CN112142832A - Streptomyces cellooligosaccharide transport protein gene - Google Patents
Streptomyces cellooligosaccharide transport protein gene Download PDFInfo
- Publication number
- CN112142832A CN112142832A CN202011123905.XA CN202011123905A CN112142832A CN 112142832 A CN112142832 A CN 112142832A CN 202011123905 A CN202011123905 A CN 202011123905A CN 112142832 A CN112142832 A CN 112142832A
- Authority
- CN
- China
- Prior art keywords
- cellooligosaccharide
- scab
- ssc
- substrate
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/36—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种链霉菌纤维寡糖转运蛋白基因,属于生物技术领域。本发明通过将链霉菌纤维寡糖转运蛋白基因连接到pET‑28a载体上后转入感受态目的菌株并进行诱导表达培养,成功构建了高效表达链霉菌纤维寡糖转运蛋白的工程菌株,并通过热力学实验证明了其能够高效结合纤维寡糖,尤其是纤维二糖,为产业上进一步利用纤维素提供了工具。
The invention discloses a Streptomyces cello-oligosaccharide transporter gene and belongs to the field of biotechnology. In the present invention, the Streptomyces cello-oligosaccharide transporter gene is connected to the pET-28a vector, and then transferred into the competent target strain and induced to express and cultured, so as to successfully construct an engineering strain that efficiently expresses the Streptomyces cello-oligosaccharide transporter. Thermodynamic experiments have proved that it can efficiently bind cellooligosaccharides, especially cellobiose, which provides a tool for further utilization of cellulose in the industry.
Description
技术领域technical field
本发明涉及生物技术领域,特别是涉及一种链霉菌纤维寡糖转运蛋白基因。The invention relates to the field of biotechnology, in particular to a Streptomyces cello-oligosaccharide transporter gene.
背景技术Background technique
随着化石能源的日趋枯竭以及人们对环境污染、能源危机等问题关注度的提高,寻找清洁的可再生能源成为当前研究热点。木质纤维素是由多种有机高分子化合物组成的具有高结晶度和聚合度的复合体,主要由纤维素、半纤维素和木质素通过共价键和非共价键相互连接形成,因其储量丰富、成本低廉、清洁环保而受到各国科学家的青睐。With the increasing depletion of fossil energy and people's increasing attention to environmental pollution, energy crisis and other issues, the search for clean renewable energy has become a current research hotspot. Lignocellulose is a complex composed of a variety of organic polymer compounds with high crystallinity and degree of polymerization, mainly formed by cellulose, hemicellulose and lignin interconnected by covalent and non-covalent bonds. With abundant reserves, low cost, clean and environmental protection, it is favored by scientists from all over the world.
纤维素酶,包含外切-1,4-β-D-葡聚糖酶(exo-β-glucanases,CBH)、内切-1,4-β-D-葡聚糖酶(endo-β-glucanases,EG)、β-葡萄糖苷酶(endo-β-glucosidases,GE),可以将纤维素、半纤维素水解为单糖,其中外切-1,4-β-D-葡聚糖酶从纤维素的两端水解结晶纤维素,释放纤维二糖;内切-1,4-β-D-葡聚糖酶作用于纤维素内部的β-1,4糖苷键,随机水解无定形纤维素,释放各种纤维寡糖;β-葡萄糖苷酶也称纤维二糖酶,主要水解纤维二糖、纤维寡糖,释放葡萄糖。纤维二糖对外切-1,4-β-D-葡聚糖酶和内切-1,4-β-D-葡聚糖酶有抑制作用,而葡萄糖对β-葡萄糖苷酶有抑制作用,当水解液中的葡萄糖浓度升高时,纤维素的水解效率下降。因此,较低的木质纤维素酶解效率,较高的纤维素酶使用成本是制约木质纤维素这一可再生能源开发利用的瓶颈。Cellulases, including exo-1,4-beta-D-glucanases (CBH), endo-1,4-beta-D-glucanases (endo-beta-glucanases, CBH) glucanases, EG), β-glucosidase (endo-β-glucosidases, GE), can hydrolyze cellulose and hemicellulose into monosaccharides, of which exo-1,4-β-D-glucanase is derived from Both ends of cellulose hydrolyze crystalline cellulose to release cellobiose; endo-1,4-β-D-glucanase acts on the β-1,4 glycosidic bond inside cellulose to randomly hydrolyze amorphous cellulose , release various cello-oligosaccharides; β-glucosidase, also known as cellobiase, mainly hydrolyzes cellobiose and cello-oligosaccharides to release glucose. Cellobiose has inhibitory effect on exo-1,4-β-D-glucanase and endo-1,4-β-D-glucanase, while glucose has inhibitory effect on β-glucosidase, When the glucose concentration in the hydrolyzate increases, the hydrolysis efficiency of cellulose decreases. Therefore, the lower enzymatic hydrolysis efficiency of lignocellulose and the higher use cost of cellulase are the bottlenecks restricting the development and utilization of lignocellulose, a renewable energy source.
直接利用木质纤维素预处理液中的纤维寡糖是有效降低纤维素酶解和发酵成本,实现木质纤维素高效发酵转化的途径之一。但是纤维寡糖是大分子物质,不能以自由扩散等简单的扩散方式通过细胞膜,必需转运蛋白的协助。在目前的工业发酵微生物菌株中,没有纤维寡糖转运蛋白,不具有直接利用纤维寡糖进行发酵的能力。The direct utilization of cellooligosaccharides in lignocellulose pretreatment solution is one of the ways to effectively reduce the cost of enzymatic hydrolysis and fermentation of cellulose and realize efficient fermentation and conversion of lignocellulose. However, cellooligosaccharide is a macromolecular substance and cannot pass through the cell membrane by simple diffusion such as free diffusion, and must be assisted by transporters. In the current industrial fermentation microbial strains, there is no cellooligosaccharide transporter, and it does not have the ability to directly utilize cellooligosaccharide for fermentation.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种链霉菌纤维寡糖转运蛋白基因及蛋白,以解决上述现有技术存在的问题,通过将链霉菌纤维寡糖转运蛋白转入目的菌株中获得能够高效利用纤维素,尤其是纤维二糖的工程菌,为实现产业上利用纤维素奠定了基础。The purpose of the present invention is to provide a Streptomyces cello-oligosaccharide transporter gene and protein, to solve the problems existing in the above-mentioned prior art, by transferring the Streptomyces cello-oligosaccharide transporter into the target strain to obtain efficient utilization of cellulose, In particular, the engineered bacteria of cellobiose have laid the foundation for the industrial utilization of cellulose.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
本发明提供一种链霉菌纤维寡糖转运蛋白基因,所述寡糖转运蛋白基因的核苷酸序列如SEQ ID NO.1所示。The present invention provides a Streptomyces cello-oligosaccharide transporter gene, and the nucleotide sequence of the oligosaccharide transporter gene is shown in SEQ ID NO.1.
本发明还提供一种所述链霉菌纤维寡糖转运蛋白基因表达的寡糖转运蛋白,所述寡糖转运蛋白的氨基酸序列如SEQ ID NO.2所示。The present invention also provides an oligosaccharide transporter expressed by the Streptomyces cello-oligosaccharide transporter gene, and the amino acid sequence of the oligosaccharide transporter is shown in SEQ ID NO. 2.
本发明还提供一种纤维素发酵工程菌的构建方法,所述构建方法包括构建所述链霉菌纤维寡糖转运蛋白基因的表达载体,利用所述载体转化感受态目的菌株,再诱导转化后目的菌株中链霉菌纤维寡糖蛋白表达。The present invention also provides a method for constructing a cellulose fermentation engineering bacteria, which comprises constructing an expression vector for the Streptomyces cello-oligosaccharide transporter gene, transforming a competent target strain with the vector, and then inducing the transformed target strain. Streptomyces cellooligosaccharide protein expression in strains.
本发明还提供一种由所述构建方法构建的工程菌。The present invention also provides an engineering bacterium constructed by the construction method.
本发明还提供一种所述的工程菌在纤维素发酵中的应用。The invention also provides an application of the engineering bacteria in cellulose fermentation.
进一步的,所述的纤维素为纤维寡糖。Further, the cellulose is cellooligosaccharide.
进一步的,所述的纤维寡糖包括纤维二糖、纤维三糖、纤维四糖、纤维五糖中的一种或多种。Further, the cello-oligosaccharide includes one or more of cellobiose, cellotriose, cellotetraose and cellopentose.
进一步的,所述的纤维寡糖为纤维二糖。Further, the cello-oligosaccharide is cellobiose.
本发明公开了以下技术效果:The present invention discloses the following technical effects:
本发明通过将链霉菌纤维寡糖转运蛋白基因转入感受态目的菌株并进行诱导表达培养,成功构建了高效表达链霉菌纤维寡糖转运蛋白的工程菌株,并通过热力学实验证明了其能够高效结合纤维寡糖,尤其是纤维二糖,为产业上进一步利用纤维素提供了工具。In the present invention, by transferring the gene of Streptomyces cello-oligosaccharide transporter into competent target strains and inducing expression culture, an engineering strain with high-efficiency expression of Streptomyces cello-oligosaccharide transporter is successfully constructed, and it is proved by thermodynamic experiments that it can efficiently combine Cello-oligosaccharides, especially cellobiose, provide a tool for further industrial utilization of cellulose.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为牛血清蛋白标准曲线;Fig. 1 is the standard curve of bovine serum albumin;
图2为表达产物的SDS—聚丙烯酰胺凝胶电泳分析,其中泳道1为Standardprotein Marker(Low);泳道2为纯化的Ssc-SCAB;Figure 2 is the SDS-polyacrylamide gel electrophoresis analysis of the expression product, wherein
图3为底物结合蛋白Ssc-SCAB与各种纤维寡糖相互作用的微量热差示扫描量结果,其中A为Ssc-SCAB及其与葡萄糖的DSC分析;B为Ssc-SCAB及其与纤维二糖的DSC分析;C为Ssc-SCAB及其与纤维三糖的DSC分析;D为Ssc-SCAB及其与纤维四糖的DSC分析;E为Ssc-SCAB及其与纤维五糖的DSC分析;Figure 3 shows the microcalorimetric differential scanning results of the interaction between the substrate binding protein Ssc-SCAB and various cellooligosaccharides, where A is the DSC analysis of Ssc-SCAB and its interaction with glucose; B is the DSC analysis of Ssc-SCAB and its interaction with fiber DSC analysis of disaccharide; C is the DSC analysis of Ssc-SCAB and its combination with cellotriose; D is the DSC analysis of Ssc-SCAB and its combination with cellotetraose; E is the DSC analysis of Ssc-SCAB and its combination with cellopentose ;
图4为纤维寡糖和底物结合蛋白Ssc-SCAB在35℃等温滴定的曲线,其中A为纤维二糖滴定Ssc-SCAB;B为纤维三糖滴定Ssc-SCAB;C为纤维四糖滴定Ssc-SCAB;D为纤维五糖滴定Ssc-SCAB。Figure 4 is the isothermal titration curve of cellooligosaccharide and substrate binding protein Ssc-SCAB at 35°C, where A is cellobiose titration Ssc-SCAB; B is cellotriose titration Ssc-SCAB; C is cellotetraose titration Ssc -SCAB; D is cellopentose titration Ssc-SCAB.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail, which detailed description should not be construed as a limitation of the invention, but rather as a more detailed description of certain aspects, features, and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only used to describe particular embodiments, and are not used to limit the present invention. Additionally, for numerical ranges in the present disclosure, it should be understood that each intervening value between the upper and lower limits of the range is also specifically disclosed. Every smaller range between any stated value or intervening value in a stated range and any other stated value or intervening value in that stated range is also encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention relates. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All documents mentioned in this specification are incorporated by reference for the purpose of disclosing and describing the methods and/or materials in connection with which the documents are referred. In the event of conflict with any incorporated document, the content of this specification controls.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations can be made in the specific embodiments of the present invention without departing from the scope or spirit of the invention. Other embodiments will be apparent to those skilled in the art from the description of the present invention. The description and examples of the present application are only exemplary.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。As used herein, "comprising," "including," "having," "containing," and the like, are open-ended terms, meaning including but not limited to.
本发明中所使用的材料、试剂等,如无特殊说明,均能够从商业途径获得。The materials, reagents, etc. used in the present invention can be obtained from commercial sources unless otherwise specified.
实施例1Ssc-scaB基因转化大肠杆菌Example 1 Transformation of Escherichia coli with Ssc-scaB gene
1.密码子优化和重组质粒构建1. Codon optimization and recombinant plasmid construction
根据文献报道(The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity,Jourdan S等,2016和Several Archaeal Homologs of Putative Oligopeptide-BindingProteins Encoded by Thermotoga maritima Bind Sugars,Nanavati D M等,2006和Cellobiose Uptake in the Hyperthermophilic Archaeon Pyrococcus furiosus IsMediated by an Inducible,Konings S M等,2001和Cellodextrin UtilizationbyBifidobacterium breveUCC2003,Pokusaeva K等,2011和HyperthermophilicThermotoga Species Differ with Respect to Specific Carbohydrate Transportersand Glycoside Hydrolases,Frock AD等,2012和Tracking the Subtle MutationsDriving Host Sensing by the Plant Pathogen Streptomyces scabies,SamuelJourdan AI M F等,2017),对来自链霉菌(Streptomyces scabies)的基因序列进行BlastX比对分析,并对其编码的氨基酸序列进行蛋白质结构域预测和信号肽分析,将其命名为Ssc-scaB。根据对基因序列的分析,由科雷生物科技有限责任公司构建到pET-28a表达载体上,得到DNA分子溶液。According to literature reports (The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity, Jourdan S et al, 2016 and Several Archaeal Homologs of Putative Oligopeptide-BindingProteins Encoded by Thermotoga maritima Bind Sugars, Nanavati D M et al, 2006 and Cellobiose Uptake in the Hyperthermophilic Archaeon Pyrococcus furiosus IsMediated by an Inducible, Konings S M et al, 2001 and Cellodextrin Utilization by Bifidobacterium breveUCC 2003, Pokusaeva K et al, 2011 and HyperthermophilicThermotoga Species Differ with Respect to Specific Carbohydrate Transporters and Glycoside Hydrolases, Frock AD et al, 201 the Subtle MutationsDriving Host Sensing by the Plant Pathogen Streptomyces scabies, SamuelJourdan AI M F et al., 2017), BlastX alignment analysis was performed on the gene sequences from Streptomyces scabies, and the encoded amino acid sequences were subjected to protein domain prediction and Signal peptide analysis, which was named Ssc-scaB. According to the analysis of the gene sequence, it was constructed into the pET-28a expression vector by Kelei Biotechnology Co., Ltd. to obtain a DNA molecule solution.
2.从E.coli中小量制备质粒2. Miniprep plasmids from E. coli
(1)取1.5mL过夜培养的菌液加入容积为2mL的EP管,12000rpm离心1min,弃去上清。(1) Take 1.5 mL of overnight cultured bacterial solution into an EP tube with a volume of 2 mL, centrifuge at 12,000 rpm for 1 min, and discard the supernatant.
(2)向EP管中加入250μL预冷的P1溶液(使用前加入RNase A),使用涡旋振荡器重悬菌体。(2) Add 250 μL of pre-chilled P1 solution (add RNase A before use) to the EP tube, and use a vortex shaker to resuspend the cells.
(3)向EP管中加入250μL预冷的P2溶液,温和地上下翻转6-8次,使菌体充分裂解。(3) Add 250 μL of pre-cooled P2 solution to the EP tube, and gently turn up and down 6-8 times to fully lyse the cells.
(4)向EP管中加入350μL预冷的P3溶液,立刻温和地上下翻转6-8次,充分混匀,12000rpm离心10min。(4) Add 350 μL of pre-cooled P3 solution to the EP tube, immediately turn it up and down gently 6-8 times, mix well, and centrifuge at 12000 rpm for 10 min.
(5)将上清转移到吸附柱CP3中,12000rpm离心1min,弃去收集管中的废液,将吸附柱CP3放回收集管中。(5) Transfer the supernatant to the adsorption column CP3, centrifuge at 12000 rpm for 1 min, discard the waste liquid in the collection tube, and put the adsorption column CP3 back into the collection tube.
(6)向吸附柱CP3中加入500μL去蛋白液PD,12000rpm离心1min,弃去收集管中的废液,将吸附柱CP3放回收集管中。(6) Add 500 μL of deproteinized solution PD to the adsorption column CP3, centrifuge at 12000 rpm for 1 min, discard the waste liquid in the collection tube, and put the adsorption column CP3 back into the collection tube.
(7)向吸附柱CP3中加入600μL去漂洗液PW,12000rpm离心1min,弃去收集管中的废液,将吸附柱CP3放回收集管中。(7) Add 600 μL of de-rinsing solution PW to the adsorption column CP3, centrifuge at 12000 rpm for 1 min, discard the waste liquid in the collection tube, and put the adsorption column CP3 back into the collection tube.
(8)重复步骤7。(8) Repeat step 7.
(9)将吸附柱CP3放回收集管中,12000rpm离心2min,将吸附柱CP3转移到一个干净的EP管,向吸附膜中间部位加入50μL无菌水,室温静置2min,12000rpm离心2min,将质粒溶液收集到EP管,放-20℃存储备用。(9) Put the adsorption column CP3 back into the collection tube, centrifuge at 12,000 rpm for 2 minutes, transfer the adsorption column CP3 to a clean EP tube, add 50 μL of sterile water to the middle of the adsorption membrane, stand at room temperature for 2 minutes, and centrifuge at 12,000 rpm for 2 minutes. The plasmid solution was collected into EP tubes and stored at -20°C for later use.
3.氯化钙-氯化镁法制备大肠杆菌感受态细胞(E.coli Rosetta(DE3))3. Preparation of E. coli competent cells by calcium chloride-magnesium chloride method (E.coli Rosetta(DE3))
(1)从-40℃取出甘油保藏的E.coli菌种,在超净工作台里用接种环蘸取菌液,在无抗生素的LA平板上划线,放37℃培养过夜。(1) Take out the E. coli strains preserved in glycerol from -40°C, dip the bacterial solution with an inoculating loop in the ultra-clean workbench, streak it on an antibiotic-free LA plate, and incubate at 37°C overnight.
(2)从LA平板上挑取生长良好的单菌落,接种到内含5mL LB培养基的直形瓶,37℃,200rpm培养过夜。(2) Pick a single colony with good growth from the LA plate, inoculate it into a straight-shaped flask containing 5 mL of LB medium, and cultivate overnight at 37° C. and 200 rpm.
(3)按1%的接种量(v/v)转接到内含100mL LB培养基的锥形瓶里,37℃,200rpm培养2-3h,菌液OD600至0.4-0.6。(3) Transfer to a conical flask containing 100 mL of LB medium at 1% inoculum volume (v/v), cultivate at 37° C., 200 rpm for 2-3 hours, and the OD600 of the bacterial solution is 0.4-0.6.
(4)将培养好的菌液使用冰浴进行冷却,冰浴时间约为30min,中间偶有混匀。(4) Use an ice bath to cool the cultured bacterial liquid, and the ice bath time is about 30 minutes, with occasional mixing in the middle.
(5)在超净台里将充分冷却的菌液分装到预冷的、无菌的容积为50mL的聚丙烯管,在4℃下,5000rpm离心10min,弃去上清。(5) Dispense the fully cooled bacterial solution into pre-cooled, sterile polypropylene tubes with a volume of 50 mL in the ultra-clean bench, centrifuge at 5000 rpm for 10 min at 4°C, and discard the supernatant.
(6)向聚丙管中加入35mL预冷的氯化钙-氯化镁溶液,轻轻敲打重悬菌体,在4℃下,5000rpm离心5min,弃去上清。(6) Add 35 mL of pre-cooled calcium chloride-magnesium chloride solution to the polypropylene tube, tap gently to resuspend the cells, centrifuge at 5000 rpm for 5 min at 4°C, and discard the supernatant.
(7)重复步骤6两次。(7) Repeat step 6 twice.
(8)向聚丙管中加入4mL预冷的甘油-氯化钙溶液,轻轻敲打重悬菌体,在冰上将感受态细胞分装到无菌的、预冷的EP管,每管100μL,放-80℃冷藏。(8) Add 4 mL of pre-cooled glycerol-calcium chloride solution to the polypropylene tube, tap gently to resuspend the cells, and dispense the competent cells into sterile, pre-cooled EP tubes on ice, 100 μL per tube , refrigerate at -80°C.
4.DNA分子转化大肠杆菌感受态细胞4. DNA molecule transforms E. coli competent cells
(1)从-80℃取出大肠杆菌感受态细胞,迅速插入冰里,让大肠杆菌感受态细胞在冰里自然融化。(1) Take out the E. coli competent cells from -80°C, quickly insert them into ice, and let the E. coli competent cells melt naturally in the ice.
(2)用微量移液器吸取适量步骤1中制备的DNA分子溶液加入内含100μL大肠杆菌感受态细胞的EP管中,混匀后冰浴静置30min。(2) Pipette an appropriate amount of the DNA molecule solution prepared in
(3)将EP管快速地放入42℃水浴,在静置的条件下,热激90s。(3) Quickly put the EP tube into a 42°C water bath, and heat shock for 90s under the condition of standing.
(4)热激结束后立即取出EP管,冰浴静置3min。(4) Immediately after the end of the heat shock, take out the EP tube and let it stand in an ice bath for 3 min.
(5)向EP管内加入200μL SOC培养基,37℃,200rpm培养1h,。(5) Add 200 μL of SOC medium to the EP tube, and culture at 37° C. and 200 rpm for 1 h.
(6)取适量体积的培养物涂布到含有相应抗生素的LA平板上,放37℃恒温培养箱倒置培养12-16h。(6) Take an appropriate volume of the culture and spread it on the LA plate containing the corresponding antibiotics, and place it in a 37°C constant temperature incubator to invert for 12-16 hours.
实施例2重组底物结合蛋白的诱导表达Example 2 Inducible expression of recombinant substrate binding protein
(1)分别从转化平板上挑取生长良好的单菌落到内含5mL的LB培养基(含50μg/mL卡那霉素,25μg/mL氯霉素)的直形瓶中,37℃、200rpm培养10h。(1) Pick well-grown single colonies from the transformation plates and put them into straight-shaped flasks containing 5 mL of LB medium (containing 50 μg/mL kanamycin, 25 μg/mL chloramphenicol), at 37°C, 200 rpm Incubate for 10h.
(2)按1%(v/v)的接种量分别转接到内含65mL LB培养基(含50μg/mL卡那霉素,25μg/mL氯霉素)的锥形瓶中,37℃、200rpm培养过夜。(2) Transfer to conical flasks containing 65mL LB medium (containing 50μg/mL kanamycin, 25μg/mL chloramphenicol) according to the inoculum amount of 1% (v/v), at 37°C, Incubate overnight at 200 rpm.
(3)按1%(v/v)的接种量分别转接到内含1L LB培养基(含50μg/mL卡那霉素,25μg/mL氯霉素)的锥形瓶中,37℃、200rpm培养2-3h,菌液OD600至0.4-0.6时加入终浓度为1mmol/L的IPTG。(3) Transfer to conical flasks containing 1L LB medium (containing 50 μg/mL kanamycin, 25 μg/mL chloramphenicol) at 1% (v/v) inoculum respectively, at 37°C, Incubate at 200rpm for 2-3h, and add IPTG with a final concentration of 1mmol/L when the OD600 of the bacterial solution reaches 0.4-0.6.
(4)重组菌株E.coli Rosetta(DE3)/pET-Ssc-scaB放16℃、180rpm培养20h进行目的蛋白的诱导表达。(4) The recombinant strain E.coli Rosetta(DE3)/pET-Ssc-scaB was cultured at 16℃ and 180rpm for 20h to induce the expression of the target protein.
实施例3重组底物结合蛋白质的纯化Example 3 Purification of Recombinant Substrate Binding Proteins
1.重组底物结合蛋白质的纯化1. Purification of Recombinant Substrate Binding Proteins
(1)诱导6L菌液表达后,8000rpm离心10min,收集菌体。(1) After inducing the expression of 6 L bacterial liquid, centrifuge at 8000 rpm for 10 min to collect the bacterial cells.
(2)用300mL Lysis buffer(pH 8.0,咪唑10mmol/L,氯化钠300mmol/L,磷酸二氢钠50mmol/L)重悬菌体,加入3mL 25mg/mL的溶菌酶,混匀后冰上静置20min。(2) Resuspend the cells with 300mL Lysis buffer (pH 8.0, imidazole 10mmol/L, sodium chloride 300mmol/L, sodium dihydrogen phosphate 50mmol/L), add 3mL 25mg/mL lysozyme, mix well and put on ice Let stand for 20 minutes.
(3)在冰水混合物中使用超声波细胞破碎仪进行破胞,破胞总时间20min,工作时间5s,间歇时间5s,破胞功率30%。(3) Using an ultrasonic cell disruptor in the ice-water mixture to disrupt the cells, the total disruption time is 20 minutes, the working time is 5s, the intermittent time is 5s, and the disruption power is 30%.
(4)破胞结束后,重组菌株E.coliRosetta(DE3)/pET-Ssc-scaB破胞结束后,破胞液于4℃,12000rpm离心30min,离心后的上清液为粗蛋白液。(4) After the cell disruption, the recombinant strain E.coliRosetta(DE3)/pET-Ssc-scaB was centrifuged at 4°C and 12000rpm for 30min, and the supernatant after centrifugation was the crude protein solution.
(5)分别吸取2mL Ni-NTA填料至层析柱中,用Lysis buffer(pH 8.0,咪唑10mmol/L,氯化钠300mmol/L,磷酸二氢钠50mmol/L)充分平衡层析柱中的Ni-NTA填料。(5)
(6)分别将粗蛋白液与用Lysis buffer平衡的Ni-NTA填料混合,放10℃,150rpm作用1h,使含有组氨酸标签的重组底物结合蛋白与Ni-NTA填料充分结合。(6) Mix the crude protein solution with the Ni-NTA filler equilibrated with Lysis buffer, and place it at 10°C and 150 rpm for 1 h to fully bind the recombinant substrate-binding protein containing histidine tag to the Ni-NTA filler.
(7)分别将混合液转移到层析柱中并排空液体,向层析柱中加入10mL预冷的Washbuffer(pH 8.0,氯化钠300mmol/L,磷酸二氢钠50mmol/L,纯化Bbr-CLDE和Ssc-SCAB时咪唑浓度为20mmol/L,纯化Pfu-CBTA和Tma-CBTA时咪唑浓度为40mmol/L),轻轻重悬Ni-NTA,排空层析柱内的液体,重复4次。(7) Transfer the mixture to the chromatography column and empty the liquid, add 10 mL of pre-cooled Washbuffer (pH 8.0, sodium chloride 300 mmol/L,
(8)充分洗涤以后向层析柱中加入10mL预冷的Elution buffe(pH 8.0,咪唑250mmol/L,氯化钠300mmol/L,磷酸二氢钠50mmol/L)洗脱底物结合蛋白,收集洗脱液,重复3次,4℃保存含有底物结合蛋白的洗脱液。(8) After thorough washing, add 10 mL of pre-cooled Elution buffer (pH 8.0, imidazole 250 mmol/L, sodium chloride 300 mmol/L,
(9)底物结合蛋白洗脱结束以后,使用Elution buffe多次冲洗Ni-NTA填料,冲洗结束后用20%的乙醇溶液保存。纯化同一种底物结合蛋白时,Ni-NTA填料可重复使用3-5次,结合率下降以后可对Ni-NTA填料进行再生。(9) After the elution of the substrate-binding protein is completed, the Ni-NTA packing is washed several times with Elution buffer, and stored with 20% ethanol solution after washing. When purifying the same substrate-binding protein, the Ni-NTA packing can be reused 3-5 times, and the Ni-NTA packing can be regenerated after the binding rate decreases.
2.底物结合蛋白的脱盐2. Desalting of Substrate Binding Proteins
(1)将含有底物结合蛋白的洗脱液转移到30kDa的超滤管,洗脱液较多时可分多次转移,在4℃条件下,5000rpm离心30min,弃去收集管中的废液。(1) Transfer the eluate containing the substrate-binding protein to a 30kDa ultrafiltration tube. When the eluate is large, it can be transferred in multiple times. Centrifuge at 5000rpm for 30min at 4°C, and discard the waste liquid in the collection tube. .
(2)超滤管中的洗脱液约为500μL时,向超滤管中加入buffer A溶液(pH 7.0,50mMTris-HCl,100mM NaCl)在4℃条件下,5000rpm离心30min,弃去收集管中的废液。(2) When the eluate in the ultrafiltration tube is about 500 μL, add buffer A solution (pH 7.0, 50 mM Tris-HCl, 100 mM NaCl) to the ultrafiltration tube, centrifuge at 5000 rpm for 30 min at 4°C, and discard the collection tube in the waste liquid.
(3)重复步骤2两次。(3)
(4)分别将超滤管中含有底物结合蛋白的溶液和收集管中的超滤液转移到干净的EP管和直形瓶,放4℃保存。(4) Transfer the solution containing the substrate-binding protein in the ultrafiltration tube and the ultrafiltrate in the collection tube to a clean EP tube and a straight bottle, respectively, and store at 4°C.
3.蛋白质标准曲线的绘制和定量分析3. Drawing and Quantitative Analysis of Protein Standard Curve
吸取100μL牛血清蛋白BSA标准品(2mg/mL),加入1900μL ddH20后充分混匀,按照表2-4在1.5mL的EP管内用稀释液(ddH2O、0.9%NaCl或者PBS)稀释BSA标准品,每个浓度三个平行。Pipette 100μL of bovine serum albumin BSA standard (2mg/mL), add 1900μL of ddH20 and mix well, dilute the BSA standard in a 1.5mL EP tube with diluent (ddH2O, 0.9% NaCl or PBS) according to Table 2-4, Three parallels for each concentration.
表1牛血清蛋白标准曲线测定Table 1 Determination of bovine serum protein standard curve
分别吸取20μL稀释后的BSA标准品溶液加入1.5mL的EP管,每个浓度做三个平行,分别向每管加入1mL复温的Broadford Dye Reagent,混匀后室温反应5min,各取200μL加入96孔板,使用酶标仪测定600nm处的吸光度值,计算各浓度的平均值后减去Blank的平均值,以蛋白质含量为横坐标,OD600的读数为纵坐标,绘制BSA标准品溶液的标准曲线(图1)。
纯化的底物结合蛋白定量:分别取20μL不同稀释倍数的目的蛋白溶液加入1mL复温的Broadford Dye Reagent,混匀后室温反应5min,各取200μL加到酶标板,读取OD600的吸光度值,代入标准曲线计算目的蛋白的质量浓度,质量浓度为6.288107mg/ml。Quantification of purified substrate-binding protein: Take 20 μL of the target protein solution of different dilutions and add 1 mL of rewarmed Broadford Dye Reagent, mix well, react at room temperature for 5 min, add 200 μL of each to the ELISA plate, read the absorbance value of OD600, Substitute into the standard curve to calculate the mass concentration of the target protein, and the mass concentration is 6.288107 mg/ml.
实施例4底物结合蛋白的SDS-PAGE分析Example 4 SDS-PAGE analysis of substrate binding proteins
SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)用于分析底物结合蛋白的表达情况与纯化的底物结合蛋白的分子量和纯化程度,实验步骤如下:SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is used to analyze the expression of substrate-binding protein and the molecular weight and purification degree of purified substrate-binding protein. The experimental steps are as follows:
(1)将制胶器、胶梳、玻璃板和Spacer洗干净,并组装好,用水检测严密性,若严密性好,弃去玻璃夹板层里的水,用滤纸吸干。(1) Wash the glue maker, glue comb, glass plate and Spacer, and assemble them. Check the tightness with water. If the tightness is good, discard the water in the glass plywood layer and dry it with filter paper.
(2)按照表2-5配制分离胶和浓缩胶溶液,混匀以后向玻璃板夹层灌注分离胶溶液,灌至合适高度后加入1mL无水乙醇,室温静置30min。(2) Prepare the separating gel and stacking gel solutions according to Table 2-5. After mixing, pour the separating gel solution into the interlayer of the glass plate. After pouring to a suitable height, add 1 mL of absolute ethanol and let it stand at room temperature for 30 minutes.
(3)待分离胶凝固后弃去玻璃夹层里的无水乙醇,用滤纸吸干,快速灌入浓缩胶溶液,灌满玻璃板夹层以后插入胶梳,室温静置30min。(3) After the separation gel has solidified, discard the absolute ethanol in the glass interlayer, blot it dry with filter paper, quickly pour the concentrated gel solution, fill the glass plate interlayer and insert the glue comb, and let it stand at room temperature for 30 minutes.
(4)待浓缩胶凝固后将凝胶放入电泳槽,用电极缓冲液冲洗胶孔,用10mA恒定电流进行预电泳15min。(4) After the concentrated gel is solidified, put the gel into the electrophoresis tank, rinse the gel hole with electrode buffer, and perform pre-electrophoresis with a constant current of 10 mA for 15 min.
表2 SDS-聚丙烯酰胺凝胶配方Table 2 SDS-polyacrylamide gel formulation
(5)取30μL的底物结合蛋白溶液与10μL 4×protein loading buffer混匀,沸水浴30min,12000rpm离心10min。(5)
(6)分别各取4-10μL上清加入聚丙烯酰胺凝胶胶孔,上样结束后用120V恒定电压进行电泳,至溴酚兰条带到达聚丙烯酰胺凝胶底部止。(6) Take 4-10 μL of the supernatant respectively and add it to the polyacrylamide gel well. After the sample is loaded, electrophoresis is carried out at a constant voltage of 120V until the bromophenol blue band reaches the bottom of the polyacrylamide gel.
(7)电泳结束后,将玻璃板撬开,小心取出聚丙烯酰胺凝胶,放入考马斯亮蓝R-250染色液进行染色,25℃,60rpm染色30min。(7) After electrophoresis, pry the glass plate open, take out the polyacrylamide gel carefully, put it into Coomassie brilliant blue R-250 staining solution for staining, and stain at 25°C and 60rpm for 30min.
(8)染色结束后,弃去考马斯亮蓝R-250染色液,清水冲洗,加入适量脱色液进行脱色,25℃,60rpm脱色,至聚丙烯酰胺凝胶无明显背景颜色止,中间需多次换脱色液。(8) After dyeing, discard the Coomassie brilliant blue R-250 dyeing solution, rinse with water, add an appropriate amount of decolorizing solution to decolorize, decolorize at 25°C, 60 rpm, until the polyacrylamide gel has no obvious background color, and several times are required in the middle. Change the destaining solution.
(9)待聚丙烯酰胺凝胶充分脱色以后,使用成像仪Gel DocTM XR+获得理想的SDS-聚丙烯酰胺凝胶电泳图。(9) After the polyacrylamide gel is fully destained, use the imager Gel DocTM XR+ to obtain an ideal SDS-polyacrylamide gel electrophoresis image.
如图2所示,对诱导后的重组菌株分别进行超声破胞纯化,在相应分子量大小处出现了明显的蛋白质特征性条带,Ssc-SCAB(Lane 2)在46.6kDa处出现特征性蛋白质条带,说明我们已经成功表达了这四个底物结合蛋白,并且纯化后的Ssc-SCAB蛋白质溶液纯度较高。As shown in Figure 2, the induced recombinant strains were purified by ultrasonic blasting respectively, and obvious protein characteristic bands appeared at the corresponding molecular weights, and Ssc-SCAB (Lane 2) appeared characteristic protein bands at 46.6kDa The band indicates that we have successfully expressed these four substrate-binding proteins, and the purified Ssc-SCAB protein solution is of high purity.
实施例5等温滴定量热法(ITC)测定底物结合蛋白与纤维寡糖之间的亲和力Example 5 Determination of the affinity between substrate binding proteins and cellooligosaccharides by isothermal titration calorimetry (ITC)
1.各种纤维寡糖滴定底物结合蛋白1. Various Cellooligosaccharide Titration Substrate Binding Proteins
(1)分别用最后一次收集管中的超滤液将底物结合蛋白溶液稀释至0.1—0.2mmol/L并配制浓度为底物结合蛋白浓度10倍左右的各种纤维寡糖溶液。(1) Dilute the substrate-binding protein solution to 0.1-0.2 mmol/L with the ultrafiltrate in the last collection tube and prepare various cellooligosaccharide solutions with a concentration of about 10 times the concentration of the substrate-binding protein.
(2)于4℃真空脱气10—20min,设置等温滴定的各个参数。(2) Vacuum degassing at 4°C for 10-20min, and set each parameter of isothermal titration.
底物结合蛋白Ssc-SCAB的滴定条件:Titration conditions for the substrate binding protein Ssc-SCAB:
底物结合蛋白的滴定浓度为0.1mmol/L,各种纤维寡糖的滴定浓度为4mmol/L,进样针体积为40μL,进样针抽滤时间为5s,每次滴定持续时间为6s,第1滴体积为0.1μL,第2-20滴体积为1.5μL,共20滴,每两滴的间隔时间为120s,样品池温度35℃,参考能量值10μcal/sec,起始延长时间1min,进样针搅拌速度500rpm,反馈模式low。The titrated concentration of substrate-binding protein was 0.1 mmol/L, the titrated concentration of various cellooligosaccharides was 4 mmol/L, the volume of the injection needle was 40 μL, the suction filtration time of the injection needle was 5 s, and the duration of each titration was 6 s. The volume of the first drop is 0.1 μL, the volume of the second to 20 drops is 1.5 μL, a total of 20 drops, the interval between two drops is 120 s, the sample cell temperature is 35 °C, the reference energy value is 10 μcal/sec, and the initial extension time is 1 min. The needle stirring speed was 500 rpm, and the feedback mode was low.
2.底物结合蛋白的热力学参数2. Thermodynamic parameters of substrate-binding proteins
使用Origin ITC 200软件进行数据分析和曲线拟合,在一次等温滴定实验中,ITC可以测定亲和力常数Kb,化学计量数n,结合的焓变△H和熵变△S,根据实验测得的热力学参数和吉布斯—亥姆霍兹方程可以计算出吉布斯自由能△G。Using
3.结果3. Results
使用等温滴定量热法(ITC)测定底物结合蛋白在buffer A中与纤维寡糖的结合特性,在30℃或者50℃等温滴定时,等体积地把纤维寡糖分别滴入充满底物结合蛋白的样品池内(第一滴体积较小,)。若底物结合蛋白与纤维寡糖结合,则释放热量并被记录下来形成能量峰,最开始的几滴产生能量较多,峰值较高,随着纤维寡糖不断地滴入样品池,底物结合蛋白趋于饱和,产生的能量越来越少,峰值越来越低,当样品池中的底物结合蛋白完全饱和时,记录到的峰值为纤维寡糖的稀释所产生的热量,化学计量数n也不会再改变;若底物结合蛋白与纤维寡糖不结合,则只有微小的因稀释放热形成的峰。在相同的滴定条件下,测定各种纤维寡糖滴定buffer A时产生的稀释热,作为空白,数据分析时点对点扣除背景。Isothermal titration calorimetry (ITC) was used to determine the binding properties of substrate-binding proteins to cellooligosaccharides in buffer A. When isothermal titration was performed at 30°C or 50°C, equal volumes of cellooligosaccharides were dropped into cells filled with substrate binding. in the sample cell of the protein (the first drop is smaller in volume). If the substrate-binding protein binds to cellooligosaccharide, heat is released and recorded to form an energy peak. The first few drops generate more energy, and the peak value is higher. The binding protein tends to be saturated, less and less energy is generated, and the peak is lower and lower. When the substrate binding protein in the sample cell is completely saturated, the recorded peak is the heat generated by the dilution of the cellooligosaccharide, stoichiometric The number n also does not change; if the substrate binding protein is not bound to the cellooligosaccharide, there is only a small peak due to the exothermic dilution of the dilution. Under the same titration conditions, the heat of dilution generated when various cello-oligosaccharides were titrated with buffer A was measured as a blank, and the background was subtracted point-to-point during data analysis.
等温滴定量热法可以直接测定底物结合蛋白和纤维寡糖结合时产生的结合焓变化量(△H)、熵变化量(△S)、结合常数(Kb)和化学计量数(n),同时,根据实验测得的热力学参数可以计算出结合反应的吉布斯自由能变化量(△G)和转变温度(T转)。使用纤维二糖、纤维三糖、纤维四糖、纤维五糖分别滴定底物结合蛋白Pfu-CBTA,滴定结果使用一个结合位点模式进行曲线拟合运算分析,根据得到的解离常数Kd,提示所有的底物结合蛋白对各自的底物均有不同程度的亲和力,有些底物结合蛋白在等温滴定饱和以后尚有微弱的热容变化量,可能是由于纤维寡糖与底物结合蛋白的非特异性相互作用和(或)纤维寡糖的稀释引起。Isothermal titration calorimetry can directly determine the binding enthalpy change (ΔH), entropy change (ΔS), binding constant (K b ) and stoichiometric number (n) when the substrate-binding protein is bound to cellooligosaccharide. , and at the same time, the Gibbs free energy change (ΔG) and transition temperature (T) of the binding reaction can be calculated according to the thermodynamic parameters measured experimentally. The substrate-binding protein Pfu-CBTA was titrated with cellobiose, cellotriose, cellotetraose, and cellopentose, respectively. The titration results were analyzed by curve fitting using a binding site model. According to the obtained dissociation constant K d , It is suggested that all substrate-binding proteins have different degrees of affinity for their respective substrates, and some substrate-binding proteins still have weak heat capacity changes after isothermal titration saturation, which may be due to the interaction between cellooligosaccharides and substrate-binding proteins. Caused by nonspecific interactions and/or dilution of cellooligosaccharides.
使用终浓度为0.022mmol/L的底物结合蛋白Ssc-SCAB进行DSC热力学分析,结果图3所示。底物结合蛋白Ssc-SCAB与纤维二糖、纤维三糖、纤维四糖结合以后,Tm值比未结合纤维寡糖的Ssc-SCAB要高,说明纤维二糖、纤维三糖、纤维四糖与Ssc-SCAB结合以后,诱导了Ssc-SCAB内部构象改变。使用分析软件中的非二态模式对底物结合蛋白Ssc-SCAB热变性过程进行拟合分析,结果如图3所示,得到Ssc-SCAB及其与各种纤维寡糖形成的复合物的范特霍夫焓△HV和量热焓△H(具体见表3)。DSC thermodynamic analysis was performed using the substrate-binding protein Ssc-SCAB with a final concentration of 0.022 mmol/L, and the results are shown in Figure 3 . After the substrate binding protein Ssc-SCAB is combined with cellobiose, cellotriose and cellotetraose, the Tm value is higher than that of Ssc-SCAB without cello-oligosaccharide, indicating that cellobiose, cellotriose and cellotetraose are closely related to cellobiose, cellotriose and cellotetraose. Following Ssc-SCAB binding, an internal conformational change of Ssc-SCAB is induced. Using the non-dimorphic mode in the analysis software, the thermal denaturation process of the substrate-binding protein Ssc-SCAB was fitted and analyzed. The results are shown in Figure 3. Tehoff enthalpy ΔH V and calorimetric enthalpy ΔH (see Table 3 for details).
表3 Ssc-SCAB的DSC热力学参数Table 3 DSC thermodynamic parameters of Ssc-SCAB
从表3可知,底物结合蛋白Ssc-SCAB的△H﹥△Hv且△H/△Hv的比值等于3.15,说明Ssc-SCAB为单体蛋白质且内部含有两个以上结构域,结合图3可知,Ssc-SCAB在变性过程中只有一个热容扫描峰,可能的原因有两个:一是Ssc-SCAB内部的多个结构域在变性过程中具有相同或相近的溶解温度Tm和焓变△H,并且多个结构域的变性过程相互独立,互不干扰,热容扫描峰重叠;二是各个结构域的分子量差异大,分子量小的结构域在进行微量热差示扫描时形成的热容峰不明显,在已设定坐标范围内没有显现出来。底物结合蛋白Ssc-SCAB及其与各种纤维寡糖形成的复合物均有△HV﹤△H的关系,说明底物结合蛋白Ssc-SCAB的变性过程是非二态转变模式。Ssc-SCAB结合纤维二糖、纤维三糖、纤维四糖以后,△HV和△H均增大,△HV的增大幅度更为明显,△HV/△H比值增大,去折叠的温度范围比天然状态下未结合纤维寡糖的Ssc-SCAB更窄,说明Ssc-SCAB与纤维寡糖形成复合物以后,Ssc-SCAB的非二态变性过程的协同作用明显加强,有向二态模式转变的趋势。It can be seen from Table 3 that the ratio of △H>△Hv and △H/△Hv of the substrate binding protein Ssc-SCAB is equal to 3.15, indicating that Ssc-SCAB is a monomer protein and contains more than two domains. , Ssc-SCAB has only one heat capacity scanning peak during the denaturation process, there are two possible reasons: one is that the multiple domains inside Ssc-SCAB have the same or similar melting temperature Tm and enthalpy change ΔH during the denaturation process , and the denaturation processes of multiple domains are independent of each other and do not interfere with each other, and the heat capacity scanning peaks overlap; the second is that the molecular weights of each domain are different, and the heat capacity peaks formed when the domains with small molecular weights are subjected to microcalorimetric differential scanning It is not obvious, and it does not appear within the set coordinate range. Substrate binding protein Ssc-SCAB and its complexes with various cellooligosaccharides have the relationship of △H V ﹤△H, indicating that the denaturation process of substrate binding protein Ssc-SCAB is a non-dimorphic transition mode. After Ssc-SCAB was combined with cellobiose, cellotriose and cellotetraose, both ΔH V and ΔH increased, the increase of ΔHV was more obvious, the ratio of ΔH V / ΔH increased, and the unfolded The temperature range is narrower than that of Ssc-SCAB without cellooligosaccharide in the natural state, indicating that after Ssc-SCAB forms a complex with cellooligosaccharide, the synergistic effect of the non-dimorphic denaturation process of Ssc-SCAB is significantly enhanced, and the directional dimorphic process is significantly enhanced. trend of changing state patterns.
结合表3和图3可知,纤维二糖(图3-B)、纤维三糖(图3-C)、纤维四糖(图3-D)结合天然状态的底物结合蛋白Ssc-SCAB,所以,纤维二糖、纤维三糖、纤维四糖与Ssc-SCAB形成的复合物稳定性提高,各自的Tm值较未结合纤维寡糖的天然状态的底物结合蛋白Ssp-SCAB升高。Ssc-SCAB加入葡萄糖以后,其Tm值为48.96℃,与未结合纤维寡糖的天然状态的底物结合蛋白Ssc-SCAB的Tm值48.66℃相比,几乎无变化,说明底物结合蛋白Ssc-SCAB不结合葡萄糖(图3-A)。底物结合蛋白Ssc-SCAB与纤维五糖的Tm值为51.64℃,总量热焓变为2.62×105cal/mol与未结合纤维寡糖的天然状态的底物结合蛋白Ssc-SCAB的Tm值48.66℃,总量热焓变2.32×105cal/mol相比,变化不大,说明底物结合蛋白Ssc-SCAB不与纤维五糖结合(图3-E),其Tm值和总量热焓变的微弱变化可能是纤维五糖的分子量较大,与Ssc-SCAB发生了非特异性作用的缘故,后期可用等温滴定量热法进一步验证。Combining Table 3 and Figure 3, it can be seen that cellobiose (Fig. 3-B), cellotriose (Fig. 3-C), and cellotetraose (Fig. 3-D) bind to the native substrate-binding protein Ssc-SCAB, so , the stability of the complex formed by cellobiose, cellotriose, cellotetraose and Ssc-SCAB was improved, and the respective Tm values were higher than that of the substrate-binding protein Ssp-SCAB in the natural state without cello-oligosaccharide. After glucose was added to Ssc-SCAB, its Tm value was 48.96 °C, which was almost unchanged compared with the Tm value of 48.66 °C of the substrate-binding protein Ssc-SCAB in its native state without cellooligosaccharide binding, indicating that the substrate-binding protein Ssc-SCAB SCAB did not bind glucose (Fig. 3-A). The Tm value of the substrate-binding protein Ssc-SCAB and cellopentose is 51.64℃, and the total enthalpy becomes 2.62×10 5 cal/mol and the Tm of the substrate-binding protein Ssc-SCAB in the native state of unbound cello-oligosaccharide The total enthalpy change was 2.32×10 5 cal/mol compared with the temperature of 48.66°C, which showed little change, indicating that the substrate-binding protein Ssc-SCAB did not bind to cellopentose (Fig. 3-E). The slight change in enthalpy change may be due to the large molecular weight of cellopentose, which has a non-specific interaction with Ssc-SCAB, which can be further verified by isothermal titration calorimetry in the later stage.
使用终浓度为4mmol/L的纤维寡糖溶液分别滴定底物结合蛋白Ssc-SCAB,测定Ssc-SCAB的结合热力学特性,结果如图3所示。Ssc-SCAB可与纤维二糖、纤维三糖、纤维四糖结合,等温滴定量热法的结果与微量热差示扫描量热法结果一致。使用一个结合位点模式对滴定结果进行拟合分析,各结合热力学参数见表4。The substrate-binding protein Ssc-SCAB was titrated with a cello-oligosaccharide solution with a final concentration of 4 mmol/L, and the binding thermodynamic properties of Ssc-SCAB were determined. The results are shown in Figure 3 . Ssc-SCAB can be combined with cellobiose, cellotriose and cellotetraose, and the results of isothermal titration calorimetry are consistent with those of microcalorimetry. The titration results were fitted and analyzed using a binding site model, and the binding thermodynamic parameters are shown in Table 4.
表4底物结合蛋白Ssc-SCAB与纤维寡糖相互作用的热力学参数Table 4 Thermodynamic parameters of the interaction between the substrate binding protein Ssc-SCAB and cellooligosaccharide
从表4可知,Ssc-SCAB与纤维二糖、纤维三糖、纤维四糖均有结合,对纤维二糖亲和力最强,结合常数Kb为(1.32±0.09)×106M-1,对对纤维三糖亲和力最弱,结合常数Kb为(1.22±0.04)×106M-1。It can be seen from Table 4 that Ssc-SCAB binds to cellobiose, cellotriose and cellotetraose, and has the strongest affinity for cellobiose. The binding constant K b is (1.32±0.09)×10 6 M -1 . It has the weakest affinity for cellotriose, and the binding constant K b is (1.22±0.04)×10 6 M -1 .
表5底物结合蛋白Ssc-SCAB的热力学参数Table 5 Thermodynamic parameters of substrate binding protein Ssc-SCAB
从表4和表5可知,Ssc-SCAB对纤维二糖(图4-A)的亲和力最强,在35℃测得其解离常数Kd为0.76μM,纤维三糖(图4-B)次之,解离常数为0.82μM,对纤维四糖(图4-C)的亲和力最弱,解离常数为1.06μM。由表5可知,Ssc-SCAB与各种纤维寡糖(纤维五糖(图4-D)除外)的结合熵变化量(△S)均小于0,说明Ssc-SCAB和各种纤维寡糖(纤维五糖除外)的结合反应在本实验条件下为自发的正向不可逆过程;结合焓变化量(△H)均小于0,说明Ssc-SCAB和各种纤维寡糖(纤维五糖除外)的结合反应在本实验条件下为放热反应;△S、△H、△G均小于0,由此可以判断,在本实验条件下,底物结合蛋白Ssc-SCAB与各种纤维寡糖(纤维五糖除外)的结合反应是由焓驱动的正向自发进行的不可逆反应,温度T起能动作用。纤维寡糖和底物结合蛋白之间的亲和力越强,形成的纤维寡糖-底物结合蛋白复合物越稳定,反之,复合物越容易解离。复合物的吉布斯函数△G小于0时,复合物是稳定的,负值越大越稳定。From Table 4 and Table 5, it can be seen that Ssc-SCAB has the strongest affinity for cellobiose (Fig. 4-A), and its dissociation constant K d measured at 35 °C is 0.76 μM, and cellotriose (Fig. 4-B) Next, with a dissociation constant of 0.82 μM, the affinity for cellotetraose (Fig. 4-C) was the weakest with a dissociation constant of 1.06 μM. It can be seen from Table 5 that the binding entropy changes (ΔS) of Ssc-SCAB and various cellooligosaccharides (except cellopentose (Fig. 4-D)) are all less than 0, indicating that Ssc-SCAB and various cellooligosaccharides ( The binding reaction of Ssc-SCAB and various cello-oligosaccharides (except cellopentose) is a spontaneous forward irreversible process under the experimental conditions; the change in binding enthalpy (ΔH) is less than 0, indicating that Ssc-SCAB and various cello-oligosaccharides (except cellopentose) have a positive effect. The binding reaction is an exothermic reaction under the experimental conditions; △S, △H, and △G are all less than 0. It can be judged that under the experimental conditions, the substrate-binding protein Ssc-SCAB interacts with various cellooligosaccharides (fiberoligosaccharides). The binding reaction of pentasaccharide) is an enthalpy-driven forward spontaneous irreversible reaction, and the temperature T plays an active role. The stronger the affinity between cellooligosaccharide and the substrate-binding protein, the more stable the cellooligosaccharide-substrate-binding protein complex is formed, and vice versa, the easier the complex is to dissociate. When the Gibbs function ΔG of the complex is less than 0, the complex is stable, and the larger the negative value, the more stable it is.
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred modes of the present invention, but not to limit the scope of the present invention. Without departing from the design spirit of the present invention, those of ordinary skill in the art can make various modifications to the technical solutions of the present invention. Variations and improvements should fall within the protection scope determined by the claims of the present invention.
序列表sequence listing
<110> 广西科学院<110> Guangxi Academy of Sciences
<120> 一种链霉菌纤维寡糖转运蛋白基因<120> A Streptomyces cellooligosaccharide transporter gene
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1365<211> 1365
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
atgcgagcac gtaccctccc gcactcccgg ctccagtcgg gcgggggcag ccgaatcgcc 60atgcgagcac gtaccctccc gcactcccgg ctccagtcgg gcgggggcag ccgaatcgcc 60
cgcaggacgc gcaagacggt ggtcatcgcg gccgtcgccg cgctgggcgc agggctgctg 120cgcaggacgc gcaagacggt ggtcatcgcg gccgtcgccg cgctgggcgc agggctgctg 120
gccggctgtg ccgacgacgg caaggacgag gaaggcggct cgtcggacgg cggcggcggt 180gccggctgtg ccgacgacgg caaggacgag gaaggcggct cgtcggacgg cggcggcggt 180
ggcaagacca agatcacgct gggcctcttc ggcaccgcgg gcttcgagga gtccggtctg 240ggcaagacca agatcacgct gggcctcttc ggcaccgcgg gcttcgagga gtccggtctg 240
tacaaggagt acgagaaact ccacccggac gtcgacatcc agcagaccgt cgtggagcgg 300tacaaggagt acgagaaact ccacccggac gtcgacatcc agcagaccgt cgtggagcgg 300
aacgagaact actaccccgc gctcctcaac cacctgacca ccggcagcgg cctccaggac 360aacgagaact actaccccgc gctcctcaac cacctgacca ccggcagcgg cctccaggac 360
atccagatgg tcgaggtcgg caacatcgcc gagatcgtcg gaacccagtc cgacaagctg 420atccagatgg tcgaggtcgg caacatcgcc gagatcgtcg gaacccagtc cgacaagctg 420
ctcgacctgt cgaagtacgg caaggagagc gactacctgc cctggaagtg gagccagggc 480ctcgacctgt cgaagtacgg caaggagagc gactacctgc cctggaagtg gagccagggc 480
tcgacctccg gcggccagac cgtcgcgctg ggcaccgacg tcggtccgat ggccatctgc 540tcgacctccg gcggccagac cgtcgcgctg ggcaccgacg tcggtccgat ggccatctgc 540
taccgcaagg acctcttcga ggccgccggt ctgccctccg accgcgagga ggtcggcaag 600taccgcaagg acctcttcga ggccgccggt ctgccctccg accgcgagga ggtcggcaag 600
ctgtggaccg gcagctggga caagttcgtc gacgccggca accagtacaa gaagaaggcg 660ctgtggaccg gcagctggga caagttcgtc gacgccggca accagtacaa gaagaaggcg 660
cccaagggca ccaccttcct ggactccccc ggcggtctgc tgcaggcgat cctgagcagt 720cccaagggca ccaccttcct ggactccccc ggcggtctgc tgcaggcgat cctgagcagt 720
gagaaggacc gcttctacga cgcctcgggc aaggtcatct acaagacgaa cccggcagtg 780gagaaggacc gcttctacga cgcctcgggc aaggtcatct acaagacgaa cccggcagtg 780
aagtcggcgt tcgacctcac ggccaaggcc gccaaggccg ggctggtcgg gaaccagacg 840aagtcggcgt tcgacctcac ggccaaggcc gccaaggccg ggctggtcgg gaaccagacg 840
cagttccagc cggcgtggga caccacgatc gccaacagca agttcgccgc gatgtcctgc 900cagttccagc cggcgtggga caccacgatc gccaacagca agttcgccgc gatgtcctgc 900
ccgccgtgga tgctcggcta catcaagggc aagtcgaagc ccgaggcggc cggcaagtgg 960ccgccgtgga tgctcggcta catcaagggc aagtcgaagc ccgaggcggc cggcaagtgg 960
gacatcgccc aggcgccgaa gtccggcaac tggggcggct ccttcctctc ggtgcccaag 1020gacatcgccc aggcgccgaa gtccggcaac tggggcggct ccttcctctc ggtgcccaag 1020
aacggcaaga acgccgagga ggccgcgaag ctggccgcct ggttgaccgc gccggagcag 1080aacggcaaga acgccgagga ggccgcgaag ctggccgcct ggttgaccgc gccggagcag 1080
caggcgaagc tcttcgccgt acagggcagc ttccccagca ccccggccgc ctacgactcg 1140caggcgaagc tcttcgccgt acagggcagc ttccccagca ccccggccgc ctacgactcg 1140
gccgcggtga aggacgcgaa gaacgacatg accggtgacg cgccgatcgg cacgatcttc 1200gccgcggtga aggacgcgaa gaacgacatg accggtgacg cgccgatcgg cacgatcttc 1200
gccgaggccg ccaagaacat cccggtccag acgatcggcc cgaaggacca gatcatccag 1260gccgaggccg ccaagaacat cccggtccag acgatcggcc cgaaggacca gatcatccag 1260
cagggcctga ccgacaacgg cgtgatcctg gtgacccagg gcaagtcggc ctcggatgcc 1320cagggcctga ccgacaacgg cgtgatcctg gtgacccagg gcaagtcggc ctcggatgcc 1320
tggaagaacg ccgtcaagac catcgacaac gcactggaca agtga 1365tggaagaacg ccgtcaagac catcgacaac gcactggaca agtga 1365
<210> 2<210> 2
<211> 454<211> 454
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
Met Arg Ala Arg Thr Leu Pro His Ser Arg Leu Gln Ser Gly Gly GlyMet Arg Ala Arg Thr Leu Pro His Ser Arg Leu Gln Ser Gly Gly Gly
1 5 10 151 5 10 15
Ser Arg Ile Ala Arg Arg Thr Arg Lys Thr Val Val Ile Ala Ala ValSer Arg Ile Ala Arg Arg Thr Arg Lys Thr Val Val Ile Ala Ala Val
20 25 30 20 25 30
Ala Ala Leu Gly Ala Gly Leu Leu Ala Gly Cys Ala Asp Asp Gly LysAla Ala Leu Gly Ala Gly Leu Leu Ala Gly Cys Ala Asp Asp Gly Lys
35 40 45 35 40 45
Asp Glu Glu Gly Gly Ser Ser Asp Gly Gly Gly Gly Gly Lys Thr LysAsp Glu Glu Gly Gly Ser Ser Asp Gly Gly Gly Gly Gly Gly Lys Thr Lys
50 55 60 50 55 60
Ile Thr Leu Gly Leu Phe Gly Thr Ala Gly Phe Glu Glu Ser Gly LeuIle Thr Leu Gly Leu Phe Gly Thr Ala Gly Phe Glu Glu Ser Gly Leu
65 70 75 8065 70 75 80
Tyr Lys Glu Tyr Glu Lys Leu His Pro Asp Val Asp Ile Gln Gln ThrTyr Lys Glu Tyr Glu Lys Leu His Pro Asp Val Asp Ile Gln Gln Thr
85 90 95 85 90 95
Val Val Glu Arg Asn Glu Asn Tyr Tyr Pro Ala Leu Leu Asn His LeuVal Val Glu Arg Asn Glu Asn Tyr Tyr Pro Ala Leu Leu Asn His Leu
100 105 110 100 105 110
Thr Thr Gly Ser Gly Leu Gln Asp Ile Gln Met Val Glu Val Gly AsnThr Thr Gly Ser Gly Leu Gln Asp Ile Gln Met Val Glu Val Gly Asn
115 120 125 115 120 125
Ile Ala Glu Ile Val Gly Thr Gln Ser Asp Lys Leu Leu Asp Leu SerIle Ala Glu Ile Val Gly Thr Gln Ser Asp Lys Leu Leu Asp Leu Ser
130 135 140 130 135 140
Lys Tyr Gly Lys Glu Ser Asp Tyr Leu Pro Trp Lys Trp Ser Gln GlyLys Tyr Gly Lys Glu Ser Asp Tyr Leu Pro Trp Lys Trp Ser Gln Gly
145 150 155 160145 150 155 160
Ser Thr Ser Gly Gly Gln Thr Val Ala Leu Gly Thr Asp Val Gly ProSer Thr Ser Gly Gly Gln Thr Val Ala Leu Gly Thr Asp Val Gly Pro
165 170 175 165 170 175
Met Ala Ile Cys Tyr Arg Lys Asp Leu Phe Glu Ala Ala Gly Leu ProMet Ala Ile Cys Tyr Arg Lys Asp Leu Phe Glu Ala Ala Gly Leu Pro
180 185 190 180 185 190
Ser Asp Arg Glu Glu Val Gly Lys Leu Trp Thr Gly Ser Trp Asp LysSer Asp Arg Glu Glu Val Gly Lys Leu Trp Thr Gly Ser Trp Asp Lys
195 200 205 195 200 205
Phe Val Asp Ala Gly Asn Gln Tyr Lys Lys Lys Ala Pro Lys Gly ThrPhe Val Asp Ala Gly Asn Gln Tyr Lys Lys Lys Ala Pro Lys Gly Thr
210 215 220 210 215 220
Thr Phe Leu Asp Ser Pro Gly Gly Leu Leu Gln Ala Ile Leu Ser SerThr Phe Leu Asp Ser Pro Gly Gly Leu Leu Gln Ala Ile Leu Ser Ser
225 230 235 240225 230 235 240
Glu Lys Asp Arg Phe Tyr Asp Ala Ser Gly Lys Val Ile Tyr Lys ThrGlu Lys Asp Arg Phe Tyr Asp Ala Ser Gly Lys Val Ile Tyr Lys Thr
245 250 255 245 250 255
Asn Pro Ala Val Lys Ser Ala Phe Asp Leu Thr Ala Lys Ala Ala LysAsn Pro Ala Val Lys Ser Ala Phe Asp Leu Thr Ala Lys Ala Ala Lys
260 265 270 260 265 270
Ala Gly Leu Val Gly Asn Gln Thr Gln Phe Gln Pro Ala Trp Asp ThrAla Gly Leu Val Gly Asn Gln Thr Gln Phe Gln Pro Ala Trp Asp Thr
275 280 285 275 280 285
Thr Ile Ala Asn Ser Lys Phe Ala Ala Met Ser Cys Pro Pro Trp MetThr Ile Ala Asn Ser Lys Phe Ala Ala Met Ser Cys Pro Pro Trp Met
290 295 300 290 295 300
Leu Gly Tyr Ile Lys Gly Lys Ser Lys Pro Glu Ala Ala Gly Lys TrpLeu Gly Tyr Ile Lys Gly Lys Ser Lys Pro Glu Ala Ala Gly Lys Trp
305 310 315 320305 310 315 320
Asp Ile Ala Gln Ala Pro Lys Ser Gly Asn Trp Gly Gly Ser Phe LeuAsp Ile Ala Gln Ala Pro Lys Ser Gly Asn Trp Gly Gly Ser Phe Leu
325 330 335 325 330 335
Ser Val Pro Lys Asn Gly Lys Asn Ala Glu Glu Ala Ala Lys Leu AlaSer Val Pro Lys Asn Gly Lys Asn Ala Glu Glu Ala Ala Lys Leu Ala
340 345 350 340 345 350
Ala Trp Leu Thr Ala Pro Glu Gln Gln Ala Lys Leu Phe Ala Val GlnAla Trp Leu Thr Ala Pro Glu Gln Gln Ala Lys Leu Phe Ala Val Gln
355 360 365 355 360 365
Gly Ser Phe Pro Ser Thr Pro Ala Ala Tyr Asp Ser Ala Ala Val LysGly Ser Phe Pro Ser Thr Pro Ala Ala Tyr Asp Ser Ala Ala Val Lys
370 375 380 370 375 380
Asp Ala Lys Asn Asp Met Thr Gly Asp Ala Pro Ile Gly Thr Ile PheAsp Ala Lys Asn Asp Met Thr Gly Asp Ala Pro Ile Gly Thr Ile Phe
385 390 395 400385 390 395 400
Ala Glu Ala Ala Lys Asn Ile Pro Val Gln Thr Ile Gly Pro Lys AspAla Glu Ala Ala Lys Asn Ile Pro Val Gln Thr Ile Gly Pro Lys Asp
405 410 415 405 410 415
Gln Ile Ile Gln Gln Gly Leu Thr Asp Asn Gly Val Ile Leu Val ThrGln Ile Ile Gln Gln Gly Leu Thr Asp Asn Gly Val Ile Leu Val Thr
420 425 430 420 425 430
Gln Gly Lys Ser Ala Ser Asp Ala Trp Lys Asn Ala Val Lys Thr IleGln Gly Lys Ser Ala Ser Asp Ala Trp Lys Asn Ala Val Lys Thr Ile
435 440 445 435 440 445
Asp Asn Ala Leu Asp LysAsp Asn Ala Leu Asp Lys
450 450
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011123905.XA CN112142832A (en) | 2020-10-20 | 2020-10-20 | Streptomyces cellooligosaccharide transport protein gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011123905.XA CN112142832A (en) | 2020-10-20 | 2020-10-20 | Streptomyces cellooligosaccharide transport protein gene |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112142832A true CN112142832A (en) | 2020-12-29 |
Family
ID=73954059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011123905.XA Pending CN112142832A (en) | 2020-10-20 | 2020-10-20 | Streptomyces cellooligosaccharide transport protein gene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112142832A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110373344A (en) * | 2019-04-29 | 2019-10-25 | 广西科学院 | Carp streptomycete and its application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008155665A2 (en) * | 2007-05-09 | 2008-12-24 | University Of Stellenbosch | Method for enhancing cellobiose utilization |
WO2010118007A2 (en) * | 2009-04-06 | 2010-10-14 | University Of Maryland | Enhanced cellulase expression in s. degradans |
CN104140977A (en) * | 2013-05-07 | 2014-11-12 | 中国科学院天津工业生物技术研究所 | CDT (carbohydrate deficient transferrin)-2 new use and method using CDT-2 to promote microbial cells to transport xylo-oligosaccharides and application thereof |
WO2016044527A1 (en) * | 2014-09-19 | 2016-03-24 | The University Of Florida Research Foundation, Inc. | Methods for thaxtomin production and modified streptomyces with increased thaxtomin production |
CN111269294A (en) * | 2018-12-05 | 2020-06-12 | 广州中国科学院先进技术研究所 | Mutant site of cellooligosaccharide transporter LacY, mutant transporter LacY, and preparation method and application thereof |
CN112210564A (en) * | 2020-10-20 | 2021-01-12 | 广西科学院 | Bifidobacterium breve cellooligosaccharide transport protein gene |
-
2020
- 2020-10-20 CN CN202011123905.XA patent/CN112142832A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008155665A2 (en) * | 2007-05-09 | 2008-12-24 | University Of Stellenbosch | Method for enhancing cellobiose utilization |
WO2010118007A2 (en) * | 2009-04-06 | 2010-10-14 | University Of Maryland | Enhanced cellulase expression in s. degradans |
CN104140977A (en) * | 2013-05-07 | 2014-11-12 | 中国科学院天津工业生物技术研究所 | CDT (carbohydrate deficient transferrin)-2 new use and method using CDT-2 to promote microbial cells to transport xylo-oligosaccharides and application thereof |
WO2016044527A1 (en) * | 2014-09-19 | 2016-03-24 | The University Of Florida Research Foundation, Inc. | Methods for thaxtomin production and modified streptomyces with increased thaxtomin production |
CN111269294A (en) * | 2018-12-05 | 2020-06-12 | 广州中国科学院先进技术研究所 | Mutant site of cellooligosaccharide transporter LacY, mutant transporter LacY, and preparation method and application thereof |
CN112210564A (en) * | 2020-10-20 | 2021-01-12 | 广西科学院 | Bifidobacterium breve cellooligosaccharide transport protein gene |
Non-Patent Citations (4)
Title |
---|
NCBI: "Streptomyces scabiei 87.22 complete genome", 《GENBANK》 * |
SAMUEL JOURDAN等: "The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity", 《SCI REP.》 * |
SAMUEL JOURDAN等: "Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen Streptomyces scabies", 《ASM JOURNALS MSPHERE》 * |
白利平等: "链霉菌调控蛋白DasRABC的研究进展", 《微生物学通报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110373344A (en) * | 2019-04-29 | 2019-10-25 | 广西科学院 | Carp streptomycete and its application |
CN110373344B (en) * | 2019-04-29 | 2022-07-29 | 广西科学院 | Streptomyces carpio and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Artzi et al. | Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides | |
Morag et al. | Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum | |
Ravachol et al. | Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum | |
Doi et al. | The Clostridium cellulovorans cellulosome | |
CN113980141B (en) | Protein complex based on colicin E family DNase and application thereof in artificial protein scaffold | |
Pagès et al. | Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome | |
CN104263710B (en) | A kind of beta galactosidase combination mutant with high transglycosylation and its preparation method and application | |
CN100575484C (en) | A kind of β-glucosidase and its coding gene and application | |
CN112142832A (en) | Streptomyces cellooligosaccharide transport protein gene | |
Zhou et al. | Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability | |
CN112553227B (en) | Heat-resistant multifunctional glycoside hydrolase, and encoding gene and application thereof | |
CN112239489B (en) | Thermotoga maritima cellooligosaccharide transport protein, and coding gene and application thereof | |
CN112210564A (en) | Bifidobacterium breve cellooligosaccharide transport protein gene | |
Araki et al. | Characterization of family 17 and family 28 carbohydrate-binding modules from Clostridium josui Cel5A | |
Xia et al. | Improved protein purification system based on C-terminal cleavage of Npu DnaE split intein | |
CN118910017A (en) | Substrate binding domain-based sustained endoglucanase fusion protein and application thereof | |
Karpol et al. | Engineering a reversible, high‐affinity system for efficient protein purification based on the cohesin–dockerin interaction | |
CN112322563A (en) | A kind of cellulose fermentation engineering bacteria and its construction method and application | |
CN106755038B (en) | Construction method and expression application of hyperbranched dextran sucrase engineering bacteria | |
Reinikainen et al. | Comparison of the adsorption properties of a single-chain antibody fragment fused to a fungal or bacterial cellulose-binding domain | |
CN101250512B (en) | Biomimetic affinity purification method for endoxylanase | |
Ding et al. | The bacterial scaffoldin: structure, function and potential applications in the nanosciences | |
CN106749565B (en) | Emulsified protein and application thereof | |
Wang et al. | Improving the Efficiency of the Assembly of Cellulosomes Derived from Clostridium Thermocellum by in Silico Design of Docking Protein | |
Bayer et al. | The cellulosome saga: Early history |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201229 |
|
RJ01 | Rejection of invention patent application after publication |