CN112133743A - Silicon controlled rectifier structure and manufacturing method thereof - Google Patents
Silicon controlled rectifier structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN112133743A CN112133743A CN202011332865.XA CN202011332865A CN112133743A CN 112133743 A CN112133743 A CN 112133743A CN 202011332865 A CN202011332865 A CN 202011332865A CN 112133743 A CN112133743 A CN 112133743A
- Authority
- CN
- China
- Prior art keywords
- doping
- region
- type
- injection region
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 39
- 239000010703 silicon Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000010410 layer Substances 0.000 claims abstract description 80
- 239000011241 protective layer Substances 0.000 claims abstract description 55
- 238000009792 diffusion process Methods 0.000 claims abstract description 38
- 238000002347 injection Methods 0.000 claims description 64
- 239000007924 injection Substances 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 30
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 229920002120 photoresistant polymer Polymers 0.000 claims description 12
- 238000002161 passivation Methods 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 6
- 239000007943 implant Substances 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 abstract 1
- 238000002513 implantation Methods 0.000 description 67
- 238000010586 diagram Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
Landscapes
- Thyristors (AREA)
Abstract
Description
技术领域technical field
本发明涉及电力半导体器件领域,具体涉及一种可控硅结构及其制造方法。The invention relates to the field of power semiconductor devices, in particular to a thyristor structure and a manufacturing method thereof.
背景技术Background technique
可控硅广泛应用于交流无触点开关、家用电器控制电路、工业控制等领域。SCRs are widely used in AC non-contact switches, household appliance control circuits, industrial control and other fields.
目前可控硅产品生产主要采用台面工艺,工艺流程如:在最大尺寸为4 寸的晶圆上进行掩蔽氧化层生长,而后对其做隔离对穿扩散,然后进行基区、发射区扩散;发射区完成后需要在正面隔离与基区之间腐蚀出一个深达50μm 以上,超过150μm 宽的槽,在槽内手工涂布一层玻璃胶,并经过高温烧结形成保护层,最终做完铝层及背面工艺,形成4层PNPN结构可控硅。由于台面工艺需要腐蚀的沟槽一般深度超过50μm,宽度超过150μm,宽度越宽越能使得台面中的漏电流越小,目的是起到足够耐压保护的作用,但是,会造成台面表面宽度过宽,影响了器件通流区的面积,这使得在同样大的晶圆上所能制作的器件数量减小,即其利用率减小,增大了器件制造的成本。At present, the production of thyristor products mainly adopts the mesa process. The process flow is such as: growing a masked oxide layer on a wafer with a maximum size of 4 inches, and then performing isolation and penetration diffusion on it, and then performing diffusion in the base area and the emission area; emission; After the area is completed, a groove with a depth of more than 50 μm and a width of more than 150 μm needs to be etched between the front isolation and the base area. A layer of glass glue is manually coated in the groove, and a protective layer is formed after high temperature sintering. Finally, the aluminum layer is completed. And the back side process to form a 4-layer PNPN structure thyristor. Since the trenches that need to be etched in the mesa process generally have a depth of more than 50 μm and a width of more than 150 μm, the wider the width, the smaller the leakage current in the mesa, the purpose is to play a role in sufficient withstand voltage protection, but it will cause the surface width of the mesa to be too high. The width of the device affects the flow area of the device, which reduces the number of devices that can be fabricated on the same large wafer, that is, the utilization rate of the device is reduced, and the cost of device fabrication is increased.
因此,需要提供一种可控硅器件结构,使得晶圆面积的利用率提高,降低器件制造成本。Therefore, it is necessary to provide a thyristor device structure, which can improve the utilization rate of the wafer area and reduce the device manufacturing cost.
发明内容SUMMARY OF THE INVENTION
本发明提供一种可控硅器件结构,能够使得晶圆面积的利用率提高的同时,可以缩小台面宽度,从而提高晶圆面积的利用率,以达到降低器件制造成本的目的。The invention provides a silicon controlled device structure, which can improve the utilization rate of the wafer area and reduce the width of the mesa, thereby improving the utilization rate of the wafer area, so as to achieve the purpose of reducing the manufacturing cost of the device.
根据第一方面,一种实施例中提供一种可控硅结构,包括:According to a first aspect, an embodiment provides a thyristor structure, including:
基区,所述基区为N型掺杂或P型掺杂,所述基区具有第一表面以及与所述第一表面相对的第二表面;a base region, the base region is N-type doped or P-type doped, the base region has a first surface and a second surface opposite to the first surface;
第一注入区,位于所述基区的第一表面,所述第一注入区为与所述基区掺杂类型对应,为P型掺杂或N型掺杂;a first implantation region, located on the first surface of the base region, the first implantation region is corresponding to the doping type of the base region, and is P-type doping or N-type doping;
第二注入区,位于所述基区的第二表面,所述第二注入区为与所述基区掺杂类型对应,为P型掺杂或N型掺杂;the second implantation region is located on the second surface of the base region, and the second implantation region corresponds to the doping type of the base region, and is P-type doping or N-type doping;
第三注入区,位于所述第二注入区的部分表面,所述第三注入区掺杂类型与所述第二注入区掺杂类型对应,为N型掺杂或P型掺杂;a third implantation region, located on a part of the surface of the second implantation region, the doping type of the third implantation region corresponds to the doping type of the second implantation region, and is N-type doping or P-type doping;
所述第一注入区的表面上设有阳极电极,所述第二注入区的其余部分表面上设有门极电极,所述第三注入区的表面设有阴极电极,所述门极电极与所述阴极电极之间绝缘;An anode electrode is arranged on the surface of the first injection area, a gate electrode is arranged on the surface of the remaining part of the second injection area, a cathode electrode is arranged on the surface of the third injection area, and the gate electrode is connected to the surface of the third injection area. insulation between the cathode electrodes;
台面沟槽,所述台面沟槽环绕所述门极电极以及所述阴极电极的外围设置,或者,环绕所述阳极电极的外围设置,所述台面沟槽的深度伸入所述基区内;a mesa trench, the mesa trench is arranged around the periphery of the gate electrode and the cathode electrode, or is arranged around the periphery of the anode electrode, and the depth of the mesa trench extends into the base area;
以及位于所述台面沟槽底部的环绕保护层,所述环绕保护层的掺杂类型为与所述基区掺杂类型相同,为N型掺杂或P型掺杂,且所述环绕保护层的掺杂浓度大于所述基区的掺杂浓度。and a surrounding protective layer at the bottom of the mesa trench, the doping type of the surrounding protective layer is the same as the doping type of the base region, which is N-type doping or P-type doping, and the surrounding protective layer is The doping concentration of is greater than the doping concentration of the base region.
一些实施例中,所述环绕保护层的掺杂浓度以及深度与所述第三注入区的浓度以及深度一致。In some embodiments, the doping concentration and depth of the surrounding protective layer are the same as the concentration and depth of the third implantation region.
一些实施例中,所述台面沟槽上还具有钝化层。In some embodiments, the mesa trench further has a passivation layer.
一些实施例中,所述第三注入区中具有多个短路点。In some embodiments, the third implanted region has multiple short-circuit points.
根据第二方面,一种实施例中提供一种可控硅结构的制造方法,包括:According to a second aspect, an embodiment provides a method for manufacturing a thyristor structure, including:
选取合适的硅片,并定义出芯片区和隔离区,所述硅片为第一掺杂类型,所述第一掺杂类型为N型掺杂或P型掺杂,所述硅片具有第一表面以及与所述第一表面相对的第二表面;A suitable silicon wafer is selected, and a chip area and an isolation area are defined, the silicon wafer is of a first doping type, the first doping type is N-type doping or P-type doping, and the silicon wafer has the first doping type. a surface and a second surface opposite the first surface;
对所述硅片的第一表面和第二表面进行第二掺杂类型的扩散工艺,所述第二掺杂类型是与第一掺杂类型对应的P型掺杂或N型掺杂,以在所述硅片的第一表面内形成第一注入区,在所述硅片的第二表面内形成第二注入区,所述第一注入区与所述第二注入区之间为基区;A diffusion process of a second doping type is performed on the first surface and the second surface of the silicon wafer, where the second doping type is P-type doping or N-type doping corresponding to the first doping type, to A first implantation region is formed in the first surface of the silicon wafer, a second implantation region is formed in the second surface of the silicon wafer, and a base region is formed between the first implantation region and the second implantation region ;
对所定义的隔离区进行刻蚀,刻蚀至所述基区底部,形成台面沟槽,且两个相邻的芯片区共用一个台面沟槽;etching the defined isolation region to the bottom of the base region to form a mesa trench, and two adjacent chip regions share a mesa trench;
在所述台面沟槽的部分表面、所述第一注入区的表面以及所述第二注入区的部分表面形成图形化氧化层,所述图形化氧化层露出第三注入区窗口以及环绕保护层窗口;所述第三注入区窗口位于第二注入区的部分表面,所述环绕保护层窗口位于所述台面沟槽的底部;A patterned oxide layer is formed on part of the surface of the mesa trench, the surface of the first implantation region and the part of the surface of the second implantation region, and the patterned oxide layer exposes the window of the third implantation region and the surrounding protective layer a window; the third injection area window is located on a part of the surface of the second injection area, and the surrounding protective layer window is located at the bottom of the mesa trench;
以所述图形化氧化层为掩膜,对所述硅片进行第一掺杂类型的扩散工艺,且扩散浓度大于所述基区的掺杂浓度,以在所述第二注入区的部分表面形成第三注入区,在所述台面沟槽的底部形成环绕保护层;Using the patterned oxide layer as a mask, a first doping type diffusion process is performed on the silicon wafer, and the diffusion concentration is greater than the doping concentration of the base region, so that a part of the surface of the second implantation region is forming a third implantation region, and forming a surrounding protective layer at the bottom of the mesa trench;
分别在所述第一注入区的表面、第二注入区的表面以及第三注入区的表面上分别形成电极引脚,每个电极引脚之间绝缘隔离。Electrode pins are respectively formed on the surface of the first injection region, the surface of the second injection region and the surface of the third injection region, and each electrode pin is insulated and isolated.
一些实施例中,在所述台面沟槽的表面、所述第一注入区的表面以及所述第二注入区的表面形成图形化氧化层,包括:In some embodiments, forming a patterned oxide layer on the surface of the mesa trench, the surface of the first implantation region and the surface of the second implantation region includes:
在所述台面沟槽的表面、所述第一注入区的表面以及所述第二注入区的表面覆盖氧化层;covering the surface of the mesa trench, the surface of the first implantation region and the surface of the second implantation region with an oxide layer;
在所述氧化层的表面形成图形化光刻胶层,所述图形化光刻胶层露出第三注入区窗口以及环绕保护层窗口;所述第三注入区窗口位于第二注入区的部分表面,所述环绕保护层窗口位于所述台面沟槽的底部;A patterned photoresist layer is formed on the surface of the oxide layer, and the patterned photoresist layer exposes the third injection area window and the surrounding protective layer window; the third injection area window is located on a part of the surface of the second injection area , the surrounding protective layer window is located at the bottom of the mesa groove;
以所述图形化光刻胶层为掩膜,刻蚀所述氧化层,以将图形化光刻胶的图形转移至氧化层中,形成图形化氧化层。Using the patterned photoresist layer as a mask, the oxide layer is etched to transfer the pattern of the patterned photoresist into the oxide layer to form a patterned oxide layer.
一些实施例中,以所述图形化氧化层为掩膜,对所述硅片进行第一掺杂类型的扩散工艺之后,还包括步骤:使用氢氟酸去除所述图形化氧化层。In some embodiments, using the patterned oxide layer as a mask, after performing the diffusion process of the first doping type on the silicon wafer, the method further includes the step of removing the patterned oxide layer with hydrofluoric acid.
一些实施例中,使用氢氟酸去除所述图形化氧化层之后,还包括步骤:在所述台面沟槽的表面,进行钝化处理工艺,形成钝化层。In some embodiments, after using hydrofluoric acid to remove the patterned oxide layer, the method further includes the step of: performing a passivation treatment process on the surface of the mesa trench to form a passivation layer.
一些实施例中,还包括:在所述第一注入区的表面进行加强扩散工艺处理,所述加强扩散处理扩散类型与所述第一注入区的掺杂类型相同,形成掺杂浓度大于所述第一注入区浓度的增强区。In some embodiments, the method further includes: performing an enhanced diffusion process on the surface of the first implanted region, and the enhanced diffusion treatment has a diffusion type that is the same as the doping type of the first implanted region, so that the doping concentration is greater than that of the first implanted region. An enhanced region of concentration of the first implanted region.
一些实施例中,还包括:控制所述环绕保护层的掺杂浓度;控制所述环绕保护层的掺杂浓度包括:控制扩散陪片的方块电阻小于10。In some embodiments, the method further includes: controlling the doping concentration of the surrounding protective layer; controlling the doping concentration of the surrounding protective layer includes: controlling the sheet resistance of the diffusion co-plate to be less than 10.
依据上述实施例的可控硅结构及其制造方法,包括了位于台面沟槽底部的环绕保护层,环绕保护层的掺杂类型为与基区掺杂类型对应的N型掺杂或P型掺杂,且环绕保护层的掺杂浓度大于基区的掺杂浓度,由于台面型可控硅器件中的过宽的台面宽度影响了可控硅器件通流区的面积,通过在台面的底部设置了环绕保护层,环绕保护层为高浓度的扩散层,该高浓度的扩散层能够压缩电场在低掺杂区的展宽,因为耐压在基区内中展宽从而可以缩窄台面的宽度,从而提高晶圆面积的利用率,以达到降低器件制造成本的目的。The thyristor structure and the manufacturing method thereof according to the above-mentioned embodiments include a surrounding protective layer at the bottom of the mesa trench, and the doping type of the surrounding protective layer is N-type doping or P-type doping corresponding to the doping type of the base region. and the doping concentration of the surrounding protective layer is greater than that of the base region. Since the excessively wide mesa width in the mesa-type thyristor device affects the area of the flow area of the thyristor device, it is necessary to set it at the bottom of the mesa In order to surround the protective layer, the surrounding protective layer is a high-concentration diffusion layer, which can compress the expansion of the electric field in the low-doped region, because the withstand voltage is expanded in the base region, which can narrow the width of the mesa, thereby Improve the utilization of wafer area to achieve the purpose of reducing device manufacturing costs.
附图说明Description of drawings
图1为本发明一实施例中提供的可控硅器件结构示意图;FIG. 1 is a schematic structural diagram of a thyristor device provided in an embodiment of the present invention;
图2为本发明一实施例中提供的可控硅器件结构俯视图;FIG. 2 is a top view of the structure of the thyristor device provided in an embodiment of the present invention;
图3为本发明一实施例中提供的可控硅制造方法流程图;3 is a flowchart of a method for manufacturing a thyristor provided in an embodiment of the present invention;
图4为本发明一实施例提供的制造工艺中部分结构示意图;4 is a schematic diagram of a part of a structure in a manufacturing process provided by an embodiment of the present invention;
图5为本发明一实施例提供的制造工艺中部分结构示意图;5 is a schematic diagram of a partial structure in a manufacturing process provided by an embodiment of the present invention;
图6为本发明一实施例提供的制造工艺中部分结构示意图;6 is a schematic diagram of a partial structure in a manufacturing process provided by an embodiment of the present invention;
图7为本发明一实施例中提供的制造工艺中部分结构示意图;7 is a schematic diagram of a part of a structure in a manufacturing process provided in an embodiment of the present invention;
图8为本发明一实施例中提供的制造工艺中部分结构示意图;8 is a schematic diagram of a partial structure in a manufacturing process provided in an embodiment of the present invention;
图9为本发明一实施例中提供的制造工艺中部分结构示意图;FIG. 9 is a schematic diagram of a partial structure in a manufacturing process provided in an embodiment of the present invention;
图10为本发明实施例中提供的部分制造工艺结构示意图。FIG. 10 is a schematic structural diagram of a part of a manufacturing process provided in an embodiment of the present invention.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. Wherein similar elements in different embodiments have used associated similar element numbers. In the following embodiments, many details are described so that the present application can be better understood. However, those skilled in the art will readily recognize that some of the features may be omitted under different circumstances, or may be replaced by other elements, materials, and methods. In some cases, some operations related to the present application are not shown or described in the specification, in order to avoid the core part of the present application from being overwhelmed by excessive description, and for those skilled in the art, these are described in detail. The relevant operations are not necessary, and they can fully understand the relevant operations according to the descriptions in the specification and general technical knowledge in the field.
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。Additionally, the features, acts, or characteristics described in the specification may be combined in any suitable manner to form various embodiments. At the same time, the steps or actions in the method description can also be exchanged or adjusted in order in a manner obvious to those skilled in the art. Therefore, the various sequences in the specification and drawings are only for the purpose of clearly describing a certain embodiment and are not meant to be a necessary order unless otherwise stated, a certain order must be followed.
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。The serial numbers themselves, such as "first", "second", etc., for the components herein are only used to distinguish the described objects, and do not have any order or technical meaning. The "connection" and "connection" mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections).
经分析可知,一般采用将PN结耗尽层用腐蚀的方法去掉一部分来降低表面电场,以使得器件的耐压特性良好,然而由于去掉一部分形成的台面沟槽会由于过宽的表面宽度而影响器件通流区的使用面积。It can be seen from the analysis that a part of the PN junction depletion layer is generally removed by etching to reduce the surface electric field, so that the voltage resistance of the device is good. However, the mesa trench formed by removing a part will be affected by the excessively wide surface width. The use area of the device pass-through area.
在本发明实施例中的可控硅器件结构中,包括了位于台面沟槽底部的环绕保护层,环绕保护层的掺杂类型为与基区掺杂类型对应的N型掺杂或P型掺杂,且环绕保护层的掺杂浓度大于基区的掺杂浓度,由于台面型可控硅器件中的过宽的台面宽度影响了可控硅器件通流区的面积,通过在腐蚀去除的末端设置了环绕保护层,环绕保护层为高浓度的扩散层,该高浓度的扩散层能够压缩电场在低掺杂区的展宽,从而可以缩窄台面的宽度,从而提高晶圆有效面积的利用率,以达到降低器件制造成本的目的。In the thyristor device structure in the embodiment of the present invention, a surrounding protective layer at the bottom of the mesa trench is included, and the doping type of the surrounding protective layer is N-type doping or P-type doping corresponding to the doping type of the base region The doping concentration of the surrounding protective layer is greater than that of the base region. Because the excessively wide mesa width in the mesa-type thyristor device affects the area of the flow area of the thyristor device, it is removed by etching at the end of the device. A surrounding protective layer is provided, and the surrounding protective layer is a high-concentration diffusion layer. The high-concentration diffusion layer can compress the expansion of the electric field in the low-doped region, thereby narrowing the width of the mesa, thereby improving the utilization rate of the effective area of the wafer. , in order to achieve the purpose of reducing device manufacturing cost.
参考图1和图2,本发明是实施例提供一种可控硅结构,包括基区100、第一注入区101、第二注入区102、第三注入区103、所述第一注入区102表面上的阳极电极210、第二注入区102的部分表面上的门极电极230以及第三注入区103表面上的阴极电极 220,还包括:台面沟槽300以及位于所述台面沟槽300底部的环绕保护层310。Referring to FIG. 1 and FIG. 2 , an embodiment of the present invention provides a thyristor structure, including a
所述基区100为P型掺杂或N型掺杂,所述基区100具有第一表面以及与所述第一表面相对的第二表面。The
本实施例中,所述基区为N型掺杂的硅衬底。In this embodiment, the base region is an N-type doped silicon substrate.
所述第一注入区101位于所述基区100的第一表面,所述第一注入区101为与所述基区100的掺杂类型对应的N型掺杂或P型掺杂。例如,由于本实施例中所述基区为N型掺杂,所述第一注入区101为P型掺杂。The
在一些实施例中,所述第一注入区101的掺杂可以为重掺杂,可以理解为重掺杂的浓度为掺杂浓度大于基区100中P型掺杂的浓度。例如,本实施例中,所述第一注入区101为扩P+区,即高浓度的P型掺杂区。In some embodiments, the doping of the
所述第二注入区102位于所述基区100的第二表面,所述第二注入区102为与所述基区100的掺杂类型对应的N型掺杂或P型掺杂。例如由于本实施例中所述基区为N型掺杂,所述第二注入区102与所述为第一注入区101相同,均为P型掺杂。The
所述第三注入区103位于所述第二注入区102的部分表面,所述第三注入区103是与所述第二注入区102掺杂类型对应的P型掺杂或N型掺杂。例如,本实施例中,所述基区100为N型掺杂,所述第三注入区103对应为N型掺杂。The
在一些实施例中,所述第三注入区103的N型掺杂为重掺杂,可以理解重掺杂的浓度为掺杂浓度大于基区100中的掺杂的浓度。例如,本实施例中,所述第三注入区为高浓度扩N+区。In some embodiments, the N-type doping of the
所述阳极电极210、门极电极230以及阴极电极 220彼此之间绝缘。The
需要说明的是,所述第一注入区101的表面、第二注入区102的表面以及第三注入区103的表面具有电极引脚200,每个电极引脚之间绝缘隔离,所述阳极电极210、门极电极230以及阴极电极 220分别形成在所述电极引脚200上。It should be noted that the surface of the
本实施例中,所述台面沟槽300环绕所述门极电极230以及所述阴极电极220的外围设置,或者,环绕所述阳极电极210的外围设置,所述台面沟槽300的深度伸入所述基区100内。In this embodiment, the
需要说明的是,在晶圆中,所定义的两个相邻的芯片区10之间具有一个台面,可以理解为,两个相邻的芯片区10共用一个台面沟槽300。It should be noted that, in the wafer, there is a mesa between two defined
所述环绕保护层310的掺杂类型为与所述基区100的掺杂类型对应的N型掺杂或P型掺杂,且所述环绕保护层310的掺杂浓度大于所述基区100的掺杂浓度。The doping type of the surrounding
本实施例中,由于所述基区100的掺杂类型为N型,因此,所述环绕保护层310的掺杂类型为N型。且,所述环绕保护层310为扩N+区,即高浓度的N型掺杂区。In this embodiment, since the doping type of the
本实施例中,通过在PN结的交界面,台面沟槽(即台面)的底部增加环绕保护层310,即高浓度的N+扩散层,该N+扩散层能够缩短电场在低掺杂区的展宽宽度,同时高浓度的N+扩散层能够中和吸收表面电荷,从而可以减小器件的台面漏电流,进一步提高器件的耐压特性。In this embodiment, by adding a surrounding
一些实施例中,所述环绕保护层的掺杂浓度N+扩散的方块电阻优选为小于10 。In some embodiments, the sheet resistance of the doping concentration N+ diffusion surrounding the protective layer is preferably less than 10 Å.
本实施例中,所述台面沟槽300的表面还具有钝化层,所述钝化层为二氧化硅。In this embodiment, the surface of the
一些实施例中,所述第三注入区103中具有多个短路点500,该短路点500是第三注入区的组成部分,其作用是在测试阻断电压时直接将第三注入区103短路,提高了产品的高温特性。In some embodiments, the
本实施例中,该可控硅芯片的外周还设置有绝缘保护层400,该绝缘保护层400包裹该可控硅器件,并露出用于阳极电极210、门极电极230以及阴极电极 220,用于保护该可控硅芯片的内部结构,提高该器件的可靠性和稳定性。In this embodiment, an insulating
参考图2至图10,本实施例中还一种可控硅结构的制造方法,该方法用于制作上述实施例中所述的可控硅结构,所述方法的步骤包括:Referring to FIG. 2 to FIG. 10 , in this embodiment, there is also a method for manufacturing a thyristor structure. The method is used to manufacture the thyristor structure described in the above embodiments. The steps of the method include:
步骤1,选取合适的硅片,并定义出芯片区10和隔离区,所述硅片为第一掺杂类型,所述第一掺杂类型为N型掺杂或P型掺杂,所述硅片具有第一表面以及与所述第一表面相对的第二表面。
本实施例中,选取合适的N型硅片,可以根据不同的耐压需求,选取不同的电阻率;其厚度根据晶圆耐压设计值,可以选取厚度为220μm至460μm。In this embodiment, a suitable N-type silicon wafer can be selected according to different withstand voltage requirements, and different resistivities can be selected; its thickness can be selected from 220 μm to 460 μm according to the design value of the withstand voltage of the wafer.
步骤2,对所述硅片的第一表面和第二表面进行第二掺杂类型的扩散工艺。Step 2, performing a second doping type diffusion process on the first surface and the second surface of the silicon wafer.
所述第二掺杂类型是与第一掺杂类型对应的P型掺杂或N型掺杂,以在所述硅片的第一表面内形成第一注入区101,在所述硅片的第二表面内形成第二注入区102,所述第一注入区101与所述第二注入区102之间为基区。The second doping type is P-type doping or N-type doping corresponding to the first doping type, so as to form a
硅片的正面和背面分别为第一表面和第二表面,本实施例中,由于硅片为N性掺杂,所述第一注入区101和所述第二注入区102均为P型掺杂。The front surface and the back surface of the silicon wafer are the first surface and the second surface respectively. In this embodiment, since the silicon wafer is N-type doped, the
在一些实施例中,可以进一步控制所述第二注入区102的掺杂可以为重掺杂,可以理解为,重掺杂的浓度为掺杂浓度大于基区100中P型掺杂的浓度。例如,本实施例中,所述第二注入区102为扩P+区,即高浓度的P型掺杂区。In some embodiments, the doping of the
在一些实施例中,可以进一步在所述第一注入区101表面进行扩散,形成增强区,该增强区为高浓度扩P+区,高浓度扩P+区的掺杂浓度为重掺杂。In some embodiments, diffusion may be further performed on the surface of the
在一些实施例中,可直接控制第一注入区101为重掺杂。可以理解为,重掺杂的浓度为掺杂浓度大于基区100中P型掺杂的浓度。例如,本实施例中,所述第一注入区101为扩P+区,即高浓度的P型掺杂区。In some embodiments, the
步骤3,对所定义的隔离区进行刻蚀,刻蚀至所述基区100底部,形成台面沟槽300,且两个相邻的芯片区共用一个台面沟槽300。In step 3, the defined isolation region is etched to the bottom of the
请结合参考图4,图4为刻蚀出台面沟槽300的结构示意图。所述刻蚀方法可以是干刻或者湿刻。Please refer to FIG. 4 , which is a schematic diagram of the structure of the etched
步骤4,形成图形化氧化层320。Step 4, a
请结合参考图5,在所述台面沟槽300的部分表面、所述第一注入区101的表面以及所述第二注入区102的部分表面形成图形化氧化层320,所述图形化氧化层320露出第三注入区窗口以及环绕保护层窗口;其中,所述第三注入区窗口位于第二注入区的部分表面,所述环绕保护层窗口位于所述台面沟槽300的底部。Please refer to FIG. 5 , a
本实施例中,所述图形化氧化层320为二氧化硅,厚度为0.5um-2um。In this embodiment, the patterned
步骤5,在所述第二注入区102的部分表面形成第三注入区103,在所述台面沟槽300的底部形成环绕保护层310。In step 5, a
请结合参考图6,以所述图形化氧化层320为掩膜,对所述硅片进行第一掺杂类型的扩散工艺,且扩散浓度大于基区100的掺杂浓度,以使得所述第二注入区102的部分表面内部形成第三注入区103,在所述台面沟槽300的底部形成环绕保护层310。Referring to FIG. 6 , using the patterned
本实施例中,所述第三注入区103和所述环绕保护层310对应为N型掺杂。In this embodiment, the
本实施例中,所述第三注入区103的N型掺杂为重掺杂,可以理解为重掺杂的浓度为掺杂浓度大于基区100中的掺杂的浓度。例如,本实施例中,所述第三注入区为高浓度扩N+区。In this embodiment, the N-type doping of the
需要说明的是,在制造工艺中,往往需要控制扩散浓度,本实施例中,控制扩散浓度的方式包括:通过测量与硅片一起进炉扩散的陪片的表面方阻,来控制硅片扩散浓度。对应的,本实施例中,控制所述环保护层的掺杂浓度包括:控制与该硅片一起进炉的扩散陪片的方块电阻小于10。It should be noted that in the manufacturing process, it is often necessary to control the diffusion concentration. In this embodiment, the method for controlling the diffusion concentration includes: controlling the diffusion of the silicon wafer by measuring the surface resistance of the companion wafer that is diffused into the furnace together with the silicon wafer. concentration. Correspondingly, in this embodiment, controlling the doping concentration of the ring protection layer includes: controlling the sheet resistance of the diffusion co-chip that is fed into the furnace together with the silicon wafer to be less than 10.
请结合参考图7,本实施例中,在形成第三注入区103和所述环绕保护层310之后,还包括,去除所述图形化氧化层320。Please refer to FIG. 7 , in this embodiment, after forming the
本实施例中,使用氢氟酸去除所述图形化氧化层320。In this embodiment, the patterned
本实施例中,使用氢氟酸去除所述图形化氧化层320之后,还在所述台面沟槽300的表面,进行钝化处理工艺,形成钝化层(未图示)。所述钝化层可以是氧化硅。In this embodiment, after the patterned
本实施例中,形成所述图形化氧化层320的步骤包括:In this embodiment, the steps of forming the patterned
首先,在所述台面沟槽300的表面、所述第一注入区101的表面以及所述第二注入区102的表面覆盖氧化层,该氧化层材料可以为二氧化硅。First, an oxide layer is covered on the surface of the
然后,在所述氧化层的表面形成图形化光刻胶层,所述图形化光刻胶层露出第三注入区窗口以及环绕保护层窗口;所述第三注入区窗口位于第二注入区的部分表面,所述环绕保护层窗口位于所述台面沟槽的底部。Then, a patterned photoresist layer is formed on the surface of the oxide layer, and the patterned photoresist layer exposes the third injection area window and the surrounding protective layer window; the third injection area window is located in the second injection area. Part of the surface, the surrounding protective layer window is located at the bottom of the mesa trench.
最后,以所述图形化光刻胶层为掩膜,刻蚀所述氧化层,以将图形化光刻胶的图形转移至氧化层中,从而形成图形化氧化层320。Finally, using the patterned photoresist layer as a mask, the oxide layer is etched to transfer the pattern of the patterned photoresist into the oxide layer, thereby forming a
步骤6,形成电极引脚200。请结合参考图8,分别在所述第一注入区101的表面、第二注入区102的表面以及第三注入区103的表面上形成电极引脚200,每个电极引脚之间绝缘隔离。
请结合图9,本实施例中,分别在所述第一注入区101的表面、第二注入区102的表面以及第三注入区103的电极引脚200上焊接金属电极,分别为所述第一注入区102表面上的阳极电极210、第二注入区102的部分表面上的门极电极230以及第三注入区103表面上的阴极电极 220。Referring to FIG. 9 , in this embodiment, metal electrodes are welded on the surface of the
请结合参考图10,形成电极后,该可控硅器件制作完成,本实施例中,还通过注塑或包胶工艺,在该可控硅芯片的一周环绕设置绝缘保护层400,该绝缘保护层400包裹该可控硅器件,并露出用于阳极电极210、门极电极230以及阴极电极 220,用于保护该可控硅芯片的内部结构,提高该器件的可靠性和稳定性。Please refer to FIG. 10 , after the electrodes are formed, the thyristor device is fabricated. In this embodiment, an insulating
本实施例中,通过在台面沟槽(即台面)的底部增加环绕保护层310,即高浓度的N+扩散层,该台面的结构可以看成是PNN+结构,在测试过程中,随着电压的不断升高,空间电荷区的展宽到达N+层后由于N+层杂质浓度高,空间电荷区的展宽变得很小,这时台面结的尺寸就可以相应的缩短,从而随着N+层的高浓度层的引进,该N+扩散层能够缩短电场在低掺杂区的展宽宽度,同时高浓度的N+扩散层能够中和吸收表面电荷,从而可以减小器件的台面漏电流,进一步提高器件的耐压特性,同时,因为耐压在基区内中展宽,从而可以缩窄台面沟槽的宽度,从而提高晶圆面积的利用率。In this embodiment, by adding a surrounding
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。The above specific examples are used to illustrate the present invention, which are only used to help understand the present invention, and are not intended to limit the present invention. For those skilled in the art to which the present invention pertains, according to the idea of the present invention, several simple deductions, modifications or substitutions can also be made.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011332865.XA CN112133743A (en) | 2020-11-25 | 2020-11-25 | Silicon controlled rectifier structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011332865.XA CN112133743A (en) | 2020-11-25 | 2020-11-25 | Silicon controlled rectifier structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112133743A true CN112133743A (en) | 2020-12-25 |
Family
ID=73852080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011332865.XA Pending CN112133743A (en) | 2020-11-25 | 2020-11-25 | Silicon controlled rectifier structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112133743A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119743968A (en) * | 2025-03-03 | 2025-04-01 | 上海维安半导体有限公司 | Minority carrier enhanced micro-trigger silicon controlled device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098274A (en) * | 1995-06-26 | 1997-01-10 | Rohm Co Ltd | Semiconductor device and manufacturing method thereof |
CN101075560A (en) * | 2006-05-19 | 2007-11-21 | 新电元工业株式会社 | Method for manufacturing semiconductor |
CN108206213A (en) * | 2016-12-16 | 2018-06-26 | 赛米控电子股份有限公司 | Thyristor and the method for manufacturing thyristor |
CN110047909A (en) * | 2017-12-18 | 2019-07-23 | 赛米控电子股份有限公司 | Thyristor with semiconductor body |
-
2020
- 2020-11-25 CN CN202011332865.XA patent/CN112133743A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098274A (en) * | 1995-06-26 | 1997-01-10 | Rohm Co Ltd | Semiconductor device and manufacturing method thereof |
CN101075560A (en) * | 2006-05-19 | 2007-11-21 | 新电元工业株式会社 | Method for manufacturing semiconductor |
CN108206213A (en) * | 2016-12-16 | 2018-06-26 | 赛米控电子股份有限公司 | Thyristor and the method for manufacturing thyristor |
CN110047909A (en) * | 2017-12-18 | 2019-07-23 | 赛米控电子股份有限公司 | Thyristor with semiconductor body |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119743968A (en) * | 2025-03-03 | 2025-04-01 | 上海维安半导体有限公司 | Minority carrier enhanced micro-trigger silicon controlled device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3413250B2 (en) | Semiconductor device and manufacturing method thereof | |
KR101955055B1 (en) | Power semiconductor device and method of fabricating the same | |
WO2018082455A1 (en) | Power device and manufacturing method therefor | |
CN108598150A (en) | A kind of variety lateral doping-knot terminal extends composite terminal structure and its manufacturing method | |
JPH07115189A (en) | Insulated gate bipolar transistor | |
CN115332244B (en) | An ESD structure of small-size trench Mosfet and its manufacturing method | |
CN113035714A (en) | Groove type power device and manufacturing method thereof | |
CN104465791A (en) | Structure of fast recovery diode and preparation method for back face of fast recovery diode | |
CN111192871B (en) | Transistor structure for electrostatic protection and method of making the same | |
CN104167436A (en) | Semiconductor power device structure | |
CN106024634A (en) | Power transistor with electrostatic discharge protection diode structures, and manufacturing method thereof | |
TW202103329A (en) | Semiconductor device and manufacturing method therefor | |
CN112133743A (en) | Silicon controlled rectifier structure and manufacturing method thereof | |
CN104900718B (en) | A kind of Schottky diode and its manufacture method | |
CN216054724U (en) | Low-voltage discharge tube chip | |
CN107946374A (en) | A kind of Schottky rectifier and manufacture method with surface impurity concentration regulatory region | |
CN113745339B (en) | High-reliability power semiconductor device and manufacturing method thereof | |
CN111199970B (en) | Transistor structure for electrostatic protection and manufacturing method thereof | |
JPH0644624B2 (en) | Avalanche voltage breaker protection thyristor with a voltage breakover protection having an electric field suppression layer in the area. | |
CN110010677B (en) | Device structure for improving reliability of triode with junction terminal extension structure and manufacturing method thereof | |
CN114334815A (en) | FRD-integrated IGBT device and its manufacturing method | |
CN116613217B (en) | A Schottky barrier diode for suppressing surface leakage current | |
CN117253903B (en) | Terminal protection structure of semiconductor power device and manufacturing method thereof | |
TWI885831B (en) | Silicon carbide power device and manufacturing method of the same | |
JPS584829B2 (en) | semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201225 |