CN112108124A - 一种水体铁锰高效吸附剂及其优化方法 - Google Patents
一种水体铁锰高效吸附剂及其优化方法 Download PDFInfo
- Publication number
- CN112108124A CN112108124A CN202011028121.9A CN202011028121A CN112108124A CN 112108124 A CN112108124 A CN 112108124A CN 202011028121 A CN202011028121 A CN 202011028121A CN 112108124 A CN112108124 A CN 112108124A
- Authority
- CN
- China
- Prior art keywords
- manganese
- solid phase
- solid
- zeolite
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 93
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000003463 adsorbent Substances 0.000 title claims abstract description 40
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 37
- 239000011572 manganese Substances 0.000 title claims abstract description 37
- 238000005457 optimization Methods 0.000 title claims description 4
- 239000007790 solid phase Substances 0.000 claims abstract description 73
- 235000007516 Chrysanthemum Nutrition 0.000 claims abstract description 60
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 55
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000010457 zeolite Substances 0.000 claims abstract description 55
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 48
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 90
- 239000007788 liquid Substances 0.000 claims description 56
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 45
- 239000011592 zinc chloride Substances 0.000 claims description 45
- 235000005074 zinc chloride Nutrition 0.000 claims description 45
- 238000002791 soaking Methods 0.000 claims description 43
- 239000000203 mixture Substances 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 39
- 235000018290 Musa x paradisiaca Nutrition 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 37
- 239000008367 deionised water Substances 0.000 claims description 36
- 229910021641 deionized water Inorganic materials 0.000 claims description 36
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 20
- 238000000605 extraction Methods 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 12
- 238000001354 calcination Methods 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000004321 preservation Methods 0.000 claims description 4
- 241000234295 Musa Species 0.000 claims 6
- 244000189548 Chrysanthemum x morifolium Species 0.000 claims 5
- 238000001816 cooling Methods 0.000 claims 4
- 238000001035 drying Methods 0.000 claims 4
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims 4
- 235000009604 Chrysanthemum X morifolium Nutrition 0.000 claims 2
- 229940109850 royal jelly Drugs 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 240000005250 Chrysanthemum indicum Species 0.000 claims 1
- 235000018959 Chrysanthemum indicum Nutrition 0.000 claims 1
- 240000000569 Musa basjoo Species 0.000 claims 1
- 235000000139 Musa basjoo Nutrition 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 240000008790 Musa x paradisiaca Species 0.000 abstract description 65
- 241000723353 Chrysanthemum Species 0.000 abstract description 58
- 235000003805 Musa ABB Group Nutrition 0.000 abstract description 34
- 235000015266 Plantago major Nutrition 0.000 abstract description 34
- 229910001437 manganese ion Inorganic materials 0.000 abstract description 8
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 3
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 18
- 238000009413 insulation Methods 0.000 description 14
- 238000010792 warming Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- -1 iron ion Chemical class 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/24—Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/286—Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/203—Iron or iron compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/206—Manganese or manganese compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种水体铁锰高效吸附剂优化方法,包含如下步骤:(1)沸石用丙清洗;(2)沸石浸泡三氯化钌、氯化锌的混合水溶液,烘干,煅烧,得到固相A;(3)固相A浸泡在双氧水溶液中,超声波振动,获得固相B;(4)提取芭蕉叶‑干皇菊提取液,将固相B浸泡在所述芭蕉叶‑干皇菊提取液中,恒温浸泡获得优化后的水体铁锰高效吸附剂。本发明对常规的沸石吸附剂进行优化处理,极大地增强了沸石型吸附剂对水体中铁锰离子的吸附性能,减少水体中铁锰重金属含量。
Description
技术领域
本发明属于环境治理技术领域,尤其涉及一种水体铁锰高效吸附剂及其优化方法。
背景技术
水是人类赖以生存的宝贵资源。水中铁锰的来源一般分为人为来源和自然来源,人为来源主要是人类活动产生的,比如含铁锰的工业废水不加处理的排放,铁锰矿无保护措施的开采,含铁锰的垃圾渗滤液等等。自然来源主要是岩石和矿物质中的难溶化合物溶出产生的,这些化合物中含有的铁锰可在生物和化学的作用下发生溶解,导致水中的铁和锰的含量增加。铁锰是人体所必须的微量元素,摄入过高或过低都会导致各种各样的疾病发生。摄入铁元素过多会导致铁中毒,急性铁中毒者严重时会导致休克甚至死亡,慢性铁中毒者会出现肝硬化等一系列问题。摄入过多的锰,将会引发精神方面的疾病。
发明内容
为解决现有技术中的问题,本发明提供了一种水体铁锰高效吸附剂优化方法,包含如下步骤:
(1) 将沸石浸泡在丙酮溶液中5~10min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,混合物置于真空箱内,抽真空至0.1个标准大气压以下,保压至没有气泡冒出为止,将沸石取出,80~90℃烘干8~15min,再置于450±20℃环境下煅烧1~2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置双氧水溶液,将所述固相A浸泡在双氧水溶液中,升温至80~83℃保温3~5h,保温过程中对溶液进行超声波振动,保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3~4次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,恒温至50~60℃,恒温浸泡20h以上,恒温浸泡过程中每2h搅拌一次,一次搅拌不少于5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3~4次,烘干,获得优化后的水体铁锰高效吸附剂。
进一步地,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌1%~2%,氯化锌5%~6%;所述步骤(2)中,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:8~10。
进一步地,所述双氧水溶液中过氧化氢质量百分含量为10%,固相A和双氧水溶液的固液质量比为1:8~10;超声波功率200~500W,频率20~25kHz。
进一步地,所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,加热恒温至70~80℃提取6h以上;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩,即获得所述芭蕉叶-干皇菊提取液。
进一步地,所述新鲜芭蕉叶和干皇菊花混合质量比新鲜芭蕉叶:干皇菊花=10:3~7;所述步骤一中,混合物和去离子水固液质量比为1:6;所述步骤二中液相减压浓缩为未浓缩前体积的1/2。
进一步地,所述步骤(4)中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:8~10。
本发明还公开了一种水体铁锰高效吸附剂,由沸石采用上述方法优化后制成。
因此,通过上述技术方案可知,本发明的有益效果在于:本发明对常规的沸石吸附剂进行优化处理,极大地增强了沸石型吸附剂对水体中铁锰离子的吸附性能,减少水体中铁锰重金属含量。
具体实施方式
下面结合实施例进行详细的说明:
实施例1
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌1%,氯化锌5%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:8。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干8min,再置于450±20℃环境下煅烧1h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:8;升温至80℃保温3h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:8。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本实施例的水体铁锰高效吸附剂。
本实施例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:3的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
实施例2
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌1%,氯化锌5%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:9。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干10min,再置于450±20℃环境下煅烧1h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:9;升温至80℃保温4h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:9。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本实施例的水体铁锰高效吸附剂。
本实施例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:4的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
实施例3
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌2%,氯化锌6%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:9。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干12min,再置于450±20℃环境下煅烧2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:9;升温至80℃保温4h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:9。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本实施例的水体铁锰高效吸附剂。
本实施例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:6的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
实施例4
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌2%,氯化锌6%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:10。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干15min,再置于450±20℃环境下煅烧2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:10;升温至80℃保温5h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:10。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本实施例的水体铁锰高效吸附剂。
本实施例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:7的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
对比例1
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置过氧化氢质量百分含量为10%的双氧水溶液,将步骤(1)处理后的沸石浸泡在双氧水溶液中,沸石和双氧水溶液的固液质量比为1:9;升温至80℃保温4h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(3) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:9。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本对比例的水体铁锰高效吸附剂。
本对比例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:6的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
对比例2
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌2%,氯化锌6%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:9。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干12min,再置于450±20℃环境下煅烧2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 提取芭蕉叶-干皇菊提取液,将所述固相A浸泡在所述芭蕉叶-干皇菊提取液中,固相A和芭蕉叶-干皇菊提取液固液质量比为1:9。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本对比例的水体铁锰高效吸附剂。
本对比例所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:按质量比新鲜芭蕉叶:干皇菊花=10:6的比例准备新鲜芭蕉叶和干皇菊花;将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,混合物和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶-干皇菊提取液。
对比例3
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌2%,氯化锌6%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:9。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干12min,再置于450±20℃环境下煅烧2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:9;升温至80℃保温4h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本对比例的水体铁锰高效吸附剂。
对比例4
一种水体铁锰高效吸附剂,通过如下方法获得:
(1) 将沸石浸泡在其质量10倍的丙酮溶液中5min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌2%,氯化锌6%,其余为水;将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:9。混合物置于真空箱内,抽真空至0.1个标准大气压,保压至没有气泡冒出为止,将沸石取出,85±5℃烘干12min,再置于450±20℃环境下煅烧2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置过氧化氢质量百分含量为10%的双氧水溶液,将所述固相A浸泡在双氧水溶液中,固相A和双氧水溶液的固液质量比为1:9;升温至80℃保温4h,保温过程中对溶液进行超声波振动,超声波功率300W,频率20kHz;保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得固相B;
(4) 提取芭蕉叶提取液,将所述固相B浸泡在所述芭蕉叶提取液中,固相B和芭蕉叶提取液固液质量比为1:9。恒温至55±5℃,恒温浸泡20h,恒温浸泡过程中每2h搅拌一次,一次搅拌5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3次,烘干,获得本对比例的水体铁锰高效吸附剂。
本对比例所述芭蕉叶提取液的提取方法为:
步骤一:将新鲜芭蕉叶切碎后,加入去离子水,芭蕉叶和去离子水固液质量比为1:6;加热恒温至75±5℃提取6h;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩为未浓缩前体积的1/2,即获得所述芭蕉叶提取液。
测试实验
配置原污水溶液(氯化铁和氯化锰的水溶液),原污水溶液中三价铁离子浓度为10mg/L、二价锰离子的浓度为10mg/L。25℃条件下将各实施例或对比例合成的吸附剂分别浸泡在所述原污水溶液中,浸泡30min后将吸附剂取出,100r/min转速搅拌溶液5min,然后静置,取上层清液测量剩余溶液的铁离子、锰离子浓度,计算去除率,其中去除率φ=(C 0 -C t )/ C 0 ×100%,C 0 为铁离子或锰离子在原污水溶液中的浓度,C t 为吸附剂处理30min后上层清液中铁离子或锰离子的浓度,结果如表1所示。具体实施方式中各实施例或对比例采用的沸石均为同一批次沸石样品,沸石磨碎后过100目筛网,过筛后的沸石用于进行各实施例或对比例试验。
表1
测试组 | 铁离子去除率 | 锰离子去除率 |
未优化处理的沸石 | 76.3% | 57.6% |
实施例1 | 93.8% | 86.0% |
实施例2 | 94.7% | 86.8% |
实施例3 | 94.4% | 86.4% |
实施例4 | 94.0% | 86.3% |
对比例1 | 78.9% | 63.0% |
对比例2 | 86.5% | 77.7% |
对比例3 | 84.3% | 81.2% |
对比例4 | 89.6% | 83.8% |
由表1可知,本发明对常规的沸石吸附剂进行优化处理,极大地增强了沸石型吸附剂对水体中铁锰离子的吸附性能,减少水体中铁锰重金属含量。
以上对本发明所提供的技术方案进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (7)
1.一种水体铁锰高效吸附剂优化方法,其特征在于,包含如下步骤:
(1) 将沸石浸泡在丙酮溶液中5~10min,浸泡完成后取出,烘干,备用;
(2) 配置三氯化钌、氯化锌的混合水溶液,将步骤(1)处理后的沸石浸泡在所述三氯化钌、氯化锌的混合水溶液中形成混合物,混合物置于真空箱内,抽真空至0.1个标准大气压以下,保压至没有气泡冒出为止,将沸石取出,80~90℃烘干8~15min,再置于450±20℃环境下煅烧1~2h,煅烧完成后取出空冷至常温,得到固相A;
(3) 配置双氧水溶液,将所述固相A浸泡在双氧水溶液中,升温至80~83℃保温3~5h,保温过程中对溶液进行超声波振动,保温结束后,空冷至常温,固液分离,固相用去离子水洗涤3~4次,烘干,获得固相B;
(4) 提取芭蕉叶-干皇菊提取液,将所述固相B浸泡在所述芭蕉叶-干皇菊提取液中,恒温至50~60℃,恒温浸泡20h以上,恒温浸泡过程中每2h搅拌一次,一次搅拌不少于5min,恒温浸泡完成后空冷至常温,固液分离,固相用去离子水洗涤3~4次,烘干,获得优化后的水体铁锰高效吸附剂。
2.根据权利要求1所述的一种水体铁锰高效吸附剂优化方法,其特征在于,所述三氯化钌、氯化锌的混合水溶液中各组分的质量百分含量为三氯化钌1%~2%,氯化锌5%~6%;所述步骤(2)中,沸石和三氯化钌、氯化锌的混合水溶液固液质量比为1:8~10。
3.根据权利要求1所述的一种水体铁锰高效吸附剂优化方法,其特征在于,所述双氧水溶液中过氧化氢质量百分含量为10%,固相A和双氧水溶液的固液质量比为1:8~10;超声波功率200~500W,频率20~25kHz。
4.根据权利要求1所述的一种水体铁锰高效吸附剂优化方法,其特征在于,所述芭蕉叶-干皇菊提取液的提取方法为:
步骤一:将新鲜芭蕉叶和干皇菊花分别切碎后混合,向混合物中加入去离子水,加热恒温至70~80℃提取6h以上;
步骤二:恒温提取结束后,溶液空冷至常温,过滤,液相减压浓缩,即获得所述芭蕉叶-干皇菊提取液。
5.根据权利要求4所述的一种水体铁锰高效吸附剂优化方法,其特征在于,所述新鲜芭蕉叶和干皇菊花混合质量比新鲜芭蕉叶:干皇菊花=10:3~7;所述步骤一中,混合物和去离子水固液质量比为1:6;所述步骤二中液相减压浓缩为未浓缩前体积的1/2。
6.根据权利要求1所述的一种水体铁锰高效吸附剂优化方法,其特征在于,所述步骤(4)中,固相B和芭蕉叶-干皇菊提取液固液质量比为1:8~10。
7.一种水体铁锰高效吸附剂,其特征在于,采用如权利要求1~6任一项所述方法优化后制成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011028121.9A CN112108124B (zh) | 2020-09-26 | 2020-09-26 | 一种水体铁锰高效吸附剂及其优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011028121.9A CN112108124B (zh) | 2020-09-26 | 2020-09-26 | 一种水体铁锰高效吸附剂及其优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112108124A true CN112108124A (zh) | 2020-12-22 |
CN112108124B CN112108124B (zh) | 2023-03-31 |
Family
ID=73797967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011028121.9A Expired - Fee Related CN112108124B (zh) | 2020-09-26 | 2020-09-26 | 一种水体铁锰高效吸附剂及其优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112108124B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113788510A (zh) * | 2021-10-19 | 2021-12-14 | 江西师范大学 | 一种适用于水库铁锰去除的装置 |
CN114163163A (zh) * | 2021-12-22 | 2022-03-11 | 株洲宏信科技发展有限公司 | 一种混凝土降铬剂 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000051654A (ja) * | 1998-08-12 | 2000-02-22 | Kobe Steel Ltd | 二酸化窒素吸着剤 |
US20050092687A1 (en) * | 2003-11-03 | 2005-05-05 | U.S. Epa | Ruthenium based contaminant sorbents and oxidizers |
WO2011130427A1 (en) * | 2010-04-13 | 2011-10-20 | Molycorp Minerals, Llc | Methods and devices for enhancing contaminant removal by rare earths |
CN102328974A (zh) * | 2011-05-31 | 2012-01-25 | 厦门建霖工业有限公司 | 一种净水材料及其制备方法 |
CN103007890A (zh) * | 2012-10-11 | 2013-04-03 | 广西大学 | 一种微波、光波和超声波协同催化制备半纤维素基重金属离子吸附剂的方法 |
CN103084141A (zh) * | 2013-01-16 | 2013-05-08 | 昆明理工大学 | 一种改性4a分子筛吸附剂及其制备方法 |
CN103601212A (zh) * | 2013-11-11 | 2014-02-26 | 吉林大学 | 一种制备手性多形体A过量的Beta沸石分子筛的方法 |
WO2014062099A1 (ru) * | 2012-10-19 | 2014-04-24 | Fastov Sergey Anatolyevich | Цеолитный адсорбент |
CN106268678A (zh) * | 2016-09-16 | 2017-01-04 | 佛山市中国地质大学研究院 | 一种改性薯莨单宁重金属吸附剂的制备方法 |
CN106582513A (zh) * | 2016-12-22 | 2017-04-26 | 郑州丽福爱生物技术有限公司 | 一种用于重金属废水处理的复合吸附材料及其制备方法 |
CN107282010A (zh) * | 2017-07-03 | 2017-10-24 | 安徽天顺环保设备股份有限公司 | 一种重金属吸附剂 |
CN107321300A (zh) * | 2017-09-01 | 2017-11-07 | 重庆卡美伦科技有限公司合川分公司 | 一种环保高吸附性能的膨润土及其制备方法 |
CN107429315A (zh) * | 2015-03-24 | 2017-12-01 | 日商科莱恩触媒股份有限公司 | 水溶液中的钌吸附剂及水溶液中的钌的吸附处理方法 |
CN108911096A (zh) * | 2018-08-06 | 2018-11-30 | 邹泽深 | 一种金属污染水体的净化剂及其制备方法 |
CN109809622A (zh) * | 2019-03-28 | 2019-05-28 | 长沙埃比林环保科技有限公司 | 一种含锌废水的处理方法 |
CN109879491A (zh) * | 2019-03-13 | 2019-06-14 | 贵州省过程工业技术研究中心 | 一种电解处理含锰废水回收锰方法 |
CN110201637A (zh) * | 2019-06-13 | 2019-09-06 | 中国石油大学(华东) | 一种用于天然气中有机硫化物脱除吸附剂的制备方法 |
CN110302779A (zh) * | 2019-07-26 | 2019-10-08 | 宜兴国际环保城科技发展有限公司 | 一种用于含助剂废水处理的复合催化剂 |
CN111115782A (zh) * | 2020-01-09 | 2020-05-08 | 江西省地质环境监测总站(鄱阳湖生态环境研究所) | 一种污水处理絮凝剂及其制备方法 |
-
2020
- 2020-09-26 CN CN202011028121.9A patent/CN112108124B/zh not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000051654A (ja) * | 1998-08-12 | 2000-02-22 | Kobe Steel Ltd | 二酸化窒素吸着剤 |
US20050092687A1 (en) * | 2003-11-03 | 2005-05-05 | U.S. Epa | Ruthenium based contaminant sorbents and oxidizers |
WO2011130427A1 (en) * | 2010-04-13 | 2011-10-20 | Molycorp Minerals, Llc | Methods and devices for enhancing contaminant removal by rare earths |
CN102328974A (zh) * | 2011-05-31 | 2012-01-25 | 厦门建霖工业有限公司 | 一种净水材料及其制备方法 |
CN103007890A (zh) * | 2012-10-11 | 2013-04-03 | 广西大学 | 一种微波、光波和超声波协同催化制备半纤维素基重金属离子吸附剂的方法 |
WO2014062099A1 (ru) * | 2012-10-19 | 2014-04-24 | Fastov Sergey Anatolyevich | Цеолитный адсорбент |
CN103084141A (zh) * | 2013-01-16 | 2013-05-08 | 昆明理工大学 | 一种改性4a分子筛吸附剂及其制备方法 |
CN103601212A (zh) * | 2013-11-11 | 2014-02-26 | 吉林大学 | 一种制备手性多形体A过量的Beta沸石分子筛的方法 |
CN107429315A (zh) * | 2015-03-24 | 2017-12-01 | 日商科莱恩触媒股份有限公司 | 水溶液中的钌吸附剂及水溶液中的钌的吸附处理方法 |
JPWO2016152141A1 (ja) * | 2015-03-24 | 2018-03-08 | クラリアント触媒株式会社 | 水溶液中のルテニウム吸着剤、及び水溶液中のルテニウムの吸着処理方法 |
CN106268678A (zh) * | 2016-09-16 | 2017-01-04 | 佛山市中国地质大学研究院 | 一种改性薯莨单宁重金属吸附剂的制备方法 |
CN106582513A (zh) * | 2016-12-22 | 2017-04-26 | 郑州丽福爱生物技术有限公司 | 一种用于重金属废水处理的复合吸附材料及其制备方法 |
CN107282010A (zh) * | 2017-07-03 | 2017-10-24 | 安徽天顺环保设备股份有限公司 | 一种重金属吸附剂 |
CN107321300A (zh) * | 2017-09-01 | 2017-11-07 | 重庆卡美伦科技有限公司合川分公司 | 一种环保高吸附性能的膨润土及其制备方法 |
CN108911096A (zh) * | 2018-08-06 | 2018-11-30 | 邹泽深 | 一种金属污染水体的净化剂及其制备方法 |
CN109879491A (zh) * | 2019-03-13 | 2019-06-14 | 贵州省过程工业技术研究中心 | 一种电解处理含锰废水回收锰方法 |
CN109809622A (zh) * | 2019-03-28 | 2019-05-28 | 长沙埃比林环保科技有限公司 | 一种含锌废水的处理方法 |
CN110201637A (zh) * | 2019-06-13 | 2019-09-06 | 中国石油大学(华东) | 一种用于天然气中有机硫化物脱除吸附剂的制备方法 |
CN110302779A (zh) * | 2019-07-26 | 2019-10-08 | 宜兴国际环保城科技发展有限公司 | 一种用于含助剂废水处理的复合催化剂 |
CN111115782A (zh) * | 2020-01-09 | 2020-05-08 | 江西省地质环境监测总站(鄱阳湖生态环境研究所) | 一种污水处理絮凝剂及其制备方法 |
Non-Patent Citations (3)
Title |
---|
吕郭栋: "纳米氧化锌改性沸石对废水中重金属离子去除特性的研究", 《中国优秀硕博士学位论文全文数据库(硕士) 工程科技I辑》 * |
王玲玲等: "锌氧化物改性沸石对腐植酸的吸附机理", 《矿物学报》 * |
王鑫国: "《中药药理学实验教程》", 30 November 2010 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113788510A (zh) * | 2021-10-19 | 2021-12-14 | 江西师范大学 | 一种适用于水库铁锰去除的装置 |
CN113788510B (zh) * | 2021-10-19 | 2023-06-20 | 江西师范大学 | 一种适用于水库铁锰去除的装置 |
CN114163163A (zh) * | 2021-12-22 | 2022-03-11 | 株洲宏信科技发展有限公司 | 一种混凝土降铬剂 |
CN114163163B (zh) * | 2021-12-22 | 2022-11-29 | 湖南润攸科技发展有限公司 | 一种混凝土降铬剂 |
Also Published As
Publication number | Publication date |
---|---|
CN112108124B (zh) | 2023-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106914218B (zh) | 一种高性能食用菌菌渣活性炭及其制备方法 | |
CN112108124B (zh) | 一种水体铁锰高效吸附剂及其优化方法 | |
CN105435752A (zh) | 一种重金属吸附剂及其制备方法 | |
CN111790352B (zh) | 一种可去除工业废水中重金属的吸附剂及其制备方法 | |
CN112295540A (zh) | 一种碳量子点改性活性炭重金属吸附材料的制备方法 | |
CN106669596A (zh) | Cnx改性硅藻土的制备和利用其吸附刚果红废水的方法 | |
CN104326471A (zh) | 一种甘草废渣制备活性炭的方法 | |
CN105417614B (zh) | 一种海水养殖水体用重金属脱除剂 | |
CN106824069A (zh) | 用于处理含砷废水的稀土掺杂铁炭材料的制备方法 | |
CN103623618B (zh) | 一种以石英砂为载体的疏水性滤料的制备方法 | |
WO2023093188A1 (zh) | 一种磁性铝基吸附剂及其制备方法 | |
CN105819442A (zh) | 青霉素废菌丝体脱氮制备活性炭的方法 | |
CN108176351A (zh) | 一种污水处理用蛭石基材料及其制备方法和应用 | |
CN107349239A (zh) | 一种芒果叶多酚的提取方法 | |
CN113964407B (zh) | 一种从废旧锂离子电池中回收锂的方法 | |
CN117566845A (zh) | 一种处理有机废液的方法 | |
CN111250053A (zh) | 一种用于去除重金属离子的水处理剂的制备方法 | |
CN111117643A (zh) | 一种土壤Cd、Pb修复剂及其制备方法 | |
CN105642226A (zh) | 一种利用废弃硅藻土制备硅炭复合材料的方法 | |
CN107879342B (zh) | 一种高吸附型多孔活性炭的制备方法 | |
CN108262024A (zh) | 一种脱硫铁基材料的制备方法 | |
CN116426752A (zh) | 一种深度脱除多金属混合溶液中杂质硅的方法 | |
CN104479979A (zh) | 用于白酒老熟的凹土基催陈剂及其制备方法 | |
CN108439424B (zh) | 以稻壳为原料制备高吸附性能的立方体型沸石的方法 | |
CN108439437B (zh) | 一种利用锂云母矿制备碳酸锂的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230331 |