CN112113153A - A lamp with a conductive, thermally conductive and heat-dissipating substrate - Google Patents
A lamp with a conductive, thermally conductive and heat-dissipating substrate Download PDFInfo
- Publication number
- CN112113153A CN112113153A CN202010888309.4A CN202010888309A CN112113153A CN 112113153 A CN112113153 A CN 112113153A CN 202010888309 A CN202010888309 A CN 202010888309A CN 112113153 A CN112113153 A CN 112113153A
- Authority
- CN
- China
- Prior art keywords
- heat
- substrate
- lamp
- light source
- glass bulb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 119
- 239000011521 glass Substances 0.000 claims abstract description 99
- 230000017525 heat dissipation Effects 0.000 claims abstract description 57
- 230000005855 radiation Effects 0.000 claims description 69
- 230000001939 inductive effect Effects 0.000 claims description 16
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 239000004964 aerogel Substances 0.000 claims description 11
- 239000011324 bead Substances 0.000 claims description 9
- 238000009423 ventilation Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 241000258971 Brachiopoda Species 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
- F21K9/23—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V19/00—Fastening of light sources or lamp holders
- F21V19/001—Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
- F21V19/0015—Fastening arrangements intended to retain light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/503—Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/60—Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
- F21V29/67—Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/83—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Abstract
本发明涉及一种具有导电导热散热基板的灯具,其包括整体基板以及灯具灯泡,该灯具灯泡具有一密封腔,该整体基板设置在该密封腔中,数条基板通过绝缘连接体连接成该整体基板,每一条该基板都包括光源固定部分以及导热散热部分,数个该光源固定部分与数个该导热散热部分连接在一起形成该基板,该光源固定部分上设置有LED光源,该导热散热部分靠贴在玻璃灯泡壁的内表面上,该灯具灯泡包括该玻璃灯泡壁以及玻璃灯泡内壁,借助该玻璃灯泡壁的该内表面与该玻璃灯泡内壁的外表面围绕形成该密封腔,该LED光源通电发光,光线透过该玻璃灯泡壁照射出去,该基板工作所产生的热量通过该导热散热部分并透过该玻璃灯泡壁散发出去为灯具散热。
The invention relates to a lamp with a conductive, heat-conducting and heat-dissipating substrate, which includes an integral substrate and a lamp bulb. The lamp bulb has a sealed cavity, the integral base is arranged in the sealed cavity, and several bases are connected to form the integral through an insulating connecting body. A base plate, each of which includes a light source fixing part and a heat conduction and heat dissipation part, several of the light source fixing parts and several of the heat conduction and heat dissipation parts are connected together to form the base plate, the light source fixing part is provided with an LED light source, and the heat conduction and heat dissipation part is Abutting on the inner surface of the glass bulb wall, the lamp bulb includes the glass bulb wall and the glass bulb inner wall, and the sealed cavity is formed by surrounding the inner surface of the glass bulb wall and the outer surface of the glass bulb inner wall to form the LED light source. When electrified to emit light, the light is radiated through the glass bulb wall, and the heat generated by the operation of the substrate passes through the heat conduction and heat dissipation part and is emitted through the glass bulb wall to dissipate heat for the lamp.
Description
技术领域technical field
本发明涉及一种灯具,特别是指一种设置有LED光源且具有导电导热散热作用的灯具。The invention relates to a lamp, in particular to a lamp which is provided with an LED light source and has the functions of electrical conduction, heat conduction and heat dissipation.
背景技术Background technique
众所周知,随着白炽灯的进一步退出市场,国内外对LED灯丝灯的需求越来越大,由于LED灯丝灯具有大众习惯并熟知的传统白炽灯的大角度发光发光形式,为有“复古风”情结的应用群体所热捧,让长得象白炽灯的LED灯丝灯找到了它应用的“洼地”。也由于LED灯丝灯的生产制造工艺与白炽灯相若,对于一直从事生产制造白炽灯的照明厂家,转而生产LED灯丝灯进入此一应用领域,在生产上无疑是一件极其简单的事。随着LED灯丝灯由理论到现实的照明产品,从装饰应用到功能照明应用,需求量将日益扩大。As we all know, with the further withdrawal of incandescent lamps from the market, the demand for LED filament lamps at home and abroad is increasing. Since LED filament lamps have the large-angle light-emitting form of traditional incandescent lamps that the public is accustomed to and familiar with, it is a "retro style". The complex application group is very popular, so that the LED filament lamp that looks like an incandescent lamp has found its "depression" of application. Also because the manufacturing process of LED filament lamps is similar to that of incandescent lamps, it is undoubtedly a very simple thing in production for lighting manufacturers who have been engaged in the production and manufacture of incandescent lamps to switch to LED filament lamps to enter this application field. With LED filament lamps from theory to practical lighting products, from decorative applications to functional lighting applications, the demand will expand day by day.
但是,在技术构成上,由于灯丝灯的灯丝处于密闭环境,加上LED灯丝的基板面积过小,在光衰小,长寿命的要求下,实际应用中的散热很难达到理想的设计要求,功率始终得不到提高,目前最大功率只能在6~8瓦之间徘徊;目前LED灯丝灯另一不足之处在于由于需加大散热面积,灯丝长度较长,使得结构上很难达到饱满的全周光;加之发光面较大的原因,发出来的光强度达不到传统白炽灯的效果,LED灯丝灯使得在很多的场合不能很好的替代白炽灯。However, in terms of technical structure, because the filament of the filament lamp is in a closed environment, and the substrate area of the LED filament is too small, under the requirements of small light decay and long life, it is difficult to achieve the ideal design requirements for heat dissipation in practical applications. The power has never been improved. At present, the maximum power can only hover between 6 and 8 watts. Another disadvantage of the current LED filament lamp is that due to the need to increase the heat dissipation area and the long filament length, it is difficult to achieve full structure. In addition, due to the large luminous surface, the light intensity emitted cannot reach the effect of traditional incandescent lamps, and LED filament lamps make it impossible to replace incandescent lamps in many occasions.
目前LED灯丝灯的不足之处在于:1、双面出光的蓝宝石、玻璃等透明基板长度较长,光线主要朝四周的方向,灯下比较暗。2、软性的铝基板单面出光—-主要的光线也是朝向四周,上下面的光线较弱。At present, the shortcomings of LED filament lamps are: 1. The transparent substrates such as sapphire and glass that emit light on both sides are long in length, and the light mainly faces in the surrounding direction, and the lamp is relatively dark. 2. The flexible aluminum substrate emits light from one side - the main light is also towards the surrounding, and the light above and below is weak.
现在的双面出光及单面出光LED灯丝灯都存在一个问题,就是有限的基板本身就不能达到散热目的,再者基板是由蓝宝石、玻璃、铝和FPC等,这些材料受热所辐射出来的红外线波长在8μm以上,属于中远红外辐射;灯丝灯玻璃泡壳的玻璃是普通的钠钙玻璃;物质的振动频率(本征频率)诀定于力学常数和原子量的大小,玻璃形成氧化物如Na2O·CaO·6SiO2 或Na2SiO3、CaSiO3、SiO2 等原子量均较小,力常数较大,故本征频率大,不能透过中、远红外,只能透过近红外,其所能透射的波长在2.5μm以下的近红外短波及可见光和紫外光。所以普通的灯丝灯灯丝的热不能直接的透射出玻璃壳,只能通过较低导热的气体及玻璃,层层热阻的传到有限的玻璃外表面再由空气带走,其散热效率不佳,而此是为传统技术的主要缺点。There is a problem with the current double-sided and single-sided LED filament lamps, that is, the limited substrate itself cannot achieve the purpose of heat dissipation, and the substrate is made of sapphire, glass, aluminum and FPC, etc. The infrared rays radiated by these materials are heated. The wavelength is above 8 μm, which belongs to the mid-far infrared radiation; the glass of the glass bulb of the filament lamp is ordinary soda lime glass; the vibration frequency (eigen frequency) of the material is determined by the mechanical constant and atomic weight, and the glass forms oxides such as Na 2 O·CaO·6SiO 2 or Na 2 SiO 3 , CaSiO 3 , SiO 2 and other atomic weights are small, the force constant is large, so the eigenfrequency is large, and cannot pass through the mid- and far-infrared, but only through the near-infrared. It can transmit near-infrared short-wave, visible light and ultraviolet light with a wavelength below 2.5μm. Therefore, the heat of the ordinary filament lamp filament cannot be directly transmitted out of the glass shell, but can only pass through the gas and glass with low thermal conductivity. , and this is the main disadvantage of the traditional technology.
发明内容SUMMARY OF THE INVENTION
本发明所采用的技术方案为:一种具有导电导热散热基板的灯具,其特征在于:包括整体基板以及灯具灯泡,该灯具灯泡具有一密封腔,该整体基板设置在该密封腔中,数条基板通过绝缘连接体连接成该整体基板,每一条该基板都包括光源固定部分以及导热散热部分,数个该光源固定部分与数个该导热散热部分连接在一起形成该基板,该光源固定部分上设置有LED光源,该导热散热部分靠贴在玻璃灯泡壁的内表面上,该灯具灯泡包括该玻璃灯泡壁以及玻璃灯泡内壁,借助该玻璃灯泡壁的该内表面与该玻璃灯泡内壁的外表面围绕形成该密封腔,该LED光源通电发光,光线透过该玻璃灯泡壁照射出去,该基板工作所产生的热量通过该导热散热部分并透过该玻璃灯泡壁散发出去为灯具散热。The technical scheme adopted in the present invention is: a lamp with a conductive, thermally conductive and heat-dissipating substrate, which is characterized by comprising an integral substrate and a lamp bulb, the lamp bulb has a sealed cavity, the integral substrate is arranged in the sealed cavity, and a plurality of The substrates are connected to form the integral substrate through insulating connectors, each of the substrates includes a light source fixing part and a heat-conducting heat-dissipating part, and several of the light-source fixing parts and several of the heat-conducting and heat-dissipating parts are connected together to form the substrate. An LED light source is provided, and the heat-conducting and heat-dissipating part is attached to the inner surface of the glass bulb wall. The lamp bulb includes the glass bulb wall and the glass bulb inner wall. By means of the inner surface of the glass bulb wall and the outer surface of the glass bulb inner wall Surrounding the sealed cavity, the LED light source is energized to emit light, and the light is radiated through the glass bulb wall.
本发明的有益效果为:本发明的数个该光源固定部分与数个该导热散热部分连接在一起形成该基板。该光源固定部分上设置有LED光源。该LED光源可以为LED灯珠、LED发光芯片或其他光源。该基板设置在灯具的灯泡中,该导热散热部分靠贴在玻璃灯泡壁的内表面上。该LED光源通电发光,光线透过该玻璃灯泡壁照射出去,此刻,该基板工作所产生的热量以热辐射的形式主要通过该导热散热部分并透过该玻璃灯泡壁散发出去以达到为灯具散热的作用。实践中,热辐射的强度与距离的平方成反比,本发明中采用将该导热散热部分直接靠贴在玻璃灯泡壁的内表面上的方式能够使该基板与该玻璃灯泡壁之间的距离缩小到最短,从而提升辐射散热效率,从而提升整体灯具的散热效率。本发明在工作的时候,该LED光源通电发光其工作所产生的大部分热量直接传导到该导热散热部分中,而后由该导热散热部分将热量主要以热辐射的形式透过该玻璃灯泡壁散发出去。The beneficial effect of the present invention is that several of the light source fixing parts and several of the heat-conducting and heat-dissipating parts of the present invention are connected together to form the substrate. The light source fixing part is provided with an LED light source. The LED light source can be LED lamp beads, LED light-emitting chips or other light sources. The base plate is arranged in the bulb of the lamp, and the heat-conducting and heat-dissipating part is abutted on the inner surface of the glass bulb wall. The LED light source is energized to emit light, and the light is radiated through the glass bulb wall. At this moment, the heat generated by the operation of the substrate mainly passes through the heat conduction and heat dissipation part in the form of thermal radiation and is emitted through the glass bulb wall to dissipate heat for the lamp. effect. In practice, the intensity of thermal radiation is inversely proportional to the square of the distance. In the present invention, the heat-conducting and heat-dissipating portion is directly abutted on the inner surface of the glass bulb wall to reduce the distance between the substrate and the glass bulb wall. to the shortest, thereby improving the radiation heat dissipation efficiency, thereby improving the heat dissipation efficiency of the overall luminaire. When the present invention is working, most of the heat generated by the LED light source is directly conducted to the heat-conducting and heat-dissipating part, and then the heat-conducting heat-dissipating part mainly dissipates the heat through the glass bulb wall in the form of heat radiation. go out.
附图说明Description of drawings
图1为本发明基板的主视图。FIG. 1 is a front view of the substrate of the present invention.
图2为本发明基板的结构示意图。FIG. 2 is a schematic diagram of the structure of the substrate of the present invention.
图3为本发明基板设置在灯泡中的示意图。FIG. 3 is a schematic diagram of the substrate of the present invention disposed in a light bulb.
图4为本发明灯泡的示意图。FIG. 4 is a schematic view of the light bulb of the present invention.
图5为本发明整体基板的示意图。FIG. 5 is a schematic diagram of the overall substrate of the present invention.
图6为本发明正面固定膜的示意图。FIG. 6 is a schematic view of the front fixing film of the present invention.
图7为本发明背面固定膜的示意图。FIG. 7 is a schematic view of the backside fixing film of the present invention.
图8为本发明灯具的示意图。FIG. 8 is a schematic diagram of a lamp of the present invention.
图9为本发明导热柱的示意图。FIG. 9 is a schematic diagram of the thermally conductive column of the present invention.
图10为本发明盘旋电流形成灯条磁场的示意图。FIG. 10 is a schematic diagram of the magnetic field of the light bar formed by the spiral current of the present invention.
图11为本发明灯泡内设置风扇的示意图。FIG. 11 is a schematic diagram of a fan provided in the bulb of the present invention.
图12为本发明灯具制作成灯泡形的示意图。FIG. 12 is a schematic diagram of the lamp of the present invention being fabricated into a bulb shape.
图13为本发明基板另外一种实施例的主视图。FIG. 13 is a front view of another embodiment of the substrate of the present invention.
图14为本发明基板另外一种实施例的剖面图。FIG. 14 is a cross-sectional view of another embodiment of the substrate of the present invention.
图15为本发明基板又一种实施例的主视图。FIG. 15 is a front view of another embodiment of the substrate of the present invention.
图16为本发明基板又一种实施例的剖面图。FIG. 16 is a cross-sectional view of yet another embodiment of the substrate of the present invention.
图17为本发明作为路灯光源的实施例的剖面图。17 is a cross-sectional view of an embodiment of the present invention as a street light source.
具体实施方式Detailed ways
如图1-7所示,一种具有导电导热散热作用的基板500,其包括光源固定部分510以及导热散热部分520。As shown in FIGS. 1-7 , a
数个该光源固定部分510与数个该导热散热部分520连接在一起形成该基板500。Several of the light
在具体实施的时候,该光源固定部分510与该导热散热部分520间隔设置,也就是说,两个该光源固定部分510之间连接一个该导热散热部分520,同时,两个该导热散热部分520之间连接一个该光源固定部分510。In the specific implementation, the light
该光源固定部分510上设置有LED光源530。The light
该LED光源530可以为LED灯珠、LED发光芯片或其他光源。The LED
该基板500设置在灯具的灯泡中,该导热散热部分520靠贴在玻璃灯泡壁600的内表面610上。The
该LED光源530通电发光,光线透过该玻璃灯泡壁600照射出去,此刻,该基板500工作所产生的热量以热辐射的形式主要通过该导热散热部分520并透过该玻璃灯泡壁600散发出去以达到为灯具散热的作用。The LED
实践中,热辐射的强度与距离的平方成反比,本发明中采用将该导热散热部分520直接靠贴在玻璃灯泡壁600的内表面610上的方式能够使该基板500与该玻璃灯泡壁600之间的距离缩小到最短,从而提升辐射散热效率,从而提升整体灯具的散热效率。In practice, the intensity of thermal radiation is inversely proportional to the square of the distance. In the present invention, the heat-conducting and heat-dissipating
本发明在工作的时候,该LED光源530通电发光其工作所产生的大部分热量直接传导到该导热散热部分520中,而后由该导热散热部分520将热量主要以热辐射的形式透过该玻璃灯泡壁600散发出去。When the present invention is in operation, most of the heat generated by the LED
在具体实施的时候,直接在该基板500上设置LED正装芯片也能够达到上述的散热要求。In specific implementation, the above-mentioned heat dissipation requirements can also be achieved by directly disposing an LED front-mounted chip on the
该光源固定部分510具有固定顶面511,该LED光源530设置在该固定顶面511上,该固定顶面511为一反光面,该LED光源530所发出的光线部分直接透过该玻璃灯泡壁600照射出去,部分光线经该玻璃灯泡壁600的该内表面610反射后最终由该反光面反射后透过该玻璃灯泡壁600照射出去。The light
该导热散热部分520具有接触顶面521,在该接触顶面521上凸设有若干接触肋522,若干该接触肋522与该玻璃灯泡壁600的该内表面610相接触,以实现该导热散热部分520靠贴在该内表面610上并进行散热的作用。The heat conduction and
同时在该基板500进行整体折弯放置在灯泡中的时候,若干该接触肋522还具有保证折弯效果的作用。At the same time, when the
如图4所示,在具体实施的时候,该玻璃灯泡壁600为直管状,该内表面610为管状,数个该导热散热部分520同时靠贴在管状的该内表面610上。As shown in FIG. 4 , in a specific implementation, the
如图2所示,在具体实施的时候,在该导热散热部分520的该接触顶面521上设置有近红外辐射层13。As shown in FIG. 2 , in a specific implementation, a near-
值得注意的是,此时,该接触肋522的顶部没有设置该近红外辐射层13,因为,辐射材料层自身具有一定的热阻,进而会影响该接触肋522与该内表面610的接触并影响导热。It is worth noting that at this time, the top of the
如图2所示,在具体实施的时候,该基板500的底面上设置有辐射反射层540。As shown in FIG. 2 , in a specific implementation, a
该辐射反射层540可以为镀银层或者其他反射层,银是低辐射层,不会拉低有效的正面辐射温度。The
该基板500所产生的热辐射部分直接透过该玻璃灯泡壁600辐射出去,另一部分经过该辐射反射层540反射后透过该玻璃灯泡壁600辐射出去。Part of the heat radiation generated by the
实践中,热辐射的强度与温度的四次方成正比:(273°+X)4,其中,X为温度。In practice, the intensity of thermal radiation is proportional to the fourth power of temperature: (273°+X) 4 , where X is the temperature.
设置该辐射反射层540能够使该基板500所产生的热辐射大部分从其顶部向外辐射,此时,该基板500顶部的温度大大高于其底面下方的温度,所以此刻该基板500顶面向外的辐射率就越强,如此循环,使该基板500所产生的热辐射高效的直接透过该玻璃灯泡壁600辐射出去。Setting the
在具体实施的时候,该辐射反射层540设置在该导热散热部分520以及该光源固定部分510的底面上。In a specific implementation, the
如图5所示,为本发明该基板500的另外一种结构形式。其中箭头方向为整体折弯方向,折弯后整体放置在该玻璃灯泡壁600中。As shown in FIG. 5 , it is another structural form of the
在具体实施的时候,数条该基板500通过绝缘连接体700连接成一整体基板。In a specific implementation, a plurality of the
如图3所示,该整体基板设置在灯具的灯泡中,组成该整体基板的每一条该基板500的该导热散热部分520都靠贴在该玻璃灯泡壁600的该内表面610上。As shown in FIG. 3 , the integral substrate is disposed in the bulb of the lamp, and the heat-conducting and heat-dissipating
如图3所示,每一条该基板500上都设置有弹压部分550,该基板500弯折时,该弹压部分550能够对该基板500施加弹性作用力,使该基板500的该导热散热部分520紧紧靠贴在该玻璃灯泡壁600的该内表面610上。As shown in FIG. 3 , each of the
当该玻璃灯泡壁600为直管状,该内表面610为管状时,该弹压部分550设置在该基板500的后端部,When the
该基板500弯折成环状时,该弹压部分550顶压该基板500的前端部,使该基板500的该导热散热部分520紧紧靠贴在管状的该内表面610上。When the
在具体实施的时候,该绝缘连接体700包括正面固定膜710以及背面固定膜720。In a specific implementation, the insulating connecting
其中,该正面固定膜710贴覆在该整体基板的正面,该背面固定膜720贴覆在该整体基板的背面。Wherein, the
如图6所示,该正面固定膜710上开设有光源窗711以及红外辐射窗712。As shown in FIG. 6 , the
如图7所示,该背面固定膜720上开设有反射窗721以及灯珠背面辐射窗722。As shown in FIG. 7 , the
该光源固定部分510的该固定顶面511以及该LED光源530处于该光源窗711中。The fixed
该导热散热部分520的该接触顶面521以及其上的该近红外辐射层13处于该红外辐射窗712中。The contact top surface 521 of the heat conduction and
该基板500底面上的该辐射反射层540处于该反射窗721中。The
该光源固定部分510的底面处于该灯珠背面辐射窗722中。The bottom surface of the light
在具体实施的时候,该正面固定膜710为白色固定膜,以提升该LED光源530的光反射效果。In a specific implementation, the
在具体实施的时候,灯具的灯泡中灌装有散热气体,比如,氦气、氩气等。In the specific implementation, the light bulb of the lamp is filled with heat-dissipating gas, such as helium gas, argon gas, and the like.
该整体基板的热量主要通过其发光正面辐射出去,其背面所产生的热量通过该散热气体传导出去。The heat of the integral substrate is mainly radiated through its light-emitting front surface, and the heat generated by its rear surface is conducted out through the heat dissipation gas.
如图1-12所示,如下为本发明技术方案的另外一种实施方式。As shown in Figures 1-12, the following is another embodiment of the technical solution of the present invention.
如图8所示,一种具有导电导热散热基板的灯具,其包括整体基板以及灯具灯泡,该灯具灯泡具有一密封腔100,该整体基板设置在该密封腔100中,数条基板500通过绝缘连接体700连接成该整体基板。As shown in FIG. 8 , a lamp with a conductive, thermally conductive and heat-dissipating substrate includes an integral substrate and a lamp bulb. The lamp bulb has a sealed
如图1-7所示,每一条该基板500都包括光源固定部分510以及导热散热部分520。As shown in FIGS. 1-7 , each of the
数个该光源固定部分510与数个该导热散热部分520连接在一起形成该基板500。Several of the light
在具体实施的时候,该光源固定部分510与该导热散热部分520间隔设置,也就是说,两个该光源固定部分510之间连接一个该导热散热部分520,同时,两个该导热散热部分520之间连接一个该光源固定部分510。In the specific implementation, the light
该光源固定部分510上设置有LED光源530。The light
该LED光源530可以为LED灯珠、LED发光芯片或其他光源。The LED
该导热散热部分520靠贴在玻璃灯泡壁600的内表面610上。The heat-conducting and heat-dissipating
如图8所示,该灯具灯泡包括该玻璃灯泡壁600以及玻璃灯泡内壁800,借助该玻璃灯泡壁600的该内表面610与该玻璃灯泡内壁800的外表面围绕形成该密封腔100。As shown in FIG. 8 , the lamp bulb includes the
该LED光源530通电发光,光线透过该玻璃灯泡壁600照射出去,此刻,该基板500工作所产生的热量以热辐射的形式主要通过该导热散热部分520并透过该玻璃灯泡壁600散发出去以达到为灯具散热的作用。The LED
实践中,热辐射的强度与距离的平方成反比,本发明中采用将该导热散热部分520直接靠贴在玻璃灯泡壁600的内表面610上的方式能够使该基板500与该玻璃灯泡壁600之间的距离缩小到最短,从而提升辐射散热效率,从而提升整体灯具的散热效率,本发明在工作的时候,该LED光源530通电发光其工作所产生的大部分热量直接传导到该导热散热部分520中,而后由该导热散热部分520将热量主要以热辐射的形式透过该玻璃灯泡壁600散发出去。In practice, the intensity of thermal radiation is inversely proportional to the square of the distance. In the present invention, the heat-conducting and heat-dissipating
该光源固定部分510具有固定顶面511,该LED光源530设置在该固定顶面511上,该固定顶面511为一反光面,该LED光源530所发出的光线部分直接透过该玻璃灯泡壁600照射出去,部分光线经该玻璃灯泡壁600的该内表面610反射后最终由该反光面反射后透过该玻璃灯泡壁600照射出去。The light
该导热散热部分520具有接触顶面521,在该接触顶面521上凸设有若干接触肋522,若干该接触肋522与该玻璃灯泡壁600的该内表面610相接触,以实现该导热散热部分520靠贴在该内表面610上并进行散热的作用。The heat conduction and
同时在该基板500进行整体折弯放置在灯泡中的时候,若干该接触肋522还具有保证折弯效果的作用。At the same time, when the
在具体实施的时候,在该导热散热部分520的该接触顶面521上设置有近红外辐射层13。During specific implementation, the near-
在该基板500的底面上也设置有该近红外辐射层13。The near-
值得注意的是,此时,该接触肋522的顶部没有设置该近红外辐射层13,因为,辐射材料层自身具有一定的热阻,进而会影响该接触肋522与该内表面610的接触并影响导热。It is worth noting that at this time, the top of the
在具体实施的时候,每一条该基板500上都设置有弹压部分550,该基板500弯折时,该弹压部分550能够对该基板500施加弹性作用力,使该基板500的该导热散热部分520紧紧靠贴在该玻璃灯泡壁600的该内表面610上。In a specific implementation, each of the
当该玻璃灯泡壁600为直管状,该内表面610为管状时,该弹压部分550设置在该基板500的后端部,该基板500弯折成环状时,该弹压部分550顶压该基板500的前端部,使该基板500的该导热散热部分520紧紧靠贴在管状的该内表面610上。When the
在具体实施的时候,该绝缘连接体700包括正面固定膜710以及背面固定膜720,其中,该正面固定膜710贴覆在该整体基板的正面,该背面固定膜720贴覆在该整体基板的背面。In a specific implementation, the insulating
该正面固定膜710上开设有光源窗711以及红外辐射窗712,该背面固定膜720上开设有灯珠背面辐射窗722。The
该光源固定部分510的该固定顶面511以及该LED光源530处于该光源窗711中。The fixed
该导热散热部分520的该接触顶面521上的该近红外辐射层13处于该红外辐射窗712中。The near-
该基板500底面上的该近红外辐射层13,处于该灯珠背面辐射窗722中。The near-
在具体实施的时候,该正面固定膜710为白色固定膜,以提升该LED光源530的光反射效果。In a specific implementation, the
在具体实施的时候,该密封腔100中灌装有散热气体,比如,氦气、氩气等。During specific implementation, the sealed
在具体实施的时候,该近红外辐射层13可以由多种材料制成,比如,由重量百分比为氧化镍60%,氧化钴30%,氧化铁10%混合而成的混合材料。In specific implementation, the near-
工作的时候,该LED光源530通电发光,其工作所产生的热量传导到该近红外辐射层13中,该近红外辐射层13将热量以近红外短波的形式向外辐射,以达到对该基板500进行散热,降低该基板500工作温度的作用。When working, the LED
该灯具还包括引热柱20,该引热柱20与该基板500底面上的该近红外辐射层13相对应。The lamp further includes a heat-inducing
该引热柱20用以吸收该近红外辐射层13所发出的近红外短波。The
工作的时候,该近红外辐射层13将热量以近红外短波的形式向外辐射,此刻,该引热柱20吸收该近红外短波,与此同时,由该引热柱20将热量向外散发,以达到为该灯具进行散热的作用。When working, the near-
该引热柱20的外表面上设置有红外吸收层21,该红外吸收层21与该基板500底面上的该近红外辐射层13相对应,该红外吸收层21用以吸收该近红外辐射层13所发出的近红外短波。An
在具体实施的时候,该红外吸收层21的吸收率控制在大于90%,放射率小于20%,该红外吸收层21可以由多种材料混合而成,比如,通过重量百分比为氧化镍60%,氧化钴30%,氧化铁10%三种粉末混合而成。In the specific implementation, the absorption rate of the
该引热柱20的外表面上还设置有气凝胶层22,该气凝胶层22设置在该引热柱20的外表面与该红外吸收层21之间。An
工作的时候,该红外吸收层21吸收该近红外辐射层13所发出的该近红外短波,此刻,借助该气凝胶层22使热量通过该引热柱20另一侧的内表面向外散发。When working, the
制成该气凝胶层22的气凝胶(SiO_2气凝胶由于其纤细的纳米多孔结构而具有极低的热导率,纯气凝胶对8μm以下的近红外波长几乎透明),当近红外通过后所产生的热被本征波段大于8um的黑体物质所吸收,受热后所辐射出的波长大于8um,被气凝胶所阻挡,加上气凝胶的极差导热性0.013W/m.k,热量只能由该引热柱20的内表面辐射出灯具。The aerogel made of the aerogel layer 22 (SiO_2 aerogel has extremely low thermal conductivity due to its fine nanoporous structure, and pure aerogel is almost transparent to near-infrared wavelengths below 8 μm). The heat generated by the infrared passing through is absorbed by the black body material with the intrinsic band greater than 8um, and the wavelength radiated after heating is greater than 8um, which is blocked by the aerogel, plus the extreme poor thermal conductivity of the aerogel is 0.013W/m.k , the heat can only be radiated out of the lamp from the inner surface of the heat-inducing
在具体实施的时候,该引热柱20四周的空气流动,以提升该引热柱20的散热效率,提升灯具的散热效果。During specific implementation, the air around the heat-inducing
在具体实施的时候,该玻璃灯泡壁600以及该玻璃灯泡内壁800由石英或红外玻璃制成。In specific implementation, the
石英或红外玻璃使该基板500所辐射的近红外,中红外及玻璃反射回来的红外可以通过,所透过的近红外被该引热柱20所吸收。Quartz or infrared glass allows the near-infrared, mid-infrared and infrared reflected from the
在具体实施的时候,该玻璃灯泡内壁800为一玻璃内套管,该玻璃灯泡壁600为一玻璃外套管。In specific implementation, the glass bulb
借助该玻璃内套管的外表面与该玻璃外套管的内表面围绕形成该密封腔100。The sealed
借助该玻璃内套管的该内表面围绕形成一通风散热腔150,该引热柱20设置在该通风散热腔150中。A ventilation and
该通风散热腔150包括入风口151以及出风口152。The ventilation and
该入风口151以及该出风口152分别位于该灯具的两端部。The
其中,该入风口151位于灯座处,该出风口152位于灯前端头处。Wherein, the
在具体实施的时候,该整体基板环设在该引热柱20四周。In a specific implementation, the overall substrate ring is arranged around the heat-inducing
该整体基板以及该引热柱20都呈管状。Both the integral substrate and the heat-extracting
该整体基板通电发光,在该整体基板中流动的电流沿该整体基板盘旋的方向形成一盘旋电流15,由该盘旋电流15形成一灯条磁场16,该灯条磁场16处于该通风散热腔150中,该引热柱20处在该灯条磁场16中,借助该灯条磁场16提升该引热柱20的散热效率。The overall substrate is electrified and emits light, the current flowing in the overall substrate forms a spiral current 15 along the spiral direction of the overall substrate, and a light bar
具体描述为,光(红外)与处于磁化状态的物质发生相互作用而引起的各种光学现象,包括法拉第的磁致旋光效应、科顿-穆顿效应和克尔磁光效应等。这些效应均起源于物质的磁化。It is specifically described as various optical phenomena caused by the interaction between light (infrared) and matter in a magnetized state, including Faraday's magneto-optical effect, Cotton-Muton effect and Kerr magneto-optical effect. These effects all originate from the magnetization of matter.
其反映了光与物质磁性间的联系。光在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转方向取决于介质性质和磁场方向,此现象称磁致旋光效应,外磁场力对电磁波的於出能够降低能级,红外辐射所需的基板给与的热量降低,使同样的温度下辐射强度增强。It reflects the connection between light and the magnetism of matter. When light propagates in a medium, if a strong magnetic field is added parallel to the propagation direction of the light, the direction of light vibration will be deflected. The deflection direction depends on the properties of the medium and the direction of the magnetic field. This phenomenon is called the magneto-optical effect. The energy level of the electromagnetic wave can be reduced, the heat given by the substrate required for infrared radiation is reduced, and the radiation intensity is enhanced at the same temperature.
如图11所示,在具体实施的时候,该通风散热腔150中设置有风扇155以提升散热效率。As shown in FIG. 11 , in a specific implementation, a
在具体实施的时候,该引热柱20可以为管状、圆锥状等等。如图12所示,本发明的灯具也可以制作成灯泡形。During specific implementation, the heat-inducing
如图13-16所示,为本发明另外的实施例。As shown in Figures 13-16, it is another embodiment of the present invention.
一种具有导热散热作用的基板,其包括光源区域910以及导热散热区域920。A substrate with heat conduction and heat dissipation function includes a
数个该光源区域910设置在该基板上。Several of the
在具体实施的时候,该导热散热区域920处于相邻的两个该光源区域910之间,该光源区域910可以设置在该基板的表面上,该光源区域910也可以设置在该基板中。In a specific implementation, the heat conduction and
该光源区域910中设置有LED发光体930。The
该基板设置在灯具的灯泡中,该导热散热区域920靠贴在玻璃灯泡壁的内表面上。The base plate is set in the bulb of the lamp, and the heat conduction and
该LED发光体930通电发光,光线透过该玻璃灯泡壁照射出去,此刻,该基板工作所产生的热量以热辐射的形式主要通过该导热散热区域920并透过该玻璃灯泡壁散发出去以达到为灯具散热的作用。The
如图13-14所示,该LED发光体930为正装LED发光芯片,实践中,可以将数个正装LED发光芯片同时布置在该光源区域910中。As shown in FIGS. 13-14 , the LED light-emitting
在具体实施的时候,该光源区域910下方可以设置加强平台911。During specific implementation, a
如图15-16所示,该LED发光体930为LED灯条,该光源区域910为通槽。As shown in FIGS. 15-16 , the LED light-emitting
该LED灯条连接在该基板上,该LED灯条上的LED光源处于该通槽中。The LED light bar is connected on the substrate, and the LED light source on the LED light bar is located in the through groove.
此刻,该基板整体可以设计成均温板,比如,厚铜板,或者设置有均温材料层的板体。At this moment, the whole substrate can be designed as a temperature uniformity plate, such as a thick copper plate, or a plate body provided with a temperature uniformity material layer.
图13-16所示的实施例中基板的其他结构与图1-12中结构相同,这里不再累述。Other structures of the substrate in the embodiment shown in FIGS. 13-16 are the same as those in FIGS. 1-12 , and will not be repeated here.
另外值得强调的是,传统高压钠灯、金卤灯光源用led标准光源直接替换一直是led研发者追求的目标,基于功率大发热量大而体积受局限散热面不够而一直无法实现。特别是路灯,由于传统的高压钠灯、陶瓷金卤灯光源的路灯其灯壳已经容入城市的道路景观,要替换成目前将传统的LED路灯必须整个灯头换掉,一是替换成本高,二是由于受散热设计的影响,不能随意的设计外形。It is also worth emphasizing that the direct replacement of traditional high-pressure sodium lamps and metal halide light sources with LED standard light sources has always been the goal pursued by LED developers. Based on the high power and large heat generation, the volume is limited and the heat dissipation surface is not enough. It has been impossible to achieve. Especially street lamps, because the lamp shells of traditional high-pressure sodium lamps and ceramic metal halide lamps have been incorporated into the urban road landscape, to replace the traditional LED street lamps, the entire lamp head must be replaced. First, the replacement cost is high, and second It is due to the influence of the heat dissipation design, and the shape cannot be arbitrarily designed.
现在一般的做法是在玻璃中心区域设置灯丝灯条再由氦气传给玻璃,由于氦气的传导系数极低(0.2W/c.m),使得芯片到玻璃的温差较大(约在40度左右),当玻璃的温度为60度时,芯片的温度已经达到或超过100度,为了缩小这个温差,本发明的设计思路可以将光源的基板近可能的贴近玻璃壁,最好是再由高导热介质填充的,将热直接传递给玻璃。玻璃为高辐射材料辐射系数高达0.94,根据玻尔兹曼的辐射定律,辐射强度与黑体温度的4次方成正比。在紧贴玻璃的情况下玻璃的温度也接近100度,热辐射提高将近1倍,即相同的芯片温度的情况下功率可以提高近1倍,具体设计思路如下。Now the general practice is to set the filament strip in the central area of the glass and then pass it from helium to the glass. Due to the extremely low conductivity of helium (0.2W/c.m), the temperature difference between the chip and the glass is relatively large (about 40 degrees Celsius). ), when the temperature of the glass is 60 degrees, the temperature of the chip has reached or exceeded 100 degrees. In order to reduce this temperature difference, the design idea of the present invention can make the substrate of the light source as close to the glass wall as possible, preferably by high thermal conductivity. Dielectric filled, which transfers heat directly to the glass. Glass is a high radiation material, and the emissivity coefficient is as high as 0.94. According to Boltzmann's radiation law, the radiation intensity is proportional to the 4th power of the black body temperature. When it is close to the glass, the temperature of the glass is also close to 100 degrees, and the thermal radiation is nearly doubled, that is, the power can be nearly doubled under the same chip temperature. The specific design ideas are as follows.
如图17所示,采用图13-16中的基板制作成图17所示的路灯灯泡,其灯泡整体可以为圆形、椭圆形、平板状等形状。As shown in FIG. 17 , the street light bulb shown in FIG. 17 is fabricated by using the substrate shown in FIGS. 13-16 , and the whole bulb can be in the shape of a circle, an ellipse, a flat plate, or the like.
其玻璃灯泡壁600的外表面可以进行表面粗化处理,其导热散热区域920靠贴在玻璃灯泡壁600的内表面610上。The outer surface of the
其光源区域910表面可以设置反光层,以反射LED发光体930的光线。A reflective layer may be provided on the surface of the
另外,光源区域910的背面可以设置近红外辐射层13。In addition, the near-
导热散热区域920的背面可以设置红外吸收层21。An
近红外辐射层13能够按照本案上述记载的方式进行散热。The near-
实践中,辐射层13所辐射出的热一部分被反射出去,一部分被顶部的吸收涂层吸收并散发出去,另一部分热通过灌装的氦气传导到基板以为的玻璃灯泡壁上并散发出去。In practice, part of the heat radiated by the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910812169X | 2019-08-30 | ||
CN201910812169 | 2019-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112113153A true CN112113153A (en) | 2020-12-22 |
Family
ID=73804587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010888309.4A Pending CN112113153A (en) | 2019-08-30 | 2020-08-28 | A lamp with a conductive, thermally conductive and heat-dissipating substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112113153A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471180A (en) * | 2021-06-28 | 2021-10-01 | 宝德照明集团有限公司 | Aerogel wisdom light energy street lamp |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925581A (en) * | 2013-10-29 | 2014-07-16 | 蔡鸿 | LED lamp heat dissipation structure |
CN203823499U (en) * | 2014-04-02 | 2014-09-10 | 厦门市东林电子有限公司 | Integrated heat dissipation type LED bulb |
CN105444036A (en) * | 2014-08-26 | 2016-03-30 | 蔡鸿 | Light-emitting diode (LED) light source light-emitting and heat-dissipating structure and light-emitting and heat-dissipating method thereof |
CN106382515A (en) * | 2016-12-05 | 2017-02-08 | 武汉市福臣贸易有限公司 | LED bulb having excellent ventilating and heat dissipation functions |
CN106439537A (en) * | 2016-12-05 | 2017-02-22 | 武汉市福臣贸易有限公司 | Efficient heat dissipation type LED bulb |
CN213686277U (en) * | 2019-08-30 | 2021-07-13 | 蔡雄创 | Lamp with electric-conduction heat-conduction radiating substrate |
-
2020
- 2020-08-28 CN CN202010888309.4A patent/CN112113153A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925581A (en) * | 2013-10-29 | 2014-07-16 | 蔡鸿 | LED lamp heat dissipation structure |
CN203823499U (en) * | 2014-04-02 | 2014-09-10 | 厦门市东林电子有限公司 | Integrated heat dissipation type LED bulb |
CN105444036A (en) * | 2014-08-26 | 2016-03-30 | 蔡鸿 | Light-emitting diode (LED) light source light-emitting and heat-dissipating structure and light-emitting and heat-dissipating method thereof |
CN106382515A (en) * | 2016-12-05 | 2017-02-08 | 武汉市福臣贸易有限公司 | LED bulb having excellent ventilating and heat dissipation functions |
CN106439537A (en) * | 2016-12-05 | 2017-02-22 | 武汉市福臣贸易有限公司 | Efficient heat dissipation type LED bulb |
CN213686277U (en) * | 2019-08-30 | 2021-07-13 | 蔡雄创 | Lamp with electric-conduction heat-conduction radiating substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471180A (en) * | 2021-06-28 | 2021-10-01 | 宝德照明集团有限公司 | Aerogel wisdom light energy street lamp |
CN113471180B (en) * | 2021-06-28 | 2023-08-29 | 宝德照明集团有限公司 | An airgel smart light energy street lamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5372139B2 (en) | Tubular LED lighting device | |
JP6050578B2 (en) | LED lamp | |
CN204176377U (en) | Three-dimensional LED packaged light bulb | |
CN102410462B (en) | Integrated LED lighting source | |
WO2012116478A1 (en) | Led lamp | |
CN214369387U (en) | Base plate with electric conduction, heat conduction and heat dissipation effects | |
CN213686277U (en) | Lamp with electric-conduction heat-conduction radiating substrate | |
CN112113153A (en) | A lamp with a conductive, thermally conductive and heat-dissipating substrate | |
CN107369676B (en) | A UV LED module structure | |
CN212869468U (en) | Reverse projection lamp | |
CN112113154A (en) | Base plate with electric conduction, heat conduction and heat dissipation effects | |
CN101566328A (en) | Light emitting diode lighting module and lighting device | |
CN109945144B (en) | A heat-absorbing, decompressing, heat-conducting and heat-insulating structure for liquid quantum dot LED lamps | |
CN204946942U (en) | A kind of high radiance, the high infrared LED encapsulating structure exported | |
CN106523943A (en) | LED lamp for household illumination | |
TWM399295U (en) | Light emitting device increasing light extracting efficiency by destroying total reflection light source | |
CN209909700U (en) | LED court lamp | |
CN201858545U (en) | A light-emitting structure that increases light extraction efficiency by destroying the total reflection light source | |
CN102444864A (en) | Light-emitting diode with heat radiation and light control | |
CN101975358B (en) | Solar simulator light source with multiple lenses and multi-optical fiber coupling | |
CN102840485A (en) | LED energy-saving daylight lamp | |
CN105299481A (en) | Line type inflatable LED lamp | |
CN205746056U (en) | A kind of inflated type led shot-light | |
TW201028599A (en) | Light emitting diode lamp | |
CN205137116U (en) | Light -emitting diode (LED) bulb lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |