CN112146495B - Gas-liquid condensation system - Google Patents
Gas-liquid condensation system Download PDFInfo
- Publication number
- CN112146495B CN112146495B CN202011026849.8A CN202011026849A CN112146495B CN 112146495 B CN112146495 B CN 112146495B CN 202011026849 A CN202011026849 A CN 202011026849A CN 112146495 B CN112146495 B CN 112146495B
- Authority
- CN
- China
- Prior art keywords
- liquid
- gas
- chamber
- cavity
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 214
- 230000005494 condensation Effects 0.000 title claims abstract description 62
- 238000009833 condensation Methods 0.000 title claims abstract description 62
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 238000001704 evaporation Methods 0.000 claims abstract description 43
- 230000008020 evaporation Effects 0.000 claims abstract description 37
- 230000017525 heat dissipation Effects 0.000 claims abstract description 25
- 238000005192 partition Methods 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 5
- 210000001503 joint Anatomy 0.000 claims 2
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20381—Thermal management, e.g. evaporation control
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
技术领域technical field
本发明涉及散热领域,特别是一种气液冷凝系统。The invention relates to the field of heat dissipation, in particular to a gas-liquid condensation system.
背景技术Background technique
现行电子设备随着效能提高,其中作为处理信号及运算的电子元件相对的也较以前的电子元件产生较高的热量,最常被使用的一般散热元件包含热管、散热器、均温板等元件,并通过直接与会发热的电子元件接触后进一步增加散热效能,防止电子元件温度过高而烧毁等情事。With the improvement of the performance of current electronic equipment, the electronic components that process signals and operations also generate higher heat than the previous electronic components. The most commonly used general heat dissipation components include heat pipes, radiators, vapor chambers and other components. , and further increase the heat dissipation efficiency by directly contacting the electronic components that will generate heat, preventing the electronic components from being overheated and burning.
业者提供一种以热管汽液循环概念用一蒸发单元结合一冷凝单元并两者间由一管体进行连接进而组成一环路模块的环路热管结构,其优点系自行提供一具有较佳蒸发冷凝循环效果的散热系统,该蒸发单元里设置有可供工作液体回流储存的毛细结构,并该毛细结构设置有供蒸气流动的复数沟槽,蒸发单元主要系至少一面与发热源接触传导热量,并该蒸发单元的毛细结构中的工作液体受热蒸发后,由该复数沟槽向外流动并通过连接该蒸发单元与冷凝单元的管体向冷凝单元流动扩散,最后经过冷凝单元冷凝呈液态后回流至该蒸发单元继续循环。The industry provides a loop heat pipe structure in which an evaporation unit is combined with a condensation unit in the concept of heat pipe vapor-liquid circulation, and the two are connected by a pipe body to form a loop module. A cooling system with condensation cycle effect, the evaporation unit is provided with a capillary structure for backflow storage of the working liquid, and the capillary structure is provided with a plurality of grooves for the flow of steam, and the evaporation unit is mainly in contact with the heat source at least one side to conduct heat, And after the working liquid in the capillary structure of the evaporation unit is heated and evaporated, it flows outward from the plurality of grooves, flows and diffuses to the condensation unit through the pipe body connecting the evaporation unit and the condensation unit, and finally passes through the condensation unit. Continue the cycle to the evaporation unit.
然而冷凝单元在使用上特别需要注意,当冷凝单元的管路过长时,会导致液体堆积在管路中无法顺利回到蒸发单元进行循环,另外冷凝单元的管路路径过于狭窄时,也会导致蒸气的推力不足够推动液体进行循环,不论哪一个情况发生,都会使整个系统的循环中断,导致散热失效的问题。However, special attention should be paid to the use of the condensation unit. When the pipeline of the condensation unit is too long, the liquid will accumulate in the pipeline and cannot return to the evaporation unit for circulation smoothly. In addition, if the pipeline path of the condensation unit is too narrow, it will also cause The thrust of the vapor is not enough to push the liquid to circulate. No matter what happens, the circulation of the entire system will be interrupted, resulting in the problem of heat dissipation failure.
是以,要如何解决上述的问题与缺失,即为本案的发明人与从事此行业的相关厂商所亟欲研究改善的方向所在。Therefore, how to solve the above-mentioned problems and deficiencies is the direction that the inventor of this case and the relevant manufacturers engaged in this industry urgently want to study and improve.
发明内容SUMMARY OF THE INVENTION
为改善上述的问题,本发明提供一种冷凝单元的管路路径较短的气液冷凝系统。In order to improve the above problems, the present invention provides a gas-liquid condensation system with a shorter pipeline path of the condensation unit.
本发明的另一目的系提供一种冷凝单元的管路路径阻力较低的气液冷凝系统。Another object of the present invention is to provide a gas-liquid condensing system with low resistance of the pipeline path of the condensing unit.
为达上述的目的,本发明提供一种气液冷凝系统,其特征在于,包含一冷凝单元以及一蒸发单元,其中:In order to achieve the above-mentioned purpose, the present invention provides a gas-liquid condensation system, which is characterized in that it comprises a condensation unit and an evaporation unit, wherein:
该冷凝单元包含:The condensing unit contains:
一第一腔体,具有一气体入口、一液体出口及一分隔部,该分隔部将该第一腔体内部空间分隔为一气体腔室及一液体腔室,该气体入口与该气体腔室连通,该液体出口与该液体腔室连通;a first cavity having a gas inlet, a liquid outlet and a partition, the partition partitions the inner space of the first cavity into a gas chamber and a liquid chamber, the gas inlet and the gas chamber communicating, the liquid outlet communicates with the liquid chamber;
复数气体流管,该复数气体流管具有一气体流管第一端及一气体流管第二端,该气体流管第一端与该气体腔室连通;a plurality of gas flow tubes, the plurality of gas flow tubes have a first end of a gas flow tube and a second end of a gas flow tube, and the first end of the gas flow tube is communicated with the gas chamber;
复数第二腔体,具有一流体腔室,该复数气体流管的气体流管第二端与该流体腔室连通;A plurality of second cavities have a fluid chamber, and the second ends of the gas flow pipes of the plurality of gas flow pipes are communicated with the fluid chamber;
复数液体流管,该复数液体流管具有一液体流管第一端及一液体流管第二端,该液体流管第一端与该流体腔室连通,该复数液体流管第二端与该液体腔室连通;A plurality of liquid flow pipes, the plurality of liquid flow pipes have a first end of a liquid flow pipe and a second end of a liquid flow pipe, the first end of the liquid flow pipe is communicated with the fluid chamber, and the second end of the plurality of liquid flow pipes is connected with the fluid chamber. the liquid chamber is in communication;
该蒸发单元具有一液体入口及一气体出口及一蒸发腔室并相互连通,所述液体入口通过一导管与该第一腔体的液体出口连接,所述气体出口通过另一导管与该第一腔体的气体入口连接。The evaporating unit has a liquid inlet, a gas outlet and an evaporating chamber which are connected to each other, the liquid inlet is connected to the liquid outlet of the first cavity through a conduit, and the gas outlet is connected to the first cavity through another conduit The gas inlet connection of the cavity.
所述的气液冷凝系统,其中:该气体腔室位于该液体腔室上方。The gas-liquid condensation system, wherein: the gas chamber is located above the liquid chamber.
所述的气液冷凝系统,其中:该气体腔室的空间大于或等于该液体腔室的空间。The gas-liquid condensation system, wherein: the space of the gas chamber is greater than or equal to the space of the liquid chamber.
所述的气液冷凝系统,其中:该第一腔体的一左侧面及一右侧面分别设置复数通孔,该复数通孔供该气体流管第一端连通及该液体流管第二端连通。The gas-liquid condensation system, wherein: a left side and a right side of the first cavity are respectively provided with a plurality of through holes, and the plurality of through holes are used for the first end of the gas flow pipe to communicate with the first end of the liquid flow pipe. Connected at both ends.
所述的气液冷凝系统,其中:该复数气体流管还界定为复数左侧气体流管及复数右侧气体流管,所述左侧气体流管及右侧气体流管等长。The gas-liquid condensation system, wherein: the plurality of gas flow pipes are also defined as a plurality of left gas flow pipes and a plurality of right gas flow pipes, and the left gas flow pipes and the right gas flow pipes are of equal length.
所述的气液冷凝系统,其中:该复数第二腔体具有复数通孔,该复数通孔供该气体流管第二端连通及该液体流管第一端连通。The gas-liquid condensation system, wherein: the plurality of second cavities have a plurality of through holes, and the plurality of through holes are used for communication between the second end of the gas flow pipe and the first end of the liquid flow pipe.
所述的气液冷凝系统,其中:该复数液体流管还界定为复数左侧液体流管及复数右侧液体流管,所述左侧液体流管及右侧液体流管等长。The gas-liquid condensation system, wherein: the plurality of liquid flow pipes are further defined as a plurality of left liquid flow pipes and a plurality of right liquid flow pipes, and the left liquid flow pipes and the right liquid flow pipes are of equal length.
所述的气液冷凝系统,其中:还包含一散热鳍片组,其与该复数气体流管及该复数液体流管接触。The gas-liquid condensation system, wherein: further comprises a set of radiating fins, which are in contact with the plurality of gas flow tubes and the plurality of liquid flow tubes.
为达上述的目的,本发明提供一种气液冷凝系统,其特征在于,包含一冷凝单元以及一蒸发单元,其中:In order to achieve the above-mentioned purpose, the present invention provides a gas-liquid condensation system, which is characterized in that it comprises a condensation unit and an evaporation unit, wherein:
该冷凝单元包含:The condensing unit contains:
一第一腔体,具有一气体入口、一气体出口、一液体入口、一液体出口及一分隔部,该分隔部将该第一腔体内部空间分隔为一气体腔室及一液体腔室,该气体入口及该气体出口与该气体腔室连通,该液体入口及该液体出口与该液体腔室连通;a first cavity having a gas inlet, a gas outlet, a liquid inlet, a liquid outlet and a partition, the partition partitions the inner space of the first cavity into a gas chamber and a liquid chamber, The gas inlet and the gas outlet communicate with the gas chamber, and the liquid inlet and the liquid outlet communicate with the liquid chamber;
一第二腔体,具有一入口、一出口、复数第一流道及一隔流件,该隔流件将该第二腔体内部空间分隔为一气体流动腔室及一液体流动腔室,该气体流动腔室内设置一气体导引组件,该液体流动腔室内设置一液体导引组件,该气体导引组件具有复数第二流道,该液体导引组件具有复数第三流道,该入口及该出口位于该复数第一流道之间,该复数第二流道与该入口连通,该复数第三流道与该出口连通,该复数第一流道分别与该复数第二流道及该复数第三流道连通;a second cavity, which has an inlet, an outlet, a plurality of first flow channels and a flow divider, the flow divider divides the inner space of the second cavity into a gas flow chamber and a liquid flow chamber, the A gas guide component is arranged in the gas flow chamber, a liquid guide component is arranged in the liquid flow chamber, the gas guide component has a plurality of second flow channels, the liquid guide component has a plurality of third flow channels, the inlet and the The outlet is located between the plurality of first flow channels, the plurality of second flow channels are communicated with the inlet, the plurality of third flow channels are communicated with the outlet, the plurality of first flow channels are respectively connected with the plurality of second flow channels and the plurality of first flow channels Three-channel connection;
复数散热鳍片组,与该第一腔体及该第二腔体的外壁接触;a plurality of heat dissipation fin sets, in contact with the outer walls of the first cavity and the second cavity;
该蒸发单元具有一液体入口及一气体出口及一蒸发腔室并相互连通,所述液体入口通过一导管与该第一腔体的液体出口连接,所述气体出口通过另一导管与该第一腔体的气体入口连接。The evaporating unit has a liquid inlet, a gas outlet and an evaporating chamber which are connected to each other, the liquid inlet is connected to the liquid outlet of the first cavity through a conduit, and the gas outlet is connected to the first cavity through another conduit The gas inlet connection of the cavity.
所述的气液冷凝系统,其中:该气体导引组件由复数鳍片依序排列组合而成且具有一气体开口区,每两所述散热鳍片之间设有该第二流道,该气体开口区与该入口对接。The gas-liquid condensation system, wherein: the gas guide assembly is composed of a plurality of fins arranged in sequence and has a gas opening area, the second flow channel is arranged between each two of the heat dissipation fins, the The gas opening area interfaces with the inlet.
所述的气液冷凝系统,其中:该液体导引组件由复数鳍片依序排列组合而成且具有一液体开口区,每两所述散热鳍片之间设有该第三流道,该液体开口区与该出口对接。The gas-liquid condensation system, wherein: the liquid guide assembly is composed of a plurality of fins arranged in sequence and has a liquid opening area, the third flow channel is arranged between each two of the heat dissipation fins, the The liquid opening area interfaces with the outlet.
所述的气液冷凝系统,其中:该气体流动腔室的空间大于或等于该液体流动腔室的空间。The gas-liquid condensation system, wherein: the space of the gas flow chamber is greater than or equal to the space of the liquid flow chamber.
所述的气液冷凝系统,其中:该气体腔室位于该液体腔室上方。The gas-liquid condensation system, wherein: the gas chamber is located above the liquid chamber.
所述的气液冷凝系统,其中:该入口的开口面积大于或等于该出口的开口面积。The gas-liquid condensation system, wherein: the opening area of the inlet is greater than or equal to the opening area of the outlet.
所述的气液冷凝系统,其中:该第二腔体包含一上盖及一下盖,该入口及该出口位于该的下盖的对称中心处。The gas-liquid condensation system, wherein: the second cavity includes an upper cover and a lower cover, and the inlet and the outlet are located at the symmetrical center of the lower cover.
所述的气液冷凝系统,其中:该下盖还界定一左侧区域及一右侧区域,该复数散热鳍片组分别设置于该上盖,该下盖的左侧区域及该下盖的右侧区域。The gas-liquid condensation system, wherein: the lower cover also defines a left side area and a right side area, the plurality of heat dissipation fin sets are respectively arranged on the upper cover, the left side area of the lower cover and the lower side area of the lower cover. Right area.
凭借上述的结构,流体在蒸发单元中受热转变成气态后通过导管进入冷凝单元,蒸气流体通过冷凝单元的内部结构朝向左右两向流动并逐步冷凝为液态,液态流体再由左右两边向中间汇流后通过导管回到蒸发单元,如此缩短冷凝单元的管路路径及降低管路阻力,避免散热循环中断及散热失效的问题。With the above structure, the fluid is heated in the evaporation unit and transformed into a gaseous state, and then enters the condensation unit through the conduit. The vapor fluid flows toward the left and right through the internal structure of the condensation unit and gradually condenses into a liquid state, and the liquid fluid flows from the left and right sides to the middle. Through the conduit back to the evaporation unit, the pipeline path of the condensation unit is shortened and the pipeline resistance is reduced, so as to avoid the problems of interruption of heat dissipation cycle and heat dissipation failure.
附图说明Description of drawings
图1A为本发明第一实施例的立体示意图;1A is a schematic perspective view of a first embodiment of the present invention;
图1B为本发明第一实施例的分解示意图;1B is an exploded schematic view of the first embodiment of the present invention;
图1C为本发明第一实施例的剖面示意图;1C is a schematic cross-sectional view of the first embodiment of the present invention;
图1D为本发明第一实施例的工作流体两相变化示意图;1D is a schematic diagram of the two-phase change of the working fluid according to the first embodiment of the present invention;
图2为应用本发明第一实施例的散热系统立体图;2 is a perspective view of a heat dissipation system applying the first embodiment of the present invention;
图3A为本发明第二实施例的立体示意图;3A is a schematic perspective view of a second embodiment of the present invention;
图3B为本发明第二实施例的分解示意图;3B is an exploded schematic view of the second embodiment of the present invention;
图4A为本发明第二实施例的第一腔体剖面示意图;4A is a schematic cross-sectional view of a first cavity according to a second embodiment of the present invention;
图4B为本发明第二实施例的第二腔体剖面示意图;4B is a schematic cross-sectional view of the second cavity according to the second embodiment of the present invention;
图5A为本发明第二实施例的工作流体两相变化示意图(一);5A is a schematic diagram (1) of the two-phase change of the working fluid according to the second embodiment of the present invention;
图5B为本发明第二实施例的工作流体两相变化示意图(二);5B is a schematic diagram (2) of the two-phase change of the working fluid according to the second embodiment of the present invention;
图6为应用本发明第二实施例的散热系统立体图。FIG. 6 is a perspective view of a heat dissipation system applying the second embodiment of the present invention.
附图标记说明:冷凝单元A、B;第一腔体1;气体入口11;液体出口12;分隔部13;气体腔室14;液体腔室15;通孔16;气体流管2;气体流管第一端21;气体流管第二端22;第二腔体3;通孔31;液体流管4;液体流管第一端41;液体流管第二端42;散热鳍片组5;第一腔体6;气体入口61;气体出口62;液体入口63;液体出口64;分隔部65;气体腔室66;液体腔室67;第二腔体7;上盖71;下盖72;入口721;出口722;左侧区域723;右侧区域724;第一流道73;隔流件74;气体流动腔室75;气体导引组件751;鳍片7511;第二流道7512;气体开口区7513;液体流动腔室76;液体导引组件761;鳍片7611;第三流道7612;液体开口区7613;散热鳍片组8;导管91;蒸发单元92;液体入口921;气体出口922。DESCRIPTION OF REFERENCE NUMERALS: condensation unit A, B;
具体实施方式Detailed ways
本发明的上述目的及其结构与功能上的特性,将依据所附图式的较佳实施例予以说明。The above objects of the present invention and their structural and functional characteristics will be described with reference to the preferred embodiments of the accompanying drawings.
请参阅图1A至图1D及图2,是本发明第一实施例的立体示意图、分解示意图、剖面示意图、工作流体两相变化示意图及第一实施例的散热系统立体图,本发明第一实施例中气液冷凝系统包含一冷凝单元A及一蒸发单元92,该冷凝单元A通过两导管91与蒸发单元92连接,该蒸发单元92具有一液体入口921、一气体出口922及蒸发腔室(未图示)并相互连通,所述蒸发腔室内可根据使用需求设计流道延长流体在蒸发单元92内的时间,或者增设鳍片增加导热效果,所述导管91的其中一端分别与该液体入口921及气体出口922连接,另一端与冷凝单元A的第一腔体1的气体入口11及液体出口12连接。Please refer to FIG. 1A to FIG. 1D and FIG. 2 , which are a three-dimensional schematic diagram, an exploded schematic diagram, a cross-sectional schematic diagram, a schematic diagram of a two-phase change of the working fluid, and a perspective view of the heat dissipation system of the first embodiment of the present invention, the first embodiment of the present invention. The gas-liquid condensation system includes a condensation unit A and an
该冷凝单元A包含一第一腔体1、复数气体流管2、复数第二腔体3、复数液体流管4及复数散热鳍片组5,该第一腔体1位于该冷凝单元A中间处,该复数第二腔体3位于该第一腔体1的左右两侧,该复数气体流管2及该复数液体流管4两端分别连接该第一腔体1及该该复数第二腔体3,该复数散热鳍片组5分别设置在该复数气体流管2及该复数液体流管4的外侧。The condensing unit A includes a
所述第一腔体1具有一气体入口11、一液体出口12、一分隔部13、一气体腔室14、一液体腔室15及复数通孔16,该分隔部13将该第一腔体1内部空间分隔为所述气体腔室14及一液体腔室15,该气体入口11与该气体腔室14连通,该液体出口12与该液体腔室15连通,该复数通孔分别设置于该第一腔体1的一左侧面及一右侧面,上述气体腔室14的空间大于或等于该液体腔室15的空间,该气体腔室14位于该液体腔室15上方,当中气体入口11位于该气体腔室14的较低位置处。The
所述气体流管2具有一气体流管第一端21及一气体流管第二端22,该复数气体流管第一端21与该第一腔体1的通孔16连接,该复数气体流管第二端22与该第二腔体3的通孔31连接,该复数气体流管2更界定为复数左侧气体流管及复数右侧气体流管,所述左侧气体流管及右侧气体流管等长。The
所述液体流管4具有一液体流管第一端41及一液体流管第二端42,该复数液体流管第二端42与该第一腔体1的通孔16连接,该复数液体流管第一端41与该第二腔体3的通孔31连接,该复数液体流管4更界定为复数左侧液体流管及复数右侧液体流管,所述左侧液体流管及右侧液体流管等长。The
请一并参阅图1A至图1D及图2,本发明气液冷凝系统于实际使用时,为了方便说明在此先进行定义,图中的箭头表示工作流体的移动方向,虚线表示工作流体为气态,实线表示工作流体为液态,工作流体会在内部流动且于气液两相间变化,蒸发单元92的热接触面与一发热源(图中未示)接触,工作流体受热后由液态转变成气态,由上方的导管91流入第一腔体1的气体腔室14,当气态的工作流体进入后气体腔室14会自然向上并从上方通孔16进入气体流管2,气态的工作流体由气体流管第一端21朝向气体流管第二端22流动并从上方的通孔31进入第二腔体3内,工作流体在上述的流动过程中持续散热以转变成液态(冷凝),并从图1D中可以明显看到转变成液态的工作流体通过重力的方式自然向下方落下,在从下方的通孔31进入液体流管4,液态的工作流体由液体流管第一端41朝向液体流管第二端42流动并从下方的通孔16进入液体腔室15内,液态的工作流体在从液体出口12经由下方导管91流回蒸发单元92的蒸发腔室内。Please refer to FIG. 1A to FIG. 1D and FIG. 2 together. When the gas-liquid condensing system of the present invention is actually used, for the convenience of description, the definitions are firstly defined here. The arrows in the figures indicate the moving direction of the working fluid, and the dotted lines indicate that the working fluid is in a gaseous state. , the solid line indicates that the working fluid is liquid, the working fluid will flow inside and change between gas and liquid phases, the thermal contact surface of the
需要说明的是,虽然在本实施例中液体流管4仅只有最下面一层,而其他的部分都是气体流管2,但实际上气体流管2及液体流管4的数量可以任意的增减变化,较佳的比例为气体流管2的数量略多于液体流管4,如此让气体流管2的总管路口径大于液体流管4总管路口径大。It should be noted that although the
另外,为了让液态的工作流体可以更加顺利的流动,可以适度的在液体流管4或第二腔体3内增设毛细结构(未图示),如此让液态的工作流体可以通过毛细结构更顺利的流回液体腔室15使整个循环更顺畅。In addition, in order to make the liquid working fluid flow more smoothly, a capillary structure (not shown) can be appropriately added in the
请参阅图3A、图3B、图4A、图4B、图5A、图5B及图6,为本发明第二实施例的立体示意图、分解示意图、第一腔体剖面示意图、第二腔体剖面示意图、工作流体两相变化示意图(一)及(二)、散热系统立体图,本发明第二实施例中气液冷凝系统包含一冷凝单元B及一蒸发单元92,该蒸发单元92的结构如同第一实施例,故在此不再赘述,所述导管91的其中一端分别与该液体入口921及气体出口922连接,另一端与冷凝单元B的第一腔体6的气体入口61及液体出口64连接。Please refer to FIGS. 3A , 3B, 4A, 4B, 5A, 5B and 6 , which are a perspective view, an exploded view, a cross-sectional view of the first cavity, and a cross-sectional view of the second cavity according to the second embodiment of the present invention. , Schematic diagram of two-phase change of working fluid (1) and (2), perspective view of heat dissipation system, in the second embodiment of the present invention, the gas-liquid condensation system includes a condensation unit B and an
冷凝单元B包含一第一腔体6、一第二腔体7及复数散热鳍片组8,该第一腔体6与该第二腔体7对接,该第二腔体7位于该第一腔体6的上方,该复数散热鳍片组8与该第一腔体6及该第二腔体7的外壁接触。The condensation unit B includes a
所述第一腔体6具有一气体入口61、一气体出口62、一液体入口63、一液体出口64及一分隔部65将该第一腔体6内部空间分隔为一气体腔室66及一液体腔室67,该气体入口61及该气体出口62与该气体腔室66连通,该液体入口63及该液体出口64与该液体腔室67连通,所述气体腔室66位于该液体腔室67上方。The
所述第二腔体7具有一入口721、一出口722、复数第一流道73及一隔流件74将该第二腔体7内部空间分隔为一气体流动腔室75及一液体流动腔室76,该气体流动腔室75内设置一气体导引组件751,该液体流动腔室76内设置一液体导引组件761,该气体导引组件75具有复数第二流道7512,该液体导引组件761具有复数第三流道7612,该入口721及该出口722位于该复数第一流道73之间,该复数第二流道7512与该入口721连通,该复数第三流道7612与该出口722连通,该复数第一流道73分别与该复数第二流道7512及该复数第三流道7612连通。The
上述气体导引组件751由复数鳍片7511依序排列组合而成且具有一气体开口区7513,所述每两散热鳍片的7511间设有该第二流道7512,该气体开口区7513与该入口721对接,该液体导引组件761由复数鳍片7611依序排列组合而成且具有一液体开口区7613,所述每两散热鳍片7611之间设有该第三流道7612,该液体开口区7613与该出口722对接,所述气体流动腔室75的空间大于或等于该液体流动腔室76的空间,所述入口721的开口面积大于或等于该出口722的开口面积。The above-mentioned
另外,该第二腔体7包含一上盖71及一下盖72,该入口721及该出口722位于该的下盖72的对称中心处,且该下盖72更进一步的界定一左侧区域723及一右侧区域724,该复数散热鳍片组8分别设置于该上盖71,该下盖72的左侧区域723及该下盖72的右侧区域724。In addition, the
请一并参阅图3A至图5B及图6,如同第一实施例所述,为了方便说明在此先进行定义,图中的箭头表示工作流体的移动方向,虚线表示工作流体为气态,实线表示工作流体为液态,工作流体会在内部流动且于气液两相间变化,在蒸发单元92受热的工作流体从液态转变成气态,通过上方的导管91从气体入口61进入气体腔室66,气态的工作流体则从气体出口62离开气体腔室66,由入口721进入气体流动腔室75,当中气态的工作流体由气体开口区7513进入了气体导引组件751中,气态的工作流体随着该复数第二流道7512朝向左右两边扩散,在朝向左右扩散的过程中气态的工作流体逐渐冷凝而转变成液态,工作流体由第二流道7512通过第一流道73进入到第三流道7612中,此时工作流体已充分冷却从气态转变为液态,液态的工作流体随着该复数第三流道7612朝向中间汇集,并由液体开口区7613离开液体导引组件761且通过出口722离开第二腔体7,液态的工作流体由液体入口63进入液体腔室67,的后再由液体出口64离开通过下方的导管91回到蒸发单元92进行散热循环。Please refer to FIG. 3A to FIG. 5B and FIG. 6 together. As described in the first embodiment, for the convenience of description, the definition is firstly defined here. The arrows in the figures represent the moving direction of the working fluid, the dashed lines indicate that the working fluid is gaseous, and the solid lines Indicates that the working fluid is liquid, the working fluid will flow inside and change between gas and liquid phases, and the working fluid heated in the
为了让液态的工作流体可以更加顺利的流动,可以适度的在第一流道73及第二流道7512内增设毛细结构(未图示),如此让液态的工作流体可以通过毛细结构更顺利的流回液体腔室67使整个循环更顺畅。In order to allow the liquid working fluid to flow more smoothly, a capillary structure (not shown) can be appropriately added in the
需要说明的是,虽然在本实施例中可以明显的看出第二流道7512的数量多于第三流道7612,但实际上第二流道7512及第三流道7612的数量可以自由的变化,但较佳的是使第二流道7512多于第三流道7612,如此让第二流道7512的总管路口径大于第三流道7612总管路口径大。It should be noted that although it can be clearly seen in this embodiment that the number of the
简言的,本发明的两个实施例都是通过结构改良使气态的工作流体朝左右两边流动,液态的工作流体在朝中间汇流,且具有多条供气态的工作流体流动的路径,如此缩短工作流体的管路路径,且具有多个气体路径及液体路径来降低管路的阻力,避免工作流体过早冷凝成液态且气体压力不足造成阻塞而导致散热循环失效。In short, in both embodiments of the present invention, the gaseous working fluid flows toward the left and right sides through structural improvement, the liquid working fluid converges toward the middle, and there are multiple paths for the gaseous working fluid to flow, thus shortening the The pipeline path of the working fluid has multiple gas paths and liquid paths to reduce the resistance of the pipeline and avoid premature condensation of the working fluid into a liquid state and blockage caused by insufficient gas pressure, resulting in failure of the heat dissipation cycle.
综上所述,本发明相较于当前技术具有下述优点:To sum up, the present invention has the following advantages compared with the current technology:
1、缩短工作流体的路径;1. Shorten the path of the working fluid;
2、降低工作流体的管路阻力;2. Reduce the pipeline resistance of the working fluid;
3、多个气体路径及液体路径避免因液体阻塞而循环失效。3. Multiple gas paths and liquid paths avoid circulation failure due to liquid blockage.
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离权利要求所限定的精神和范围的情况下,可作出许多修改、变化或等效,但都将落入本发明的保护范围之内。The above description is only illustrative rather than restrictive for the present invention. Those skilled in the art understand that many modifications, changes or equivalents can be made without departing from the spirit and scope defined by the claims. All will fall within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011026849.8A CN112146495B (en) | 2020-09-25 | 2020-09-25 | Gas-liquid condensation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011026849.8A CN112146495B (en) | 2020-09-25 | 2020-09-25 | Gas-liquid condensation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112146495A CN112146495A (en) | 2020-12-29 |
CN112146495B true CN112146495B (en) | 2022-07-22 |
Family
ID=73897389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011026849.8A Active CN112146495B (en) | 2020-09-25 | 2020-09-25 | Gas-liquid condensation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112146495B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI804981B (en) * | 2021-09-13 | 2023-06-11 | 英業達股份有限公司 | Condenser and open loop two phase cooling system |
CN114018076A (en) * | 2021-10-25 | 2022-02-08 | 奇鋐科技股份有限公司 | Condensation structure |
CN114430647A (en) * | 2021-12-22 | 2022-05-03 | 深圳市飞荣达科技股份有限公司 | Shovel tooth phase change radiator |
CN117425309A (en) * | 2022-09-01 | 2024-01-19 | 中兴智能科技南京有限公司 | Radiator and electronic equipment |
CN118776372A (en) * | 2024-08-13 | 2024-10-15 | 浙江台信应用科技有限公司 | Application of Nano-superconducting Alloy Mesh in One-way Circulation Refrigerant Two-phase Change Siphon Radiator |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6220337B1 (en) * | 1998-04-27 | 2001-04-24 | Shi-Li Chen | Heat pipe circuit type thermal battery |
US7306028B2 (en) * | 2005-06-23 | 2007-12-11 | Thermal Corp. | Modular heat sink |
US20070227703A1 (en) * | 2006-03-31 | 2007-10-04 | Bhatti Mohinder S | Evaporatively cooled thermosiphon |
TW201024648A (en) * | 2008-12-26 | 2010-07-01 | Ji-De Jin | Flat loop heat pipe |
ES2648877T3 (en) * | 2012-12-28 | 2018-01-08 | Ibérica Del Espacio, S.A. | Loop heat pipe apparatus for heat transmission and thermal control |
CN206670422U (en) * | 2017-01-16 | 2017-11-24 | 奇鋐科技股份有限公司 | Loop heat pipe structure |
TWI718485B (en) * | 2019-02-27 | 2021-02-11 | 雙鴻科技股份有限公司 | Heat exchange device |
CN213515201U (en) * | 2020-09-25 | 2021-06-22 | 奇鋐科技股份有限公司 | Gas-liquid condensation system |
-
2020
- 2020-09-25 CN CN202011026849.8A patent/CN112146495B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112146495A (en) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112146495B (en) | Gas-liquid condensation system | |
CN208063649U (en) | Heat radiation structure | |
TWI650520B (en) | Phase change evaporator and phase change heat sink | |
TW201944019A (en) | Loop heat pipe with fluid elastic pipes characterized by dividing the interior of liquid segment of a return pipe into channels with smaller diameter so as to allow the working liquid to have liquid elastic effect | |
CN206593519U (en) | Capillary structure and loop heat pipe with the same | |
CN201093903Y (en) | Flat plate type multichannel combined type heat tube | |
TWM606229U (en) | Gas-liquid condensing system | |
CN213515201U (en) | Gas-liquid condensation system | |
CN110881263A (en) | Heat dissipation unit and heat dissipation device thereof | |
CN101581550B (en) | Evaporators for cooling circuits | |
EP3772629B1 (en) | Heat dissipating fin with thermosiphon | |
TWI764298B (en) | Vapor/liquid condensation system | |
JP2009127903A (en) | Exhaust heat recovery unit | |
CN106839844A (en) | Capillary structure and loop heat pipe with the same | |
TWM554979U (en) | Phase-change evaporator and phase-change heat dissipation device | |
CN218163392U (en) | Heat sink device | |
CN207379340U (en) | Parallel condenser and radiator | |
CN207118203U (en) | Phase change evaporator and phase change cooling device | |
CN101236054A (en) | Integrated internal circulation heat pipe | |
TW201945680A (en) | Loop heat pipe having different pipe diameters characterized in allowing a working liquid to be rapidly returned to the evaporating chamber so as to increase the heat dissipation efficiency | |
CN112272488B (en) | Gas-liquid phase flow heat exchange unit | |
US11555653B2 (en) | Vapor/liquid condensation system | |
CN209299636U (en) | Condenser and Radiator | |
CN113624047A (en) | Condenser with embedded radial micro-channel and loop heat pipe | |
CN110678038A (en) | Heat abstractor and air conditioner frequency conversion module structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |