CN112081864A - Tuned mass dampers for out-of-plane vibration control of wind turbine structures - Google Patents
Tuned mass dampers for out-of-plane vibration control of wind turbine structures Download PDFInfo
- Publication number
- CN112081864A CN112081864A CN202010921986.1A CN202010921986A CN112081864A CN 112081864 A CN112081864 A CN 112081864A CN 202010921986 A CN202010921986 A CN 202010921986A CN 112081864 A CN112081864 A CN 112081864A
- Authority
- CN
- China
- Prior art keywords
- locking
- tuned mass
- fan
- mass damper
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/022—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/023—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/06—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
- F16F15/067—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种被动式调谐质量阻尼器(Tune mass damper,TMD),用于控制水平轴式风机结构面外方向(水平轴向)的振动,属于风电技术领域。The invention relates to a passive tuned mass damper (TMD), which is used for controlling the vibration in the out-of-plane direction (horizontal axis) of a horizontal-axis fan structure, and belongs to the technical field of wind power.
背景技术Background technique
风机依靠巨大的叶片将空气动能转化为机械能进而带动发电机发电,其叶片在面外方向(垂直于叶片旋转平面方向)承受较大的风载荷,是风机结构发生振动的主要载荷来源。由于风机叶片在面内方向(叶片旋转平面方向)承受的风载荷较小,造成了风机基础结构具有面外振动水平远大于面内的振动特征。为保障风机结构的安全平稳运行,尤其是服役环境更加恶劣的海上风机,需要对风机结构面外方向(主振动方向)的振动进行必要的控制。Fans rely on huge blades to convert air kinetic energy into mechanical energy and then drive the generator to generate electricity. The blades bear large wind loads in the out-of-plane direction (perpendicular to the rotation plane of the blades), which is the main source of the vibration of the fan structure. Because the wind load of the fan blade in the in-plane direction (the direction of the blade rotation plane) is small, the basic structure of the fan has the characteristics of out-of-plane vibration that is much larger than that of in-plane vibration. In order to ensure the safe and stable operation of the wind turbine structure, especially the offshore wind turbine with harsher service environment, it is necessary to control the vibration of the wind turbine structure in the out-of-plane direction (main vibration direction).
目前,安装TMD是实现对风机结构振动控制的主要手段。根据TMD的工作原理,可将其分为被动式、半主动式和主动式系统,其中被动式TMD系统因其结构简单、反应灵敏、成本低而在土木工程结构广泛应用。然而,常规被动式TMD系统很难在风机结构上应用,这是由于:(1)风机机舱内部空间狭小,难以容纳TMD的质量块,使得TMD系统无法在机舱内部安装;(2)塔筒顶部虽然具备一定的安装空间,但安装于塔顶内部的TMD无法随风机偏航转动而转动,一旦当风机叶片旋转平面跟随风向发生改变时(为了最大程度的捕获风能,具有偏航系统的风机始终会保持风机叶片旋转平面与风向垂直),无法有效对风机主振动方向进行有效控制,且将TMD安装于塔顶内部会影响人员进入机舱内部进行检修,工程应用可行性较差。At present, the installation of TMD is the main means to realize the vibration control of the fan structure. According to the working principle of TMD, it can be divided into passive, semi-active and active systems. Among them, passive TMD systems are widely used in civil engineering structures because of their simple structure, sensitive response and low cost. However, it is difficult to apply the conventional passive TMD system to the wind turbine structure because: (1) the interior space of the wind turbine nacelle is narrow, and it is difficult to accommodate the mass of the TMD, so that the TMD system cannot be installed inside the nacelle; (2) although the top of the tower is There is a certain installation space, but the TMD installed inside the tower cannot rotate with the yaw rotation of the fan. Once the rotation plane of the fan blade changes with the wind direction (in order to capture wind energy to the greatest extent, the fan with the yaw system is always It will keep the rotation plane of the fan blade perpendicular to the wind direction), which cannot effectively control the main vibration direction of the fan, and the installation of the TMD inside the tower top will prevent personnel from entering the engine room for maintenance, and the engineering application feasibility is poor.
为保证被动式TMD的振动控制方向始终于与风机叶片面外方向一致,解决安装于风机机舱内部的工程难题,本发明利用机舱内部设备的质量,设计了一种可满足风机面外方向振动控制的调谐质量阻尼器。In order to ensure that the vibration control direction of the passive TMD is always consistent with the out-of-plane direction of the fan blade, and to solve the engineering problem of being installed inside the fan cabin, the present invention uses the quality of the equipment inside the cabin to design a vibration control that can meet the out-of-plane direction of the fan. Tuned mass dampers.
发明内容SUMMARY OF THE INVENTION
本发明提供一种利用风机机舱内部质量作为TMD质量块的被动式调谐质量阻尼器,为水平轴式风机结构的面外方向振动控制提供了一种可行的方案。本发明通过以下技术方案实现的:The invention provides a passive tuned mass damper using the internal mass of a fan nacelle as a TMD mass block, and provides a feasible solution for out-of-plane vibration control of a horizontal-axis fan structure. The present invention is achieved through the following technical solutions:
一种用于风机结构面外振动控制的调谐质量阻尼器,包括弹簧阻尼系统和撬体,弹簧阻尼系统连接在风机机舱前部与撬体之间,其特征在于:A tuned mass damper for out-of-plane vibration control of a fan structure, comprising a spring damping system and a skid body, wherein the spring damping system is connected between the front part of the fan nacelle and the skid body, and is characterized in that:
所述弹簧阻尼系统包括刚性连接杆、刚性连接板、螺旋弹簧和粘滞阻尼器,所述刚性连接杆一端固定于风机机舱前部,另一端通过刚性连接板与所述螺旋弹簧的一端和所述粘滞阻尼器的一端固定连接,所述螺旋弹簧和所述粘滞阻尼器的另一端与撬体相连,构成被动式调谐质量阻尼器;The spring damping system includes a rigid connecting rod, a rigid connecting plate, a coil spring and a viscous damper. One end of the rigid connecting rod is fixed at the front of the fan nacelle, and the other end is connected to one end of the coil spring and the other end through the rigid connecting plate. One end of the viscous damper is fixedly connected, and the coil spring and the other end of the viscous damper are connected to the skid to form a passive tuned mass damper;
所述撬体的整体作为被动式调谐质量阻尼器的质量块,内置包括齿轮箱、刹车盘和发电机在内的风机机舱内部设备。The whole of the skid is used as the mass block of the passive tuned mass damper, and the internal equipment of the fan nacelle including the gear box, the brake disc and the generator is built in.
优选地,所述的调谐质量阻尼器还包括用以锁紧撬体的导向锁紧梁和锁紧机构,锁紧机构包括液压缸、活塞杆和锁紧插头,固定于导向锁紧梁上方,锁紧机构与固定于撬体顶部的导向锁紧梁配合工作;导向锁紧梁包括导向梁、刚性圆柱体和锁紧孔,导向梁关于刚性圆柱体对称布置,其长度大于撬体最大运动幅值的一半,刚性圆柱体内部开有锁紧孔,锁紧孔端部设置有利于锁紧插头顺利插入的倒角,液压缸用于在需要锁紧时驱动活塞杆伸长,使得锁紧插头插入锁紧孔。Preferably, the tuned mass damper further includes a guide locking beam and a locking mechanism for locking the pry body, and the locking mechanism includes a hydraulic cylinder, a piston rod and a locking plug, which are fixed above the guide locking beam and lock the The mechanism cooperates with the guide locking beam fixed on the top of the skid body; the guide locking beam includes a guide beam, a rigid cylinder and a locking hole, the guide beam is symmetrically arranged about the rigid cylinder, and its length is greater than the maximum movement amplitude of the skid body. Half, there is a locking hole inside the rigid cylinder. The end of the locking hole is provided with a chamfer that is conducive to the smooth insertion of the locking plug. The hydraulic cylinder is used to drive the piston rod to extend when locking is required, so that the locking plug is inserted into the lock. tight hole.
所述的调谐质量阻尼器还包括轴向限位器,所述轴向限位器由轴向限位挡板和粘滞碰撞层组成,所述轴向限位挡板用于限制撬体发生大幅度滑动;所述粘滞碰撞层可以吸收所述撬体撞击所述轴向限位挡板的能量,起到保护所述轴向限位器和增加耗能的作用。The tuned mass damper also includes an axial limiter, which is composed of an axial limit baffle and a viscous collision layer, and the axial limit baffle is used to limit the occurrence of the skid. Large-scale sliding; the viscous collision layer can absorb the energy of the skid body hitting the axial limit baffle, and play the role of protecting the axial limiter and increasing energy consumption.
所述的调谐质量阻尼器还包括侧向限位器,所述侧向限位器布置于所述撬体两侧。The tuned mass damper further includes lateral limiters, and the lateral limiters are arranged on both sides of the skid body.
在所述撬体底部设置有滚轮和制动机构。A roller and a braking mechanism are arranged at the bottom of the skid.
本发明由于采用以上技术方案,其具有以下优点:1、本发明利用风机机舱内部设备作为TMD的质量块,解决了常规TMD需要占用机舱超大空间的难题,具有极佳的工程可行性;2、本发明无需额外配置TMD质量块,大大降低了TMD的制造成本;3、本发明将机舱内部设备进行撬装,使得机舱内部设备的布置更加整齐合理,方便整体吊装与运输,更有利于TMD的快速安装;4、本发明的TMD布置于机舱内部,不受风机偏航的影响,能够保证TMD运动方向始终与风机面外振动方向一致,从而对风机面外振动方向的振动控制达到最佳效果。5、本发明结构简单,造价低,TMD工作的锁紧与启停简单可靠,工程应用前景良好。Because the present invention adopts the above technical solutions, it has the following advantages: 1. The present invention utilizes the internal equipment of the fan engine room as the mass block of the TMD, which solves the problem that the conventional TMD needs to occupy the super large space of the engine room, and has excellent engineering feasibility; 2. The present invention does not require additional configuration of TMD mass blocks, which greatly reduces the manufacturing cost of TMD; 3. The present invention skid-mounts the equipment inside the engine room, so that the arrangement of the equipment inside the engine room is more tidy and reasonable, which is convenient for the overall hoisting and transportation, and is more beneficial to the TMD. Quick installation; 4. The TMD of the present invention is arranged inside the nacelle and is not affected by the yaw of the fan, which can ensure that the direction of the TMD movement is always consistent with the vibration direction of the fan outside the plane, so that the vibration control of the outside vibration direction of the fan can achieve the best effect. . 5. The present invention has the advantages of simple structure, low cost, simple and reliable locking and start-stop of TMD work, and good engineering application prospect.
附图说明Description of drawings
图1是本发明调谐质量阻尼器的正视图;1 is a front view of a tuned mass damper of the present invention;
图2是本发明A-A截面左视图;Fig. 2 is the left side view of A-A section of the present invention;
图3是本发明B-B截面俯视图;Fig. 3 is the B-B section top view of the present invention;
图中标号说明:1为弹簧阻尼系统;11为刚性连接杆;12刚性连接板;13为螺旋弹簧;14为粘滞阻尼器;2为主轴传动系统;21为主动轴;22为从动轴;3为轴向限位器;31为轴向限位挡板;32为粘滞碰撞层;4为导轨;5为撬体;51为滚轮;52为制动机构;6为侧向限位器;7为锁紧系统;71为液压缸;72为活塞杆;73为锁紧插头;74为导向锁紧梁;741为导向梁;742为刚性圆柱体;743为锁紧孔。Description of the symbols in the figure: 1 is the spring damping system; 11 is the rigid connecting rod; 12 is the rigid connecting plate; 13 is the coil spring; 14 is the viscous damper; 2 is the main shaft transmission system; 21 is the driving shaft; 22 is the driven
具体实施方式Detailed ways
以下结合附图及实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
如图1所示,本发明主要包括弹簧阻尼系统1;刚性连接杆11;刚性连接板12;螺旋弹簧13;粘滞阻尼器14;主轴传动系统2;主动轴21;从动轴22;轴向限位器3;轴向限位挡板31;粘滞碰撞层32;导轨4;撬体5;滚轮51;制动机构52;侧向限位器6;锁紧系统7;液压缸71;活塞杆72;锁紧插头73;导向锁紧梁74;为导向梁741;刚性圆柱体742;锁紧孔743。As shown in Figure 1, the present invention mainly includes a
如图1所示,本发明的TMD主体部分由弹簧阻尼系统1和撬体5组成,弹簧阻尼系统1安装在风机机舱前部(靠近轮毂的一端)内壁上,由刚性连接杆11、刚性连接板12、螺旋弹簧13和粘滞阻尼器14组成,刚性连接杆11一端固定于风机机舱前部内壁上,另一端通过刚性连接板12固定螺旋弹簧13和所述粘滞阻尼器14,螺旋弹簧13和粘滞阻尼器14另一端与撬体5相连,从而构成被动式TMD系统,当风机塔筒结构在面外方向发生振动时,本发明所构成的TMD系统通过撬体5的反向运动产生的惯性力和粘滞阻尼器14的阻尼力实现对风机结构面外方向振动的缓解和能量耗散。As shown in Figure 1, the main body of the TMD of the present invention is composed of a
如图1所示,本发明的撬体5将机舱内部的齿轮箱、刹车盘、发电机等设备撬装成整体,作为TMD的质量块,充分利用了机舱内部空间,节省了额外配置TMD的质量块以及相应的安装空间需求。具体设计时,根据撬体5的质量,基于被动式TMD设计理论,匹配最佳的螺旋弹簧13和粘滞阻尼器14的参数,以达到最优的振动控制效果。As shown in FIG. 1 , the
如图1所示,本发明的风机主轴传动系统2由主动轴21和从动轴22组成,主动轴21内部轴向开有键槽,从动轴22外面设有花键,主动轴21与从动轴22采用间隙配合,形成花键副连接,实现在传递轮毂转动扭矩的同时,能够允许从动轴22沿主动轴21的键槽滑动,从动轴22末端连接齿轮箱,将动力传递给齿轮箱,从而保证了风机的正常发电和TMD的相对运动。As shown in FIG. 1 , the fan main
如图1所示,本发明的撬体5底部安装滚轮51和制动机构52,风机机舱内部底板上沿风机水平轴向设有导轨4,滚轮51与导轨4构成导轨副,从而实现撬体沿风机水平轴向的自由运动,当撬体5需要停止运动时,可以通过控制信号控制制动机构52锁紧滚轮51,控制滚轮51不发生滚动。As shown in Figure 1, the bottom of the
如图1所示,本发明在风机机舱内部底板前后两端设有轴向限位器3,轴向限位器3由轴向限位挡板31和粘滞碰撞层32组成,轴向限位挡板31可以限制撬体5发生大幅度滑动,避免从动轴22与主动轴21脱离,造成风机轮毂动力输入的失效;且可以防止撬体5与机舱内部其他辅助设备和结构发生碰撞,避免发生事故;粘滞碰撞层32的增设可以吸收撬体5撞击轴向限位挡板31的能量,起到保护轴向限位器31和增加耗能的作用。As shown in Figure 1, the present invention is provided with
如图2所示,本发明在风机机舱顶部中段设有侧向限位器6,侧向限位器6布置于撬体5的两侧,可以限制撬体5因风机面内振动引起的小幅晃动,防止撬体5发生脱轨而影响TMD的正常运行。As shown in FIG. 2, the present invention is provided with a
如图1所示,本发明在风机机舱顶部设有锁紧机构7,锁紧机构7由液压缸71、活塞杆72和锁紧插头73组成,锁紧机构7与安装于撬体5顶部的导向锁紧梁74配合工作,可以实现对TMD撬体的锁紧。As shown in FIG. 1 , the present invention is provided with a locking mechanism 7 at the top of the fan nacelle. The locking mechanism 7 is composed of a
如图3所示,导向锁紧梁74由导向梁741、刚性圆柱体742和锁紧孔743组成,导向梁741关于刚性圆柱体742对称布置,其长度大于撬体5最大运动幅值的一半,刚性圆柱体742内部开有锁紧孔743,锁紧孔743端部进行倒角,以利于锁紧插头73顺利插入。工程应用安装时,确保撬体5处于静平衡位置时,锁紧孔743与锁紧插头73能够完全对中。As shown in FIG. 3 , the
当风机遭遇极端工况或停机检修需要TMD停止工作时,通过控制信号控制液压缸71驱动活塞杆72伸长,使得锁紧插头73轻微碰触导向梁741,待撬体5滑动至锁紧插头73与锁紧孔743对中时,液压缸71继续驱动活塞杆72伸长,直至锁紧插头73插入锁紧孔743底部,通过进一步增加液压缸71的压力,实现将撬体5锁紧在静平衡位置;撬体5停止运动后,可通过控制信号,触发制动机构52制动,从而锁死滚轮51,进一步锁牢撬体5,实现在TMD系统的固定。When the fan encounters extreme working conditions or the TMD needs to stop working during shutdown and maintenance, the
当风机重新正常运行需要TMD介入对其振动进行控制时,通过控制信号控制锁紧机构7收起活塞杆72,锁紧插头73从锁紧孔743内拔出,制动机构52释放滚轮51,撬体5重新在惯性力和弹簧恢复力作用下做往复运动,从而实现对风机面外方向振动的控制。When the fan needs TMD to intervene to control its vibration, the control signal controls the locking mechanism 7 to retract the piston rod 72, the locking
通过以上方案,安装本发明所提供的被动式TMD,不受风机偏航影响,能够显著缓解风机主振动方向的振动水平,降低风机结构的疲劳损伤,从而大大提高风机结构服役的安全性和可靠性。Through the above scheme, installing the passive TMD provided by the present invention is not affected by the yaw of the fan, can significantly alleviate the vibration level in the main vibration direction of the fan, reduce the fatigue damage of the fan structure, and greatly improve the safety and reliability of the fan structure in service. .
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010921986.1A CN112081864A (en) | 2020-09-04 | 2020-09-04 | Tuned mass dampers for out-of-plane vibration control of wind turbine structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010921986.1A CN112081864A (en) | 2020-09-04 | 2020-09-04 | Tuned mass dampers for out-of-plane vibration control of wind turbine structures |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112081864A true CN112081864A (en) | 2020-12-15 |
Family
ID=73731997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010921986.1A Pending CN112081864A (en) | 2020-09-04 | 2020-09-04 | Tuned mass dampers for out-of-plane vibration control of wind turbine structures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112081864A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113279908A (en) * | 2021-05-26 | 2021-08-20 | 大连理工大学 | Movable damper system suitable for offshore wind turbine generator and working method |
CN115843527A (en) * | 2023-03-03 | 2023-03-28 | 安徽中舟振兴农业科技有限公司 | Automatic change equipment of ploughing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101737246A (en) * | 2008-11-07 | 2010-06-16 | 通用电气公司 | Drive train supporting structure for a wind turbine |
JP2012159034A (en) * | 2011-01-31 | 2012-08-23 | Tokai Rubber Ind Ltd | Vibration control boss for fan |
CN103452768A (en) * | 2012-05-28 | 2013-12-18 | 北京能高自动化技术股份有限公司 | Fan tower load shedding method based on separated engine room |
CN105650194A (en) * | 2016-03-07 | 2016-06-08 | 山东大学 | Blade type energy-consuming and tuning vibration damper |
CN205776858U (en) * | 2016-05-25 | 2016-12-07 | 哈尔滨工程大学 | Viscoelasticity collision tuned mass damper |
CN108953463A (en) * | 2018-09-25 | 2018-12-07 | 南京林业大学 | A kind of double guide rail TMD dissipative damping devices applied to wind power generating set |
-
2020
- 2020-09-04 CN CN202010921986.1A patent/CN112081864A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101737246A (en) * | 2008-11-07 | 2010-06-16 | 通用电气公司 | Drive train supporting structure for a wind turbine |
JP2012159034A (en) * | 2011-01-31 | 2012-08-23 | Tokai Rubber Ind Ltd | Vibration control boss for fan |
CN103452768A (en) * | 2012-05-28 | 2013-12-18 | 北京能高自动化技术股份有限公司 | Fan tower load shedding method based on separated engine room |
CN105650194A (en) * | 2016-03-07 | 2016-06-08 | 山东大学 | Blade type energy-consuming and tuning vibration damper |
CN205776858U (en) * | 2016-05-25 | 2016-12-07 | 哈尔滨工程大学 | Viscoelasticity collision tuned mass damper |
CN108953463A (en) * | 2018-09-25 | 2018-12-07 | 南京林业大学 | A kind of double guide rail TMD dissipative damping devices applied to wind power generating set |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113279908A (en) * | 2021-05-26 | 2021-08-20 | 大连理工大学 | Movable damper system suitable for offshore wind turbine generator and working method |
CN115843527A (en) * | 2023-03-03 | 2023-03-28 | 安徽中舟振兴农业科技有限公司 | Automatic change equipment of ploughing |
CN115843527B (en) * | 2023-03-03 | 2023-10-20 | 安徽中舟振兴农业科技有限公司 | Automatic change tilling equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112081864A (en) | Tuned mass dampers for out-of-plane vibration control of wind turbine structures | |
CN107606027B (en) | A two-degree-of-freedom collision nonlinear vibration damping device | |
CN102758874A (en) | Self-adaptive variable-damping variable-stiffness shock absorber for multi-frequency component vibration of rotary machine rotator | |
CN102105683B (en) | Control device and method for an aerodynamic braking device for a wind energy converter | |
CN206309526U (en) | Wind power generating set and the blade locking arrangement for wind power generating set | |
KR100832053B1 (en) | Wind Power Generation System Using Fluid Torque Converter | |
CN102409775B (en) | Vibration absorption control device for tuned mass damper | |
CN112032005B (en) | A fan with tuned mass damper | |
CN111287916B (en) | A Tuned Collision Inertia Mass Damping Device for Fan | |
US8234953B2 (en) | High speed flywheel containment | |
CN105650194B (en) | Vane type power consumption tuning vibration absorber | |
CN104653699A (en) | Vibration reduction device and vibration reduction method for super-critical rotor by using combined type vibration reduction strategy | |
CN117097068B (en) | A gravity energy storage system based on mechanically coupled flywheel | |
CN206111429U (en) | Friction clutch formula vertical axis wind power generation set | |
CN116065477A (en) | Displacement Adaptive Staged Viscous Damper with Fuse Mechanism | |
CN208074033U (en) | A kind of permanent magnet coupling bumper guard | |
US20190376492A1 (en) | Wind Turbine Coupling to Mitigate Torque Reversals | |
KR101348619B1 (en) | Aerogenerator Having Impact Absorbing Unit | |
CN103452768A (en) | Fan tower load shedding method based on separated engine room | |
CN107120239B (en) | Wind-driven generator | |
CN110131325A (en) | A kind of permanent magnet coupling bumper guard | |
CN117469087A (en) | Vibration damping system of wind generating set | |
Li et al. | Vibration control of large wind turbine blades with unidirectional cable pendulum damper | |
CN110145442B (en) | Bidirectional damping device for wind driven generator blade | |
KR100987760B1 (en) | Wind power generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201215 |