CN112084647B - Large-scale granular material internal stress and crushing simulation analysis method and device - Google Patents
Large-scale granular material internal stress and crushing simulation analysis method and device Download PDFInfo
- Publication number
- CN112084647B CN112084647B CN202010917113.3A CN202010917113A CN112084647B CN 112084647 B CN112084647 B CN 112084647B CN 202010917113 A CN202010917113 A CN 202010917113A CN 112084647 B CN112084647 B CN 112084647B
- Authority
- CN
- China
- Prior art keywords
- particle
- boundary
- force
- coordinate system
- integral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 17
- 238000004458 analytical method Methods 0.000 title claims abstract description 12
- 239000008187 granular material Substances 0.000 title claims description 22
- 239000002245 particle Substances 0.000 claims abstract description 155
- 239000011159 matrix material Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 12
- 230000009466 transformation Effects 0.000 claims abstract description 9
- 238000011160 research Methods 0.000 claims abstract description 8
- 230000003993 interaction Effects 0.000 claims description 27
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 18
- 239000003637 basic solution Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 9
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000011439 discrete element method Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Geometry (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Operations Research (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种大规模颗粒材料内部应力及破碎模拟分析方法和装置,属于颗粒破碎技术领域,本发明基于连续离散耦合基本思想,将边界元法和离散元法相结合进行大规模颗粒破碎研究,能够利用边界元法进行颗粒内部应力计算分析,并结合连续介质力学断裂理论,霍克布朗准则判断颗粒是否发生破碎。此外,在利用边界元进行内部应力模拟时,对于形状相似的颗粒集合体,例如:圆形颗粒,本发明只需计算一个颗粒的系数矩阵,其他相似颗粒通过坐标转换和系数缩放获得系数矩阵,大大提高了计算效率。本发明还进行了圆形堆石料的内部应力模拟,并证明其有效性。
The invention discloses a large-scale particle material internal stress and crushing simulation analysis method and device, belonging to the technical field of particle crushing. Based on the basic idea of continuous discrete coupling, the invention combines boundary element method and discrete element method to conduct large-scale particle crushing research , can use the boundary element method to calculate and analyze the internal stress of the particles, and combine with the fracture theory of continuum mechanics and the Hawke-Brown criterion to determine whether the particles are broken. In addition, when using boundary elements to simulate internal stress, for particle aggregates with similar shapes, such as circular particles, the present invention only needs to calculate the coefficient matrix of one particle, and other similar particles obtain the coefficient matrix through coordinate transformation and coefficient scaling, The computational efficiency is greatly improved. The present invention also conducts the internal stress simulation of circular rockfill and proves its effectiveness.
Description
技术领域technical field
本发明属于颗粒破碎技术领域,更具体地,涉及一种大规模颗粒材料内部应力及破碎模拟分析方法和装置。The invention belongs to the technical field of particle crushing, and more particularly, relates to a method and device for simulating and analyzing the internal stress and crushing of large-scale granular materials.
背景技术Background technique
颗粒材料作为一种重要的建筑材料,在工程中得以广泛的应用,例如堆石坝的主要填筑材料为堆石体,以及工民建工程中常见的砂砾石材料。由于外力作用,颗粒材料内部经常处于高应力状态,导致颗粒发生破碎,进而使得颗粒集合体的级配发生改变,影响颗粒集合体的宏细观力学性质。因此研究颗粒破碎的力学机制是十分必要的。然而受到颗粒材料尺寸和位置的影响,物理实验很难还原颗粒材料的原位力学机制分析,因而颗粒材料的数值模拟方法广受欢迎。其中,连续离散耦合方法逐渐成为一种科学的颗粒破碎数值分析手段,连续离散耦合方法主要基于有限元法,计算成本非常高。As an important building material, granular materials are widely used in engineering. For example, the main filling material of rockfill dams is rockfill body, and the common sand and gravel materials in industrial and civil construction projects. Due to the action of external force, the interior of granular materials is often in a state of high stress, which leads to the fragmentation of the particles, which in turn changes the gradation of the particle aggregates and affects the macro-mechanical properties of the particle aggregates. Therefore, it is necessary to study the mechanical mechanism of particle breakage. However, due to the influence of the size and position of the granular material, it is difficult to reduce the in-situ mechanical mechanism analysis of the granular material by physical experiments, so the numerical simulation method of the granular material is very popular. Among them, the continuous discrete coupling method has gradually become a scientific numerical analysis method for particle crushing. The continuous discrete coupling method is mainly based on the finite element method, and the computational cost is very high.
目前所存在的离散元法,在模拟颗粒集合体相互作用时,一般将颗粒视为刚性体,无法计算颗粒内部应力大小,故而采用最大接触力原则或者设置应力阈值进行颗粒破碎判断准则,均由经验所得,理论依据薄弱。而对于现有的连续离散耦合方法,如有限元-离散元耦合法,比例边界有限元-离散元耦合法,能够利用连续介质力学中较为成熟的断裂理论进行颗粒破碎的判断,但计算效率一般较低。The existing discrete element method, when simulating the interaction of particle aggregates, generally regards particles as rigid bodies and cannot calculate the internal stress of particles. Therefore, the principle of maximum contact force or the setting of stress thresholds are used to judge particle breakage. Based on experience, the theoretical basis is weak. For the existing continuous discrete coupling methods, such as the finite element-discrete element coupling method and the proportional boundary finite element-discrete element coupling method, the relatively mature fracture theory in continuum mechanics can be used to judge the particle breakage, but the calculation efficiency is average. lower.
对于重力等体积力引起的域积分,需要进一步处理,否则将使得边界元丧失降维的优势,目前采用的域积分处理方法主要有:双互易法(Dual Reciprocity Method,DRM),在DRM中,非齐次项可以用径向基函数(Radial basis function,RBF)等一系列函数来逼近,并应用第二个互易性将域积分转化为边界积分。只有域或边界上的点需要提供由非齐次项表述的信息。然而,DRM的精度在很大程度上取决于域点的分布和位置,以及用于近似非齐次项的函数类型。此外,复杂域中的点的排列可能不容易,特别是对于三维问题。类似于DRM的方法是多重互易法(Multiple Reciprocity Method,MRM),其中互易定理通过一系列高阶基本解反复应用,将域积分转化为边界。另一种方法是特殊解方法(PropensityScore Matching,PSM),其中构造了一个近似的特殊解,而不是在DRM中执行第二个互易性将域积分转化为边界积分。For the domain integral caused by the gravitational iso-body force, further processing is required, otherwise the boundary element will lose the advantage of dimensionality reduction. The currently used domain integral processing methods mainly include: Dual Reciprocity Method (DRM). , the inhomogeneous term can be approximated by a series of functions such as radial basis function (RBF), and the second reciprocity is applied to convert the domain integral to the boundary integral. Only points on domains or boundaries need to provide information represented by inhomogeneous terms. However, the accuracy of DRM is highly dependent on the distribution and location of domain points, as well as the type of function used to approximate the inhomogeneous terms. Furthermore, the arrangement of points in complex domains may not be easy, especially for three-dimensional problems. A method similar to DRM is the Multiple Reciprocity Method (MRM), in which the reciprocity theorem is applied iteratively through a series of higher-order fundamental solutions to convert domain integrals into boundaries. Another approach is the special solution method (PropensityScore Matching, PSM), in which an approximate special solution is constructed instead of performing a second reciprocity in the DRM to convert domain integrals to boundary integrals.
发明内容SUMMARY OF THE INVENTION
针对现有技术的以上缺陷或改进需求,本发明提出了一种大规模颗粒材料内部应力及破碎模拟分析方法和装置,具有极高的准确性和有效性。In view of the above defects or improvement needs of the prior art, the present invention proposes a large-scale granular material internal stress and crushing simulation analysis method and device, which has extremely high accuracy and effectiveness.
为实现上述目的,按照本发明的一个方面,提供了一种大规模颗粒材料内部应力及破碎模拟分析方法,包括:In order to achieve the above object, according to one aspect of the present invention, a method for simulating and analyzing the internal stress and crushing of large-scale granular materials is provided, including:
S1:利用颗粒相互作用求解器进行大规模颗粒集合体相互作用的模拟计算;S1: Use the particle interaction solver to simulate the interaction of large-scale particle aggregates;
S2:将颗粒相互作用求解器中某一时间步的计算结果导出,在颗粒内部应力求解器中,利用建模软件建立待求解颗粒的几何模型,输入从颗粒相互作用求解器中导出的待求解颗粒模型的材料参数、网格化分数、网格类型以及边界条件,然后利用边界元法输出待求解颗粒几何模型的内部应力;S2: Export the calculation result of a certain time step in the particle interaction solver. In the particle internal stress solver, use the modeling software to establish the geometric model of the particle to be solved, and input the to-be-solved particle derived from the particle interaction solver. Material parameters, mesh fraction, mesh type and boundary conditions of the particle model, and then use the boundary element method to output the internal stress of the particle geometry model to be solved;
S3:将每一个颗粒边界上受到的集中力等效为边界上的面力;S3: The concentrated force on the boundary of each particle is equivalent to the surface force on the boundary;
S4:建立控制方程,并由控制方程得到位移边界积分方程;S4: establish the control equation, and obtain the displacement boundary integral equation from the control equation;
S5:将位移边界积分方程中体积力导致的域积分转化为边界积分;S5: Convert the domain integral caused by the body force in the displacement boundary integral equation into a boundary integral;
S6:分别对每一个颗粒建立局部坐标系,并对相似颗粒计算转换矩阵;S6: respectively establish a local coordinate system for each particle, and calculate a transformation matrix for similar particles;
S7:对单颗粒边界积分方程进行离散,划分边界单元,并在域内布置节点;S7: Discretize the single particle boundary integral equation, divide the boundary elements, and arrange nodes in the domain;
S8:将每一个颗粒边界上的面力等效为边界单元上的面力;S8: Equivalent the surface force on each particle boundary to the surface force on the boundary element;
S9:计算单颗粒的系数矩阵,并对系数矩阵求逆;S9: Calculate the coefficient matrix of a single particle, and invert the coefficient matrix;
S10:求解边界节点的位移;S10: Solve the displacement of the boundary nodes;
S11:求解域内的节点的应力和应变等值;S11: Solve the equivalent stress and strain of nodes in the domain;
S12:根据内部应力值判断颗粒是否开裂,并利用颗粒替代法进行破碎颗粒的替代,并将代替颗粒的模型信息返回到颗粒相互作用求解器中。S12: Determine whether the particles are cracked according to the internal stress value, use the particle replacement method to replace the broken particles, and return the model information of the replaced particles to the particle interaction solver.
在一些可选的实施方案中,步骤S3包括:In some optional embodiments, step S3 includes:
对于作用在中心为O(x0,y0)颗粒上一点P(xp,yp)的集中力F(Fx,Fy),可等效为均布力p,其中,角度范围[θ1,θ2]为面力等效范围,且(x0,y0)表示颗粒中心点的横纵坐标,(xp,yp)表示点P的横纵坐标,(Fx,Fy)表示集中力F的横纵轴的分解力,R表示颗粒半径。For a concentrated force F(F x , F y ) acting on a point P(x p , y p ) on a particle whose center is O(x 0 , y 0 ), it can be equivalent to a uniform force p, where, The angular range [θ 1 , θ 2 ] is the equivalent range of the surface force, and (x 0 , y 0 ) represents the horizontal and vertical coordinates of the particle center point, (x p , y p ) represents the horizontal and vertical coordinates of point P, (F x , F y ) represents the decomposition force of the horizontal and vertical axes of the concentration force F, R represents the particle radius.
在一些可选的实施方案中,由建立控制方程,其中,x为研究域内的点,u为应力张量;a为加速度;ρ为颗粒材料密度;μ为剪切模量;λ=2vμ/(1-2v)为拉美常数;v为泊松比,和为散度运算符;为合力矢量,b(x)为等效体力,S表示颗粒面积,FI表示颗粒的集中力项,n表示集中力个数。In some optional embodiments, by Establish the governing equation, where x is the point in the research domain, u is the stress tensor; a is the acceleration; ρ is the density of the granular material; μ is the shear modulus; λ=2vμ/(1-2v) is the Latin American constant; v is Poisson's ratio, and is the divergence operator; is the resultant force vector, b(x) is the equivalent body force, S represents the particle area, F I represents the particle's concentrated force term, and n represents the number of concentrated forces.
在一些可选的实施方案中,步骤S5包括:In some optional embodiments, step S5 includes:
采用直线积分法进行域积分计算,其中,域积分表示为:D1=∫ΩU(x,y)bdΩ(y),基于直线积分法,由将域积分转化为等效边界积分,其中,M表示积分线个数,Wi表示权重因子,Li表示积分线,U(x,y)表示格林函数基本解,b表示等效体力,dy1表示微分。The domain integral calculation is carried out by the straight-line integral method, where the domain integral is expressed as: D 1 =∫ Ω U(x,y)bdΩ(y), based on the straight-line integral method, by Convert the domain integral to the equivalent boundary integral, where M is the number of integral lines, Wi is the weight factor, Li is the integral line, U(x, y) is the basic solution of Green's function, b is the equivalent physical strength, dy 1 means differential.
在一些可选的实施方案中,步骤S6包括:In some optional embodiments, step S6 includes:
对于全局坐标中的点x(x1,x2)以及局部坐标中的点si(s1,s2),可通过以下表达式进行转化: 为Jacobi矩阵的常系数,|J|=c2,c为比例因子,逆矩阵为: For a point x(x 1 ,x 2 ) in global coordinates and a point s i (s 1 ,s 2 ) in local coordinates, the transformation can be done by the following expressions: are the constant coefficients of the Jacobi matrix, |J|=c 2 , c is the scale factor, and the inverse matrix is:
在一些可选的实施方案中,对于形状相似的颗粒,只需要在局部坐标系内建立边界积分方程,其中,边界积分方程在局部坐标中可表达为:s和为局部坐标系中的点,和为局部坐标系中的位移和面力,Γ为问题研究域Ω的边界,表示和点s位置相关的系数,表示局部坐标系下的基本解函数,表示局部坐标系下的边界,表示局部坐标系下的基本解函数,表示局部坐标系下点的位移,表示局部坐标系下的体力矢量,表示局部坐标系下的求解域,表示局部坐标系下点和s的距离,δki表示克罗内克符号,表示局部坐标系下r的偏导数,表示局部坐标系下r的偏导数。In some alternative embodiments, for particles with similar shapes, only the boundary integral equation needs to be established in the local coordinate system, where the boundary integral equation can be expressed in the local coordinate as: s and is a point in the local coordinate system, and is the displacement and surface force in the local coordinate system, Γ is the boundary of the problem research domain Ω, represents the coefficient related to the position of point s, represents the basic solution function in the local coordinate system, represents the boundary in the local coordinate system, represents the basic solution function in the local coordinate system, Represents a point in the local coordinate system displacement, represents the body force vector in the local coordinate system, represents the solution domain in the local coordinate system, Represents a point in the local coordinate system the distance from s, δ ki denotes Kronecker notation, represents the partial derivative of r in the local coordinate system, represents the partial derivative of r in the local coordinate system.
在一些可选的实施方案中,步骤S8包括:In some optional embodiments, step S8 includes:
对于单元Zj[sj,sj+1],sj和sj+1为单元的两个端点,j表示单元序号,如果满足:其中,为集中力等效的范围,和为离散边界上的两个端点,单元所受等效面力为:p0为初始等效面力,β1和β2分别为单元集的起点和终点角度,p1和p2为在第一个和最后一个单元上残余力引起的压力,可由以下两组公式求得:及β3和β4分别为第一个单元的终点和最后一个单元的起点与集中力的夹角。For the unit Z j [s j ,s j+1 ], s j and s j+1 are the two endpoints of the unit, and j represents the unit number, if it satisfies: in, is the equivalent range of concentrated force, and are the two endpoints on the discrete boundary, and the equivalent surface force on the element is: p 0 is the initial equivalent surface force, β 1 and β 2 are the starting and ending angles of the element set, respectively, and p 1 and p 2 are the pressures due to residual forces on the first and last elements, which can be obtained from the following two sets of formulas: and β 3 and β 4 are the angles between the end point of the first element and the start point of the last element and the concentrated force, respectively.
在一些可选的实施方案中,由确定每一个颗粒的边界节点,其中,表示边界上点的位移,H-1表示H的逆矩阵,H表示边界积分里形成的系数矩阵,G表示边界积分里形成的系数矩阵,表示局部坐标下节点的面力,表示局部坐标下节点的体力系数矩阵,表示局部坐标下节点的体力。In some optional embodiments, by Determine the boundary nodes of each particle, where, represents the displacement of the point on the boundary, H -1 represents the inverse matrix of H, H represents the coefficient matrix formed in the boundary integral, G represents the coefficient matrix formed in the boundary integral, represents the surface force of the node in local coordinates, represents the physical strength coefficient matrix of nodes in local coordinates, Represents the physical force of the node in local coordinates.
在一些可选的实施方案中,由确定颗粒域内节点的应变,由确定应力值,其中,G′表示应变离散矩阵方程中对应位移的系数矩阵,H′表示应变离散矩阵方程中对应面力的系数矩阵,表示应变离散矩阵方程中对应体力的系数矩阵,m表示需要求解的内部点的数量,和为每个点在x,y方向上的应变值,表示局部坐标系下的应力,表示局部坐标系下的刚度矩阵,表示局部坐标系下的应变,δij、δkl、δik、δjl、δil及δjk表示克罗内克符号,v为泊松比。In some optional embodiments, by Determine the strain at the nodes within the particle domain, given by Determine the stress value, where G′ represents the coefficient matrix of the corresponding displacement in the strain discrete matrix equation, H′ represents the coefficient matrix of the corresponding surface force in the strain discrete matrix equation, represents the coefficient matrix of the corresponding body force in the discrete matrix equation of strain, m represents the number of interior points to be solved, and is the strain value of each point in the x, y direction, represents the stress in the local coordinate system, represents the stiffness matrix in the local coordinate system, represents the strain in the local coordinate system, δ ij , δ kl , δ ik , δ jl , δ il and δ jk represent Kronecker symbols, and v is Poisson's ratio.
按照本发明的另一方面,提供了一种大规模颗粒材料内部应力及破碎模拟分析装置,包括:粒相互作用求解器和颗粒内部应力求解器;According to another aspect of the present invention, a large-scale granular material internal stress and crushing simulation and analysis device is provided, including: a particle interaction solver and a particle internal stress solver;
所述颗粒相互作用求解器,用于进行大规模颗粒集合体相互作用的模拟计算;The particle interaction solver is used for simulation calculation of large-scale particle aggregate interaction;
所述颗粒内部应力求解器包括:输入模块,其用于接收操作者输入的待求解颗粒的材料参数、网格化分数、网格类型以及边界条件信息;求解模块,其用于采用上述任意一项大规模颗粒材料内部应力及破碎模拟分析方法得到待求解颗粒体内部的应力。The particle internal stress solver includes: an input module, which is used to receive the material parameters, meshing fraction, mesh type and boundary condition information of the particle to be solved input by the operator; a solution module, which is used to adopt any one of the above. A large-scale granular material internal stress and crushing simulation analysis method is used to obtain the internal stress of the particle to be solved.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
根据本发明所提供的一种大规模颗粒材料内部应力及破碎模拟分析方法和装置,能够容易地求解出砂砾石等颗粒材料的内部应力并进行颗粒破碎判断,进而把握颗粒材料的级配变化和宏细观力学性能上的改变,以确保工程结构的安全性和可靠性。According to the method and device for simulating and analyzing the internal stress and crushing of large-scale granular materials provided by the present invention, the internal stress of granular materials such as sand and gravel can be easily solved and the particle crushing judgment can be carried out, and then the gradation changes and macroscopic changes of granular materials can be grasped. Changes in meso-mechanical properties to ensure the safety and reliability of engineering structures.
附图说明Description of drawings
图1是本发明实施例提供的一种颗粒集合体内部应力及破碎模拟方法的流程示意图;1 is a schematic flowchart of a method for simulating the internal stress and crushing of a particle aggregate provided by an embodiment of the present invention;
图2是本发明实施例提供的一种模型及其边界条件示意图;2 is a schematic diagram of a model and its boundary conditions provided by an embodiment of the present invention;
图3是本发明实施例提供的一种模拟装置计算所得的内部应力云图。FIG. 3 is an internal stress nephogram calculated by a simulation device provided in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
本发明将边界元法和离散元法相结合进行大规模颗粒破碎研究,能够利用边界元法进行颗粒内部应力计算分析,并结合连续介质力学断裂理论,霍克布朗准则判断颗粒是否发生破碎。此外,在利用边界元进行内部应力模拟时,对于形状相似的颗粒集合体,例如:圆形颗粒,本发明只需计算一个颗粒的系数矩阵,其他相似颗粒通过坐标转换和系数缩放获得系数矩阵,大大提高了计算效率。本发明还进行了圆形堆石料的内部应力模拟,并证明其有效性。本发明能够实现相似颗粒系数矩阵的相互转化,无需对每个相似的颗粒进行计算,故而进一步提高了计算效率。对于集中力,采用边界元直接处理存在一定困难,需要将其等效到边界单元上,本发明提出了一种“两步转换法”:第一步将集中力转换为边界上均匀分布的面力;第二步将边界上的面力转化为边界单元上的面力。采用该等效方法后,一方面消除了集中力造成的奇异性,另一方面对形状相同的单元只需要计算一次系数矩阵,不同边界条件无需重复进行边界积分来处理边界条件,可大大节省计算量。本发明采用直线积分法(Line Lim Method,LIM)处理边界元域积分法,在直线积分法中,只使用边界单元来离散边界,不需要体单元。因此,该方法可以看作是一种边界离散化方法。在直线积分中,域积分可以用直线上一维积分的和来计算,积分线可以很容易地由边界元和OCT树结构中的边界元来创建。The invention combines the boundary element method and the discrete element method for large-scale particle crushing research, and can use the boundary element method to calculate and analyze the internal stress of the particles, and combine the continuum mechanics fracture theory and the Hawke-Brown criterion to determine whether the particles are broken. In addition, when using boundary elements to simulate internal stress, for particle aggregates with similar shapes, such as circular particles, the present invention only needs to calculate the coefficient matrix of one particle, and other similar particles obtain the coefficient matrix through coordinate transformation and coefficient scaling, The computational efficiency is greatly improved. The present invention also conducts the internal stress simulation of circular rockfill and proves its effectiveness. The invention can realize the mutual conversion of the coefficient matrix of similar particles, and does not need to calculate each similar particle, so the calculation efficiency is further improved. For the concentrated force, it is difficult to use the boundary element to directly deal with it, and it needs to be equivalent to the boundary element. force; the second step converts the surface force on the boundary to the surface force on the boundary element. After adopting this equivalent method, on the one hand, the singularity caused by the concentrated force is eliminated, on the other hand, the coefficient matrix only needs to be calculated once for the elements with the same shape, and there is no need to repeat the boundary integration to deal with the boundary conditions for different boundary conditions, which can greatly save the calculation. quantity. The present invention adopts the line integral method (Line Lim Method, LIM) to process the boundary element domain integral method. In the linear integral method, only the boundary element is used to discretize the boundary, and the volume element is not needed. Therefore, this method can be regarded as a boundary discretization method. In line integrals, domain integrals can be computed with the sum of dimensional integrals on a straight line, and integral lines can be easily created from boundary elements and boundary elements in the OCT tree structure.
如图1所示,本发明实施例所提供的一种大规模颗粒材料内部应力及破碎模拟分析方法,包括以下步骤:As shown in FIG. 1 , a method for simulating and analyzing the internal stress and crushing of a large-scale granular material provided by an embodiment of the present invention includes the following steps:
步骤S1:利用颗粒相互作用求解器进行大规模颗粒集合体相互作用的模拟计算;Step S1: use a particle interaction solver to simulate the interaction of large-scale particle aggregates;
其中,颗粒相互作用求解器表示基于离散元法求解颗粒之间相互作用的模块。Among them, the particle interaction solver represents a module that solves the interaction between particles based on the discrete element method.
在本发明实施例中,如图2所示,为验证准确性及有效性,选取一个含有292颗圆形堆石料受到自上而下的压力的计算实例,设其弹性模量为1000Mpa,泊松比为0.25。In the embodiment of the present invention, as shown in Fig. 2, in order to verify the accuracy and validity, a calculation example containing 292 circular rockfills subjected to pressure from top to bottom is selected, and the elastic modulus is set to be 1000Mpa, and the poise The loose ratio is 0.25.
本发明实施例中的大规模优指在100个颗粒以上的规模。The large scale in the embodiment of the present invention preferably refers to the scale of more than 100 particles.
步骤S2:将颗粒相互作用求解器中某一时间步的计算结果导出,计算结果主要包括颗粒的几何信息,材料属性以及边界条件等;在颗粒内部应力求解器中,利用建模软件建立待求解颗粒的几何模型,输入从颗粒相互作用求解器中导出的待求解颗粒模型的材料参数、网格化分数、网格类型以及边界条件等信息,然后输出待求解颗粒几何模型的内部应力;Step S2: Export the calculation result of a certain time step in the particle interaction solver, and the calculation result mainly includes the geometric information of the particle, material properties and boundary conditions, etc.; in the particle internal stress solver, the modeling software is used to establish the solution to be solved. For the particle geometry model, input the material parameters, mesh fraction, mesh type, and boundary conditions of the particle model to be solved derived from the particle interaction solver, and then output the internal stress of the particle geometry model to be solved;
其中,颗粒内部应力求解器表示基于边界元法求解颗粒内部应力的模块。Among them, the particle internal stress solver represents a module that solves the internal stress of particles based on the boundary element method.
在本发明实施例中,利用边界元法来计算颗粒材料的应力应变分布,边界元法的基本方程为:In the embodiment of the present invention, the boundary element method is used to calculate the stress-strain distribution of the granular material, and the basic equation of the boundary element method is:
其中,Γ为问题研究域Ω的边界;x和y代表问题域Ω内的源点和场点;t为边界上的面力;U(x,y)和T(x,y)为基本解,可写为:Among them, Γ is the boundary of the problem domain Ω; x and y represent the source and field points in the problem domain Ω; t is the surface force on the boundary; U(x,y) and T(x,y) are the basic solutions , which can be written as:
其中,r代表源点和场点之间的距离;n为边界Γ的单位外法线向量。where r represents the distance between the source point and the field point; n is the unit outer normal vector of the boundary Γ.
步骤S3:将每一个颗粒边界上受到的集中力等效为边界上的面力;Step S3: Equating the concentrated force on the boundary of each particle as the surface force on the boundary;
在本发明实施例中,采用等效的方法将单颗粒边界上受到的集中力等效为边界上的面力,等效方法为:In the embodiment of the present invention, an equivalent method is used to equate the concentrated force on the boundary of a single particle as the surface force on the boundary, and the equivalent method is:
对于作用在中心为O(x0,y0)颗粒上一点P(xp,yp)的集中力F(Fx,Fy),可等效为均布力p,其计算表达式是为:For the concentrated force F(F x ,F y ) acting on a point P(x p ,y p ) on a particle whose center is O(x 0 ,y 0 ), it can be equivalent to a uniform force p, and its calculation expression is for:
其中的角度范围[θ1,θ2]为面力等效范围,具体可利用下式进行计算:The angle range [θ 1 , θ 2 ] is the equivalent range of the surface force, which can be calculated by the following formula:
其中,(x0,y0)表示颗粒中心点的横纵坐标,(xp,yp)表示点P的横纵坐标,(Fx,Fy)表示集中力F的横纵轴的分解力,R表示颗粒半径。Among them, (x 0 , y 0 ) represents the horizontal and vertical coordinates of the particle center point, (x p , y p ) represents the horizontal and vertical coordinates of point P, and (F x , F y ) represents the decomposition of the horizontal and vertical axes of the concentration force F force, and R is the particle radius.
步骤S4:建立控制方程:Step S4: Establish the control equation:
其中,x为研究域内的点,u为应力张量;a为加速度;ρ为颗粒材料密度;μ为剪切模量;λ=2vμ/(1-2v)为拉美常数;v为泊松比,和为散度运算符;为合力矢量,b(x)为等效体力。S表示颗粒面积,FI表示颗粒的集中力项,n表示集中力个数。where x is the point in the research domain, u is the stress tensor; a is the acceleration; ρ is the density of the granular material; μ is the shear modulus; λ=2vμ/(1-2v) is the Latin American constant; v is the Poisson’s ratio , and is the divergence operator; is the resultant force vector, and b(x) is the equivalent physical force. S is the particle area, F I is the concentration term of the particle, and n is the number of the concentration.
步骤S5:由控制方程建立位移边界积分方程;Step S5: establish the displacement boundary integral equation from the control equation;
其中,位移边界积分方程用来求解颗粒的位移和颗粒边界上的应力。Among them, the displacement boundary integral equation is used to solve the displacement of the particle and the stress on the particle boundary.
步骤S6:将位移边界积分方程中体积力导致的域积分转化为边界积分;Step S6: Convert the domain integral caused by the body force in the displacement boundary integral equation into a boundary integral;
在本发明实施例中,对于由于重力等原因产生的域内积分,采用直线积分法进行计算:In the embodiment of the present invention, for the integral in the domain due to gravity and other reasons, the linear integral method is used to calculate:
对于域积分:For domain integrals:
D1=∫ΩU(x,y)bdΩ(y) (7)D 1 = ∫Ω U(x,y)bdΩ(y) (7)
基于直线积分法,利用如下公式转化为等效边界积分:Based on the straight-line integral method, the following formula is used to convert to the equivalent boundary integral:
其中,M表示积分线个数,Wi表示权重因子,Li表示积分线,U(x,y)表示格林函数基本解,b表示等效体力,dy1表示微分。Among them, M represents the number of integral lines, Wi represents the weight factor, Li represents the integral line, U(x, y) represents the basic solution of Green's function, b represents the equivalent physical strength, and dy 1 represents the differential.
步骤S7:分别对每一个颗粒建立局部坐标系,并对相似颗粒计算转换矩阵;Step S7: establishing a local coordinate system for each particle respectively, and calculating a transformation matrix for similar particles;
本发明实施例中的相似颗粒指形状大小无限接近的颗粒。Similar particles in the embodiments of the present invention refer to particles with infinitely close shapes and sizes.
在本发明实施例中,对每一个颗粒建立局部坐标系,对相似的颗粒建立转换矩阵,其主要方法为:In the embodiment of the present invention, a local coordinate system is established for each particle, and a transformation matrix is established for similar particles, and the main methods are:
对于全局坐标中的点x(x1,x2)以及局部坐标中的点si(s1,s2),可通过以下表达式进行转化:For a point x(x 1 ,x 2 ) in global coordinates and a point s i (s 1 ,s 2 ) in local coordinates, the transformation can be done by the following expressions:
其中,为Jacobi矩阵的常系数,以及in, are the constant coefficients of the Jacobi matrix, and
其中,|J|=c2,c为比例因子。in, |J|=c 2 , c is the scale factor.
逆矩阵为:The inverse matrix is:
步骤S8:对单颗粒边界积分方程进行离散,划分边界单元,并在域内布置节点;Step S8: discretize the single particle boundary integral equation, divide the boundary elements, and arrange nodes in the domain;
在本发明实施例中,对于形状相似的颗粒,只需要在局部坐标系内建立边界积分方程:In the embodiment of the present invention, for particles with similar shapes, only the boundary integral equation needs to be established in the local coordinate system:
边界积分方程在局部坐标中可表达为:The boundary integral equation can be expressed in local coordinates as:
s和为局部坐标系中的点,和为局部坐标系中的位移和面力,同公式(3)所示,以及s and is a point in the local coordinate system, and are the displacement and surface force in the local coordinate system, as shown in formula (3), and
其中,Γ为问题研究域Ω的边界,表示和点s位置相关的系数,表示局部坐标系下的基本解函数,表示局部坐标系下的边界,表示局部坐标系下的基本解函数,表示局部坐标系下点的位移,表示局部坐标系下的体力矢量,表示局部坐标系下的求解域,表示局部坐标系下点和s的距离,δki表示克罗内克符号,表示局部坐标系下r的偏导数,表示局部坐标系下r的偏导数。Among them, Γ is the boundary of the problem research domain Ω, represents the coefficient related to the position of point s, represents the basic solution function in the local coordinate system, represents the boundary in the local coordinate system, represents the basic solution function in the local coordinate system, Represents a point in the local coordinate system displacement, represents the body force vector in the local coordinate system, represents the solution domain in the local coordinate system, Represents a point in the local coordinate system the distance from s, δ ki denotes Kronecker notation, represents the partial derivative of r in the local coordinate system, represents the partial derivative of r in the local coordinate system.
其中,对于形状相似的颗粒,只需要求解一次边界积分方程的系数矩阵,并采用奇异值分解法求系数矩阵的逆。Among them, for particles with similar shapes, only the coefficient matrix of the first-order boundary integral equation needs to be solved, and the singular value decomposition method is used to obtain the inverse of the coefficient matrix.
步骤S9:将每一个颗粒边界上的面力等效为边界单元上的面力;Step S9: Equivalent the surface force on each particle boundary to the surface force on the boundary element;
在本发明实施例中,采用等效的方法将单颗粒边界上的面力等效为边界单元上的面力,等效方法为:In the embodiment of the present invention, the equivalent method is used to equalize the surface force on the single particle boundary to the surface force on the boundary element, and the equivalent method is:
对于单元Zj[sj,sj+1],sj和sj+1为单元的两个端点,j表示单元序号,如果满足:For the unit Z j [s j ,s j+1 ], s j and s j+1 are the two endpoints of the unit, and j represents the unit number, if it satisfies:
其中,为集中力等效的范围,和为离散边界上的两个端点,单元所受等效面力为:in, is the equivalent range of concentrated force, and are the two endpoints on the discrete boundary, and the equivalent surface force on the element is:
其中,p0为初始等效面力,其计算表达式为:Among them, p 0 is the initial equivalent surface force, and its calculation expression is:
其中,β1和β2分别为单元集的起点和终点角度,p1和p2为在第一个和最后一个单元上残余力引起的压力,可由以下两组公式求得:where β 1 and β 2 are the starting and ending angles of the element set, respectively, and p 1 and p 2 are the pressures caused by residual forces on the first and last elements, which can be obtained from the following two sets of formulas:
其中,β3和β4分别为第一个单元的终点和最后一个单元的起点与集中力的夹角。Among them, β 3 and β 4 are the angles between the end point of the first element and the start point of the last element and the concentrated force, respectively.
步骤S10:计算单颗粒的系数矩阵,并对系数矩阵求逆;Step S10: calculating the coefficient matrix of the single particle, and inverting the coefficient matrix;
步骤S11:求解边界节点的位移;Step S11: solve the displacement of the boundary nodes;
步骤S12:求解域内的节点的应力和应变等值;Step S12: Solve the stress and strain equivalents of nodes in the domain;
在本发明实施例中,对于所有形状相似的颗粒,在只计算了局部坐标系下一个基础颗的系数矩阵及其逆矩阵后,所有相似颗粒边界节点和域内节点的未知量均可以通过矩阵相乘来计算,可大量节省计算时间:In the embodiment of the present invention, for all particles with similar shapes, after only calculating the coefficient matrix of the next basic particle in the local coordinate system and its inverse matrix, the unknowns of all similar particle boundary nodes and nodes in the domain can be calculated through the matrix phase. Multiply to calculate, which can save a lot of calculation time:
对于每一个颗粒的边界节点可通过以下公式计算:The boundary node for each particle can be calculated by the following formula:
其中,表示边界上点的位移,H-1表示H的逆矩阵,H表示边界积分里形成的系数矩阵,G表示边界积分里形成的系数矩阵,表示局部坐标下节点的面力,表示局部坐标下节点的体力系数矩阵,表示局部坐标下节点的体力。in, represents the displacement of the point on the boundary, H -1 represents the inverse matrix of H, H represents the coefficient matrix formed in the boundary integral, G represents the coefficient matrix formed in the boundary integral, represents the surface force of the node in local coordinates, represents the physical strength coefficient matrix of nodes in local coordinates, Represents the physical force of the node in local coordinates.
由于矩阵H-1,G和只需要计算一次,公式(19)的效率可以非常高而且适用于大规模颗粒计算。由于H是奇异矩阵,因此其逆矩阵可以通过奇异值分解(Singular ValueDecomposition,SVD)进行计算,如下所示:Since the matrix H -1 , G and With only one calculation required, equation (19) can be very efficient and suitable for large-scale particle calculations. Since H is a singular matrix, its inverse matrix can be calculated by Singular Value Decomposition (SVD) as follows:
H-1=V2∑+V1 T (20)H -1 = V 2 ∑ + V 1 T (20)
其中,V1和V2左奇异向量和右奇异向量,并且∑+为∑的广义逆,∑可写为:where V 1 and V 2 left singular vectors and right singular vectors, and ∑ + is the generalized inverse of ∑, ∑ can be written as:
其中,∑0为前N-3个奇异值(从大至小排列),最小的三个设为零。因此可以防止颗粒的刚体位移并且获得更高的精度,N表示矩阵行数。Among them, Σ 0 is the first N-3 singular values (arranged from largest to smallest), and the smallest three are set to zero. Therefore, rigid body displacement of the particles can be prevented and higher accuracy can be obtained, N represents the number of matrix rows.
此外,对于颗粒域内节点的应变可以采用如下方式计算:In addition, the strain of nodes in the particle domain can be calculated as follows:
其中,G′表示应变离散矩阵方程中对应位移的系数矩阵,H′表示应变离散矩阵方程中对应面力的系数矩阵,表示应变离散矩阵方程中对应体力的系数矩阵。Among them, G′ represents the coefficient matrix of the corresponding displacement in the strain discrete matrix equation, H′ represents the coefficient matrix of the corresponding surface force in the strain discrete matrix equation, Represents the matrix of coefficients for the corresponding body forces in the discrete matrix equation of strain.
其中:in:
其中,m表示需要求解的内部点的数量,和为每个点在x,y方向上的应变值。where m represents the number of interior points to be solved, and is the strain value of each point in the x, y direction.
在计算了应变值之后,应力值可以通过如下方式计算:After calculating the strain value, the stress value can be calculated as follows:
其中,表示局部坐标系下的应力,表示局部坐标系下的刚度矩阵,表示局部坐标系下的应变。in, represents the stress in the local coordinate system, represents the stiffness matrix in the local coordinate system, represents the strain in the local coordinate system.
以及as well as
其中,δij、δkl、δik、δjl、δil及δjk表示克罗内克符号,v为泊松比。Among them, δ ij , δ kl , δ ik , δ jl , δ il and δ jk represent Kronecker symbols, and v is Poisson's ratio.
如图3所示,图3为颗粒集合体的内部应力云图,其中,图3中(a)表示应力sxx的应力云图,图3中(b)表示应力syy的应力云图。As shown in FIG. 3 , FIG. 3 is the internal stress nephogram of the particle aggregate, wherein (a) in FIG. 3 represents the stress nephogram of stress sxx, and (b) in FIG. 3 represents the stress nephogram of stress syy.
步骤S13:根据应力值判断颗粒是否开裂,并利用颗粒替代法进行破碎颗粒的替代,并将代替颗粒的模型信息返回到颗粒相互作用求解器中。Step S13: Determine whether the particles are cracked according to the stress value, use the particle replacement method to replace the broken particles, and return the model information of the replaced particles to the particle interaction solver.
本申请还提供一种大规模颗粒材料内部应力及破碎模拟分析装置,包括:颗粒相互作用求解器和颗粒内部应力求解器;The application also provides a large-scale particle material internal stress and crushing simulation analysis device, including: a particle interaction solver and a particle internal stress solver;
所述颗粒相互作用求解器,用于进行大规模颗粒集合体相互作用的模拟计算;The particle interaction solver is used for simulation calculation of large-scale particle aggregate interaction;
所述颗粒内部应力求解器包括:输入模块,其用于接收操作者输入的待求解颗粒的材料参数、网格化分数、网格类型以及边界条件信息;求解模块,其用于采用上述大规模颗粒材料内部应力及破碎模拟分析方法得到待求解颗粒体内部的应力。The particle internal stress solver includes: an input module, which is used to receive the material parameters, meshing fraction, mesh type and boundary condition information of the particle to be solved input by the operator; The internal stress and crushing simulation analysis method of granular material is used to obtain the internal stress of the particle to be solved.
其中,具体实施方式可以参考上述方法实施例的描述,本发明实施例将不再复述。For the specific implementation manner, reference may be made to the descriptions of the foregoing method embodiments, which will not be repeated in the embodiments of the present invention.
需要指出,根据实施的需要,可将本申请中描述的各个步骤/部件拆分为更多步骤/部件,也可将两个或多个步骤/部件或者步骤/部件的部分操作组合成新的步骤/部件,以实现本发明的目的。It should be pointed out that, according to the needs of implementation, the various steps/components described in this application may be split into more steps/components, or two or more steps/components or partial operations of steps/components may be combined into new steps/components to achieve the purpose of the present invention.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010917113.3A CN112084647B (en) | 2020-09-03 | 2020-09-03 | Large-scale granular material internal stress and crushing simulation analysis method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010917113.3A CN112084647B (en) | 2020-09-03 | 2020-09-03 | Large-scale granular material internal stress and crushing simulation analysis method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112084647A CN112084647A (en) | 2020-12-15 |
CN112084647B true CN112084647B (en) | 2022-04-01 |
Family
ID=73731467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010917113.3A Active CN112084647B (en) | 2020-09-03 | 2020-09-03 | Large-scale granular material internal stress and crushing simulation analysis method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112084647B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117540600B (en) * | 2023-11-17 | 2025-04-15 | 水电水利规划设计总院 | A macroscopic step-by-step coupled multi-scale stress-deformation calculation method for rockfill dams |
CN117540601A (en) * | 2023-11-17 | 2024-02-09 | 水电水利规划设计总院 | A method for solving the crushing path of rockfill material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7265752B2 (en) * | 2004-01-09 | 2007-09-04 | Microsoft Corporation | Multi-chart geometry images |
CN102628861B (en) * | 2012-04-11 | 2014-10-22 | 武汉大学 | Method for simulating temperature cracking value of mass concrete |
CN106980735B (en) * | 2017-04-06 | 2020-07-28 | 西南科技大学 | Numerical Simulation Method for Thermal Fracture of Brittle Materials |
CN109284523A (en) * | 2018-07-19 | 2019-01-29 | 同济大学 | A simulation method for progressive failure and solid-liquid phase transition behavior of geotechnical media |
CN110598293B (en) * | 2019-09-03 | 2020-05-05 | 上海交通大学 | Method for predicting fracture damage behavior of micro-nano fiber reinforced composite material |
-
2020
- 2020-09-03 CN CN202010917113.3A patent/CN112084647B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112084647A (en) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schneider et al. | A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with the finite element method | |
CN110555263B (en) | Level set topology optimization method for curved shell structure optimization design | |
Vincent et al. | Facilitating the Adoption of Unstructured High-Order MethodsAmongst a Wider Community of Fluid Dynamicists | |
CN112084647B (en) | Large-scale granular material internal stress and crushing simulation analysis method and device | |
CN103838913B (en) | The Finite Element of the curved bridge of curved box girder | |
CN106354918B (en) | The construction method of fluid structurecoupling problem numerical simulation in a kind of hydraulic fracturing | |
Gharti et al. | Simulation of multistage excavation based on a 3D spectral-element method | |
CN102298660A (en) | Universal method of boundary modeling based on distinct element method | |
Feng et al. | An edge/face-based smoothed radial point interpolation method for static analysis of structures | |
CN108170898A (en) | A kind of jointed rock slope reliability analysis Lower Bound Limit | |
CN110532727A (en) | It can be used for the method for numerical simulation of common non-newtonian fluid | |
CN104281730A (en) | Great-rotating-deformation plate shell structure dynamic response finite element analysis method | |
Tong et al. | Three-dimensional numerical manifold method for heat conduction problems with a simplex integral on the boundary | |
Liang et al. | Extended material point method for the three‐dimensional crack problems | |
Radu et al. | A doubly nonlocal Laplace operator and its connection to the classical Laplacian | |
Tang et al. | An efficient adaptive analysis procedure using the edge-based smoothed point interpolation method (ES-PIM) for 2D and 3D problems | |
Tate et al. | Fixed-topology Lorentzian triangulations: quantum Regge calculus in the Lorentzian domain | |
Shang et al. | An efficient 4‐node facet shell element for the modified couple stress elasticity | |
Li et al. | A staggered asynchronous step integration algorithm for hybrid finite-element and discrete-element modeling | |
CN117540600B (en) | A macroscopic step-by-step coupled multi-scale stress-deformation calculation method for rockfill dams | |
He et al. | Simulation of solids with multiple rectangular inhomogeneities using non-uniform eigenstrain formulation of BIEs | |
CN114818523A (en) | A FDM-DDA-Based Calculation Method for Unsaturated Transient Fluid-Structure Interaction | |
CN107220212A (en) | A kind of boundary Element method of two-dimentional non-compact border sound scattering | |
Lv et al. | Extended multiscale finite element method based on polyhedral coarse grid elements for heterogeneous materials and structures | |
Schneidera et al. | A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Finite Element Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |