CN112083450B - Method, system and device for suppressing multipath errors using antenna circular motion - Google Patents
Method, system and device for suppressing multipath errors using antenna circular motion Download PDFInfo
- Publication number
- CN112083450B CN112083450B CN202010926392.XA CN202010926392A CN112083450B CN 112083450 B CN112083450 B CN 112083450B CN 202010926392 A CN202010926392 A CN 202010926392A CN 112083450 B CN112083450 B CN 112083450B
- Authority
- CN
- China
- Prior art keywords
- multipath
- frequency
- circular motion
- antenna
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000005764 inhibitory process Effects 0.000 claims abstract 3
- 230000000452 restraining effect Effects 0.000 claims abstract 3
- 238000005070 sampling Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000000116 mitigating effect Effects 0.000 claims 6
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000001629 suppression Effects 0.000 abstract description 25
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/22—Multipath-related issues
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/23—Testing, monitoring, correcting or calibrating of receiver elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星导航领域,尤其涉及一种利用天线圆周运动的多径误差抑制方法、系统及装置。The invention relates to the field of satellite navigation, in particular to a method, system and device for suppressing multipath errors by using antenna circular motion.
背景技术Background technique
对于卫星导航来说,多径误差目前仍为无法实现精确建模、无法完全消除的误差变量。由于导航接收机周围环境复杂多样、遮挡物高低起伏,不可避免给接收机带来各路的多径信号影响,多径的复杂程度也限制了研究人员对其进行精确的建模,多径带来的数据相关性影响在定位算法中也造成了一定的影响。由此,实施多径抑制技术显得尤为重要。通常情况下,为了减小多径效应带来的影响,观测环境通常选择具有开阔天空,遮挡物少的场景下,避免有山坡,水面等多径信号反射严重的环境。多径误差时间序列为非平稳的随机过程,这就给高精度定位算法带来了极大的挑战与影响。For satellite navigation, multipath error is still an error variable that cannot be modeled accurately and cannot be completely eliminated. Due to the complex and diverse environment around the navigation receiver and the ups and downs of the obstructions, it is inevitable to bring multipath signals to the receiver. The complexity of multipath also limits researchers to accurately model it. The impact of the data correlation from the data also has a certain impact on the positioning algorithm. Therefore, it is particularly important to implement multipath suppression technology. Usually, in order to reduce the impact of multipath effects, the observation environment usually chooses a scene with open sky and few occluders, and avoids environments with severe reflection of multipath signals such as hillsides and water surfaces. The multipath error time series is a non-stationary random process, which brings great challenges and influences to the high-precision positioning algorithm.
由于多径在空间上具有复杂性与非相关特性,给多径建模带来许多难题。对多径误差的特性与影响规律的利用显得尤为重要。Due to the complexity and non-correlation characteristics of multipath in space, it brings many difficulties to multipath modeling. It is particularly important to use the characteristics and influence laws of multipath errors.
发明内容Contents of the invention
为了解决上述技术问题,本发明的目的是提供一种利用天线圆周运动的多径误差抑制方法、系统及装置,可低成本的解决由于多径误差使得接收机的定位精度受到限制的技术问题。In order to solve the above technical problems, the object of the present invention is to provide a method, system and device for suppressing multipath errors using antenna circular motion, which can solve the technical problem that the positioning accuracy of the receiver is limited due to multipath errors at low cost.
本发明所采用的第一技术方案是:一种利用天线圆周运动的多径误差抑制方法,包括以下步骤:The first technical solution adopted in the present invention is: a method for suppressing multipath errors utilizing circular motion of the antenna, comprising the following steps:
构建天线圆周运动模型并获得最大多径频率;Construct the circular motion model of the antenna and obtain the maximum multipath frequency;
根据单反射模型获得最小容错多径频率;Obtain the minimum fault-tolerant multipath frequency according to the single reflection model;
根据最大多径频率和最小容错多径频率获得预设圆周运动参数;Obtain preset circular motion parameters according to the maximum multipath frequency and the minimum fault-tolerant multipath frequency;
采集观测数据并计算实际多径频率;Collect observation data and calculate actual multipath frequency;
采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数。The code multipath error and its statistical characteristics are used to evaluate the multipath suppression performance, and the circular motion parameters are adjusted according to the maximum multipath frequency, the minimum error tolerance frequency and the actual multipath frequency.
进一步,所述采构建天线圆周运动模型并获得最大多径频率这一步骤,其具体包括:Further, the step of constructing the circular motion model of the antenna and obtaining the maximum multipath frequency is described, which specifically includes:
根据用户接收机的多径反射模型构建天线圆周运动模型并获得预设圆周运动参数。According to the multipath reflection model of the user receiver, the antenna circular motion model is constructed and the preset circular motion parameters are obtained.
根据预设圆周运动参数得到最大多径频率。The maximum multipath frequency is obtained according to the preset circular motion parameters.
进一步,所述最大多径频率的表达式具体为:Further, the expression of the maximum multipath frequency is specifically:
上式中,所述r表示圆周运动的半径,ω表示物体做圆周运动的角速度,λ为信号的波长。In the above formula, the r represents the radius of the circular motion, ω represents the angular velocity of the object doing the circular motion, and λ is the wavelength of the signal.
进一步,所述根据单反射模型获得最小容错多径频率这一步骤,其具体包括:Further, the step of obtaining the minimum fault-tolerant multipath frequency according to the single reflection model specifically includes:
根据用户特性获得可接受的最大多径误差;Obtain an acceptable maximum multipath error according to user characteristics;
根据最大多径误差并通过单反射模型推导出的多径延迟与多径频率的模型获得最小容错频率。The minimum error-tolerant frequency is obtained according to the maximum multipath error and the multipath delay and multipath frequency model derived from the single reflection model.
进一步,所述多径延迟与多径频率的模型的表达式具体为:Further, the expression of the model of the multipath delay and multipath frequency is specifically:
上式中,为高度角的变化率,δ表示为当前时刻下的多径延迟,λ为信号的波长。In the above formula, is the rate of change of the altitude angle, δ is the multipath delay at the current moment, and λ is the wavelength of the signal.
进一步,所述采集观测数据并计算实际多径频率这一步骤,其具体包括:Further, the step of collecting observation data and calculating the actual multipath frequency specifically includes:
采集一组采样频率为预设值的GNSS观测数据;Collect a set of GNSS observation data whose sampling frequency is a preset value;
对GNSS观测进行快速傅里叶变换处理,提取得到实际多径频率。Perform fast Fourier transform processing on GNSS observations to extract the actual multipath frequency.
进一步,所述GNSS观测数据包括载噪比数据和伪距观测值数据。Further, the GNSS observation data includes carrier-to-noise ratio data and pseudo-range observation data.
进一步,所述采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数这一步骤,其具体为:Further, the step of evaluating the multipath suppression performance by using the code multipath error and its statistical characteristics and adjusting the circular motion parameters according to the maximum multipath frequency, the minimum error tolerance frequency and the actual multipath frequency is specifically:
根据码多径误差及其统计特性判断到天线圆周运动的多径误差抑制性能超出预设范围,根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数后重新计算码多径误差及其统计特性,直至利用码多径误差及其统计特性判断出的天线圆周运动的多径误差抑制性能在预设范围内。According to the code multipath error and its statistical characteristics, it is judged that the multipath error suppression performance of the circular motion of the antenna exceeds the preset range, and the code multipath error is recalculated after adjusting the circular motion parameters according to the maximum multipath frequency, minimum error tolerance frequency and actual multipath frequency and its statistical characteristics, until the multipath error suppression performance of the circular motion of the antenna judged by using the code multipath error and its statistical characteristics is within a preset range.
本发明所采用的第二技术方案是:一种利用天线圆周运动的多径误差抑制系统,包括:上限模块,用于构建天线圆周运动模型并获得最大多径频率;The second technical solution adopted by the present invention is: a multipath error suppression system utilizing circular motion of the antenna, including: an upper limit module, which is used to construct a circular motion model of the antenna and obtain the maximum multipath frequency;
下限模块,用于根据单反射模型获得最小容错多径频率;The lower limit module is used to obtain the minimum fault-tolerant multipath frequency according to the single reflection model;
圆周运动参数模块,用于根据最大多径频率和最小容错多径频率获得预设圆周运动参数;A circular motion parameter module, configured to obtain preset circular motion parameters according to the maximum multipath frequency and the minimum fault-tolerant multipath frequency;
多径频率提取模块,用于采集观测数据并计算实际多径频率;The multipath frequency extraction module is used to collect observation data and calculate the actual multipath frequency;
多径性能评估模块,用于采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错多径频率和实际多径频率调整圆周运动参数。The multipath performance evaluation module is used to evaluate the multipath suppression performance by using the code multipath error and its statistical characteristics, and adjust the circular motion parameters according to the maximum multipath frequency, the minimum error-tolerant multipath frequency and the actual multipath frequency.
本发明所采用的第三技术方案是:一种利用天线圆周运动的多径误差抑制装置,包括:至少一个处理器;The third technical solution adopted by the present invention is: a multipath error suppression device utilizing antenna circular motion, comprising: at least one processor;
至少一个存储器,用于存储至少一个程序;at least one memory for storing at least one program;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述一种利用天线圆周运动的多径误差抑制方法。When the at least one program is executed by the at least one processor, the at least one processor is enabled to implement the method for suppressing multipath errors by using circular motion of the antenna as described above.
本发明方法、系统及装置的有益效果是:本发明根据多径频率的理论极限值得到预设圆周运动参数,通过计算码多径误差及其统计特性评估多径抑制性能并根据评估结果调整圆周运动参数或确定圆周运动参数,得到最终圆周运动参数可用于后续的多径抑制,低成本的为用户级的导航接收机解决由于多径误差引起的定位精度差的问题。The beneficial effects of the method, system and device of the present invention are: the present invention obtains the preset circular motion parameters according to the theoretical limit value of the multipath frequency, evaluates the multipath suppression performance by calculating the code multipath error and its statistical characteristics, and adjusts the circular motion according to the evaluation result Motion parameters or circular motion parameters are determined, and the final circular motion parameters can be used for subsequent multipath suppression, and the low-cost solution for user-level navigation receivers is the problem of poor positioning accuracy caused by multipath errors.
附图说明Description of drawings
图1是本发明一种利用天线圆周运动的多径误差抑制的步骤流程图;Fig. 1 is a flow chart of the steps of multipath error suppression utilizing antenna circular motion in the present invention;
图2是本发明一种利用天线圆周运动的多径误差抑制系统的结构框图;Fig. 2 is a structural block diagram of a multipath error suppression system utilizing antenna circular motion in the present invention;
图3是本发明具体实施例圆周运动下多径反射模型;Fig. 3 is the multipath reflection model under the circular motion of the specific embodiment of the present invention;
图4是本发明具体实施例任意时刻单路多径信号反射模型。Fig. 4 is a reflection model of a single-path multi-path signal at any time according to a specific embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. For the step numbers in the following embodiments, it is only set for the convenience of illustration and description, and the order between the steps is not limited in any way. The execution order of each step in the embodiments can be adapted according to the understanding of those skilled in the art sexual adjustment.
如图1所示,本发明提供了一种利用天线圆周运动的多径误差抑制方法,该方法包括以下步骤:As shown in Figure 1, the present invention provides a kind of multipath error suppression method utilizing antenna circular motion, and this method comprises the following steps:
S101、构建天线圆周运动模型并获得最大多径频率。S101. Construct an antenna circular motion model and obtain a maximum multipath frequency.
S102、根据单反射模型获得最小容错多径频率;S102. Obtain the minimum fault-tolerant multipath frequency according to the single reflection model;
S103、根据最大多径频率和最小容错多径频率获得预设圆周运动参数;S103. Obtain preset circular motion parameters according to the maximum multipath frequency and the minimum fault-tolerant multipath frequency;
S104、采集观测数据并计算实际多径频率。S104. Collect observation data and calculate an actual multipath frequency.
S105、采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数。S105. Evaluate the multipath suppression performance by using code multipath errors and their statistical characteristics, and adjust circular motion parameters according to the maximum multipath frequency, the minimum error tolerance frequency, and the actual multipath frequency.
进一步作为本方法的优选实施例,所述构建天线圆周运动模型并获得最大多径频率这一步骤,其具体包括:Further as a preferred embodiment of the method, the step of constructing the antenna circular motion model and obtaining the maximum multipath frequency specifically includes:
根据用户接收机的多径反射模型构建天线圆周运动模型并获得预设圆周运动参数;Construct the circular motion model of the antenna according to the multipath reflection model of the user receiver and obtain the preset circular motion parameters;
根据预设圆周运动参数得到最大多径频率。The maximum multipath frequency is obtained according to the preset circular motion parameters.
具体地,天线圆周运动下,用户接收机的多径反射模型如图3所示,根据该模型可以得出多径延迟距离的表达式为:Specifically, under the circular motion of the antenna, the multipath reflection model of the user receiver is shown in Figure 3. According to this model, the expression of the multipath delay distance can be obtained as:
其中,m(t)为PU(t)-PF(t),是由反射点位置指向用户接收机位置的多径延迟的距离向量,d(t)为PU(t)-PS(t),表示为由卫星指向用户接收机位置的直射信号的距离向量,时间t表示当前的观测历元,PS(t)表示为卫星随轨迹运动的实时位置,PU(t)、PF(t)分别表示为ECEF坐标系下的用户接收机天线与多径反射点的实时位置。Among them, m(t) is PU( t )-P F (t), which is the distance vector of multipath delay from the position of the reflection point to the position of the user receiver, and d(t) is PU (t)-P S (t), expressed as the distance vector of the direct signal from the satellite pointing to the position of the user receiver, time t indicates the current observation epoch, PS (t) indicates the real-time position of the satellite moving along the trajectory, P U (t), PF (t) respectively represent the real-time positions of the user receiver antenna and the multipath reflection point in the ECEF coordinate system.
多径相位可由多径延迟距离计算得到:The multipath phase can be calculated from the multipath delay distance:
其中,λ为某频段信号的波长,如GPS卫星L1频段信号的波长为19.04cm。Among them, λ is the wavelength of a certain frequency band signal, for example, the wavelength of a GPS satellite L1 frequency band signal is 19.04cm.
为了进一步获得圆周运动下的多径变化,引入多径频率,多径频率进一步表示为:In order to further obtain the multipath variation under circular motion, the multipath frequency is introduced, and the multipath frequency is further expressed as:
其中,P⊥d(t)为投影至d(t)的正交空间的投影矩阵;vU(t)为PU(t)/dt,vF(t)与vS(t)同理。由于|d(t)|远大于卫星与接收机之间的相对运动,所以进一步简化得到:Among them, P ⊥d(t) is the projection matrix projected to the orthogonal space of d(t); v U (t) is P U (t)/dt, and v F (t) is the same as v S (t) . Since |d(t)| is much larger than the relative motion between the satellite and the receiver, it is further simplified to get:
利用上述圆周运动参数进一步得到多径频率的上限。The upper limit of the multipath frequency is further obtained by using the above circular motion parameters.
进一步作为本方法的优选实施例,所述最大多径频率的表达式具体为:Further as a preferred embodiment of the method, the expression of the maximum multipath frequency is specifically:
上式中,所述r表示圆周运动的半径,ω表示物体做圆周运动的角速度,λ为信号的波长。In the above formula, the r represents the radius of the circular motion, ω represents the angular velocity of the object doing the circular motion, and λ is the wavelength of the signal.
具体地,多径频率的上限可用来控制圆周运动参数r,ω。Specifically, the upper limit of the multipath frequency can be used to control the circular motion parameters r, ω.
进一步作为本方法优选实施例,所述所述根据单反射模型获得最小容错多径频率这一步骤,其具体包括:Further as a preferred embodiment of the method, the step of obtaining the minimum fault-tolerant multipath frequency according to the single reflection model specifically includes:
根据用户特性获得可接受的最大多径误差;Obtain an acceptable maximum multipath error according to user characteristics;
根据最大多径误差并通过单反射模型推导出的多径延迟与多径频率的模型获得最小容错频率。The minimum error-tolerant frequency is obtained according to the maximum multipath error and the multipath delay and multipath frequency model derived from the single reflection model.
具体地,参照图4,采用静态地面单反射模型,该时刻下的多径延迟可以表示为:Specifically, referring to Figure 4, using the static ground single reflection model, the multipath delay at this moment can be expressed as:
δ=2h sin(β)δ=2h sin(β)
其中,h为接收机天线与地面之间的垂直距离,β为多径信号与地面之间的夹角,特别的,这里视为接收机相对卫星的高度角。相位延迟可以表示为:Wherein, h is the vertical distance between the receiver antenna and the ground, and β is the angle between the multipath signal and the ground. In particular, it is regarded as the altitude angle of the receiver relative to the satellite. The phase delay can be expressed as:
进一步作为本方法优选实施例,所述多径延迟与多径频率的模型的表达式具体为:Further as a preferred embodiment of the method, the expression of the model of the multipath delay and multipath frequency is specifically:
上式中,为高度角的变化率,δ表示为当前时刻下的多径延迟,λ为信号的波长。In the above formula, is the rate of change of the altitude angle, δ is the multipath delay at the current moment, and λ is the wavelength of the signal.
具体地,从上式中可以知道在短时间内,距离接收机较近的反射物体所产生的多径频率较小,反映在载噪比时间序列上的是较缓慢、振幅较小的振荡;对于较远的反射物体产生的多径频率比较大,反映在载噪比时间序列为较快速、幅度较大的振荡。而长延时的反射信号将会在接收机做信号跟踪阶段的时候被滤除。该多径频率表达式可以根据最大容错多径误差确定多径频率需要达到的最小理论值。Specifically, it can be known from the above formula that in a short period of time, the multipath frequency generated by the reflective object closer to the receiver is smaller, and what is reflected in the carrier-to-noise ratio time series is a slower oscillation with a smaller amplitude; The multipath frequency generated by far reflecting objects is relatively large, which is reflected in the carrier-to-noise ratio time series as faster and larger amplitude oscillations. The long-delay reflected signal will be filtered out when the receiver performs signal tracking. The multipath frequency expression can determine the minimum theoretical value that the multipath frequency needs to reach according to the maximum fault-tolerant multipath error.
进一步作为本方法优选实施例,所述采集观测数据并计算实际多径频率这一步骤,其具体包括:Further as a preferred embodiment of the method, the step of collecting observation data and calculating the actual multipath frequency specifically includes:
采集一组采样频率为预设值的GNSS观测数据;Collect a set of GNSS observation data whose sampling frequency is a preset value;
对GNSS观测进行快速傅里叶变换处理,提取得到实际多径频率。Perform fast Fourier transform processing on GNSS observations to extract the actual multipath frequency.
具体地,在实际的观测当中,接收机主要存储伪距、载波相位、载噪比、多普勒频移四类观测数据,而载噪比(C/N0)最能反应多径效应带来的变化。Specifically, in the actual observation, the receiver mainly stores four types of observation data: pseudorange, carrier phase, carrier-to-noise ratio, and Doppler frequency shift, and the carrier-to-noise ratio (C/N 0 ) can best reflect the multipath effect zone coming changes.
圆周运动下的C/N0数学模型可以表示为:The C/N 0 mathematical model under circular motion can be expressed as:
C/N0≡AC=Ad+Af cos(ΔΦ(t))C/N 0 ≡A C =A d +A f cos(ΔΦ(t))
其中,AC表示复合信号幅度,Ad与Af分别表示直射信号与反射信号的幅度,ΔΦ(t)表示为由额外传播距离产生的载波相位偏差,可由多径频率表示,ΔΦ(t)=2πfmpt+Δφ0。由于天线运动引起的多径频率振荡应与初始相位无关,可将C/N0转化为:Among them, AC represents the amplitude of the composite signal, A d and A f represent the amplitude of the direct signal and the reflected signal respectively, ΔΦ(t) represents the carrier phase deviation caused by the additional propagation distance, which can be expressed by the multipath frequency, ΔΦ(t) =2πf mp t+Δφ 0 . The multipath frequency oscillation due to antenna movement should be independent of the initial phase, and C/N 0 can be transformed into:
C/N0≡AC=Ad+Af cos(2πfmpt)C/N 0 ≡A C =A d +A f cos(2πf mp t)
由多径效应引起的载噪比变化,可以用载噪比残差表示:The carrier-to-noise ratio variation caused by multipath effects can be expressed by the carrier-to-noise ratio residual:
C/N0_RES=C/N0-MA(C/N0)C/N 0 _RES=C/N 0 -MA(C/N 0 )
其中,MA(C/N0)表示对C/N0进行滑动平均处理。对载噪比残差序列再进行快速傅里叶变换(FFT)变换,可以提取多径频率。Wherein, MA(C/N 0 ) means that the moving average processing is performed on C/N 0 . Perform fast Fourier transform (FFT) transformation on the carrier-to-noise ratio residual sequence to extract the multipath frequency.
给定按时间间隔T进行随机采样的时间序列为x[k],其离散傅里叶变换(DFT)数学定义为:Given a time series x[k] randomly sampled at time interval T, its discrete Fourier transform (DFT) is mathematically defined as:
式中,为旋转因子,N为离散采样的总点数。采用频率抽取2FFT简化计算,设N=2M,将x[k]划分为两个部分进行下列分解:In the formula, is the rotation factor, and N is the total number of discrete sampling points. Use frequency extraction 2FFT to simplify the calculation, set N=2 M , divide x[k] into two parts for the following decomposition:
按照m的奇偶区别分为两组,得到:Divide into two groups according to the parity difference of m, and get:
上式中,l=0,1,...,N/2-1。将N点的DFT运算转化为M点FFT运算,分解迭代完成计算。从而,可从FFT运算的结果提取实际圆周运动下的多径频率。In the above formula, l=0,1,...,N/2-1. Convert the N-point DFT operation into M-point FFT operation, and decompose and iterate to complete the calculation. Therefore, the multipath frequency under the actual circular motion can be extracted from the result of the FFT operation.
进一步作为本方法的优选实施例,所述GNSS观测数据包括载噪比数据和伪距观测值数据。Further as a preferred embodiment of the method, the GNSS observation data includes carrier-to-noise ratio data and pseudorange observation data.
进一步作为本方法的优选实施例,所述采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数这一步骤,其具体为:Further as a preferred embodiment of this method, the step of evaluating the multipath suppression performance by using the code multipath error and its statistical characteristics and adjusting the circular motion parameters according to the maximum multipath frequency, the minimum error tolerance frequency and the actual multipath frequency, is specifically for:
根据码多径误差及其统计特性判断到天线圆周运动的多径误差抑制性能超出预设范围,根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数后重新计算码多径误差及其统计特性,直至计算得到的码多径误差及其统计特性判断出的天线圆周运动的多径误差抑制性能在预设范围内。According to the code multipath error and its statistical characteristics, it is judged that the multipath error suppression performance of the circular motion of the antenna exceeds the preset range, and the code multipath error is recalculated after adjusting the circular motion parameters according to the maximum multipath frequency, minimum error tolerance frequency and actual multipath frequency and its statistical characteristics, until the multipath error suppression performance of the circular motion of the antenna judged by the calculated code multipath error and its statistical characteristics is within a preset range.
具体地,利用载噪比序列实施FFT变换提取多径频率,结合码多径误差计算的得到的统计特性,反馈到多径频率上限的选择中,进一步调整运动参数。Specifically, the carrier-to-noise ratio sequence is used to perform FFT transformation to extract the multipath frequency, combined with the statistical characteristics obtained by the multipath error calculation of the code, it is fed back to the selection of the upper limit of the multipath frequency, and the motion parameters are further adjusted.
采用码多径误差及其统计特性评估天线圆周运动的多径误差抑制性能,任意卫星的任意频段信号的伪距数学模型表示为:The code multipath error and its statistical characteristics are used to evaluate the multipath error suppression performance of the circular motion of the antenna. The pseudorange mathematical model of any satellite signal in any frequency band is expressed as:
P=ρ+c(tr-ts)+I+T+MPP+dr+ds+εp P=ρ+c(t r -t s )+I+T+MP P +d r +d s +ε p
式中,P为伪距观测量,单位为m,ρ为卫星与用户接收机之间的相对距离,单位为m,c为光速,tr与ts分别表示为接收机与卫星上的钟差,单位为s,I与T分别表示信号穿过电离层与对流层而引起的延迟,单位为m,MPP表示为伪距观测值上的多径误差,也称为码多径误差,单位为m,dr,ds分别表示接收机与卫星上的硬件延迟,εp为伪距上的随机误差,dr,ds,εp一般较小,可以忽略不计。In the formula, P is the pseudo-range observation, the unit is m, ρ is the relative distance between the satellite and the user receiver, the unit is m, c is the speed of light, t r and t s are the clocks on the receiver and the satellite respectively Difference, the unit is s, I and T respectively represent the delay caused by the signal passing through the ionosphere and troposphere, the unit is m, MP P represents the multipath error on the pseudo-range observation value, also known as the code multipath error, the unit m, d r , d s represent the hardware delay between the receiver and the satellite, ε p is the random error on the pseudorange, d r , d s , ε p are generally small and can be ignored.
在进行位置速度时间(PVT)解算之后,可以计算码多径误差,数学表达式为:After the position velocity time (PVT) solution, the code multipath error can be calculated, and the mathematical expression is:
MPP=P-(ρ+c(tr-ts)+I+T)MP P =P-(ρ+c(t r -t s )+I+T)
本发明的具体实施例如下:Specific embodiments of the present invention are as follows:
采集一组采样频率为1Hz的GNSS观测数据(包括载噪比、伪距观测值两种观测数据),对载噪比数据进行快速傅里叶变换计算多径频率,根据伪距观测值、导航电文数据确定静态环境下的多径频率特性以及码多径误差的统计特性(概率分布、STD、RMS等)。采集一组运动参数为经验值下的观测数据,依照图1流程确定适用于该类导航设备的圆周运动参数,并评估该方法的多径抑制效果,若多径抑制性能不佳,重新调整运动参数;若性能佳,则将确定的运动参数用于后续的多径抑制。Collect a set of GNSS observation data with a sampling frequency of 1 Hz (including observation data of carrier-to-noise ratio and pseudo-range observation value), and perform fast Fourier transform on the carrier-to-noise ratio data to calculate the multipath frequency. The message data determines the multipath frequency characteristics in a static environment and the statistical characteristics of code multipath errors (probability distribution, STD, RMS, etc.). Collect a set of observation data with motion parameters as empirical values, determine the circular motion parameters suitable for this type of navigation equipment according to the flow chart in Figure 1, and evaluate the multipath suppression effect of this method, if the multipath suppression performance is not good, readjust the motion parameters; if the performance is good, the determined motion parameters are used for subsequent multipath suppression.
如图2所示,一种利用天线圆周运动的多径误差抑制系统,包括:As shown in Figure 2, a multipath error suppression system using antenna circular motion includes:
上限模块,用于构建天线圆周运动模型并获得最大多径频率;The upper limit module is used to construct the circular motion model of the antenna and obtain the maximum multipath frequency;
下限模块,用于根据单反射模型获得最小容错多径频率;The lower limit module is used to obtain the minimum fault-tolerant multipath frequency according to the single reflection model;
圆周运动参数模块,用于根据最大多径频率和最小容错多径频率获得预设圆周运动参数;A circular motion parameter module, configured to obtain preset circular motion parameters according to the maximum multipath frequency and the minimum fault-tolerant multipath frequency;
多径频率提取模块,用于采集观测数据并计算实际多径频率;The multipath frequency extraction module is used to collect observation data and calculate the actual multipath frequency;
多径性能评估模块,用于采用码多径误差及其统计特性评估多径抑制性能并根据最大多径频率、最小容错频率和实际多径频率调整圆周运动参数。The multipath performance evaluation module is used to evaluate the multipath suppression performance by using the code multipath error and its statistical characteristics, and adjust the circular motion parameters according to the maximum multipath frequency, the minimum error tolerance frequency and the actual multipath frequency.
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The content in the above-mentioned method embodiments is applicable to this system embodiment. The functions realized by this system embodiment are the same as those of the above-mentioned method embodiments, and the beneficial effects achieved are also the same as those achieved by the above-mentioned method embodiments.
一种利用天线圆周运动的多径误差抑制装置:A multipath error suppression device using antenna circular motion:
至少一个处理器;at least one processor;
至少一个存储器,用于存储至少一个程序;at least one memory for storing at least one program;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述一种利用天线圆周运动的多径误差抑制方法。When the at least one program is executed by the at least one processor, the at least one processor is enabled to implement the method for suppressing multipath errors by using circular motion of the antenna as described above.
上述方法实施例中的内容均适用于本装置实施例中,本装置实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The content in the above-mentioned method embodiment is applicable to this device embodiment, and the specific functions realized by this device embodiment are the same as those of the above-mentioned method embodiment, and the beneficial effects achieved are also the same as those achieved by the above-mentioned method embodiment.
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention. , these equivalent modifications or replacements are all within the scope defined by the claims of the present application.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010926392.XA CN112083450B (en) | 2020-09-07 | 2020-09-07 | Method, system and device for suppressing multipath errors using antenna circular motion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010926392.XA CN112083450B (en) | 2020-09-07 | 2020-09-07 | Method, system and device for suppressing multipath errors using antenna circular motion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112083450A CN112083450A (en) | 2020-12-15 |
CN112083450B true CN112083450B (en) | 2023-07-11 |
Family
ID=73732899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010926392.XA Active CN112083450B (en) | 2020-09-07 | 2020-09-07 | Method, system and device for suppressing multipath errors using antenna circular motion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112083450B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118625357B (en) * | 2024-06-20 | 2025-03-14 | 中国人民解放军国防科技大学 | Multipath error elimination method, device and system based on antenna motion |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2237256C2 (en) * | 2001-02-21 | 2004-09-27 | Закрытое акционерное общество "Конструкторское бюро навигационных систем" | Method for suppression of multipath effect in receivers of satellite navigation |
CN102540205A (en) * | 2010-11-17 | 2012-07-04 | 崔宝导航有限公司 | Global navigation satellite antenna systems and methods |
CN104316937A (en) * | 2014-10-13 | 2015-01-28 | 中国电子科技集团公司第二十研究所 | Digital beam antenna GPS multi-path restraining method |
CN108279425A (en) * | 2018-01-29 | 2018-07-13 | 鄢名扬 | The modification method of multipath error during a kind of multi-frequency observation |
CN109001768A (en) * | 2018-07-31 | 2018-12-14 | 太原理工大学 | A kind of improvement dual polarization sequence ML multipaths restraint method applied in antenna |
CN110426724A (en) * | 2019-08-05 | 2019-11-08 | 北京航空航天大学 | A kind of GNSS multipath error elimination method for determining posture based on rotating platform |
CN111505670A (en) * | 2020-05-06 | 2020-08-07 | 苏州象天春雨科技有限公司 | Multipath detection and suppression method and system using dual antennas |
CN111538042A (en) * | 2020-05-07 | 2020-08-14 | 中国人民解放军海军航空大学 | Array anti-satellite navigation signal multipath method based on matrix reconstruction algorithm |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120242540A1 (en) * | 2011-03-21 | 2012-09-27 | Feller Walter J | Heading determination system using rotation with gnss antennas |
FR2992070B1 (en) * | 2012-06-15 | 2019-05-10 | Thales | SATELLITE SIGNAL RECEIVER FOR LOCALIZATION |
-
2020
- 2020-09-07 CN CN202010926392.XA patent/CN112083450B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2237256C2 (en) * | 2001-02-21 | 2004-09-27 | Закрытое акционерное общество "Конструкторское бюро навигационных систем" | Method for suppression of multipath effect in receivers of satellite navigation |
CN102540205A (en) * | 2010-11-17 | 2012-07-04 | 崔宝导航有限公司 | Global navigation satellite antenna systems and methods |
CN104316937A (en) * | 2014-10-13 | 2015-01-28 | 中国电子科技集团公司第二十研究所 | Digital beam antenna GPS multi-path restraining method |
CN108279425A (en) * | 2018-01-29 | 2018-07-13 | 鄢名扬 | The modification method of multipath error during a kind of multi-frequency observation |
CN109001768A (en) * | 2018-07-31 | 2018-12-14 | 太原理工大学 | A kind of improvement dual polarization sequence ML multipaths restraint method applied in antenna |
CN110426724A (en) * | 2019-08-05 | 2019-11-08 | 北京航空航天大学 | A kind of GNSS multipath error elimination method for determining posture based on rotating platform |
CN111505670A (en) * | 2020-05-06 | 2020-08-07 | 苏州象天春雨科技有限公司 | Multipath detection and suppression method and system using dual antennas |
CN111538042A (en) * | 2020-05-07 | 2020-08-14 | 中国人民解放军海军航空大学 | Array anti-satellite navigation signal multipath method based on matrix reconstruction algorithm |
Non-Patent Citations (3)
Title |
---|
Multipath mitigation technique under strong multipath environment using multiple antennas;KUBO N等;《Journal of Aeronautics》;第49卷(第1期);第75-82页 * |
低成本高精度定位技术研究进展;李婉清等;《测绘通报》(第2期);第1-8页 * |
基于幅度振荡的天线圆周运动多径检测技术_;谢林等;《清华大学学报(自然科学版)》;第58卷(第1期);第75-80页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112083450A (en) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7267460B2 (en) | System and method for high integrity satellite positioning | |
KR102547522B1 (en) | Rapid precision positioning method and system | |
AU2008260578B2 (en) | Distance dependant error mitigation in real-time kinematic (RTK) positioning | |
CN104502935B (en) | A kind of network RTK Ambiguity Solution Methods based on the non-combined model of non-difference | |
CN102597701B (en) | System and method for compensating for faulty measurements | |
CN103176188B (en) | Single-epoch fixing method for enhancing PPP-RTK ambiguity of regional foundation | |
CN108120994B (en) | Real-time GEO satellite orbit determination method based on satellite-borne GNSS | |
US10386496B2 (en) | Navigation satellite orbit and clock determination with low latency clock corrections | |
CN105182388B (en) | A kind of accurate one-point positioning method of Fast Convergent | |
CA3036928A1 (en) | Localization and tracking using location, signal strength, and pseudorange data | |
CN112230252B (en) | Terminal positioning method, device, computer equipment and storage medium | |
CN106405589A (en) | Method and device for determining global ionized layer grid model | |
CN111290005B (en) | Differential positioning method and device for carrier phase, electronic equipment and storage medium | |
CN105044741B (en) | A Method for Solving Pseudo-Range Phase Synthesis Wide-area Differential Correction Value | |
WO2020135543A1 (en) | High-precision satellite positioning method, positioning terminal and positioning system | |
CN115917251A (en) | Matching of GNSS signals | |
CN114966760A (en) | Ionosphere weighted non-differential non-combination PPP-RTK technology implementation method | |
CN111123295A (en) | Positioning method and device based on SSR (simple sequence repeat), and positioning system | |
CN112083450B (en) | Method, system and device for suppressing multipath errors using antenna circular motion | |
CN114879239B (en) | Regional three-frequency integer clock error estimation method for enhancing instantaneous PPP fixed solution | |
CN111103610A (en) | Real-time relative positioning and precise single-point positioning fusion positioning method and device | |
CN111781617A (en) | A Specular Point Estimation Method Based on Bistatic Scattering Vector Sea Surface Elevation Model | |
CN113671551A (en) | RTK positioning resolving method | |
CN115079224A (en) | Observation information determination method, device, electronic device and storage medium | |
Seepersad et al. | Reduction of precise point positioning convergence period |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Wanqing Inventor after: Zhu Xiangwei Inventor after: Li Junzhi Inventor after: Chen Zhengkun Inventor before: Li Wanqing Inventor before: Zhu Xiangwei Inventor before: Li Junzhi Inventor before: Chen Zhengkun |
|
GR01 | Patent grant | ||
GR01 | Patent grant |