, device, equipment and readable storage medium storing program for executing |
CN111177575A (en) * | 2020-04-07 | 2020-05-19 | 腾讯科技(深圳)有限公司 | Content recommendation method and device, electronic equipment and storage medium |
CN111523044A (en) * | 2020-07-06 | 2020-08-11 | 南京梦饷网络科技有限公司 | Method, computing device, and computer storage medium for recommending target objects |
Non-Patent Citations (1)
Title |
---|
刘洪伟;高鸿铭;陈丽;詹明君;梁周扬;: "基于用户浏览行为的兴趣识别管理模型", 数据分析与知识发现, no. 02 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114168132A (en) * | 2021-11-11 | 2022-03-11 | 北京达佳互联信息技术有限公司 | Method, apparatus, electronic device, and storage medium for managing component styles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10958748B2 (en) | Resource push method and apparatus | |
CN112115363B (en) | A recommendation method, computing device and storage medium | |
US11861464B2 (en) | Graph data structure for using inter-feature dependencies in machine-learning | |
CN111259222A (en) | Article recommendation method, system, electronic device and storage medium | |
AU2015310494A1 (en) | Sentiment rating system and method | |
EP2862105A1 (en) | Ranking search results based on click through rates | |
US20210232478A1 (en) | Machine learning models applied to interaction data for facilitating modifications to online environments | |
WO2017088496A1 (en) | Search recommendation method, device, apparatus and computer storage medium | |
US20200082284A1 (en) | Anomaly detection for non-stationary data | |
WO2023000491A1 (en) | Application recommendation method, apparatus and device, and computer-readable storage medium | |
CN111125529A (en) | Product matching method and device, computer equipment and storage medium | |
US20240169214A1 (en) | Knowledge graph updating method, apparatus, electronic device, storage medium and program thereof | |
WO2021139335A1 (en) | Method and apparatus for predicting sales data of physical machine, and computer device and storage medium | |
CN112925978B (en) | Recommendation system evaluation method, device, electronic device and storage medium | |
CN113553501A (en) | Method and device for user portrait prediction based on artificial intelligence | |
CN111523315B (en) | Data processing method, text recognition device and computer equipment | |
US20200081912A1 (en) | Identifying physical objects using visual search query | |
CN112148352A (en) | Component configuration method, device, equipment and computer readable medium | |
CN111597430A (en) | Data processing method and device, electronic device, storage medium | |
CN118092682A (en) | Data processing method, device, equipment and storage medium for input method | |
CN111368195A (en) | Model training method, device, equipment and storage medium | |
CN116883181A (en) | Financial service pushing method based on user portrait, storage medium and server | |
KR102347187B1 (en) | Electronic devices that analyze information on specific sites for AI marketing solutions and their operating methods | |
CN114579867A (en) | Method and apparatus for resource recommendation, electronic device and storage medium | |
CN114925750A (en) | Information recommendation method and device, computer readable storage medium and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Room 221, 2 / F, block C, 18 Kechuang 11th Street, Daxing District, Beijing, 100176 Applicant after: Jingdong Technology Holding Co.,Ltd. Address before: Room 221, 2 / F, block C, 18 Kechuang 11th Street, Daxing District, Beijing, 100176 Applicant before: Jingdong Digital Technology Holding Co.,Ltd. |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201229 |
|
RJ01 | Rejection of invention patent application after publication |