[go: up one dir, main page]

CN112080517A - Screening system for improving probability of obtaining gene editing plants, construction method and application thereof - Google Patents

Screening system for improving probability of obtaining gene editing plants, construction method and application thereof Download PDF

Info

Publication number
CN112080517A
CN112080517A CN202010934721.5A CN202010934721A CN112080517A CN 112080517 A CN112080517 A CN 112080517A CN 202010934721 A CN202010934721 A CN 202010934721A CN 112080517 A CN112080517 A CN 112080517A
Authority
CN
China
Prior art keywords
gene
dna
plants
ruby
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010934721.5A
Other languages
Chinese (zh)
Inventor
和玉兵
占华东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202010934721.5A priority Critical patent/CN112080517A/en
Publication of CN112080517A publication Critical patent/CN112080517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种提高获得基因编辑植株概率的方法及其应用。本发明将一个新的可见光下裸眼可视报告系统的表达盒与基因编辑系统的表达盒连锁到一个载体上,对植物进行遗传转化。因为与基因编辑系统发生连锁的报告系统能在植物体内产生红色的甜菜红素,且基因编辑表达盒在植物细胞中成功表达是植物被编辑的前提,所以可以直接通过甜菜红素的产生来指示基因编辑表达盒正常表达,从而直接通过可见光下裸眼可视植物体的颜色来挑选发生基因编辑的植株。本发明有效避免了通过抗生素筛选获得的植株中存在部分植株未发生靶位点编辑的情况,成功实现通过甜菜红素报告系统高效获得靶位点被编辑的植株。

Figure 202010934721

The present invention relates to a method for increasing the probability of obtaining a gene-edited plant and its application. The invention links the expression cassette of a novel naked-eye visual reporter system under visible light and the expression cassette of the gene editing system to a vector to carry out genetic transformation of plants. Because the reporter system linked with the gene editing system can produce red betalain in plants, and the successful expression of the gene editing expression cassette in plant cells is a prerequisite for the plant to be edited, it can be directly indicated by the production of betalainin The gene editing expression cassette is expressed normally, so that the gene-edited plants can be selected directly by the color of the plant body under visible light with the naked eye. The invention effectively avoids the situation that some plants have no target site editing in the plants obtained through antibiotic screening, and successfully achieves the efficient acquisition of plants with edited target sites through the betalain reporting system.

Figure 202010934721

Description

一种提高获得基因编辑植株概率的筛选系统、构建方法及其 应用A screening system, construction method and method for improving the probability of obtaining gene-edited plants application

技术领域technical field

本发明属于基因工程领域,具体涉及一种新的提高获得基因编辑植株概率的筛选系统及其应用。本发明的筛选系统通过植物体内产生的可见光下可被裸眼直接观察的色素作为标记来筛选获得发生基因编辑的植株。本发明还涉及上述筛选系统的构建和应用。The invention belongs to the field of genetic engineering, and in particular relates to a new screening system for improving the probability of obtaining gene-edited plants and its application. The screening system of the present invention uses pigments produced in plants that can be directly observed with the naked eye as markers to screen to obtain gene-edited plants. The present invention also relates to the construction and application of the above-mentioned screening system.

背景技术Background technique

基因编辑的技术核心为利用序列特异核酸酶(Sequence-specific nucleases,SSNs)诱导DNA双链断裂(Double-stranded breaks,DSBs),随后对基因组进行靶向定点突变。因为生物体的DNA发生DSBs后,其自我修复机制会启动,将断裂的DNA修复,目前主要发现有两种修复形式。其一,大部分情况下,修复机制会直接将断裂位置的染色体连接起来,发生非同源重组连接(Nonhomologous end joining,NHEJ)。因NHEJ不能保证非常精确的修复,使得在断裂位置出现核苷酸的缺失或者插入从而导致基因发生突变,所以可以利用该特性来创制靶位点定点突变的突变体。其二,在有同源核酸模板存在的情况下,生物体在修复DSBs的时候能以同源核酸为模板对断裂位置进行同源重组修复(homology-directedrepair,HDR),因为有模板的存在,HDR会产生精确的修复,如果在模板中设计一些人为的突变则会将这些突变精确地引入生物体的基因组中。但是目前的研究结果表明,即便是在有同源核酸模板存在,NHEJ发生的概率也远远高于HDR(Wyman C,Kanaar R.DNA double-strand break repair:all's well that ends well.Annu Rev Genet,2006,40:363-383;Symington LS,Gautier J.Double-strand break end resection and repair pathwaychoice.Annu Rev Genet,2011,45:247-271)。The core of gene editing technology is the use of sequence-specific nucleases (Sequence-specific nucleases, SSNs) to induce DNA double-strand breaks (DSBs), followed by targeted site-directed mutagenesis of the genome. Because after DSBs occur in the DNA of the organism, its self-repair mechanism will be activated to repair the broken DNA. At present, there are mainly two repair forms. First, in most cases, the repair mechanism will directly connect the chromosomes at the broken position, resulting in non-homologous end joining (NHEJ). Because NHEJ cannot guarantee very precise repair, the deletion or insertion of nucleotides at the break position will lead to gene mutation, so this feature can be used to create mutants of target site-directed mutagenesis. Second, in the presence of a homologous nucleic acid template, the organism can use the homologous nucleic acid as a template to perform homologous recombination repair (HDR) on the broken position when repairing DSBs. Because of the existence of the template, HDR produces precise repairs that, if engineered into the template, will introduce these mutations precisely into the organism's genome. However, the current research results show that even in the presence of homologous nucleic acid templates, the probability of NHEJ occurrence is much higher than that of HDR (Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well. Annu Rev Genet , 2006, 40: 363-383; Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011, 45: 247-271).

目前主要有三种SSN被实际应用于基因编辑:锌指核酸酶(Zinc fingernucleases,ZFN)(Kim YG,Cha J,Chandrasegaran S.Hybrid restriction enzymes:zincfinger fusions to Fok I cleavage domain.Proc Natl Acad Sci U S A,1996,93(3):1156-1160)、转录激活样效应因子核酸酶(Transcription activator-like effectornucleases,TALEN)(Christian M,Cermak T,Doyle EL,Schmidt C,Zhang F,Hummel A,Bogdanove AJ,Voytas DF.Targeting DNA double-strand breaks with TAL effectornucleases.Genetics,2010,186(2):757-761;Miller JC,Tan S,Qiao G,Barlow KA,WangJ,Xia DF,Meng X,Paschon DE,Leung E,Hinkley SJ,Dulay GP,Hua KL,Ankoudinova I,Cost GJ,Urnov FD,Zhang HS,Holmes MC,Zhang L,Gregory PD,Rebar EJ.A TALEnuclease architecture for efficient genome editing.Nat Biotechnol,2011,29(2):143-148;Zhang F,Cong L,Lodato S,Kosuri S,Church GM,Arlotta P.Efficientconstruction of sequence-specific TAL effectors for modulating mammaliantranscription.Nat Biotechnol,2011,29(2):149-153)和成簇规律间隔短回文重复序列及其相关系统,即CRISPR/Cas系统(Clustered regularly interspaced shortpalindromic repeats/CRISPR associated proteins,CRISPR/Cas system)(Jinek M,Chylinski K,Fonfara I,Hauer M,Doudna JA,Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science,2012,337(6096):816-821;Cong L,Ran FA,Cox D,Lin S,Barretto R,Habib N,Hsu PD,Wu X,JiangW,Marraffini LA,Zhang F.Multiplex genome engineering using CRISPR/Cassystems.Science,2013,339(6121):819-823)。其中以CRISPR/Cas系统操作最为简便,因此被广泛用于靶向突变体的创制。Currently, there are three main types of SSNs that are actually used in gene editing: Zinc finger nucleases (ZFNs) (Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zincfinger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A, 1996, 93(3): 1156-1160), Transcription activator-like effector nucleases (TALEN) (Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effectornucleases. Genetics, 2010, 186(2):757-761; Miller JC, Tan S, Qiao G, Barlow KA, WangJ, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ.A TALEnuclease architecture for efficient genome editing.Nat Biotechnol,2011,29( 2): 143-148; Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol, 2011, 29(2): 149-153) and clustered regularly interspaced short palindromic repeats and their related systems, namely the CRISPR/Cas system (Clustered regularly interspaced short palindromic repeats/CRISPR associated p roteins, CRISPR/Cas system) (Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821 ; Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, JiangW, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cassystems. Science, 2013, 339(6121): 819-823). Among them, the CRISPR/Cas system is the easiest to operate, so it is widely used for the creation of targeted mutants.

CRISPR/Cas基因编辑最初发现于古菌和细菌,并通过生化手段阐明了其作用机理(Jinek M,Chylinski K,Fonfara I,Hauer M,Doudna JA,Charpentier E.A programmabledual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science,2012,337(6096):816-821)。随后该技术在动物中也被证明能对DNA进行靶向编辑(Cong L,RanFA,Cox D,Lin S,Barretto R,Habib N,Hsu PD,Wu X,Jiang W,Marraffini LA,ZhangF.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823)。理论上CRISPR/Cas基因编辑正常发挥功能只需要满足三个要求:1.核定位的CAS9蛋白;2.具有20个靶序列特异性核苷酸的gRNA;3.基因组中与靶序列相邻的3'末端为前间区序列邻近基序(protospacer-adjacent motif,PAM),PAM在CAS9系统中为NGG,在Cas9的变体Cas9-NG或者xCas9中PAM几乎简化为NG(Hu JH,,et al.Evolved Cas9variants with broad PAM compatibility and high DNA specificity.Nature,2018,556(7699):57-63;Nishimasu H,et al.Engineered CRISPR-Cas9 nuclease withexpanded targeting space.Science,2018,361(6408):1259-1262)。根据CRISPR/Cas的作用机理以及该技术在动物中的成功应用,该技术迅速在植物中被应用,目前CRISPR/Cas系统已经成功地在多种植物中实现了定点突变(Mao Y,Botella JR,Liu Y,Zhu J-K.Geneediting in plants:progress and challenges.National Science Review,2019,6(3):421-437;Xu J,Hua K,Lang Z.Genome editing for horticultural cropimprovement.Hortic Res,2019,6:113;Zhang Y,Malzahn AA,Sretenovic S,Qi Y.Theemerging and uncultivated potential of CRISPR technology in plant science.NatPlants,2019,5(8):778-794)。CRISPR/Cas gene editing was originally found in archaea and bacteria, and its mechanism of action was elucidated by biochemical means (Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmabledual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821). Subsequently, this technology has also been proved to be able to target DNA editing in animals (Cong L, RanFA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, ZhangF. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823). Theoretically, the normal function of CRISPR/Cas gene editing only needs to meet three requirements: 1. The nuclear-localized CAS9 protein; 2. The gRNA with 20 target sequence-specific nucleotides; 3. The adjacent target sequence in the genome The 3' end is the protospacer-adjacent motif (PAM), PAM is NGG in the CAS9 system, and PAM is almost simplified to NG in the Cas9 variant Cas9-NG or xCas9 (Hu JH,, et al. al. Evolved Cas9variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57-63; Nishimasu H, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361(6408): 1259-1262). According to the mechanism of action of CRISPR/Cas and the successful application of the technology in animals, the technology has been rapidly applied in plants. At present, the CRISPR/Cas system has successfully achieved site-directed mutagenesis in a variety of plants (Mao Y, Botella JR, Liu Y, Zhu J-K. Geneediting in plants: progress and challenges. National Science Review, 2019, 6(3): 421-437; Xu J, Hua K, Lang Z. Genome editing for horticultural cropimprovement. Hortic Res, 2019, 6 : 113; Zhang Y, Malzahn AA, Sretenovic S, Qi Y. Theemerging and uncultivated potential of CRISPR technology in plant science. Nat Plants, 2019, 5(8):778-794).

因为CRISPR/Cas基因编辑系统产生靶向突变主要依赖Cas蛋白和gRNA复合体对靶位点进行切割后细胞修复DSB时发生错误,若能正常修复则无法产生突变。因此Cas蛋白和gRNA复合体需要持续对靶位点进行切割,直到靶位点发生突变后gRNA无法完全互补配对识别为止。因此,CRISPR/Cas基因编辑系统在生物体内高效发挥功能有赖于细胞中存在较大量的Cas/gRNA核酸蛋白复合体,目前主要通过两种方法达到该目标。第一,通过瞬时转化的方法将Cas/gRNA核酸蛋白复合体或能表达Cas的mRNA和gRNA或能转录CasmRNA和gRNA的DNA导入到目标细胞;第二,通过稳定转化的方法将能表达Cas蛋白和转录gRNA的DNA插入到目标细胞的基因组中,通过高效表达的启动子持续不断驱动Cas蛋白表达和gRNA转录。由于第二种方法方便对发生了转基因的细胞进行筛选,并且Cas蛋白和gRNA分别能稳定在目标细胞进行表达和转录,因此在实际的操作中通过稳定转化进行基因编辑的效率更高一些。在植物的CRISPR/Cas基因编辑中,也主要通过稳定转化的方法将带有能表达Cas蛋白和转录gRNA的DNA插入植物细胞的基因组中,随后通过抗生素或除草剂筛选以及PCR扩增鉴定阳性植株来提高获得基因编辑植株的概率。Because the CRISPR/Cas gene editing system produces targeted mutations mainly rely on Cas protein and gRNA complex to cut the target site, an error occurs when the cell repairs the DSB, and if it can be repaired normally, the mutation cannot be generated. Therefore, the complex of Cas protein and gRNA needs to continuously cleave the target site until the target site is mutated and the gRNA cannot be fully complementary paired for recognition. Therefore, the efficient functioning of the CRISPR/Cas gene editing system in organisms depends on the presence of a large amount of Cas/gRNA nucleic acid-protein complexes in cells. Currently, two methods are mainly used to achieve this goal. First, the Cas/gRNA nucleic acid-protein complex or the mRNA and gRNA that can express Cas or the DNA that can transcribe Cas mRNA and gRNA is introduced into the target cell by transient transformation; second, the Cas protein can be expressed by the method of stable transformation. The DNA that transcribes and transcribes the gRNA is inserted into the genome of the target cell, and the Cas protein expression and gRNA transcription are continuously driven by the highly expressed promoter. Since the second method is convenient for screening transgenic cells, and Cas protein and gRNA can be stably expressed and transcribed in target cells, respectively, gene editing by stable transformation is more efficient in practice. In the CRISPR/Cas gene editing of plants, the DNA with the expression of Cas protein and transcribed gRNA is mainly inserted into the genome of plant cells by the method of stable transformation, and then positive plants are identified by antibiotic or herbicide screening and PCR amplification. to increase the probability of obtaining gene-edited plants.

但是在实际的植物基因编辑实验中,往往存在一些带有抗性或PCR鉴定为阳性的植株并没有发生靶位点的编辑。究其原因主要有如下几种可能:1.抗生素筛选存在渗漏,一些没有抗性的组织被紧邻有抗性的组织保护起来;2.抗生素产生的筛选压使得只有抗性基因存在的不完全插入DNA片段被筛选积累,而其中能表达Cas蛋白和转录gRNA的DNA则发生了丢失。3.外源DNA插入位置不合适,其中的DNA表达量较低,虽然抗生素抗性基因表达较低,足以维持组织抗性而存活,但是表达的Cas蛋白和转录的gRNA不足则会导致无法诱导靶位点产生突变;4.外源DNA插入到染色体的沉默区域,虽然PCR鉴定为阳性,但是外源DNA上的基因无法转录。因此,如何通过更有效地筛选提高获得基因编辑植株的概率仍然有待进一步的研究和优化。其中将报告基因与基因编辑元件基因连锁,通过明显的特征来提高获得基因编辑植株的概率是一种可行的方法。However, in actual plant gene editing experiments, there are often some plants with resistance or positive PCR identification that do not undergo editing of the target site. The reasons are mainly as follows: 1. There is leakage in antibiotic screening, and some non-resistant tissues are protected by adjacent resistant tissues; 2. The screening pressure generated by antibiotics makes only the existence of resistance genes incomplete. Inserted DNA fragments were screened for accumulation, while DNA in which Cas protein was expressed and gRNA transcribed was lost. 3. The insertion position of exogenous DNA is inappropriate, and the DNA expression in it is low. Although the expression of antibiotic resistance genes is low enough to maintain tissue resistance and survive, the expression of Cas protein and transcribed gRNA is insufficient, which will lead to inability to induce The target site is mutated; 4. The exogenous DNA is inserted into the silent region of the chromosome. Although the PCR identification is positive, the gene on the exogenous DNA cannot be transcribed. Therefore, how to improve the probability of obtaining gene-edited plants through more effective screening still needs further research and optimization. It is a feasible method to link the reporter gene with the gene editing element gene to improve the probability of obtaining gene editing plants through obvious characteristics.

目前已有研究报道通过绿色荧光蛋白(GFP)及其衍生物(例如RFP、mCherry和YFP)作为报告基因来辅助筛选提高获得基因编辑植株的概率(Gao X,Chen J,Dai X,Zhang D,Zhao Y.An Effective Strategy for Reliably Isolating Heritable and Cas9-FreeArabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.PlantPhysiol,2016,171(3):1794-1800)。尽管荧光蛋白易于使用,但它需要特殊波长的光源对其进行激发才能产生特定波长的可视化荧光信号。由于植物体内存在大量可以自发荧光的物质,这些物质产生的荧光的波长分别对不同的荧光蛋白发射的波长产生干扰(DonaldsonL.Autofluorescence in Plants.Molecules,2020,25(10))。因此一般需要使用特定的滤光片对特定植物组织进行观察,或者对组织进行特殊处理后再来观察,而且在激发光下荧光蛋白会较快发生衰变,不利于持续观察。It has been reported that green fluorescent protein (GFP) and its derivatives (such as RFP, mCherry, and YFP) are used as reporter genes to assist screening to improve the probability of obtaining gene-edited plants (Gao X, Chen J, Dai X, Zhang D, Zhao Y. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiol, 2016, 171(3):1794-1800). Although fluorescent proteins are easy to use, they require specific wavelengths of light to excite them to produce visible fluorescent signals at specific wavelengths. Since there are a large number of substances that can autofluoresce in plants, the wavelengths of fluorescence generated by these substances interfere with the wavelengths emitted by different fluorescent proteins (Donaldson L. Autofluorescence in Plants. Molecules, 2020, 25(10)). Therefore, it is generally necessary to use a specific filter to observe a specific plant tissue, or to observe the tissue after special treatment, and the fluorescent protein will decay rapidly under excitation light, which is not conducive to continuous observation.

甜菜红素是一类来源于酪氨酸的植物天然产物(Strack D,Vogt T,SchliemannW.Recent advances in betalain research.Phytochemistry,2003,62(3):247-269;XuJ-J,Fang X,Li C-Y,Yang L,Chen X-Y.General and specialized tyrosine metabolismpathways in plants.aBIOTECH,2020,1(2):97-105)。甜菜、火龙果和其他植物中见到的鲜红色就是甜菜红素积聚的结果。目前,甜菜红素的生物合成途径已有较详尽的研究,发现仅需三个酶促反应即可将酪氨酸转化为甜菜红素(Polturak G,Aharoni A.Advances andfuture directions in betalain metabolic engineering.New Phytol,2019,224(4):1472-1478)。酪氨酸首先在苯环上被羟基化,生成L-3,4-二羟基苯丙氨酸(L-DOPA)。该反应由P450氧化酶CYP76AD1催化。L-DOPA可被CYP76AD1进一步氧化为环-DOPA。同时,L-DOPA也会被L-DOPA 4,5-二加氧酶(DODA)催化生成甜菜酸,其随后与环-DOPA缩合成甜菜苷配基。缩合反应不需要酶。最后,通过GT(葡萄糖基转移酶)将糖基添加到甜菜苷配基中,生成颜色鲜亮的甜菜红素。因此我们推测这种色素也能作为一种明显的标记来指示植物转基因的发生。Betaine is a class of plant natural products derived from tyrosine (Strack D, Vogt T, Schliemann W. Recent advances in betalain research. Phytochemistry, 2003, 62(3): 247-269; XuJ-J, Fang X, Li C-Y, Yang L, Chen X-Y. General and specialized tyrosine metabolism paths in plants. aBIOTECH, 2020, 1(2):97-105). The bright red color seen in beets, dragon fruit, and other plants is the result of a buildup of betalains. At present, the biosynthetic pathway of betalain has been studied in detail, and it was found that only three enzymatic reactions are needed to convert tyrosine into betalain (Polturak G, Aharoni A. Advances and future directions in betalain metabolic engineering. New Phytol, 2019, 224(4):1472-1478). Tyrosine is first hydroxylated on the benzene ring to generate L-3,4-dihydroxyphenylalanine (L-DOPA). This reaction is catalyzed by the P450 oxidase CYP76AD1. L-DOPA can be further oxidized to cyclo-DOPA by CYP76AD1. At the same time, L-DOPA is also catalyzed by L-DOPA 4,5-dioxygenase (DODA) to generate beta-acid, which is then condensed with cyclo-DOPA to form beta-aglycone. The condensation reaction does not require an enzyme. Finally, the sugar group is added to the betalain by GT (glucosyltransferase), resulting in the brightly colored betalain. Therefore, we speculate that this pigment can also serve as an obvious marker to indicate the occurrence of transgenic plants.

发明内容SUMMARY OF THE INVENTION

针对现有提高获得基因编辑植株的概率的方法存在的局限与不足,需要开发可广泛用于连续、观察方便快捷和低成本的新报告系统来提高获得基因编辑植株的概率。本发明利用一种在自然光下肉眼可见的甜菜红色素作为报告分子,设计了一种新的提高获得基因编辑植株概率的报告系统。In view of the limitations and deficiencies of the existing methods for improving the probability of obtaining gene-edited plants, it is necessary to develop a new reporting system that can be widely used in continuous, convenient and fast observation and low-cost to improve the probability of obtaining gene-edited plants. The invention uses a beet red pigment visible to the naked eye under natural light as a reporter molecule, and designs a new reporter system that improves the probability of obtaining gene editing plants.

为了达到上述目的,本发明采用了以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

本发明的第一个目的是提供一种提高获得基因编辑植株概率的筛选系统,所述筛选系统为包括RUBY基因表达盒和CRISPR/Cas基因编辑系统的植物遗传转化载体,所述RUBY基因表达盒包括顺次设置的启动子、甜菜红素生物合成基因RUBY基因、终止子,所述RUBY基因表达盒作为所述筛选系统的报告元件,所述CRISPR/Cas基因编辑系统作为所述筛选系统的基因编辑元件。The first object of the present invention is to provide a screening system for improving the probability of obtaining gene-edited plants, the screening system being a plant genetic transformation vector including a RUBY gene expression cassette and a CRISPR/Cas gene editing system, the RUBY gene expression cassette Including sequentially arranged promoter, betalain biosynthesis gene RUBY gene, terminator, the RUBY gene expression cassette is used as the reporter element of the screening system, and the CRISPR/Cas gene editing system is used as the gene of the screening system Edit components.

所述甜菜红素生物合成基因RUBY基因,其作用在于作为筛选系统的报告基因,RUBY基因表达的蛋白质可以在植物细胞中合成一种红色色素,在可见光下可以直接通过裸眼观察,通过所构建的RUBY基因表达盒获得能够产生色素的报告系统。采用本发明的筛选系统对植株进行基因编辑,能够在可见光下裸眼可视的判断基因编辑是否成功,当植物组织表达甜菜红素的颜色,即表示与RUBY基因表达盒连锁的CRISPR/Cas基因编辑表达盒在植物细胞可以正常表达。保证了基因编辑植株发生靶位点突变,从而提高获得基因编辑植株的概率。The betalain biosynthesis gene RUBY gene is used as a reporter gene for the screening system, and the protein expressed by the RUBY gene can synthesize a red pigment in plant cells, which can be directly observed with the naked eye under visible light, and through the constructed The RUBY gene expression cassette obtains a reporter system capable of producing pigments. Using the screening system of the present invention to perform gene editing on plants, it is possible to visually judge whether the gene editing is successful under visible light with the naked eye. When the plant tissue expresses the color of betalain, it means the CRISPR/Cas gene editing linked to the RUBY gene expression cassette. The expression cassette can be expressed normally in plant cells. The gene editing plant is guaranteed to have target site mutation, thereby increasing the probability of obtaining the gene editing plant.

进一步的,RUBY基因包括CYP76AD1基因、DODA基因和GT(葡萄糖基转移酶)基因;所述CYP76AD1基因、DODA基因和GT基因分别表示细胞内甜菜红色素合成途径上的三个基因,所合成的CYP76AD1蛋白、DODA蛋白和GT蛋白分别表示细胞内甜菜红色素合成途径上的三个酶。Further, the RUBY gene includes the CYP76AD1 gene, the DODA gene and the GT (glucosyltransferase) gene; the CYP76AD1 gene, the DODA gene and the GT gene respectively represent the three genes on the intracellular beta red pigment synthesis pathway, and the synthesized CYP76AD1 Protein, DODA protein and GT protein respectively represent three enzymes on the intracellular beta red pigment synthesis pathway.

所述CYP76AD1基因的核苷酸序列包含编码SEQ ID NO.1所示CYP76AD1氨基酸序列的核苷酸序列,The nucleotide sequence of the CYP76AD1 gene comprises the nucleotide sequence encoding the amino acid sequence of CYP76AD1 shown in SEQ ID NO.1,

所述DODA基因的核苷酸序列包含编码SEQ ID NO.2所示DODA氨基酸序列的核苷酸序列,The nucleotide sequence of the DODA gene comprises the nucleotide sequence encoding the DODA amino acid sequence shown in SEQ ID NO.2,

所述GT基因的核苷酸序列包含编码SEQ ID NO.3所示GT氨基酸序列的核苷酸序列;The nucleotide sequence of the GT gene comprises the nucleotide sequence encoding the GT amino acid sequence shown in SEQ ID NO.3;

优选的,所述CYP76AD1基因的核苷酸序列如SEQ ID NO.5所示,所述DODA基因的核苷酸序列如SEQ ID NO.6所示,所述GT基因的核苷酸序列如SEQ ID NO.7所示。Preferably, the nucleotide sequence of the CYP76AD1 gene is shown in SEQ ID NO. 5, the nucleotide sequence of the DODA gene is shown in SEQ ID NO. 6, and the nucleotide sequence of the GT gene is shown in SEQ ID NO. ID NO.7.

进一步的,所述CYP76AD1基因、DODA基因和GT基因之间通过DNA连接单元以任意顺序连接;Further, the CYP76AD1 gene, the DODA gene and the GT gene are connected in any order through a DNA linking unit;

根据前文技术背景中甜菜红素的合成文献(Polturak G,et al.New Phytol,2019)可知,甜菜红素合成只需要这三个蛋白即可。因此,只要能同时表达这三个蛋白即可保证在植物体内产生甜菜红素,三个蛋白的连接顺序不影响三个蛋白最终功能的发挥。According to the literature on the synthesis of betalain in the previous technical background (Polturak G, et al. New Phytol, 2019), it can be known that only these three proteins are needed for the synthesis of betalain. Therefore, as long as the three proteins can be expressed simultaneously, betalains can be produced in plants, and the connection sequence of the three proteins does not affect the final function of the three proteins.

在某个特定的实施例中,以CYP76AD1基因-DODA基因-GT基因的顺序,通过DNA连接单元依次连接,RUBY基因结构为:CYP76AD1基因-DNA连接单元-DODA基因-DNA连接单元-GT基因。In a specific embodiment, in the sequence of CYP76AD1 gene-DODA gene-GT gene, the DNA connecting units are connected in sequence, and the RUBY gene structure is: CYP76AD1 gene-DNA connecting unit-DODA gene-DNA connecting unit-GT gene.

进一步的,所述DNA连接单元为能够转录和翻译成一种带有自切割功能多肽的DNA序列;Further, the DNA linking unit is a DNA sequence that can be transcribed and translated into a self-cleaving functional polypeptide;

优选的,所述DNA连接单元的核苷酸序列包含编码SEQ ID NO.4所示2A肽氨基酸序列的DNA序列;Preferably, the nucleotide sequence of the DNA linking unit comprises a DNA sequence encoding the amino acid sequence of the 2A peptide shown in SEQ ID NO.4;

进一步优选的,所述DNA连接单元为核苷酸序列如SEQ ID NO.8所示的2A1,或核苷酸序列如SEQ ID NO.9所示的2A2。根据2A肽反推的核苷酸序列2A1和2A2均能表达出2A肽。Further preferably, the DNA linking unit is 2A1 whose nucleotide sequence is shown in SEQ ID NO.8, or 2A2 whose nucleotide sequence is shown in SEQ ID NO.9. Both 2A1 and 2A2 can express the 2A peptide according to the nucleotide sequence 2A1 and 2A2 inversely deduced from the 2A peptide.

在某个特定的实施例中,RUBY基因为采用2A肽编码核苷酸序列2A1、2A2作为DNA连接单元,以SEQ ID NO.5所示CYP76AD1基因-SEQ ID NO.8所示2A1-SEQ ID NO.6所示DODA基因-SEQ ID NO.9所示2A2-SEQ ID NO.7所示GT(葡萄糖基转移酶)基因-终止密码子的顺序依次顺次连接。In a specific embodiment, the RUBY gene uses 2A peptide-encoding nucleotide sequences 2A1 and 2A2 as DNA linking units, and the CYP76AD1 gene shown in SEQ ID NO. 5-SEQ ID NO. 8 shows 2A1-SEQ ID The DODA gene shown in NO. 6 - the 2A2 gene shown in SEQ ID NO. 9 - the GT (glucosyltransferase) gene shown in SEQ ID NO. 7 - the sequence of the stop codon are connected in order.

进一步的,所述启动子为能在植物中发挥功能的启动子,所述终止子为能在植物中发挥功能的终止子;Further, the promoter is a promoter that can function in plants, and the terminator is a terminator that can function in plants;

优选的,所述启动子为能在双子叶类植物或单子叶类植物中发挥功能的启动子,所述终止子为能在双子叶类植物或单子叶类植物中发挥功能的终止子;Preferably, the promoter is a promoter capable of functioning in dicotyledonous plants or monocotyledonous plants, and the terminator is a terminator capable of functioning in dicotyledonous plants or monocotyledonous plants;

进一步优选的,所述启动子为能在水稻中发挥功能的启动子,所述终止子为能在水稻中发挥功能的终止子;Further preferably, the promoter is a promoter that can function in rice, and the terminator is a terminator that can function in rice;

更进一步优选的,所述启动子为如SEQ ID NO.10所示OsActin1的启动子,所述终止子为如SEQ ID NO.11所示tHsp。More preferably, the promoter is the promoter of OsActin1 shown in SEQ ID NO.10, and the terminator is tHsp shown in SEQ ID NO.11.

进一步的,所述的CRISPR/Cas基因编辑系统包括Cas蛋白表达盒、gRNA转录盒。所述Cas蛋白表达盒与gRNA转录盒的连接顺序无限制。Further, the CRISPR/Cas gene editing system includes a Cas protein expression cassette and a gRNA transcription cassette. The connection sequence of the Cas protein expression cassette and the gRNA transcription cassette is not limited.

进一步的,所述Cas蛋白表达盒包含Cas基因、一个在植物中能发挥功能的启动子和一个在植物中能发挥功能的终止子;所述Cas基因处于所述Cas蛋白表达盒的启动子和终止子之间。Further, the Cas protein expression cassette comprises a Cas gene, a promoter that can function in plants and a terminator that can function in plants; the Cas gene is located in the promoter of the Cas protein expression cassette and between terminators.

本发明的筛选系统中,所述RUBY基因表达盒、Cas蛋白表达盒、gRNA转录盒相互独立的构建在植物遗传转化载体上。In the screening system of the present invention, the RUBY gene expression cassette, the Cas protein expression cassette and the gRNA transcription cassette are independently constructed on a plant genetic transformation vector.

本发明的第二个目的是提供一种提高获得基因编辑植株概率的筛选系统的构建方法,包括以下步骤:The second object of the present invention is to provide a method for constructing a screening system for improving the probability of obtaining a gene-edited plant, comprising the following steps:

1)构建RUBY基因,所述RUBY基因为将CYP76AD1基因、DODA基因和GT基因之间通过DNA连接单元以任意顺序连接,将RUBY基因和终止子连接,获得RUBY-终止子DNA片段;1) construct RUBY gene, described RUBY gene is to connect between CYP76AD1 gene, DODA gene and GT gene by DNA linking unit in any order, connect RUBY gene and terminator, obtain RUBY-terminator DNA fragment;

2)将Cas蛋白表达盒连入植物遗传转化载体,构建带有Cas蛋白表达盒的载体pCas;2) connecting the Cas protein expression cassette into a plant genetic transformation vector to construct a vector pCas with the Cas protein expression cassette;

3)将启动子连入步骤2)获得的载体pCas中,所述启动子连接在Cas表达盒之外,构建出p启动子-Cas载体;3) connecting the promoter into the vector pCas obtained in step 2), where the promoter is connected outside the Cas expression cassette, to construct a p-promoter-Cas vector;

4)将RUBY-终止子DNA片段构建到p启动子-Cas载体上,所述RUBY基因-终止子DNA片段连接在步骤3)所述启动子下游,与启动子构成RUBY基因表达盒,获得pRUBY-CRISPR载体;4) The RUBY-terminator DNA fragment is constructed on the p-promoter-Cas carrier, and the RUBY gene-terminator DNA fragment is connected to the downstream of the promoter in step 3) to form a RUBY gene expression cassette with the promoter to obtain pRUBY - CRISPR vector;

5)选择目的基因靶位点,将能靶向靶位点的gRNA转录盒构建到pRUBY-CRISPR载体上,获得所述筛选系统。5) Select the target site of the target gene, construct the gRNA transcription cassette capable of targeting the target site on the pRUBY-CRISPR vector, and obtain the screening system.

进一步的,所述步骤1)的具体操作为:分别获得CYP76AD1基因、DODA基因、GT基因、终止子片段;使用体外重叠延伸PCR的方法将CYP76AD1基因、DODA基因和GT基因三种DNA分子通过DNA连接单元以任意顺序组合为RUBY基因,在RUBY基因之后连接终止子,获得RUBY基因-终止子DNA片段;Further, the specific operations of the step 1) are: respectively obtaining CYP76AD1 gene, DODA gene, GT gene and terminator fragments; using the method of in vitro overlap extension PCR to pass the three DNA molecules of CYP76AD1 gene, DODA gene and GT gene through DNA. The connecting units are combined into a RUBY gene in any order, and a terminator is connected after the RUBY gene to obtain a RUBY gene-terminator DNA fragment;

在某个特定的实施例中,RUBY基因以CYP76AD1基因-DODA基因-GT基因的顺序,通过DNA连接单元依次连接,RUBY基因结构为:CYP76AD1基因-DNA连接单元-DODA基因-DNA连接单元-GT基因。在该实施例中,所述步骤1)的具体操作为:In a specific embodiment, the RUBY gene is connected in sequence through the DNA linking unit in the sequence of CYP76AD1 gene-DODA gene-GT gene, and the RUBY gene structure is: CYP76AD1 gene-DNA linking unit-DODA gene-DNA linking unit-GT Gene. In this embodiment, the specific operation of the step 1) is:

1-1)通过体外全基因合成的方式分别合成CYP76AD1基因的DNA、DODA基因的DNA、GT基因-终止子整体片段的DNA;1-1) Synthesize the DNA of the CYP76AD1 gene, the DNA of the DODA gene, and the DNA of the GT gene-terminator integral fragment respectively by means of whole gene synthesis in vitro;

1-2)使用体外重叠延伸PCR的方法将获得的CYP76AD1基因、DODA基因、GT基因-终止子DNA片段之间通过DNA连接单元,顺次连接,得到RUBY基因-终止子DNA片段;1-2) use the method of in vitro overlap extension PCR to connect the obtained CYP76AD1 gene, DODA gene, GT gene-terminator DNA fragment by DNA connection unit in sequence, and obtain RUBY gene-terminator DNA fragment;

进一步的,所述步骤2)的具体操作为:获得Cas基因的DNA;将Cas基因的DNA连入植物遗传转化载体,构建出带有Cas蛋白表达盒的载体pCas;所述Cas基因为任意一种能在CRISPR/Cas基因编辑系统中发挥功能的Cas基因;所述Cas基因在所述植物遗传转化载体的一个完整的表达盒中;所述启动子和终止子为所述植物遗传转化载体上已有的启动子和终止子,或在构建过程中新连入的启动子或终止子。Further, the specific operations of the step 2) are as follows: obtaining the DNA of the Cas gene; connecting the DNA of the Cas gene into a plant genetic transformation vector to construct a vector pCas with a Cas protein expression cassette; the Cas gene is any one. A Cas gene that can function in the CRISPR/Cas gene editing system; the Cas gene is in a complete expression cassette of the plant genetic transformation vector; the promoter and the terminator are on the plant genetic transformation vector Existing promoters and terminators, or newly added promoters or terminators during construction.

在某个特定的实施例中,所述Cas基因为Cas9基因如SEQ ID NO.12所示;In a specific embodiment, the Cas gene is the Cas9 gene as shown in SEQ ID NO.12;

在某个特定的实施例中,所述植物遗传转化载体为已带有一个在植物中能发挥功能的启动子和一个在植物中能发挥功能的终止子。In a specific embodiment, the plant genetic transformation vector already has a promoter that is functional in plants and a terminator that is functional in plants.

进一步的,所述步骤3)的具体操作为:将启动子连入步骤2)所获载体pCas中,所述启动子连接在Cas表达盒之外,所述启动子为一个在植物中能发挥功能的启动子,构建出p启动子-Cas载体。Further, the specific operation of the step 3) is: the promoter is connected to the vector pCas obtained in the step 2), the promoter is connected outside the Cas expression cassette, and the promoter is one that can play a role in plants. A functional promoter, a p-promoter-Cas vector was constructed.

进一步的,所述步骤4)的具体操作为:将RUBY-终止子DNA片段构建到p启动子-Cas载体上,所述RUBY基因-终止子DNA片段连接在步骤3)所述启动子下游,与启动子构成RUBY基因表达盒,获得pRUBY-CRISPR载体。Further, the specific operation of the step 4) is: the RUBY-terminator DNA fragment is constructed on the p promoter-Cas carrier, and the RUBY gene-terminator DNA fragment is connected downstream of the promoter described in step 3), The RUBY gene expression cassette was formed with the promoter to obtain the pRUBY-CRISPR vector.

进一步的,所述步骤5)的具体操作为:根据目标基因靶位点,设计3'端突出的能互补配对的引物,通过体外重叠PCR扩增,将能靶向目标基因的gRNA转录盒的DNA分子连入步骤4)获得的pRUBY-CRISPR载体上,所述gRNA转录盒在Cas表达盒以及RUBY表达盒之外,获得所述筛选系统。Further, the specific operation of the step 5) is: according to the target gene target site, design a primer that can be complementary paired with a 3' end protruding, and by in vitro overlapping PCR amplification, the target gene can be targeted to the gRNA transcription cassette of the target gene. The DNA molecule is linked to the pRUBY-CRISPR vector obtained in step 4), and the gRNA transcription cassette is outside the Cas expression cassette and the RUBY expression cassette to obtain the screening system.

本发明的第三个目的是提供前述的提高获得基因编辑植株概率的筛选系统或前述的提高获得基因编辑植株概率的筛选系统的构建方法在提高获得基因编辑植株概率中的应用。The third object of the present invention is to provide the application of the aforementioned screening system for increasing the probability of obtaining gene-edited plants or the construction method of the aforementioned screening system for increasing the probability of obtaining gene-edited plants in increasing the probability of obtaining gene-edited plants.

进一步的,当采用所述筛选系统对植株进行基因编辑,当植物组织表达甜菜红素的颜色,即红色,表示基因编辑植株发生了靶位点突变,筛选获得基因编辑植株。Further, when using the screening system to perform gene editing on a plant, when the plant tissue expresses the color of betalain, that is, red, it indicates that the gene-edited plant has undergone a target site mutation, and the gene-edited plant is obtained by screening.

进一步的,基因编辑表示将所述筛选系统的DNA分子直接导入到植物细胞内,或者将所述筛选系统转录成分的RNA分子导入到植物细胞内,或者将所述筛选系统表达成分的蛋白质导入到植物细胞内。Further, gene editing refers to the direct introduction of DNA molecules of the screening system into plant cells, or the introduction of RNA molecules of the transcription components of the screening system into plant cells, or the introduction of proteins of the expression components of the screening system into plant cells. within plant cells.

进一步的,所述基因编辑能够发生在各类植物整体或植物的部分组织或者器官或植物细胞中,Further, the gene editing can occur in all kinds of plant whole or part of plant tissues or organs or plant cells,

优选的,所述植物为双子叶类植物和/或单子叶类植物,Preferably, the plant is a dicotyledonous plant and/or a monocotyledonous plant,

进一步优选的,所述植物为水稻。Further preferably, the plant is rice.

已有文献报道CRISPR/Cas基因编辑系统只要能产生Cas蛋白和gRNA就能发挥基因编辑的功能,其在各类生物(包括真核生物和原核生物)中能发挥基因编辑的作用具有普遍性(Komor AC,Badran AH,Liu DR.CRISPR-Based Technologies for the Manipulationof Eukaryotic Genomes.Cell,2017,168(1-2):20-36;Sander JD,Joung JK.CRISPR-Cassystems for editing,regulating and targeting genomes.Nat Biotechnol,2014,32(4):347-355),并且已经证实在目前已被研究的各类植物中均能发挥基因编辑的作用(MaoY,Botella JR,Liu Y,Zhu J-K.Gene editing in plants:progress andchallenges.National Science Review,2019,6(3):421-437);RUBY表达盒中组合的三种酶以植物中广泛存在的酪氨酸为最初的底物来合成甜菜红素,并且已有研究就发现只要能同时表达这三个蛋白即可保证在双子叶植物体内产生甜菜红素(Polturak G,et al.NewPhytol,2019)。我们通过水稻中组合Cas蛋白表达盒、gRNA转录盒、RUBY表达盒的实验结果证实了本发明的效果,因此可以推测本发明在其它植物中也有同样的效果。It has been reported in the literature that the CRISPR/Cas gene editing system can perform gene editing functions as long as Cas protein and gRNA can be produced, and its gene editing function is universal in various organisms (including eukaryotes and prokaryotes). Komor AC, Badran AH, Liu DR. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168(1-2):20-36; Sander JD, Joung JK. CRISPR-Cassystems for editing, regulating and targeting genomes .Nat Biotechnol, 2014, 32(4): 347-355), and it has been confirmed that it can play a role in gene editing in all kinds of plants that have been studied (MaoY, Botella JR, Liu Y, Zhu J-K.Gene editing in plants: progress and challenges. National Science Review, 2019, 6(3): 421-437); the three enzymes combined in the RUBY expression cassette use tyrosine widely present in plants as the initial substrate to synthesize betalain , and studies have found that as long as these three proteins can be expressed at the same time, the production of betalain in dicotyledonous plants can be guaranteed (Polturak G, et al. NewPhytol, 2019). We confirmed the effect of the present invention through the experimental results of combining Cas protein expression cassette, gRNA transcription cassette and RUBY expression cassette in rice, so it can be speculated that the present invention also has the same effect in other plants.

本发明使用单个启动子有效地共表达整个甜菜红素合成途径所需的酶。我们去除CYP76AD1、DODA和GT的终止密码子,将三者通过能编码2A肽的DNA序列顺次连接,最后接上终止密码子,组合成一个人造基因,命名为RUBY。在某一个特定的实施例中,RUBY基因为采用能编码2A肽的核苷酸序列2A作为DNA连接单元,以CYP76AD1基因-2A1-DODA基因-2A2-GT基因的顺序依次顺次连接。The present invention efficiently co-expresses the enzymes required for the entire betalain synthesis pathway using a single promoter. We removed the stop codons of CYP76AD1, DODA and GT, connected the three sequentially through the DNA sequence encoding the 2A peptide, and finally connected the stop codon to form an artificial gene named RUBY. In a specific embodiment, the RUBY gene adopts the nucleotide sequence 2A encoding the 2A peptide as the DNA linking unit, and is sequentially linked in the sequence of CYP76AD1 gene-2A1-DODA gene-2A2-GT gene.

众所周知,酪氨酸是各类生物最常用的氨基酸之一,在各类生物体内均大量存在,植物中酪氨酸首先在苯环上被羟基化,生成L-3,4-二羟基苯丙氨酸(L-DOPA)。该反应由P450氧化酶CYP76AD1催化。L-DOPA可被CYP76AD1进一步氧化为环-DOPA。同时,L-DOPA也会被L-DOPA 4,5-二加氧酶(DODA)催化生成甜菜酸,其随后与环-DOPA缩合成甜菜苷配基。缩合反应不需要酶。最后,通过GT(Glycosyl transferase,葡萄糖基转移酶)将糖基添加到甜菜苷配基中,生成颜色鲜亮的甜菜红素。As we all know, tyrosine is one of the most commonly used amino acids in all kinds of organisms, and it is abundant in all kinds of organisms. In plants, tyrosine is first hydroxylated on the benzene ring to generate L-3,4-dihydroxyphenylpropane amino acid (L-DOPA). This reaction is catalyzed by the P450 oxidase CYP76AD1. L-DOPA can be further oxidized to cyclo-DOPA by CYP76AD1. At the same time, L-DOPA is also catalyzed by L-DOPA 4,5-dioxygenase (DODA) to generate beta-acid, which is then condensed with cyclo-DOPA to form beta-aglycone. The condensation reaction does not require an enzyme. Finally, the glycosyl group is added to the betain aglycone by GT (Glycosyl transferase, glucosyl transferase) to generate the brightly colored betalain.

将这三个甜菜红素生物合成基因融合成一个开放阅读框,可以使用单个启动子和终止子表达该开放阅读框。The three betalain biosynthesis genes are fused into an open reading frame that can be expressed using a single promoter and terminator.

在这三个基因之间插入了编码2A肽的序列,2A肽是一种只有20个左右氨基酸组成的短肽,蛋白质翻译时,核糖体遇到新翻译产生的2A肽时会导致核糖体发生“跳跃”,继而导致肽链在2A肽的末尾处发生自我切割(Sharma P,Yan F,Doronina VA,Escuin-Ordinas H,Ryan MD,Brown JD.2A peptides provide distinct solutions to driving stop-carryon translational recoding.Nucleic Acids Res,2012,40(7):3143-3151),因此利用2A肽能在单个启动子的控制下同时表达多种蛋白质(Liu Z,Chen O,Wall JBJ,Zheng M,ZhouY,Wang L,Vaseghi HR,Qian L,Liu J.Systematic comparison of 2A peptides forcloning multi-genes in a polycistronic vector.Sci Rep,2017,7(1):2193)。RUBY基因转录后,能产生三种独立的酶,催化酪氨酸合成甜菜红素。在植物中有功能的启动子可以放置在RUBY DNA之前来驱动RUBY的表达,随后通过有颜色的甜菜红素来推测植物基因编辑成功发生。A sequence encoding the 2A peptide was inserted between these three genes. The 2A peptide is a short peptide consisting of only about 20 amino acids. During protein translation, when the ribosome encounters the newly translated 2A peptide, the ribosome will occur. "Jump", which in turn leads to self-cleavage of the peptide chain at the end of the 2A peptide (Sharma P, Yan F, Doronina VA, Escuin-Ordinas H, Ryan MD, Brown JD. 2A peptides provide distinct solutions to driving stop-carryon translational recoding .Nucleic Acids Res, 2012, 40(7): 3143-3151), so the 2A peptide can simultaneously express multiple proteins under the control of a single promoter (Liu Z, Chen O, Wall JBJ, Zheng M, ZhouY, Wang L, Vaseghi HR, Qian L, Liu J. Systematic comparison of 2A peptides forcloning multi-genes in a polycistronic vector. Sci Rep, 2017, 7(1):2193). After the RUBY gene is transcribed, three independent enzymes can be produced to catalyze the synthesis of betalain from tyrosine. A functional promoter in plants can be placed in front of the RUBY DNA to drive the expression of RUBY, and subsequent successful plant gene editing is presumed to occur through the colored betalain.

在某一个特定的实施例中,将RUBY表达盒引入水稻CRISPR/Cas基因编辑载体pOsActin1-UCAS9上。RUBY基因表达盒使用水稻的组成型表达基因OsActin1的启动子(McElroy D,Zhang W,Cao J,Wu R.Isolation of an efficient actin promoter foruse in rice transformation.Plant Cell,1990,2(2):163-171)驱动RUBY的表达,RUBY基因表达盒的转录终止子为tHsp(Nagaya S,Kawamura K,Shinmyo A,Kato K.The HSPterminator of Arabidopsis thaliana increases gene expression in plantcells.Plant Cell Physiol,2010,51(2):328-332)。新的基因编辑载体为pRUBY-CRISPR。将pRUBY-CRISPR转化为水稻,RUBY的组成型表达使水稻呈现出鲜艳的红色,相比荧光蛋白等传统报告系统更加容易观察和筛选。其中带有颜色的水稻材料发生编辑的概率为100%,有效避免了通过抗生素筛选获得的植株中存在部分植株未发生靶位点编辑的情况。In a specific embodiment, the RUBY expression cassette is introduced into the rice CRISPR/Cas gene editing vector pOsActin1-UCAS9. The RUBY gene expression cassette uses the promoter of the constitutively expressed gene OsActin1 in rice (McElroy D, Zhang W, Cao J, Wu R. Isolation of an efficient actin promoter foruse in rice transformation. Plant Cell, 1990, 2(2):163 -171) drives the expression of RUBY, and the transcription terminator of the RUBY gene expression cassette is tHsp (Nagaya S, Kawamura K, Shinmyo A, Kato K. The HSPterminator of Arabidopsis thaliana increases gene expression in plantcells. Plant Cell Physiol, 2010, 51 ( 2): 328-332). The new gene editing vector is pRUBY-CRISPR. After transforming pRUBY-CRISPR into rice, the constitutive expression of RUBY makes rice appear bright red, which is easier to observe and screen than traditional reporter systems such as fluorescent proteins. The probability of editing the colored rice material is 100%, which effectively avoids the situation that some plants do not undergo target site editing in the plants obtained through antibiotic screening.

本发明的有益效果体现在 The beneficial effects of the present invention are embodied in :

本发明将人工组合的甜菜红素生物合成基因RUBY表达盒与CRISPR/Cas基因编辑表达盒连锁到一个载体上。因为RUBY表达盒能够在植物中产生颜色鲜艳的甜菜红素,相比荧光蛋白等传统报告系统更加容易观察和筛选。采用所述筛选系统对植株进行基因编辑,使用筛选系统中的RUBY基因产生的红色作为标记来筛选发生基因编辑的植株,可见光下裸眼筛选即可实现获得发生基因编辑的植株的概率达到100%,有效避免了通过抗生素筛选获得的植株中存在部分植株未发生靶位点编辑的情况。由于本发明不需要专用设备或昂贵的基材,因此本发明提供了一种具有观察方便、节省成本的基因编辑筛选报告系统。The invention links the artificially combined betalain biosynthesis gene RUBY expression cassette and the CRISPR/Cas gene editing expression cassette to a vector. Because the RUBY expression cassette can produce brightly colored betalains in plants, it is easier to observe and screen than traditional reporter systems such as fluorescent proteins. The screening system is used to perform gene editing on plants, and the red color produced by the RUBY gene in the screening system is used as a marker to screen for gene-edited plants, and the probability of obtaining gene-edited plants can reach 100% by naked-eye screening under visible light. This effectively avoids the situation that some plants do not undergo target site editing in the plants obtained by antibiotic screening. Since the present invention does not require special equipment or expensive substrates, the present invention provides a gene editing screening reporting system with convenient observation and cost saving.

附图说明Description of drawings

图1为本发明提高获得基因编辑植株概率的筛选系统结构示意图Figure 1 is a schematic structural diagram of the screening system for improving the probability of obtaining gene-edited plants according to the present invention

图2为RUBY基因的构建示意图:Figure 2 is a schematic diagram of the construction of the RUBY gene:

图2A为将酪氨酸转化为红色的甜菜红素的化学反应流程图;Fig. 2A is the chemical reaction flow chart of converting tyrosine into red betalain;

图2B为在单个表达盒中表达完整的甜菜红素生物合成途径的策略。Figure 2B is a strategy for expressing the complete betalain biosynthetic pathway in a single expression cassette.

图3为利用本发明筛选系统与常规不带有RUBY标记的载体转化水稻是后的对比图:Fig. 3 is the comparison diagram after utilizing the screening system of the present invention and the conventional vector without RUBY marker to transform rice:

图3A为OsActin1:RUBY载体转化水稻后转化成功的愈伤组织有明显的红色。Figure 3A shows that OsActin1:RUBY vector transformed rice into successfully transformed callus with obvious red color.

图3B为常规不带有RUBY标记的载体转化水稻后获得的抗性愈伤无明显的颜色区别。Figure 3B shows that the resistant callus obtained after the transformation of rice with a conventional vector without RUBY marker has no obvious color difference.

图4为以本发明筛选系统中RUBY表达盒产生的红色作为标记筛选的水稻材料发生基因编辑的情况:图4A,图4B分别表示两次独立的转化事件的基因编辑情况。Figure 4 shows the gene editing of the rice material selected by using the red color produced by the RUBY expression cassette in the screening system of the present invention as a marker: Figure 4A and Figure 4B respectively show the gene editing of two independent transformation events.

具体实施方式Detailed ways

为了使本发明的技术方案便于理解,下面结合具体实施例,进一步阐述本发明。In order to facilitate the understanding of the technical solutions of the present invention, the present invention is further described below with reference to specific embodiments.

实施例1.组合RUBY基因,获得RUBY-tHsp DNAExample 1. Combination of RUBY genes to obtain RUBY-tHsp DNA

本实施例RUBY基因采用能编码2A肽的核苷酸序列2A为DNA连接单元,以CYP76AD1基因-2A1-DODA基因-2A2-GT(葡萄糖基转移酶)基因的顺序依次顺次连接(图2B),其中,2A1核苷酸序列为SEQ ID NO.8所示、2A2核苷酸序列为SEQ ID NO.9所示,2A1、2A2均为编码SEQID NO.4所示2A肽的核苷酸序列,构成RUBY基因,并以tHsp为终止子。The RUBY gene in this example uses the nucleotide sequence 2A that can encode the 2A peptide as the DNA linking unit, and is connected in sequence in the order of CYP76AD1 gene-2A1-DODA gene-2A2-GT (glucosyltransferase) gene (Fig. 2B) , wherein the nucleotide sequence of 2A1 is shown in SEQ ID NO.8, the nucleotide sequence of 2A2 is shown in SEQ ID NO.9, and both 2A1 and 2A2 are nucleotide sequences encoding the 2A peptide shown in SEQ ID NO.4 , constitutes the RUBY gene, and uses tHsp as the terminator.

构建方法为:The build method is:

(1)通过体外全基因合成的方式分别合成:(1) Synthesize by in vitro whole gene synthesis:

(a)无终止密码子的CYP76AD1基因(SEQ ID NO.5),(a) CYP76AD1 gene without stop codon (SEQ ID NO. 5),

(b)无终止密码子的DODA基因(SEQ ID NO.6),(b) DODA gene without stop codon (SEQ ID NO. 6),

(c)包括SEQ ID NO.7所示GT基因、3个连续的终止密码子TGA、TAG、TGA和SEQ IDNO.11所示终止子tHsp的无终止密码子的GT基因+终止密码子+终止子tHsp片段(SEQ IDNO.13);(c) GT gene without stop codon including the GT gene shown in SEQ ID NO.7, 3 consecutive stop codons TGA, TAG, TGA and the terminator tHsp shown in SEQ ID NO.11 + stop codon + stop sub-tHsp fragment (SEQ ID NO. 13);

(2)使用2A肽的DNA作为DNA连接单元,2A肽对应DNA的部分序列分别加在用于PCR扩增的引物的5’端作为接头序列,通过体外重叠延伸PCR(overlap PCR)的方法组装成完整的2A肽的DNA,并将CYP76AD1基因(SEQ ID NO.5)-2A1(SEQ ID NO.8)-DODA基因(SEQ IDNO.6)-2A2(SEQ ID NO.9)-GT基因(SEQ ID NO.7)+终止密码子+终止子tHsp(SEQ IDNO.11)(GT基因+终止密码子+终止子tHsp片段的核苷酸序列如SEQ ID NO.13所示)依次首尾相连组合到一起,获得RUBY-tHsp的DNA。(2) The DNA of the 2A peptide is used as the DNA linking unit, and the partial sequence of the corresponding DNA of the 2A peptide is respectively added to the 5' end of the primer used for PCR amplification as a linker sequence, and assembled by the method of in vitro overlap extension PCR (overlap PCR) into the DNA of the complete 2A peptide, and the CYP76AD1 gene (SEQ ID NO. 5)-2A1 (SEQ ID NO. 8)-DODA gene (SEQ ID NO. 6)-2A2 (SEQ ID NO. 9)-GT gene ( SEQ ID NO.7)+stop codon+terminator tHsp (SEQ ID NO.11) (the nucleotide sequence of GT gene+stop codon+terminator tHsp fragment is shown in SEQ ID NO.13) followed by end-to-end combination Together, the DNA of RUBY-tHsp was obtained.

具体构建步骤:Specific build steps:

(1)PCR1扩增获得CYP76AD1+前部分2A1 DNA,此处前部分2A1序列为:5’-GGTAGCGGAGCTACCAATTTTAGCCTCCTTAAGCAGGCAGGTG-3’(SEQ ID NO.36),以SEQ ID NO.5所示无终止密码子的CYP76AD1基因为模板DNA,使用引物对:(1) PCR1 amplification to obtain CYP76AD1+ front part 2A1 DNA, where the front part 2A1 sequence is: 5'-GGTAGCGGAGCTACCAATTTTAGCCTCCTTAAGCAGGCAGGTG-3' (SEQ ID NO.36), CYP76AD1 without stop codon shown in SEQ ID NO.5 The gene is template DNA, using primer pairs:

CYP76AD1+前部分2A1-F:CYP76AD1+ front part 2A1-F:

5’-CACTGATAGTTTAAACTAGTATGGATCATGCGACCCTCGC-3’(SEQ ID NO.18)5'-CACTGATAGTTTAAACTAGTATGGATCATGCGACCCTCGC-3' (SEQ ID NO. 18)

CYP76AD1+前部分2A1-R:CYP76AD1+ front part 2A1-R:

5’-CACCTGCCTGCTTAAGGAGGCTAAAATTGGTAGCTCCGCTACCGTAGCGCGGAATCGGGA-3’(SEQ ID NO.19)进行PCR扩增。5'-CACCTGCCTGCTTAAGGAGGCTAAAATTGGTAGCTCCGCTACCGTAGCGCGGAATCGGGA-3' (SEQ ID NO. 19) was subjected to PCR amplification.

PCR反应体系:PCR reaction system:

2×PCR Buffer2×PCR Buffer 10μl10μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM CYP76AD1+前部分2A1-F10 μM CYP76AD1+ front part 2A1-F 0.6μl0.6μl 10μM CYP76AD1+前部分2A1-R10 μM CYP76AD1+ front part 2A1-R 0.6μl0.6μl 模板DNAtemplate DNA 0.5μl0.5μl KOD-FX聚合酶KOD-FX polymerase 0.2μl0.2μl 补充双蒸水加水补至Supplement with double distilled water and add water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000111
Figure BDA0002671524960000111

Figure BDA0002671524960000121
Figure BDA0002671524960000121

PCR产物为:CYP76AD1+前部分2A1,大小为1554bp,其中包括SEQ ID NO.5的无终止密码子的CYP76AD1基因序列和SEQ ID NO.36的前部分2A1,此处前部分2A1序列提供了PCR所用反向引物上额外的用于overlap PCR的接头序列。但由于PCR所用的引物加上了额外的用于最后Gibson连接的接头序列,所以PCR产物略大于SEQ ID NO.5的无终止密码子的CYP76AD1基因序列和此处前部分2A1总共的序列长度。The PCR product is: CYP76AD1 + front part 2A1, the size is 1554bp, which includes the CYP76AD1 gene sequence without stop codon of SEQ ID NO.5 and the front part 2A1 of SEQ ID NO.36, here the front part 2A1 sequence provides PCR use Additional linker sequence for overlap PCR on reverse primer. However, since the primers used for PCR add additional linker sequences for the final Gibson ligation, the PCR product is slightly larger than the total sequence length of the CYP76AD1 gene sequence without stop codon of SEQ ID NO.

(2)PCR2扩增获得后部分2A1+DODA+前部分2A2 DNA,此处后部分2A1序列为:5’-CCTTAAGCAGGCAGGTGATGTAGAAGAGAACCCCGGGCCT-3’(SEQ ID NO.37),前部分2A2序列为:5’-GGATCCGGAGCAACCAACTTTAGCCTGCTCAAGCAAGCAGGAG-3’(SEQ ID NO.38),以SEQ ID NO.6所示无终止密码子的DODA基因为模板DNA,使用引物对:(2) PCR2 amplification to obtain rear part 2A1+DODA+ front part 2A2 DNA, where the rear part 2A1 sequence is: 5'-CCTTAAGCAGGCAGGTGATGTAGAAGAGAACCCCGGGCCT-3' (SEQ ID NO. 37), the front part 2A2 sequence is: 5'-GGATCCGGAGCAACCAACTTTAGCCTGCTCAAGCAAGCAGGAG -3' (SEQ ID NO.38), using the DODA gene without stop codon shown in SEQ ID NO.6 as template DNA, using primer pair:

后部分2A1+DODA+前部分Rear part 2A1+DODA+front part

2A2-F:5’-CCTTAAGCAGGCAGGTGATGTAGAAGAGAACCCCGGGCCTATGAAGATGATGAACGGCGA-3’(SEQ ID NO.20)2A2-F: 5'-CCTTAAGCAGGCAGGTGATGTAGAAGAGAACCCCGGGCCTATGAAGATGATGAACGGCGA-3' (SEQ ID NO. 20)

后部分2A1+DODA+前部分Rear part 2A1+DODA+front part

2A2-R:5’-CTCCTGCTTGCTTGAGCAGGCTAAAGTTGGTTGCTCCGGATCCGGCGGAGGTGAACTTGT-3’(SEQ ID NO.21)为引物进行PCR扩增。2A2-R: 5'-CTCCTGCTTGCTTGAGCAGGCTAAAGTTGGTTGCTCCGGATCCGGCGGAGGTGAACTTGT-3' (SEQ ID NO. 21) was used as a primer for PCR amplification.

PCR反应体系:PCR reaction system:

2×PCR Buffer2×PCR Buffer 10μl10μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM后部分2A1+DODA+前部分2A2-F10 μM rear fraction 2A1 + DODA + front fraction 2A2-F 0.6μl0.6μl 10μM后部分2A1+DODA+前部分2A2-R10 μM rear fraction 2A1 + DODA + front fraction 2A2-R 0.6μl0.6μl 模板DNAtemplate DNA 0.5μl0.5μl KOD-FX聚合酶KOD-FX polymerase 0.2μl0.2μl 补充双蒸水至Add double distilled water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000131
Figure BDA0002671524960000131

PCR产物为:后部分2A1+DODA+前部分2A2大小为908bp,其中包括SEQ ID NO.6的无终止密码子的DODA基因序列和SEQ ID NO.37的后部分2A1及SEQ ID NO.38的前部分2A2。由于此处后部分2A1序列及前部分2A2序列分别提供了PCR所用的正向引物和反向引物上额外的用于overlap PCR的接头序列,所以PCR产物大小等于SEQ ID NO.6的无终止密码子的DODA基因序列和此处SEQ ID NO.37的后部分2A1及SEQ ID NO.38的前部分2A2总共的序列长度。The PCR product is: the rear part 2A1+DODA+ the front part 2A2 is 908bp in size, including the DODA gene sequence of SEQ ID NO.6 without stop codon, the rear part 2A1 of SEQ ID NO.37 and the front part of SEQ ID NO.38 Section 2A2. Since the rear part 2A1 sequence and the front part 2A2 sequence here respectively provide the forward primer and reverse primer used for PCR additional adapter sequences for overlap PCR, the size of the PCR product is equal to the non-stop codon of SEQ ID NO. 6 The total sequence length of the DODA gene sequence of the son and the rear part 2A1 of SEQ ID NO. 37 and the front part 2A2 of SEQ ID NO. 38 here.

(3)PCR3扩增获得后部分2A2+GT+tHsp DNA,此处后部分2A2的序列为:5’-GCTCAAGCAAGCAGGAGATGTTGAGGAAAATCCTGGCCCC-3’(SEQ ID NO.39),以SEQ ID NO.13所示的:无终止密码子的GT基因(SEQ ID NO.7)+终止密码子(TGA、TAG、TGA)+终止子tHsp(SEQ IDNO.11)DNA为模板DNA,使用引物对:(3) PCR3 amplification to obtain the rear part 2A2+GT+tHsp DNA, where the sequence of the rear part 2A2 is: 5'-GCTCAAGCAAGCAGGAGATGTTGAGGAAATCCTGGCCCC-3' (SEQ ID NO.39), shown in SEQ ID NO.13: GT gene without stop codon (SEQ ID NO. 7) + stop codon (TGA, TAG, TGA) + terminator tHsp (SEQ ID NO. 11) DNA as template DNA, using primer pair:

后部分2A2+GT+tHspRear part 2A2+GT+tHsp

DNA-F:5’-GCTCAAGCAAGCAGGAGATGTTGAGGAAAATCCTGGCCCCATGACCGCCATCAAGATGAA-3’(SEQ ID NO.22)DNA-F: 5'-GCTCAAGCAAGCAGGAGATGTTGAGGAAAATCCTGGCCCCATGACCGCCATCAAGATGAA-3' (SEQ ID NO. 22)

后部分2A2+GT+tHspRear part 2A2+GT+tHsp

DNA-R:5’-GCTAGCTTACTCAGTTAGGTCTTATCTTTAATCATATTCC-3’(SEQ ID NO.23)为引物进行PCR扩增。DNA-R: 5'-GCTAGCTTACTCAGTTAGGTCTTATCTTTAATCATATTCC-3' (SEQ ID NO. 23) was used as a primer for PCR amplification.

PCR反应体系:PCR reaction system:

Figure BDA0002671524960000132
Figure BDA0002671524960000132

Figure BDA0002671524960000141
Figure BDA0002671524960000141

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000142
Figure BDA0002671524960000142

PCR产物为:后部分2A2+GT+tHsp,大小为1819bp,其中包括SEQ ID NO.39所示的后部分2A2序列和SEQ ID NO.13所示序列:无终止密码子的GT基因(SEQ ID NO.7)+终止密码子+终止子tHsp(SEQ ID NO.11)序列,终止密码子为:串联了3个连续的终止密码子TGA、TAG、TGA。The PCR product is: rear part 2A2+GT+tHsp, the size is 1819bp, including the rear part 2A2 sequence shown in SEQ ID NO.39 and the sequence shown in SEQ ID NO.13: GT gene without stop codon (SEQ ID NO. 13) NO.7)+stop codon+terminator tHsp (SEQ ID NO.11) sequence, the stop codon is: three consecutive stop codons TGA, TAG, TGA are connected in series.

此处SEQ ID NO.39的后部分2A2序列提供了PCR所用的正向引物上额外的用于overlap PCR的接头序列,但由于PCR所用的反向引物加上另加有额外的用于最后Gibson连接的接头序列,所以PCR产物略大于SEQ ID NO.13所示的无终止密码子的GT基因+终止密码子+终止子tHsp和SEQ ID NO.39所示的后部分2A2总共的长度。The rear part 2A2 sequence of SEQ ID NO. 39 here provides an additional linker sequence for the overlap PCR on the forward primer used for PCR, but because the reverse primer used for PCR plus an additional additional linker sequence for the final Gibson The linker sequence is connected, so the PCR product is slightly larger than the total length of the GT gene without stop codon shown in SEQ ID NO.13+stop codon+terminator tHsp and the rear part 2A2 shown in SEQ ID NO.39.

(4)PCR扩增获得RUBY-tHspDNA:将PCR1、PCR2、PCR3三种PCR产物CYP76AD1+前部分2A1、后部分2A1+DODA+前部分2A2、后部分2A2+GT+终止密码子+tHsp混合作为模板,使用引物对:(4) PCR amplification to obtain RUBY-tHspDNA: The three PCR products of PCR1, PCR2, and PCR3, CYP76AD1 + front part 2A1, rear part 2A1 + DODA + front part 2A2, rear part 2A2 + GT + stop codon + tHsp, were mixed as a template, using Primer pair:

CYP76AD1+前部分CYP76AD1+ front part

2A1-F:5’-CACTGATAGTTTAAACTAGTATGGATCATGCGACCCTCGC-3’(SEQ ID NO.18);2A1-F: 5'-CACTGATAGTTTAAACTAGTATGGATCATGCGACCCTCGC-3' (SEQ ID NO. 18);

后部分2A2+GT+tHspRear part 2A2+GT+tHsp

DNA-R:5’-GCTAGCTTACTCAGTTAGGTCTTATCTTTAATCATATTCC-3’(SEQ ID NO.23)为引物进行PCR扩增,获得RUBY-tHsp DNA。DNA-R: 5'-GCTAGCTTACTCAGTTAGGTCTTATCTTTAATCATATTCC-3' (SEQ ID NO. 23) was used as primer for PCR amplification to obtain RUBY-tHsp DNA.

PCR反应体系:PCR reaction system:

Figure BDA0002671524960000143
Figure BDA0002671524960000143

Figure BDA0002671524960000151
Figure BDA0002671524960000151

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000152
Figure BDA0002671524960000152

PCR产物大小为4247bp。The PCR product size was 4247bp.

实施例2.构建带有Cas蛋白表达盒的载体pCUCas9Example 2. Construction of vector pCUCas9 with Cas protein expression cassette

本实施例将Cas蛋白表达盒,即能编码Cas蛋白的Cas9基因连入pCXUN载体获得载体pCUCas9。具体构建步骤:In this example, the Cas protein expression cassette, that is, the Cas9 gene capable of encoding the Cas protein, was linked into the pCXUN vector to obtain the vector pCUCas9. Specific build steps:

(1)通过PCR扩增获得Cas9基因DNA。以来源于水稻密码子优化的Cas9基因(序列如SEQ ID NO.12所示,参见文献:Miao J,Guo D,Zhang J,Huang Q,Qin G,Zhang X,Wan J,GuH,Qu LJ.Targeted mutagenesis in rice using CRISPR-Cas system.Cell Res,2013,23(10):1233-1236;Cas9基因DNA可以通过文献中的邮箱向作者索取)为模板DNA。以引物对:(1) The Cas9 gene DNA was obtained by PCR amplification. It is derived from the codon-optimized Cas9 gene (sequence shown in SEQ ID NO.12, see literature: Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, GuH, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23(10): 1233-1236; Cas9 gene DNA can be obtained from the author through the mailbox in the literature) as template DNA. Take primer pairs:

UCas9-F:5’-CCCGGGGGATCCCCAATACTATGGCCCCAAAGAAGAAGCGCAAGG-3’(SEQ IDNO.24)UCas9-F: 5'-CCCGGGGGATCCCCAATACTATGGCCCCAAAGAAGAAGCGCAAGG-3' (SEQ ID NO. 24)

UCas9-R:5’-GAAATTCGGATCCCCAATACTTCAATCGCCGCCGAGTTGTGAGAGG-3’(SEQ IDNO.25)进行PCR扩增。UCas9-R: 5'-GAAATTCGGATCCCCAATACTTCAATCGCCGCCGAGTTGTGAGAGG-3' (SEQ ID NO. 25) was PCR amplified.

PCR反应体系:PCR reaction system:

Figure BDA0002671524960000153
Figure BDA0002671524960000153

Figure BDA0002671524960000161
Figure BDA0002671524960000161

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000162
Figure BDA0002671524960000162

PCR产物为:Cas9基因DNA,大小为4172bp,其中括SEQ ID NO.12的Cas9基因序列,由于PCR所用的引物加上了额外的用于Gibson连接的接头序列,所以PCR产物略大于SEQ IDNO.12所示Cas9基因的序列长度。The PCR product is: Cas9 gene DNA, the size is 4172bp, which includes the Cas9 gene sequence of SEQ ID NO.12, because the primer used in PCR has added an extra linker sequence for Gibson connection, so the PCR product is slightly larger than SEQ ID NO. Sequence length of the Cas9 gene shown in 12.

(2)构建出pCUCas9载体:使用Xcm I酶切pCXUN载体质粒(pCXUN载体信息见文献:Chen S,Songkumarn P,Liu J,Wang GL.A versatile zero background T-vector systemfor gene cloning and functional genomics.Plant Physiol,2009,150(3):1111-1121;pCXUN载体质粒可以通过文献中的邮箱向作者索取),将本实施例步骤(1)获得的Cas9基因DNA的PCR产物通过Gibson连接的方式(Gibson连接为目前流行的公知的快速连接DNA的方法,其中的原理、详细操作步骤以及试剂信息参见文献:Gibson DG,Young L,Chuang RY,Venter JC,Hutchison CA,3rd,Smith HO.Enzymatic assembly of DNAmolecules up toseveral hundred kilobases.Nat Methods,2009,6(5):343-345)连入pCXUN载体的Xcm I处,获得pCUCas9载体。(2) Construct the pCUCas9 vector: use Xcm I to digest the pCXUN vector plasmid (see the literature for pCXUN vector information: Chen S, Songkumarn P, Liu J, Wang GL. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol, 2009, 150(3): 1111-1121; the pCXUN vector plasmid can be obtained from the author through the mailbox in the literature), and the PCR product of the Cas9 gene DNA obtained in step (1) of this example is connected by Gibson (Gibson). The ligation is a currently popular and well-known method for rapid ligation of DNA. For the principle, detailed operation steps and reagent information, please refer to the literature: Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic assembly of DNAmolecules up toseveral hundred kilobases. Nat Methods, 2009, 6(5): 343-345) was ligated into the Xcm I of the pCXUN vector to obtain the pCUCas9 vector.

实施例3.构建pOsActin1-UCas9载体Example 3. Construction of pOsActin1-UCas9 vector

(1)通过PCR扩增获得OsActin1启动子DNA。以OsActin1启动子(序列如SEQ IDNO.10所示,参见文献:He Y,Zhang T,Yang N,Xu M,Yan L,Wang L,Wang R,Zhao Y.Self-cleaving ribozymes enable the production of guide RNAs from unlimited choicesof promoters for CRISPR/Cas9 mediated genome editing.J Genet Genomics,2017,44(9):469-472;含有OsActin1启动子DNA可以通过文献中的邮箱向作者索取)为模板DNA。以引物对:(1) The OsActin1 promoter DNA was obtained by PCR amplification. With the OsActin1 promoter (sequence shown in SEQ ID NO.10, see literature: He Y, Zhang T, Yang N, Xu M, Yan L, Wang L, Wang R, Zhao Y. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. J Genet Genomics, 2017, 44(9): 469-472; DNA containing the OsActin1 promoter can be obtained from the authors through the mailbox in the literature) as template DNA. Take primer pairs:

OsActin1P-F:OsActin1P-F:

5’-TACGAATTCGAGCTCGGTACGCATACTCGAGGTCATTCATATGCTTGAG-3’(SEQ ID NO.26)5'-TACGAATTCGAGCTCGGTACGCATACTCGAGGTCATTCATATGCTTGAG-3' (SEQ ID NO. 26)

OsActin1P-R:5’-ATCCCCCTTTCGCCAGGGGTACCGAGATCGTCGTCCGGCAGC-3’OsActin1P-R: 5’-ATCCCCCTTTCGCCAGGGGTACCGAGATCGTCGTCCGGCAGC-3’

(SEQ ID NO.27)进行PCR扩增。(SEQ ID NO. 27) PCR amplification was performed.

PCR反应体系:PCR reaction system:

2×PCR Buffer2×PCR Buffer 10μl10μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM OsActin1P-F10 μM OsActin1P-F 0.6μl0.6μl 10μM OsActin1P-R10 μM OsActin1P-R 0.6μl0.6μl 模板DNAtemplate DNA 0.5μl0.5μl KOD-FX聚合酶KOD-FX polymerase 0.2μl0.2μl 补充双蒸水加水补至Supplement with double distilled water and add water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000171
Figure BDA0002671524960000171

PCR产物为:OsActin1启动子DNA,大小为950bp,其中括SEQ ID NO.10的OsActin1启动子序列,由于PCR所用的引物加上了额外的用于Gibson连接的接头序列,所以PCR产物略大于SEQ ID NO.10所示的OsActin1启动子的序列长度。The PCR product is: OsActin1 promoter DNA, with a size of 950bp, including the OsActin1 promoter sequence of SEQ ID NO. 10. Since the primers used in PCR add an additional linker sequence for Gibson ligation, the PCR product is slightly larger than the SEQ ID NO. 10. The sequence length of the OsActin1 promoter shown in ID NO. 10.

(2)构建出pOsActin1-UCas9载体:使用Kpn I酶切实施例2中的pCUCas9载体质粒,将本实施例步骤(1)获得的OsActin1启动子DNA的PCR产物通过Gibson连接的方式,连入pCUCas9载体的Kpn I处,获得pOsActin1-UCas9载体。(2) Construct pOsActin1-UCas9 vector: use Kpn I to digest the pCUCas9 vector plasmid in Example 2, and connect the PCR product of the OsActin1 promoter DNA obtained in step (1) of this example into pCUCas9 by Gibson ligation At Kpn I of the vector, the pOsActin1-UCas9 vector was obtained.

实施例4.构建pRUBY-CRISPR载体Example 4. Construction of pRUBY-CRISPR vector

(1)通过PCR扩增获得RUBY-tHsp DNA。(1) RUBY-tHsp DNA was obtained by PCR amplification.

使用实施例1中的RUBY-tHsp PCR产物DNA为模板,使用引物对:The RUBY-tHsp PCR product DNA in Example 1 was used as a template, and primer pairs were used:

OsActin1P-RUBY-F:OsActin1P-RUBY-F:

5’-TGCCGGACGACGATCTCGGTACCATGGATCATGCGACCCTCG-3’(SEQ ID NO.28)5'-TGCCGGACGACGATCTCGGTACCATGGATCATGCGACCCTCG-3' (SEQ ID NO. 28)

OsActin1P-RUBY-R:OsActin1P-RUBY-R:

5’-CACATCCCCCTTTCGCCAGGGTTAACCTTATCTTTAATCATATTCCATAGTCCATACCA-3’(SEQID NO.29)为引物进行PCR扩增。5'-CACATCCCCCTTTCGCCAGGGTTAACCTTATCTTTAATCATATTCCATAGTCCATACCA-3' (SEQ ID NO. 29) was used as a primer for PCR amplification.

PCR反应体系:PCR reaction system:

2×PCR Buffer2×PCR Buffer 10μl10μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM OsActin1P-RUBY-F10 μM OsActin1P-RUBY-F 0.6μl0.6μl 10μM OsActin1P-RUBY-R10 μM OsActin1P-RUBY-R 0.6μl0.6μl 模板DNAtemplate DNA 0.5μl0.5μl KOD-FX聚合酶KOD-FX polymerase 0.2μl0.2μl 补充双蒸水至Add double distilled water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000181
Figure BDA0002671524960000181

PCR产物为:RUBY-tHsp DNA,大小为4256bp。The PCR product is: RUBY-tHsp DNA with a size of 4256bp.

(2)构建出pRUBY-CRISPR载体:使用Kpn I酶切实施例3中的pOsActin1-UCas9载体质粒,将本实施例步骤(1)获得的RUBY-tHsp DNA的PCR产物通过Gibson连接的方式,连入pOsActin1-UCas9载体的Kpn I处,获得pRUBY-CRISPR载体。(2) The pRUBY-CRISPR vector was constructed: the pOsActin1-UCas9 vector plasmid in Example 3 was digested with Kpn I, and the PCR product of the RUBY-tHsp DNA obtained in step (1) of this example was connected by Gibson connection. into the Kpn I of the pOsActin1-UCas9 vector to obtain the pRUBY-CRISPR vector.

实施例5.将能靶向目标DNA的gRNA转录盒构建到pRUBY-CRISPR载体上。Example 5. Construction of a target DNA-targeting gRNA transcription cassette into the pRUBY-CRISPR vector.

以水稻中的SE5基因为靶基因设计了特异性的能转录gRNA的DNA,靶序列为5’-GACGAGCTTGCTGTCGACG-3’(SEQ ID NO.14)。使用Pme I消化pRUBY-CRISPR质粒成线性DNA,以重叠PCR(为常规方法)扩增的方法将gRNA的DNA引入。本实施例采用OsU6启动子作为gRNA转录单元的启动子,OsU3终止子作为gRNA转录单元的终止子,具体步骤如下:A specific DNA capable of transcribing gRNA was designed with SE5 gene in rice as the target gene, and the target sequence was 5'-GACGAGCTTGCTGTCGACG-3' (SEQ ID NO. 14). The pRUBY-CRISPR plasmid was digested with Pme I into linear DNA, and the DNA of the gRNA was introduced by the method of overlapping PCR (as a conventional method) amplification. The present embodiment adopts the OsU6 promoter as the promoter of the gRNA transcription unit, and the OsU3 terminator as the terminator of the gRNA transcription unit, and the specific steps are as follows:

以本实验室已经构建的含有OsU6P DNA(序列如SEQ ID NO.16所示)、gRNA骨架DNA(序列如SEQ ID NO.15所示)和OsU3T DNA(序列如SEQ ID NO.17所示)的载体(含有OsU6PDNA、gRNA骨架DNA和OsU3T DNA的载体见文献:He Y,Zhang T,Yang N,Xu M,Yan L,Wang L,Wang R,Zhao Y.Self-cleaving ribozymes enable the production of guide RNAsfrom unlimited choices of promoters for CRISPR/Cas9 mediated genome editing.JGenet Genomics,2017,44(9):469-472;含有OsU6P DNA、gRNA骨架DNA和OsU3T DNA的载体可以通过文献中的邮箱向作者索取)为模板DNA,分别以OsU6PF:OsU6P DNA (sequence as shown in SEQ ID NO.16), gRNA backbone DNA (sequence as shown in SEQ ID NO.15) and OsU3T DNA (sequence as shown in SEQ ID NO.17) have been constructed in our laboratory. The vector (for the vector containing OsU6PDNA, gRNA backbone DNA and OsU3T DNA, see literature: He Y, Zhang T, Yang N, Xu M, Yan L, Wang L, Wang R, Zhao Y. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. JGenet Genomics, 2017, 44(9): 469-472; vectors containing OsU6P DNA, gRNA backbone DNA and OsU3T DNA can be obtained from the authors through the mailbox in the literature) as Template DNA, respectively OsU6PF:

5’-GTCGTTTCCCGCCTTCAGTTTATGTACAGCATTACGTAGG-3’(SEQ ID NO.30)和Se5-U6-SalI-R:5’-CGTCGACAGCAAGCTCGTCCAACCTGAGCCTCAGCGCAGCAGC-3’5'-GTCGTTTCCCGCCTTCAGTTTATGTACAGCATTACGTAGG-3' (SEQ ID NO. 30) and Se5-U6-SalI-R: 5'-CGTCGACAGCAAGCTCGTCCAACCTGAGCCTCAGCGCAGCAGC-3'

(SEQ ID NO.31)引物对,和(SEQ ID NO. 31) primer pair, and

OsU3TR:5’-CTGTCAAACACTGATAGTTTAAACGCTGTGCCGTACGACGGTACG-3’OsU3TR: 5’-CTGTCAAACACTGATAGTTTAAACGCTGTGCCGTACGACGGTACG-3’

(SEQ ID NO.32)和Se5-U6-SalI-F:5’-GGACGAGCTTGCTGTCGACGGTTTTAGAGCTAGAAATAGCAAGTTAAAAT-3’(SEQ ID NO.33)引物对扩增出两种DNA,将上述两种DNA切胶回收后混合作为模板,以OsU6PF和OsU6TR为引物扩增出完整的gRNA转录单元DNA。(SEQ ID NO.32) and Se5-U6-SalI-F: 5'-GGACGAGCTTGCTGTCGACGGTTTTAGAGCTAGAAATAGCAAGTTAAAAT-3' (SEQ ID NO.33) primer pair amplified two kinds of DNA, the above two kinds of DNA were cut into gel and recovered and mixed as Template, using OsU6PF and OsU6TR as primers to amplify the complete gRNA transcription unit DNA.

以上几种PCR反应体系:The above PCR reaction systems:

2×PCR Buffer2×PCR Buffer 10μl10μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM F引物10 μM F primer 0.6μl0.6μl 10μM R引物10 μM R primer 0.6μl0.6μl 模板DNAtemplate DNA 0.5μl0.5μl KOD-FX聚合酶KOD-FX polymerase 0.2μl0.2μl 补充双蒸水至Add double distilled water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000191
Figure BDA0002671524960000191

Figure BDA0002671524960000201
Figure BDA0002671524960000201

然后将该PCR产物DNA切胶回收后,利用Gibson连接的方法将回收的DNA连入Pme I酶切过的pRUBY-CRISPR质粒。得到pRUBY-CRISPR-SE5-Sal I载体。Then, the DNA of the PCR product was recovered by gel cutting, and the recovered DNA was ligated into the pRUBY-CRISPR plasmid cut by Pme I using the Gibson ligation method. The pRUBY-CRISPR-SE5-Sal I vector was obtained.

实施例6.将pRUBY-CRISPR-SE5-Sal I载体转化水稻愈伤组织Example 6. Transformation of pRUBY-CRISPR-SE5-Sal I vector into rice callus

将测序后的阳性质粒pRUBY-CRISPR-SE5-Sal I、pOsActin1-UCAS9分别电转化到农杆菌(EHA105)中,然后分别侵染水稻愈伤组织。转化品种为水稻“中花11”(又称ZH11,来自中国农业科学院作物科学研究所),(水稻遗传转化现已为水稻转基因领域的普遍操作方法,其中详细的转化步骤及使用的各种培养基配方参见文献:Hiei Y,Ohta S,Komari T,Kumashiro T.Efficient transformation of rice(Oryza sativa L.)mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA.Plant J,1994,6(2):271-282)。在愈伤筛选阶段即可看到带有RUBY表达盒的pRUBY-CRISPR-SE5-SalI转基因的水稻出现明显的红色,其中一些RUBY没有正常表达(没有颜色)的愈伤组织也能在有抗生素的筛选培养基上生长(图3A)。而无RUBY表达盒的常规载体pOsActin1-UCAS9转化水稻后无法直接看出转基因是否成功表达(图3B)。The sequenced positive plasmids pRUBY-CRISPR-SE5-Sal I and pOsActin1-UCAS9 were electro-transformed into Agrobacterium (EHA105), respectively, and then infected rice callus. The transformed variety is rice "Zhonghua 11" (also known as ZH11, from the Institute of Crop Science, Chinese Academy of Agricultural Sciences). For the basic formula, see literature: Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6(2) :271-282). In the callus screening stage, the pRUBY-CRISPR-SE5-SalI transgenic rice with the RUBY expression cassette can be seen to have obvious red color, and some callus without normal expression of RUBY (no color) can also be seen in the antibiotics. Growth on selection medium (Figure 3A). However, after the conventional vector pOsActin1-UCAS9 without the RUBY expression cassette was transformed into rice, it was impossible to directly see whether the transgene was successfully expressed (Fig. 3B).

实施例7.通过对pRUBY-CRISPR-SE5-Sal I转化的水稻材料进行编辑情况检测Example 7. Detection of editing status by pRUBY-CRISPR-SE5-Sal I transformed rice material

对pRUBY-CRISPR-SE5-Sal I转化水稻后的抗性愈伤的编辑情况进行检测。其中根据颜色将愈伤分为有颜色的R,和无红色的N。转化事件A中愈伤组织块1只取了红色(R)愈伤块进行检测;愈伤组织块2、3、4、5、6均分别取了红色(R)和无红色(N)的愈伤组织进行检测;愈伤组织块7只取了无红色(N)愈伤组织进行检测(图4A)。转化事件B中愈伤组织块1、2、9均分别取了红色(R)和无红色(N)的愈伤组织进行检测;愈伤组织块3、4、5、6只取了红色(R)愈伤块进行检测;愈伤组织块7、8只取了无红色(N)愈伤组织进行检测(图4B)。The editing of resistant calli after pRUBY-CRISPR-SE5-Sal I transformed rice was tested. The callus is divided into R with color and N without red according to color. In transformation event A, only red (R) callus was taken from callus block 1 for detection; callus blocks 2, 3, 4, 5, and 6 were all taken with red (R) and no red (N), respectively. Callus was tested; callus block 7 only had no red (N) callus for testing (Fig. 4A). In transformation event B, callus blocks 1, 2, and 9 with red (R) and no red (N) were selected for detection; callus blocks 3, 4, 5, and 6 were only picked with red ( R) Callus pieces were tested; callus pieces 7 and 8 only took non-red (N) callus for testing (Fig. 4B).

使用常规CTAB法(He Y,Yan L,Ge C,Yao XF,Han X,Wang R,Xiong L,Jiang L,Liu CM,Zhao Y.PINOID Is Required for Formation of the Stigma and Style inRice.Plant Physiol,2019,180(2):926-936)对各个愈伤组织分别抽提DNA。使用Using conventional CTAB method (He Y, Yan L, Ge C, Yao XF, Han X, Wang R, Xiong L, Jiang L, Liu CM, Zhao Y. PINOID Is Required for Formation of the Stigma and Style in Rice. Plant Physiol, 2019, 180(2):926-936) DNA was extracted from each callus respectively. use

SE5-SalF:5’-CACGGAACGGAGACCCCTA-3’(SEQ ID NO.34);SE5-SalF: 5'-CACGGAACGGAGACCCCTA-3' (SEQ ID NO. 34);

SE5-SalR:5’-AGCGGTCCAAAGTAGAGCAC-3’(SEQ ID NO.35)作为引物来分别扩增各个愈伤组织抽提的DNA。SE5-SalR: 5'-AGCGGTCCAAAGTAGAGCAC-3' (SEQ ID NO. 35) was used as a primer to amplify the DNA extracted from each callus, respectively.

PCR反应体系:PCR reaction system:

10×PCR Buffer10×PCR Buffer 2μl2μl 2.5mM dNTP2.5mM dNTPs 2μl2μl 10μM SE5-SalF10μM SE5-SalF 0.3μl0.3μl 10μM SE5-SalR10μM SE5-SalR 0.3μl0.3μl 水稻基因组DNARice genomic DNA 2μl2μl rTaq聚合酶rTaq polymerase 0.1μl0.1μl 补充双蒸水加水补至Supplement with double distilled water and add water to 20μl20μl

PCR扩增程序:PCR amplification procedure:

Figure BDA0002671524960000211
Figure BDA0002671524960000211

PCR产物大小为550bp。因为CRISPR/Cas9基因编辑系统产生的靶位点突变位置发生在靶位点的PAM(protospacer-adjacent motif)前3bp的位置,且在该实施例PCR扩增区域所包含的PAM前2-7bp(靶序列上)的位置为限制性内切酶Sal I的识别位点(GTCGAC),因此可以使用将PCR产物使用Sal I进行酶切的方法来鉴定靶位点是否发生了突变。若有DNA发生突变,Sal I的识别位点被破坏,则会有PCR产物的DNA无法被Sal I酶切。The PCR product size was 550bp. Because the target site mutation position generated by the CRISPR/Cas9 gene editing system occurs at the position of 3 bp before the PAM (protospacer-adjacent motif) of the target site, and 2-7 bp before the PAM ( The position on the target sequence) is the recognition site (GTCGAC) of the restriction endonuclease Sal I, so the method of digesting the PCR product with Sal I can be used to identify whether the target site is mutated. If the DNA is mutated and the recognition site of Sal I is destroyed, the DNA of the PCR product cannot be digested by Sal I.

PCR产物酶切体系:PCR product digestion system:

PCR-DNAPCR-DNA 5μl5μl 10×buffer10×buffer 0.5μl0.5μl EnzymeEnzyme 0.1μl(1U)0.1μl (1U) H<sub>2</sub>OH<sub>2</sub>O 5μl5μl

37℃反应3-4小时后进行电泳。因为在距离靶位点的Sal I下游39bp处还有一个Sal I酶切位点存在,所以突变体(Mut)与野生型(WT)的PCR产物DNA被酶切后的大小相差较小,因此使用2%的琼脂糖胶电泳30min,来对不同大小的DNA条带进行区分,使用野生型水稻DNA的PCR产物DNA的酶切产物作为对照,与该对照编号(WT)的电泳带型不同的编号为靶位点被编辑的材料。Electrophoresis was performed after 3-4 hours of reaction at 37°C. Because there is a Sal I restriction site 39 bp downstream of the target site, the PCR product DNA of the mutant (Mut) and the wild type (WT) has a small difference in size after restriction. Therefore, Use 2% agarose gel electrophoresis for 30min to distinguish DNA bands of different sizes, and use the PCR product DNA of wild-type rice DNA as a control, which is different from the electrophoresis band type of the control number (WT). The numbered material is the edited target site.

结果表明:挑选的红色的愈伤组织(R)的靶位点突变(Mut)的概率为100%;而没有红颜色的愈伤组织(N)则有一半以上未发生靶位点突变(WT)(图4)。说明一些愈伤组织虽然可以在带有抗生素的皿上正常生长,但是其中部分并未发生靶位点突变。本发明可以直接通过可见光下裸眼可视植物体的颜色来挑选发生基因编辑的材料,有效避免了通过抗生素筛选获得的植株中存在部分植株未发生靶位点编辑的情况,成功实现通过甜菜红素报告系统高效获得靶位点被编辑的植株。The results showed that the probability of target site mutation (Mut) of the selected red callus (R) was 100%; while the callus without red color (N) had no target site mutation (WT) in more than half. )(Figure 4). It shows that although some callus can grow normally on dishes with antibiotics, some of them do not have target site mutation. The invention can directly select the material for gene editing by the color of the naked-eye visible plant body under visible light, effectively avoids the situation that some plants do not have the target site editing in the plants obtained by antibiotic screening, and successfully realizes the use of betalains. The reporter system efficiently obtains plants whose target sites are edited.

序列表sequence listing

<110> 南京农业大学<110> Nanjing Agricultural University

<120> 一种提高获得基因编辑植株概率的筛选系统、构建方法及其应用<120> A screening system, construction method and application for improving the probability of obtaining gene-edited plants

<160> 39<160> 39

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 497<211> 497

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

Met Asp His Ala Thr Leu Ala Met Ile Leu Ala Ile Trp Phe Ile SerMet Asp His Ala Thr Leu Ala Met Ile Leu Ala Ile Trp Phe Ile Ser

1 5 10 151 5 10 15

Phe His Phe Ile Lys Leu Leu Phe Ser Gln Gln Thr Thr Lys Leu LeuPhe His Phe Ile Lys Leu Leu Phe Ser Gln Gln Thr Thr Lys Leu Leu

20 25 30 20 25 30

Pro Pro Gly Pro Lys Pro Leu Pro Ile Ile Gly Asn Ile Leu Glu ValPro Pro Gly Pro Lys Pro Leu Pro Ile Ile Gly Asn Ile Leu Glu Val

35 40 45 35 40 45

Gly Lys Lys Pro His Arg Ser Phe Ala Asn Leu Ala Lys Ile His GlyGly Lys Lys Pro His Arg Ser Phe Ala Asn Leu Ala Lys Ile His Gly

50 55 60 50 55 60

Pro Leu Ile Ser Leu Arg Leu Gly Ser Val Thr Thr Ile Val Val SerPro Leu Ile Ser Leu Arg Leu Gly Ser Val Thr Thr Ile Val Val Ser

65 70 75 8065 70 75 80

Ser Ala Asp Val Ala Lys Glu Met Phe Leu Lys Lys Asp His Pro LeuSer Ala Asp Val Ala Lys Glu Met Phe Leu Lys Lys Asp His Pro Leu

85 90 95 85 90 95

Ser Asn Arg Thr Ile Pro Asn Ser Val Thr Ala Gly Asp His His LysSer Asn Arg Thr Ile Pro Asn Ser Val Thr Ala Gly Asp His His Lys

100 105 110 100 105 110

Leu Thr Met Ser Trp Leu Pro Val Ser Pro Lys Trp Arg Asn Phe ArgLeu Thr Met Ser Trp Leu Pro Val Ser Pro Lys Trp Arg Asn Phe Arg

115 120 125 115 120 125

Lys Ile Thr Ala Val His Leu Leu Ser Pro Gln Arg Leu Asp Ala CysLys Ile Thr Ala Val His Leu Leu Ser Pro Gln Arg Leu Asp Ala Cys

130 135 140 130 135 140

Gln Thr Phe Arg His Ala Lys Val Gln Gln Leu Tyr Glu Tyr Val GlnGln Thr Phe Arg His Ala Lys Val Gln Gln Leu Tyr Glu Tyr Val Gln

145 150 155 160145 150 155 160

Glu Cys Ala Gln Lys Gly Gln Ala Val Asp Ile Gly Lys Ala Ala PheGlu Cys Ala Gln Lys Gly Gln Ala Val Asp Ile Gly Lys Ala Ala Phe

165 170 175 165 170 175

Thr Thr Ser Leu Asn Leu Leu Ser Lys Leu Phe Phe Ser Val Glu LeuThr Thr Ser Leu Asn Leu Leu Ser Lys Leu Phe Phe Ser Val Glu Leu

180 185 190 180 185 190

Ala His His Lys Ser His Thr Ser Gln Glu Phe Lys Glu Leu Ile TrpAla His His Lys Ser His Thr Ser Gln Glu Phe Lys Glu Leu Ile Trp

195 200 205 195 200 205

Asn Ile Met Glu Asp Ile Gly Lys Pro Asn Tyr Ala Asp Tyr Phe ProAsn Ile Met Glu Asp Ile Gly Lys Pro Asn Tyr Ala Asp Tyr Phe Pro

210 215 220 210 215 220

Ile Leu Gly Cys Val Asp Pro Ser Gly Ile Arg Arg Arg Leu Ala CysIle Leu Gly Cys Val Asp Pro Ser Gly Ile Arg Arg Arg Leu Ala Cys

225 230 235 240225 230 235 240

Ser Phe Asp Lys Leu Ile Ala Val Phe Gln Gly Ile Ile Cys Glu ArgSer Phe Asp Lys Leu Ile Ala Val Phe Gln Gly Ile Ile Cys Glu Arg

245 250 255 245 250 255

Leu Ala Pro Asp Ser Ser Thr Thr Thr Thr Thr Thr Thr Asp Asp ValLeu Ala Pro Asp Ser Ser Thr Thr Thr Thr Thr Thr Asp Asp Val

260 265 270 260 265 270

Leu Asp Val Leu Leu Gln Leu Phe Lys Gln Asn Glu Leu Thr Met GlyLeu Asp Val Leu Leu Gln Leu Phe Lys Gln Asn Glu Leu Thr Met Gly

275 280 285 275 280 285

Glu Ile Asn His Leu Leu Val Asp Ile Phe Asp Ala Gly Thr Asp ThrGlu Ile Asn His Leu Leu Val Asp Ile Phe Asp Ala Gly Thr Asp Thr

290 295 300 290 295 300

Thr Ser Ser Thr Phe Glu Trp Val Met Thr Glu Leu Ile Arg Asn ProThr Ser Ser Thr Phe Glu Trp Val Met Thr Glu Leu Ile Arg Asn Pro

305 310 315 320305 310 315 320

Glu Met Met Glu Lys Ala Gln Glu Glu Ile Lys Gln Val Leu Gly LysGlu Met Met Glu Lys Ala Gln Glu Glu Ile Lys Gln Val Leu Gly Lys

325 330 335 325 330 335

Asp Lys Gln Ile Gln Glu Ser Asp Ile Ile Asn Leu Pro Tyr Leu GlnAsp Lys Gln Ile Gln Glu Ser Asp Ile Ile Asn Leu Pro Tyr Leu Gln

340 345 350 340 345 350

Ala Ile Ile Lys Glu Thr Leu Arg Leu His Pro Pro Thr Val Phe LeuAla Ile Ile Lys Glu Thr Leu Arg Leu His Pro Pro Thr Val Phe Leu

355 360 365 355 360 365

Leu Pro Arg Lys Ala Asp Thr Asp Val Glu Leu Tyr Gly Tyr Ile ValLeu Pro Arg Lys Ala Asp Thr Asp Val Glu Leu Tyr Gly Tyr Ile Val

370 375 380 370 375 380

Pro Lys Asp Ala Gln Ile Leu Val Asn Leu Trp Ala Ile Gly Arg AspPro Lys Asp Ala Gln Ile Leu Val Asn Leu Trp Ala Ile Gly Arg Asp

385 390 395 400385 390 395 400

Pro Asn Ala Trp Gln Asn Ala Asp Ile Phe Ser Pro Glu Arg Phe IlePro Asn Ala Trp Gln Asn Ala Asp Ile Phe Ser Pro Glu Arg Phe Ile

405 410 415 405 410 415

Gly Cys Glu Ile Asp Val Lys Gly Arg Asp Phe Gly Leu Leu Pro PheGly Cys Glu Ile Asp Val Lys Gly Arg Asp Phe Gly Leu Leu Pro Phe

420 425 430 420 425 430

Gly Ala Gly Arg Arg Ile Cys Pro Gly Met Asn Leu Ala Ile Arg MetGly Ala Gly Arg Arg Ile Cys Pro Gly Met Asn Leu Ala Ile Arg Met

435 440 445 435 440 445

Leu Thr Leu Met Leu Ala Thr Leu Leu Gln Phe Phe Asn Trp Lys LeuLeu Thr Leu Met Leu Ala Thr Leu Leu Gln Phe Phe Asn Trp Lys Leu

450 455 460 450 455 460

Glu Gly Asp Ile Ser Pro Lys Asp Leu Asp Met Asp Glu Lys Phe GlyGlu Gly Asp Ile Ser Pro Lys Asp Leu Asp Met Asp Glu Lys Phe Gly

465 470 475 480465 470 475 480

Ile Ala Leu Gln Lys Thr Lys Pro Leu Lys Leu Ile Pro Ile Pro ArgIle Ala Leu Gln Lys Thr Lys Pro Leu Lys Leu Ile Pro Ile Pro Arg

485 490 495 485 490 495

TyrTyr

<210> 2<210> 2

<211> 275<211> 275

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Lys Met Met Asn Gly Glu Asp Ala Asn Asp Gln Met Ile Lys GluMet Lys Met Met Asn Gly Glu Asp Ala Asn Asp Gln Met Ile Lys Glu

1 5 10 151 5 10 15

Ser Phe Phe Ile Thr His Gly Asn Pro Ile Leu Thr Val Glu Asp ThrSer Phe Phe Ile Thr His Gly Asn Pro Ile Leu Thr Val Glu Asp Thr

20 25 30 20 25 30

His Pro Leu Arg Pro Phe Phe Glu Thr Trp Arg Glu Lys Ile Phe SerHis Pro Leu Arg Pro Phe Phe Glu Thr Trp Arg Glu Lys Ile Phe Ser

35 40 45 35 40 45

Lys Lys Pro Lys Ala Ile Leu Ile Ile Ser Gly His Trp Glu Thr ValLys Lys Pro Lys Ala Ile Leu Ile Ile Ser Gly His Trp Glu Thr Val

50 55 60 50 55 60

Lys Pro Thr Val Asn Ala Val His Ile Asn Asp Thr Ile His Asp PheLys Pro Thr Val Asn Ala Val His Ile Asn Asp Thr Ile His Asp Phe

65 70 75 8065 70 75 80

Asp Asp Tyr Pro Ala Ala Met Tyr Gln Phe Lys Tyr Pro Ala Pro GlyAsp Asp Tyr Pro Ala Ala Met Tyr Gln Phe Lys Tyr Pro Ala Pro Gly

85 90 95 85 90 95

Glu Pro Glu Leu Ala Arg Lys Val Glu Glu Ile Leu Lys Lys Ser GlyGlu Pro Glu Leu Ala Arg Lys Val Glu Glu Ile Leu Lys Lys Ser Gly

100 105 110 100 105 110

Phe Glu Thr Ala Glu Thr Asp Gln Lys Arg Gly Leu Asp His Gly AlaPhe Glu Thr Ala Glu Thr Asp Gln Lys Arg Gly Leu Asp His Gly Ala

115 120 125 115 120 125

Trp Val Pro Leu Met Leu Met Tyr Pro Glu Ala Asp Ile Pro Val CysTrp Val Pro Leu Met Leu Met Tyr Pro Glu Ala Asp Ile Pro Val Cys

130 135 140 130 135 140

Gln Leu Ser Val Gln Pro His Leu Asp Gly Thr Tyr His Tyr Asn LeuGln Leu Ser Val Gln Pro His Leu Asp Gly Thr Tyr His Tyr Asn Leu

145 150 155 160145 150 155 160

Gly Arg Ala Leu Ala Pro Leu Lys Asn Asp Gly Val Leu Ile Ile GlyGly Arg Ala Leu Ala Pro Leu Lys Asn Asp Gly Val Leu Ile Ile Gly

165 170 175 165 170 175

Ser Gly Ser Ala Thr His Pro Leu Asp Glu Thr Pro His Tyr Phe AspSer Gly Ser Ala Thr His Pro Leu Asp Glu Thr Pro His Tyr Phe Asp

180 185 190 180 185 190

Gly Val Ala Pro Trp Ala Ala Ala Phe Asp Ser Trp Leu Arg Lys AlaGly Val Ala Pro Trp Ala Ala Ala Phe Asp Ser Trp Leu Arg Lys Ala

195 200 205 195 200 205

Leu Ile Asn Gly Arg Phe Glu Glu Val Asn Ile Tyr Glu Ser Lys AlaLeu Ile Asn Gly Arg Phe Glu Glu Val Asn Ile Tyr Glu Ser Lys Ala

210 215 220 210 215 220

Pro Asn Trp Lys Leu Ala His Pro Phe Pro Glu His Phe Tyr Pro LeuPro Asn Trp Lys Leu Ala His Pro Phe Pro Glu His Phe Tyr Pro Leu

225 230 235 240225 230 235 240

His Val Val Leu Gly Ala Ala Gly Glu Lys Trp Lys Ala Glu Leu IleHis Val Val Leu Gly Ala Ala Gly Glu Lys Trp Lys Ala Glu Leu Ile

245 250 255 245 250 255

His Ser Ser Trp Asp His Gly Thr Leu Cys His Gly Ser Tyr Lys PheHis Ser Ser Trp Asp His Gly Thr Leu Cys His Gly Ser Tyr Lys Phe

260 265 270 260 265 270

Thr Ser AlaThr Ser Ala

275 275

<210> 3<210> 3

<211> 500<211> 500

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

Met Thr Ala Ile Lys Met Asn Thr Asn Gly Glu Gly Glu Thr Gln HisMet Thr Ala Ile Lys Met Asn Thr Asn Gly Glu Gly Glu Thr Gln His

1 5 10 151 5 10 15

Ile Leu Met Ile Pro Phe Met Ala Gln Gly His Leu Arg Pro Phe LeuIle Leu Met Ile Pro Phe Met Ala Gln Gly His Leu Arg Pro Phe Leu

20 25 30 20 25 30

Glu Leu Ala Met Phe Leu Tyr Lys Arg Ser His Val Ile Ile Thr LeuGlu Leu Ala Met Phe Leu Tyr Lys Arg Ser His Val Ile Ile Thr Leu

35 40 45 35 40 45

Leu Thr Thr Pro Leu Asn Ala Gly Phe Leu Arg His Leu Leu His HisLeu Thr Thr Pro Leu Asn Ala Gly Phe Leu Arg His Leu Leu His His

50 55 60 50 55 60

His Ser Tyr Ser Ser Ser Gly Ile Arg Ile Val Glu Leu Pro Phe AsnHis Ser Tyr Ser Ser Ser Gly Ile Arg Ile Val Glu Leu Pro Phe Asn

65 70 75 8065 70 75 80

Ser Thr Asn His Gly Leu Pro Pro Gly Ile Glu Asn Thr Asp Lys LeuSer Thr Asn His Gly Leu Pro Pro Gly Ile Glu Asn Thr Asp Lys Leu

85 90 95 85 90 95

Thr Leu Pro Leu Val Val Ser Leu Phe His Ser Thr Ile Ser Leu AspThr Leu Pro Leu Val Val Ser Leu Phe His Ser Thr Ile Ser Leu Asp

100 105 110 100 105 110

Pro His Leu Arg Asp Tyr Ile Ser Arg His Phe Ser Pro Ala Arg ProPro His Leu Arg Asp Tyr Ile Ser Arg His Phe Ser Pro Ala Arg Pro

115 120 125 115 120 125

Pro Leu Cys Val Ile His Asp Val Phe Leu Gly Trp Val Asp Gln ValPro Leu Cys Val Ile His Asp Val Phe Leu Gly Trp Val Asp Gln Val

130 135 140 130 135 140

Ala Lys Asp Val Gly Ser Thr Gly Val Val Phe Thr Thr Gly Gly AlaAla Lys Asp Val Gly Ser Thr Gly Val Val Phe Thr Thr Gly Gly Ala

145 150 155 160145 150 155 160

Tyr Gly Thr Ser Ala Tyr Val Ser Ile Trp Asn Asp Leu Pro His GlnTyr Gly Thr Ser Ala Tyr Val Ser Ile Trp Asn Asp Leu Pro His Gln

165 170 175 165 170 175

Asn Tyr Ser Asp Asp Gln Glu Phe Pro Leu Pro Gly Phe Pro Glu AsnAsn Tyr Ser Asp Asp Gln Glu Phe Pro Leu Pro Gly Phe Pro Glu Asn

180 185 190 180 185 190

His Lys Phe Arg Arg Ser Gln Leu His Arg Phe Leu Arg Tyr Ala AspHis Lys Phe Arg Arg Ser Gln Leu His Arg Phe Leu Arg Tyr Ala Asp

195 200 205 195 200 205

Gly Ser Asp Asp Trp Ser Lys Tyr Phe Gln Pro Gln Leu Arg Gln SerGly Ser Asp Asp Trp Ser Lys Tyr Phe Gln Pro Gln Leu Arg Gln Ser

210 215 220 210 215 220

Met Lys Ser Phe Gly Trp Leu Cys Asn Ser Val Glu Glu Ile Glu ThrMet Lys Ser Phe Gly Trp Leu Cys Asn Ser Val Glu Glu Ile Glu Thr

225 230 235 240225 230 235 240

Leu Gly Phe Ser Ile Leu Arg Asn Tyr Thr Lys Leu Pro Ile Trp GlyLeu Gly Phe Ser Ile Leu Arg Asn Tyr Thr Lys Leu Pro Ile Trp Gly

245 250 255 245 250 255

Ile Gly Pro Leu Ile Ala Ser Pro Val Gln His Ser Ser Ser Asp AsnIle Gly Pro Leu Ile Ala Ser Pro Val Gln His Ser Ser Ser Asp Asn

260 265 270 260 265 270

Asn Ser Thr Gly Ala Glu Phe Val Gln Trp Leu Ser Leu Lys Glu ProAsn Ser Thr Gly Ala Glu Phe Val Gln Trp Leu Ser Leu Lys Glu Pro

275 280 285 275 280 285

Asp Ser Val Leu Tyr Ile Ser Phe Gly Ser Gln Asn Thr Ile Ser ProAsp Ser Val Leu Tyr Ile Ser Phe Gly Ser Gln Asn Thr Ile Ser Pro

290 295 300 290 295 300

Thr Gln Met Met Glu Leu Ala Ala Gly Leu Glu Ser Ser Glu Lys ProThr Gln Met Met Glu Leu Ala Ala Gly Leu Glu Ser Ser Glu Lys Pro

305 310 315 320305 310 315 320

Phe Leu Trp Val Ile Arg Ala Pro Phe Gly Phe Asp Ile Asn Glu GluPhe Leu Trp Val Ile Arg Ala Pro Phe Gly Phe Asp Ile Asn Glu Glu

325 330 335 325 330 335

Met Arg Pro Glu Trp Leu Pro Glu Gly Phe Glu Glu Arg Met Lys ValMet Arg Pro Glu Trp Leu Pro Glu Gly Phe Glu Glu Arg Met Lys Val

340 345 350 340 345 350

Lys Lys Gln Gly Lys Leu Val Tyr Lys Leu Gly Pro Gln Leu Glu IleLys Lys Gln Gly Lys Leu Val Tyr Lys Leu Gly Pro Gln Leu Glu Ile

355 360 365 355 360 365

Leu Asn His Glu Ser Ile Gly Gly Phe Leu Thr His Cys Gly Trp AsnLeu Asn His Glu Ser Ile Gly Gly Phe Leu Thr His Cys Gly Trp Asn

370 375 380 370 375 380

Ser Ile Leu Glu Ser Leu Arg Glu Gly Val Pro Met Leu Gly Trp ProSer Ile Leu Glu Ser Leu Arg Glu Gly Val Pro Met Leu Gly Trp Pro

385 390 395 400385 390 395 400

Leu Ala Ala Glu Gln Ala Tyr Asn Leu Lys Tyr Leu Glu Asp Glu MetLeu Ala Ala Glu Gln Ala Tyr Asn Leu Lys Tyr Leu Glu Asp Glu Met

405 410 415 405 410 415

Gly Val Ala Val Glu Leu Ala Arg Gly Leu Glu Gly Glu Ile Ser LysGly Val Ala Val Glu Leu Ala Arg Gly Leu Glu Gly Glu Ile Ser Lys

420 425 430 420 425 430

Glu Lys Val Lys Arg Ile Val Glu Met Ile Leu Glu Arg Asn Glu GlyGlu Lys Val Lys Arg Ile Val Glu Met Ile Leu Glu Arg Asn Glu Gly

435 440 445 435 440 445

Ser Lys Gly Trp Glu Met Lys Asn Arg Ala Val Glu Met Gly Lys LysSer Lys Gly Trp Glu Met Lys Asn Arg Ala Val Glu Met Gly Lys Lys

450 455 460 450 455 460

Leu Lys Asp Ala Val Asn Glu Glu Lys Glu Leu Lys Gly Ser Ser ValLeu Lys Asp Ala Val Asn Glu Glu Lys Glu Leu Lys Gly Ser Ser Val

465 470 475 480465 470 475 480

Lys Ala Ile Asp Asp Phe Leu Asp Ala Val Met Gln Ala Lys Leu GluLys Ala Ile Asp Asp Phe Leu Asp Ala Val Met Gln Ala Lys Leu Glu

485 490 495 485 490 495

Pro Ser Leu GlnPro Ser Leu Gln

500 500

<210> 4<210> 4

<211> 22<211> 22

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

Gly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys Gln Ala Gly Asp ValGly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys Gln Ala Gly Asp Val

1 5 10 151 5 10 15

Glu Glu Asn Pro Gly ProGlu Glu Asn Pro Gly Pro

20 20

<210> 5<210> 5

<211> 1491<211> 1491

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

atggatcatg cgaccctcgc catgatcctc gcgatctggt tcatcagctt ccacttcatc 60atggatcatg cgaccctcgc catgatcctc gcgatctggt tcatcagctt ccacttcatc 60

aagctgctgt tctcccagca gaccaccaag ctgcttccgc caggaccaaa gccgcttccg 120aagctgctgt tctcccagca gaccaccaag ctgcttccgc caggaccaaa gccgcttccg 120

atcatcggca acatccttga ggtgggcaag aagccgcatc ggtccttcgc caacctcgcc 180atcatcggca acatccttga ggtgggcaag aagccgcatc ggtccttcgc caacctcgcc 180

aagattcacg gcccactcat ttccctcaga ctcggctctg tgaccaccat cgttgtgtcc 240aagattcacg gcccactcat ttccctcaga ctcggctctg tgaccaccat cgttgtgtcc 240

tctgccgacg tggccaaaga gatgttcctc aagaaggatc acccgctctc caaccgcacg 300tctgccgacg tggccaaaga gatgttcctc aagaaggatc acccgctctc caaccgcacg 300

atcccgaata gtgttacagc cggcgaccac cacaagctca ccatgtcttg gctcccggtg 360atcccgaata gtgttacagc cggcgaccac cacaagctca ccatgtcttg gctcccggtg 360

tctccgaagt ggcgcaactt ccgcaagatt accgccgtgc atctgctctc cccacagaga 420tctccgaagt ggcgcaactt ccgcaagatt accgccgtgc atctgctctc cccacagaga 420

ctcgatgcct gccagacatt caggcacgcc aaggtgcagc agctctacga gtacgttcaa 480ctcgatgcct gccagacatt caggcacgcc aaggtgcagc agctctacga gtacgttcaa 480

gagtgcgccc agaaaggcca ggccgtggat attggcaagg ccgcctttac gaccagcctc 540gagtgcgccc agaaaggcca ggccgtggat attggcaagg ccgcctttac gaccagcctc 540

aacctcctca gcaagctgtt cttcagcgtc gagctggcgc accacaagtc ccataccagc 600aacctcctca gcaagctgtt cttcagcgtc gagctggcgc accacaagtc ccataccagc 600

caagagttca aagagctgat ctggaacatc atggaagata taggcaagcc gaactacgcc 660caagagttca aagagctgat ctggaacatc atggaagata taggcaagcc gaactacgcc 660

gactacttcc cgattctcgg ctgcgttgac ccatctggca ttagaagaag gctcgcctgc 720gactacttcc cgattctcgg ctgcgttgac ccatctggca ttagaagaag gctcgcctgc 720

tccttcgaca agctgatcgc cgtgttccag ggcatcatct gcgagagact cgccccagat 780tccttcgaca agctgatcgc cgtgttccag ggcatcatct gcgagagact cgccccagat 780

tcctccacca caactaccac caccaccgac gacgtgctcg atgtgctcct ccagctgttc 840tcctccacca caactaccac caccaccgac gacgtgctcg atgtgctcct ccagctgttc 840

aagcagaacg agctgacgat gggcgagatc aaccacctcc tcgtggacat cttcgacgcc 900aagcagaacg agctgacgat gggcgagatc aaccacctcc tcgtggacat cttcgacgcc 900

ggcaccgata ccacatcctc cacattcgag tgggtgatga ccgagctgat ccgcaatcca 960ggcaccgata ccacatcctc cacattcgag tgggtgatga ccgagctgat ccgcaatcca 960

gagatgatgg aaaaggccca agaggaaatc aagcaggtcc tcggcaagga caagcagatc 1020gagatgatgg aaaaggccca agaggaaatc aagcaggtcc tcggcaagga caagcagatc 1020

caagagtccg acatcatcaa cctgccgtac ctccaggcga tcatcaaaga gacactccgc 1080caagagtccg acatcatcaa cctgccgtac ctccaggcga tcatcaaaga gacactccgc 1080

ctccatccgc cgaccgtgtt cttgctccca agaaaggccg acaccgatgt cgagctgtac 1140ctccatccgc cgaccgtgtt cttgctccca agaaaggccg acaccgatgt cgagctgtac 1140

ggctacatcg tgccgaagga tgcccagatc ctcgtgaacc tctgggccat tggcagggac 1200ggctacatcg tgccgaagga tgcccagatc ctcgtgaacc tctgggccat tggcagggac 1200

ccaaacgcct ggcagaacgc cgatattttc agcccagagc gcttcatcgg ctgcgagatc 1260ccaaacgcct ggcagaacgc cgatattttc agcccagagc gcttcatcgg ctgcgagatc 1260

gatgttaagg gccgcgattt cggcctcctt ccatttggcg ctggccgcag aatttgccca 1320gatgttaagg gccgcgattt cggcctcctt ccatttggcg ctggccgcag aatttgccca 1320

ggcatgaatc tcgccatcag gatgctcacc ctcatgctcg ccacactcct ccagttcttc 1380ggcatgaatc tcgccatcag gatgctcacc ctcatgctcg ccacactcct ccagttcttc 1380

aactggaagc tcgaaggcga catctccccg aaggacctcg acatggacga gaagttcggc 1440aactggaagc tcgaaggcga catctccccg aaggacctcg acatggacga gaagttcggc 1440

attgcgctcc aaaagaccaa gccgctcaag ctcatcccga ttccgcgcta c 1491attgcgctcc aaaagaccaa gccgctcaag ctcatcccga ttccgcgcta c 1491

<210> 6<210> 6

<211> 822<211> 822

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

aagatgatga acggcgagga cgccaacgac cagatgatca aagagtcctt cttcatcacc 60aagatgatga acggcgagga cgccaacgac cagatgatca aagagtcctt cttcatcacc 60

cacggcaacc cgatcctcac cgtcgaggat acacatccgc tcaggccgtt cttcgagaca 120cacggcaacc cgatcctcac cgtcgaggat acacatccgc tcaggccgtt cttcgagaca 120

tggcgcgaga agattttctc caagaagccg aaggccatcc tcatcatctc cggccactgg 180tggcgcgaga agattttctc caagaagccg aaggccatcc tcatcatctc cggccactgg 180

gagacagtga agccaaccgt gaacgccgtg cacatcaacg acaccatcca cgacttcgac 240gagacagtga agccaaccgt gaacgccgtg cacatcaacg acaccatcca cgacttcgac 240

gactacccag ccgccatgta ccagttcaag tacccagctc caggcgagcc agagcttgcg 300gactacccag ccgccatgta ccagttcaag tacccagctc caggcgagcc agagcttgcg 300

agaaaggtgg aagagatcct caagaagtcc gggttcgaga cagccgagac agaccaaaag 360agaaaggtgg aagagatcct caagaagtcc gggttcgaga cagccgagac agaccaaaag 360

aggggccttg atcacggcgc ctgggttcca ctcatgctca tgtatccaga ggcggacatc 420aggggccttg atcacggcgc ctgggttcca ctcatgctca tgtatccaga ggcggacatc 420

ccggtgtgcc agctctcagt tcagccacat ctcgacggca cctaccacta caatctcggc 480ccggtgtgcc agctctcagt tcagccacat ctcgacggca cctaccacta caatctcggc 480

agagccctcg cgccgctcaa gaatgatggc gtgctcatta ttggctccgg cagcgccaca 540agagccctcg cgccgctcaa gaatgatggc gtgctcatta ttggctccgg cagcgccaca 540

catccactcg atgagacacc gcactacttc gatggtgttg ccccttgggc cgctgccttc 600catccactcg atgagacacc gcactacttc gatggtgttg ccccttgggc cgctgccttc 600

gattcttggc ttaggaaggc cctcatcaac ggccgcttcg aggaagtgaa catctacgag 660gattcttggc ttaggaaggc cctcatcaac ggccgcttcg aggaagtgaa catctacgag 660

agcaaggccc cgaactggaa gctcgcccat ccatttccag agcacttcta cccgctccac 720agcaaggccc cgaactggaa gctcgcccat ccatttccag agcacttcta cccgctccac 720

gttgtgctcg gcgctgctgg tgaaaagtgg aaggccgagc tgatccactc ctcctgggat 780gttgtgctcg gcgctgctgg tgaaaagtgg aaggccgagc tgatccactc ctcctgggat 780

catggcacac tttgccacgg ctcctacaag ttcacctccg cc 822catggcacac tttgccacgg ctcctacaag ttcacctccg cc 822

<210> 7<210> 7

<211> 1497<211> 1497

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

accgccatca agatgaacac caacggcgag ggcgagacac agcacatcct catgatcccg 60accgccatca agatgaacac caacggcgag ggcgagacac agcacatcct catgatcccg 60

ttcatggcgc agggccacct caggccattt ctcgaactcg ccatgttcct ctacaagcgc 120ttcatggcgc agggccacct caggccattt ctcgaactcg ccatgttcct ctacaagcgc 120

tcccacgtga tcatcaccct gctcacaact ccgctcaacg ccggcttcct caggcacctc 180tcccacgtga tcatcaccct gctcacaact ccgctcaacg ccggcttcct caggcacctc 180

cttcaccacc attcctactc ctccagcggc atcaggatcg tcgagctgcc attcaactcc 240cttcaccacc attcctactc ctccagcggc atcaggatcg tcgagctgcc attcaactcc 240

accaaccacg gactcccacc gggcatcgag aacaccgata agctcacact cccgctcgtg 300accaaccacg gactcccacc gggcatcgag aacaccgata agctcacact cccgctcgtg 300

gtgtccctct tccattccac catcagcctc gatccgcacc tccgcgatta catctccagg 360gtgtccctct tccattccac catcagcctc gatccgcacc tccgcgatta catctccagg 360

catttcagcc cagccaggcc accactctgc gtgatccatg atgtgttcct cggctgggtt 420catttcagcc cagccaggcc accactctgc gtgatccatg atgtgttcct cggctgggtt 420

gaccaggtgg ccaaggatgt gggctctaca ggcgtggtgt tcacaacagg cggcgcttat 480gaccaggtgg ccaaggatgt gggctctaca ggcgtggtgt tcacaacagg cggcgcttat 480

ggcacatccg cctacgtgtc catctggaac gatctcccgc accagaacta ctccgacgac 540ggcacatccg cctacgtgtc catctggaac gatctcccgc accagaacta ctccgacgac 540

caagagttcc cgctgccagg cttcccagag aaccataagt tccgcaggtc ccagctccat 600caagagttcc cgctgccagg cttcccagag aaccataagt tccgcaggtc ccagctccat 600

cggttcctca gatatgccga cggctccgac gattggtcca agtatttcca gccgcagctc 660cggttcctca gatatgccga cggctccgac gattggtcca agtatttcca gccgcagctc 660

cgccagtcca tgaagtcttt tggctggctc tgcaactccg tggaagagat cgagacactc 720cgccagtcca tgaagtcttt tggctggctc tgcaactccg tggaagagat cgagacactc 720

ggcttctcca tcctccgcaa ctacaccaag ctgccgatct ggggcatcgg cccacttatt 780ggcttctcca tcctccgcaa ctacaccaag ctgccgatct ggggcatcgg cccacttatt 780

gcttccccag tgcagcactc ctcctccgac aacaattcaa caggcgccga gttcgtgcag 840gcttccccag tgcagcactc ctcctccgac aacaattcaa caggcgccga gttcgtgcag 840

tggctcagcc tcaaagagcc ggactccgtc ctctacatct ccttcggctc ccagaacacg 900tggctcagcc tcaaagagcc ggactccgtc ctctacatct ccttcggctc ccagaacacg 900

atcagcccga cgcagatgat ggaactcgct gctggccttg agtcctccga gaagccattc 960atcagcccga cgcagatgat ggaactcgct gctggccttg agtcctccga gaagccattc 960

ctctgggtga tcagagcccc gttcggcttc gacatcaacg aagagatgcg cccagagtgg 1020ctctgggtga tcagagcccc gttcggcttc gacatcaacg aagagatgcg cccagagtgg 1020

ctgccagagg gctttgagga acgcatgaag gtgaagaaac agggcaagct cgtgtacaag 1080ctgccagagg gctttgagga acgcatgaag gtgaagaaac agggcaagct cgtgtacaag 1080

ctcggcccgc agcttgagat cctcaaccat gaatccatcg gcggctttct cacccactgc 1140ctcggcccgc agcttgagat cctcaaccat gaatccatcg gcggctttct cacccactgc 1140

ggatggaaca gcatccttga gtctcttcgc gagggcgttc cgatgcttgg atggccactt 1200ggatggaaca gcatccttga gtctcttcgc gagggcgttc cgatgcttgg atggccactt 1200

gctgccgagc aggcctacaa cctcaagtac ctcgaagatg agatgggcgt cgcggttgag 1260gctgccgagc aggcctacaa cctcaagtac ctcgaagatg agatgggcgt cgcggttgag 1260

cttgctagag gcctcgaagg cgagatctcc aaagagaagg tcaagcgcat cgtcgagatg 1320cttgctagag gcctcgaagg cgagatctcc aaagagaagg tcaagcgcat cgtcgagatg 1320

atccttgagc gcaacgaggg ctccaaaggc tgggagatga agaatcgcgc cgtggaaatg 1380atccttgagc gcaacgaggg ctccaaaggc tgggagatga agaatcgcgc cgtggaaatg 1380

ggcaaaaagc tcaaggacgc cgtgaacgag gaaaaagagc tgaagggctc ctccgtgaag 1440ggcaaaaagc tcaaggacgc cgtgaacgag gaaaaagagc tgaagggctc ctccgtgaag 1440

gcgatcgacg atttcctcga cgccgtcatg caggccaaac ttgagccaag cctccag 1497gcgatcgacg atttcctcga cgccgtcatg caggccaaac ttgagccaag cctccag 1497

<210> 8<210> 8

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

ggtagcggag ctaccaattt tagcctcctt aagcaggcag gtgatgtaga agagaacccc 60ggtagcggag ctaccaattt tagcctcctt aagcaggcag gtgatgtaga agagaacccc 60

gggcct 66gggcct 66

<210> 9<210> 9

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

ggatccggag caaccaactt tagcctgctc aagcaagcag gagatgttga ggaaaatcct 60ggatccggag caaccaactt tagcctgctc aagcaagcag gagatgttga ggaaaatcct 60

ggcccc 66ggcccc 66

<210> 10<210> 10

<211> 907<211> 907

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

gcatactcga ggtcattcat atgcttgaga agagagtcgg gatagtccaa aataaaacaa 60gcatactcga ggtcattcat atgcttgaga agagagtcgg gatagtccaa aataaaacaa 60

aggtaagatt acctggtcaa aagtgaaaac atcagttaaa aggtggtata aagtaaaata 120aggtaagatt acctggtcaa aagtgaaaac atcagttaaa aggtggtata aagtaaaata 120

tcggtaataa aaggtggccc aaagtgaaat ttactctttt ctactattat aaaaattgag 180tcggtaataa aaggtggccc aaagtgaaat ttactctttt ctactattat aaaaattgag 180

gatgtttttg tcggtacttt gatacgtcat ttttgtatga attggttttt aagtttattc 240gatgtttttg tcggtacttt gatacgtcat ttttgtatga attggtttttt aagtttattc 240

gcttttggaa atgcatatct gtatttgagt cgggttttaa gttcgtttgc ttttgtaaat 300gcttttggaa atgcatatct gtatttgagt cgggttttaa gttcgtttgc ttttgtaaat 300

acagagggat ttgtataaga aatatcttta aaaaaaccca tatgctaatt tgacataatt 360acagagggat ttgtataaga aatatcttta aaaaaaccca tatgctaatt tgacataatt 360

tttgagaaaa atatatattc aggcgaattc tcacaatgaa caataataag attaaaatag 420tttgagaaaa atatatattc aggcgaattc tcacaatgaa caataataag attaaaatag 420

ctttcccccg ttgcagcgca tgggtatttt ttctagtaaa aataaaagat aaacttagac 480ctttcccccg ttgcagcgca tgggtatttt ttctagtaaa aataaaagat aaacttagac 480

tcaaaacatt tacaaaaaca acccctaaag ttcctaaagc ccaaagtgct atccacgatc 540tcaaaacatt tacaaaaaca acccctaaag ttcctaaagc ccaaagtgct atccacgatc 540

catagcaagc ccagcccaac ccaacccaac ccaacccacc ccagtccagc caactggaca 600catagcaagc ccagcccaac ccaacccaac ccaacccacc ccagtccagc caactggaca 600

atagtctcca caccccccca ctatcaccgt gagttgtccg cacgcaccgc acgtctcgca 660atagtctcca caccccccca ctatcaccgt gagttgtccg cacgcaccgc acgtctcgca 660

gccaaaaaaa aaaaaagaaa gaaaaaaaag aaaaagaaaa aacagcaggt gggtccgggt 720gccaaaaaaa aaaaaagaaa gaaaaaaaag aaaaagaaaa aacagcaggt gggtccgggt 720

cgtgggggcc ggaaacgcga ggaggatcgc gagccagcga cgaggccggc cctccctccg 780cgtgggggcc ggaaacgcga ggaggatcgc gagccagcga cgaggccggc cctccctccg 780

cttccaaaga aacgcccccc atcgccacta tatacatacc cccccctctc ctcccatccc 840cttccaaaga aacgcccccc atcgccacta tatacatacc cccccctctc ctcccatccc 840

cccaacccta ccaccaccac caccaccacc tccacctcct cccccctcgc tgccggacga 900cccaacccta ccaccaccac caccaccacc tccacctcct cccccctcgc tgccggacga 900

cgatctc 907cgatctc 907

<210> 11<210> 11

<211> 250<211> 250

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

atatgaagat gaagatgaaa tatttggtgt gtcaaataaa aaggttgtgt gcttaagttt 60atatgaagat gaagatgaaa tatttggtgt gtcaaataaa aaggttgtgt gcttaagttt 60

gtgttttttt cttggcttgt tgtgttatga atttgtggct ttttctaata ttaaatgaat 120gtgttttttt cttggcttgt tgtgttatga atttgtggct ttttctaata ttaaatgaat 120

gtaacatctc attataatga ataaacaaat gtttctataa tccattgtga atgttttgtt 180gtaacatctc attataatga ataaacaaat gtttctataa tccattgtga atgttttgtt 180

ggatctcttc tccagcatat aactactgta tgtgctatgg tatggactat ggaatatgat 240ggatctcttc tccagcatat aactactgta tgtgctatgg tatggactat ggaatatgat 240

taaagataag 250taaagataag 250

<210> 12<210> 12

<211> 4131<211> 4131

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

atggccccaa agaagaagcg caaggtcgac aagaagtact ccatcggcct cgacatcggc 60atggccccaa agaagaagcg caaggtcgac aagaagtact ccatcggcct cgacatcggc 60

accaattctg ttggctgggc cgtgatcacc gacgagtaca aggtgccgtc caagaagttc 120accaattctg ttggctgggc cgtgatcacc gacgagtaca aggtgccgtc caagaagttc 120

aaggtcctcg gcaacaccga ccgccactcc atcaagaaga atctcatcgg cgccctgctg 180aaggtcctcg gcaacaccga ccgccactcc atcaagaaga atctcatcgg cgccctgctg 180

ttcgactctg gcgagacagc cgaggctaca aggctcaaga ggaccgctag acgcaggtac 240ttcgactctg gcgagacagc cgaggctaca aggctcaaga ggaccgctag acgcaggtac 240

accaggcgca agaaccgcat ctgctacctc caagagatct tctccaacga gatggccaag 300accaggcgca agaaccgcat ctgctacctc caagagatct tctccaacga gatggccaag 300

gtggacgaca gcttcttcca caggctcgag gagagcttcc tcgtcgagga ggacaagaag 360gtggacgaca gcttcttcca caggctcgag gagagcttcc tcgtcgagga ggacaagaag 360

cacgagcgcc atccgatctt cggcaacatc gtggatgagg tggcctacca cgagaagtac 420cacgagcgcc atccgatctt cggcaacatc gtggatgagg tggcctacca cgagaagtac 420

ccgaccatct accacctccg caagaagctc gtcgactcca ccgataaggc cgacctcagg 480ccgaccatct accacctccg caagaagctc gtcgactcca ccgataaggc cgacctcagg 480

ctcatctacc tcgccctcgc ccacatgatc aagttcaggg gccacttcct catcgagggc 540ctcatctacc tcgccctcgc ccacatgatc aagttcaggg gccacttcct catcgagggc 540

gacctcaacc cggacaactc cgatgtggac aagctgttca tccagctcgt gcagacctac 600gacctcaacc cggacaactc cgatgtggac aagctgttca tccagctcgt gcagacctac 600

aaccagctgt tcgaggagaa cccgatcaac gcctctggcg ttgacgccaa ggctattctc 660aaccagctgt tcgaggagaa cccgatcaac gcctctggcg ttgacgccaa ggctattctc 660

tctgccaggc tctctaagtc ccgcaggctc gagaatctga tcgcccaact tccgggcgag 720tctgccaggc tctctaagtc ccgcaggctc gagaatctga tcgcccaact tccgggcgag 720

aagaagaatg gcctcttcgg caacctgatc gccctctctc ttggcctcac cccgaacttc 780aagaagaatg gcctcttcgg caacctgatc gccctctctc ttggcctcac cccgaacttc 780

aagtccaact tcgacctcgc cgaggacgcc aagctccagc tttccaagga cacctacgac 840aagtccaact tcgacctcgc cgaggacgcc aagctccagc tttccaagga cacctacgac 840

gacgacctcg acaatctcct cgcccagatt ggcgatcagt acgccgatct gttcctcgcc 900gacgacctcg acaatctcct cgcccagatt ggcgatcagt acgccgatct gttcctcgcc 900

gccaagaatc tctccgacgc catcctcctc agcgacatcc tcagggtgaa caccgagatc 960gccaagaatc tctccgacgc catcctcctc agcgacatcc tcagggtgaa caccgagatc 960

accaaggccc cactctccgc ctccatgatc aagaggtacg acgagcacca ccaggacctc 1020accaaggccc cactctccgc ctccatgatc aagaggtacg acgagcacca ccaggacctc 1020

acactcctca aggccctcgt gagacagcag ctcccagaga agtacaagga gatcttcttc 1080acactcctca aggccctcgt gagacagcag ctcccagaga agtacaagga gatcttcttc 1080

gaccagtcca agaacggcta cgccggctac atcgatggcg gcgcttctca agaggagttc 1140gaccagtcca agaacggcta cgccggctac atcgatggcg gcgcttctca agaggagttc 1140

tacaagttca tcaagccgat cctcgagaag atggacggca ccgaggagct gctcgtgaag 1200tacaagttca tcaagccgat cctcgagaag atggacggca ccgaggagct gctcgtgaag 1200

ctcaatagag aggacctcct ccgcaagcag cgcaccttcg ataatggctc catcccgcac 1260ctcaatagag aggacctcct ccgcaagcag cgcaccttcg ataatggctc catcccgcac 1260

cagatccacc tcggcgagct tcatgctatc ctccgcaggc aagaggactt ctacccgttc 1320cagatccacc tcggcgagct tcatgctatc ctccgcaggc aagaggactt ctacccgttc 1320

ctcaaggaca accgcgagaa gattgagaag atcctcacct tccgcatccc gtactacgtg 1380ctcaaggaca accgcgagaa gattgagaag atcctcacct tccgcatccc gtactacgtg 1380

ggcccgctcg ccaggggcaa ctccaggttc gcctggatga ccagaaagtc cgaggagaca 1440ggcccgctcg ccaggggcaa ctccaggttc gcctggatga ccagaaagtc cgaggagaca 1440

atcaccccct ggaacttcga ggaggtggtg gataagggcg cctctgccca gtctttcatc 1500atcaccccct ggaacttcga ggaggtggtg gataagggcg cctctgccca gtctttcatc 1500

gagcgcatga ccaacttcga caagaacctc ccgaacgaga aggtgctccc gaagcactca 1560gagcgcatga ccaacttcga caagaacctc ccgaacgaga aggtgctccc gaagcactca 1560

ctcctctacg agtacttcac cgtgtacaac gagctgacca aggtgaagta cgtgaccgag 1620ctcctctacg agtacttcac cgtgtacaac gagctgacca aggtgaagta cgtgaccgag 1620

gggatgagga agccagcttt ccttagcggc gagcaaaaga aggccatcgt cgacctgctg 1680gggatgagga agccagcttt ccttagcggc gagcaaaaga aggccatcgt cgacctgctg 1680

ttcaagacca accgcaaggt gaccgtgaag cagctcaagg aggactactt caagaaaatc 1740ttcaagacca accgcaaggt gaccgtgaag cagctcaagg aggactactt caagaaaatc 1740

gagtgcttcg actccgtcga gatctccggc gtcgaggata ggttcaatgc ctccctcggg 1800gagtgcttcg actccgtcga gatctccggc gtcgaggata ggttcaatgc ctccctcggg 1800

acctaccacg acctcctcaa gattatcaag gacaaggact tcctcgacaa cgaggagaac 1860acctaccacg acctcctcaa gattatcaag gacaaggact tcctcgacaa cgaggagaac 1860

gaggacatcc tcgaggacat cgtgctcacc ctcaccctct tcgaggaccg cgagatgatc 1920gaggacatcc tcgaggacat cgtgctcacc ctcaccctct tcgaggaccg cgagatgatc 1920

gaggagcgcc tcaagacata cgcccacctc ttcgacgaca aggtgatgaa gcagctgaag 1980gaggagcgcc tcaagacata cgcccacctc ttcgacgaca aggtgatgaa gcagctgaag 1980

cgcaggcgct ataccggctg gggcaggctc tctaggaagc tcatcaacgg catccgcgac 2040cgcaggcgct ataccggctg gggcaggctc tctaggaagc tcatcaacgg catccgcgac 2040

aagcagtccg gcaagacgat cctcgacttc ctcaagtccg acggcttcgc caaccgcaac 2100aagcagtccg gcaagacgat cctcgacttc ctcaagtccg acggcttcgc caaccgcaac 2100

ttcatgcagc tcatccacga cgactccctc accttcaagg aggacatcca aaaggcccag 2160ttcatgcagc tcatccacga cgactccctc accttcaagg aggacatcca aaaggcccag 2160

gtgtccggcc aaggcgattc cctccatgag catatcgcca atctcgccgg ctccccggct 2220gtgtccggcc aaggcgattc cctccatgag catatcgcca atctcgccgg ctccccggct 2220

atcaagaagg gcattctcca gaccgtgaag gtggtggacg agctggtgaa ggtgatgggc 2280atcaagaagg gcattctcca gaccgtgaag gtggtggacg agctggtgaa ggtgatgggc 2280

aggcacaagc cagagaacat cgtgatcgag atggcccgcg agaaccagac cacacagaag 2340aggcacaagc cagagaacat cgtgatcgag atggcccgcg agaaccagac cacacagaag 2340

ggccaaaaga actcccgcga gcgcatgaag aggatcgagg agggcattaa ggagctgggc 2400ggccaaaaga actcccgcga gcgcatgaag aggatcgagg agggcattaa ggagctgggc 2400

tcccagatcc tcaaggagca cccagtcgag aacacccagc tccagaacga gaagctctac 2460tcccagatcc tcaaggagca cccagtcgag aacacccagc tccagaacga gaagctctac 2460

ctctactacc tccagaacgg ccgcgacatg tacgtggacc aagagctgga catcaaccgc 2520ctctactacc tccagaacgg ccgcgacatg tacgtggacc aagagctgga catcaaccgc 2520

ctctccgact acgacgtgga ccatattgtg ccgcagtcct tcctgaagga cgactccatc 2580ctctccgact acgacgtgga ccatattgtg ccgcagtcct tcctgaagga cgactccatc 2580

gacaacaagg tgctcacccg ctccgacaag aacaggggca agtccgataa cgtgccgtcc 2640gacaacaagg tgctcacccg ctccgacaag aacaggggca agtccgataa cgtgccgtcc 2640

gaagaggtcg tcaagaagat gaagaactac tggcgccagc tcctcaacgc caagctcatc 2700gaagaggtcg tcaagaagat gaagaactac tggcgccagc tcctcaacgc caagctcatc 2700

acccagagga agttcgacaa cctcaccaag gccgagagag gcggcctttc cgagcttgat 2760acccagagga agttcgacaa cctcaccaag gccgagagag gcggcctttc cgagcttgat 2760

aaggccggct tcatcaagcg ccagctcgtc gagacacgcc agatcacaaa gcacgtggcc 2820aaggccggct tcatcaagcg ccagctcgtc gagacacgcc agatcacaaa gcacgtggcc 2820

cagatcctcg actcccgcat gaacaccaag tacgacgaga acgacaagct catccgcgag 2880cagatcctcg actcccgcat gaacaccaag tacgacgaga acgacaagct catccgcgag 2880

gtgaaggtca tcaccctcaa gtccaagctc gtgtccgact tccgcaagga cttccagttc 2940gtgaaggtca tcaccctcaa gtccaagctc gtgtccgact tccgcaagga cttccagttc 2940

tacaaggtgc gcgagatcaa caactaccac cacgcccacg acgcctacct caatgccgtg 3000tacaaggtgc gcgagatcaa caactaccac cacgcccacg acgcctacct caatgccgtg 3000

gtgggcacag ccctcatcaa gaagtaccca aagctcgagt ccgagttcgt gtacggcgac 3060gtgggcacag ccctcatcaa gaagtaccca aagctcgagt ccgagttcgt gtacggcgac 3060

tacaaggtgt acgacgtgcg caagatgatc gccaagtccg agcaagagat cggcaaggcg 3120tacaaggtgt acgacgtgcg caagatgatc gccaagtccg agcaagagat cggcaaggcg 3120

accgccaagt acttcttcta ctccaacatc atgaatttct tcaagaccga gatcacgctc 3180accgccaagt acttcttcta ctccaacatc atgaatttct tcaagaccga gatcacgctc 3180

gccaacggcg agattaggaa gaggccgctc atcgagacaa acggcgagac aggcgagatc 3240gccaacggcg agattaggaa gaggccgctc atcgagacaa acggcgagac aggcgagatc 3240

gtgtgggaca agggcaggga tttcgccaca gtgcgcaagg tgctctccat gccgcaagtg 3300gtgtgggaca agggcaggga tttcgccaca gtgcgcaagg tgctctccat gccgcaagtg 3300

aacatcgtga agaagaccga ggttcagacc ggcggcttct ccaaggagtc catcctccca 3360aacatcgtga agaagaccga ggttcagacc ggcggcttct ccaaggagtc catcctccca 3360

aagcgcaact ccgacaagct gatcgcccgc aagaaggact gggacccgaa gaagtatggc 3420aagcgcaact ccgacaagct gatcgcccgc aagaaggact gggacccgaa gaagtatggc 3420

ggcttcgatt ctccgaccgt ggcctactct gtgctcgtgg ttgccaaggt cgagaagggc 3480ggcttcgatt ctccgaccgt ggcctactct gtgctcgtgg ttgccaaggt cgagaagggc 3480

aagagcaaga agctcaagtc cgtcaaggag ctgctgggca tcacgatcat ggagcgcagc 3540aagagcaaga agctcaagtc cgtcaaggag ctgctgggca tcacgatcat ggagcgcagc 3540

agcttcgaga agaacccaat cgacttcctc gaggccaagg gctacaagga ggtgaagaag 3600agcttcgaga agaacccaat cgacttcctc gaggccaagg gctacaagga ggtgaagaag 3600

gacctcatca tcaagctccc gaagtacagc ctcttcgagc ttgagaacgg ccgcaagaga 3660gacctcatca tcaagctccc gaagtacagc ctcttcgagc ttgagaacgg ccgcaagaga 3660

atgctcgcct ctgctggcga gcttcagaag ggcaacgagc ttgctctccc gtccaagtac 3720atgctcgcct ctgctggcga gcttcagaag ggcaacgagc ttgctctccc gtccaagtac 3720

gtgaacttcc tctacctcgc ctcccactac gagaagctca agggctcccc agaggacaac 3780gtgaacttcc tctacctcgc ctcccactac gagaagctca agggctcccc agaggacaac 3780

gagcaaaagc agctgttcgt cgagcagcac aagcactacc tcgacgagat catcgagcag 3840gagcaaaagc agctgttcgt cgagcagcac aagcactacc tcgacgagat catcgagcag 3840

atctccgagt tctccaagcg cgtgatcctc gccgatgcca acctcgataa ggtgctcagc 3900atctccgagt tctccaagcg cgtgatcctc gccgatgcca acctcgataa ggtgctcagc 3900

gcctacaaca agcaccgcga taagccaatt cgcgagcagg ccgagaacat catccacctc 3960gcctacaaca agcaccgcga taagccaatt cgcgagcagg ccgagaacat catccacctc 3960

ttcaccctca ccaacctcgg cgctccagcc gccttcaagt acttcgacac caccatcgac 4020ttcaccctca ccaacctcgg cgctccagcc gccttcaagt acttcgacac caccatcgac 4020

cgcaagcgct acacctctac caaggaggtt ctcgacgcca ccctcatcca ccagtctatc 4080cgcaagcgct acacctctac caaggaggtt ctcgacgcca ccctcatcca ccagtctatc 4080

acaggcctct acgagacacg catcgacctc tcacaactcg gcggcgattg a 4131acaggcctct acgagacacg catcgacctc tcacaactcg gcggcgattg a 4131

<210> 13<210> 13

<211> 1756<211> 1756

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

accgccatca agatgaacac caacggcgag ggcgagacac agcacatcct catgatcccg 60accgccatca agatgaacac caacggcgag ggcgagacac agcacatcct catgatcccg 60

ttcatggcgc agggccacct caggccattt ctcgaactcg ccatgttcct ctacaagcgc 120ttcatggcgc agggccacct caggccattt ctcgaactcg ccatgttcct ctacaagcgc 120

tcccacgtga tcatcaccct gctcacaact ccgctcaacg ccggcttcct caggcacctc 180tcccacgtga tcatcaccct gctcacaact ccgctcaacg ccggcttcct caggcacctc 180

cttcaccacc attcctactc ctccagcggc atcaggatcg tcgagctgcc attcaactcc 240cttcaccacc attcctactc ctccagcggc atcaggatcg tcgagctgcc attcaactcc 240

accaaccacg gactcccacc gggcatcgag aacaccgata agctcacact cccgctcgtg 300accaaccacg gactcccacc gggcatcgag aacaccgata agctcacact cccgctcgtg 300

gtgtccctct tccattccac catcagcctc gatccgcacc tccgcgatta catctccagg 360gtgtccctct tccattccac catcagcctc gatccgcacc tccgcgatta catctccagg 360

catttcagcc cagccaggcc accactctgc gtgatccatg atgtgttcct cggctgggtt 420catttcagcc cagccaggcc accactctgc gtgatccatg atgtgttcct cggctgggtt 420

gaccaggtgg ccaaggatgt gggctctaca ggcgtggtgt tcacaacagg cggcgcttat 480gaccaggtgg ccaaggatgt gggctctaca ggcgtggtgt tcacaacagg cggcgcttat 480

ggcacatccg cctacgtgtc catctggaac gatctcccgc accagaacta ctccgacgac 540ggcacatccg cctacgtgtc catctggaac gatctcccgc accagaacta ctccgacgac 540

caagagttcc cgctgccagg cttcccagag aaccataagt tccgcaggtc ccagctccat 600caagagttcc cgctgccagg cttcccagag aaccataagt tccgcaggtc ccagctccat 600

cggttcctca gatatgccga cggctccgac gattggtcca agtatttcca gccgcagctc 660cggttcctca gatatgccga cggctccgac gattggtcca agtatttcca gccgcagctc 660

cgccagtcca tgaagtcttt tggctggctc tgcaactccg tggaagagat cgagacactc 720cgccagtcca tgaagtcttt tggctggctc tgcaactccg tggaagagat cgagacactc 720

ggcttctcca tcctccgcaa ctacaccaag ctgccgatct ggggcatcgg cccacttatt 780ggcttctcca tcctccgcaa ctacaccaag ctgccgatct ggggcatcgg cccacttatt 780

gcttccccag tgcagcactc ctcctccgac aacaattcaa caggcgccga gttcgtgcag 840gcttccccag tgcagcactc ctcctccgac aacaattcaa caggcgccga gttcgtgcag 840

tggctcagcc tcaaagagcc ggactccgtc ctctacatct ccttcggctc ccagaacacg 900tggctcagcc tcaaagagcc ggactccgtc ctctacatct ccttcggctc ccagaacacg 900

atcagcccga cgcagatgat ggaactcgct gctggccttg agtcctccga gaagccattc 960atcagcccga cgcagatgat ggaactcgct gctggccttg agtcctccga gaagccattc 960

ctctgggtga tcagagcccc gttcggcttc gacatcaacg aagagatgcg cccagagtgg 1020ctctgggtga tcagagcccc gttcggcttc gacatcaacg aagagatgcg cccagagtgg 1020

ctgccagagg gctttgagga acgcatgaag gtgaagaaac agggcaagct cgtgtacaag 1080ctgccagagg gctttgagga acgcatgaag gtgaagaaac agggcaagct cgtgtacaag 1080

ctcggcccgc agcttgagat cctcaaccat gaatccatcg gcggctttct cacccactgc 1140ctcggcccgc agcttgagat cctcaaccat gaatccatcg gcggctttct cacccactgc 1140

ggatggaaca gcatccttga gtctcttcgc gagggcgttc cgatgcttgg atggccactt 1200ggatggaaca gcatccttga gtctcttcgc gagggcgttc cgatgcttgg atggccactt 1200

gctgccgagc aggcctacaa cctcaagtac ctcgaagatg agatgggcgt cgcggttgag 1260gctgccgagc aggcctacaa cctcaagtac ctcgaagatg agatgggcgt cgcggttgag 1260

cttgctagag gcctcgaagg cgagatctcc aaagagaagg tcaagcgcat cgtcgagatg 1320cttgctagag gcctcgaagg cgagatctcc aaagagaagg tcaagcgcat cgtcgagatg 1320

atccttgagc gcaacgaggg ctccaaaggc tgggagatga agaatcgcgc cgtggaaatg 1380atccttgagc gcaacgaggg ctccaaaggc tgggagatga agaatcgcgc cgtggaaatg 1380

ggcaaaaagc tcaaggacgc cgtgaacgag gaaaaagagc tgaagggctc ctccgtgaag 1440ggcaaaaagc tcaaggacgc cgtgaacgag gaaaaagagc tgaagggctc ctccgtgaag 1440

gcgatcgacg atttcctcga cgccgtcatg caggccaaac ttgagccaag cctccagtga 1500gcgatcgacg atttcctcga cgccgtcatg caggccaaac ttgagccaag cctccagtga 1500

tagtgaatat gaagatgaag atgaaatatt tggtgtgtca aataaaaagg ttgtgtgctt 1560tagtgaatat gaagatgaag atgaaatatt tggtgtgtca aataaaaagg ttgtgtgctt 1560

aagtttgtgt ttttttcttg gcttgttgtg ttatgaattt gtggcttttt ctaatattaa 1620aagtttgtgt ttttttcttg gcttgttgtg ttatgaattt gtggcttttt ctaatattaa 1620

atgaatgtaa catctcatta taatgaataa acaaatgttt ctataatcca ttgtgaatgt 1680atgaatgtaa catctcatta taatgaataa acaaatgttt ctataatcca ttgtgaatgt 1680

tttgttggat ctcttctcca gcatataact actgtatgtg ctatggtatg gactatggaa 1740tttgttggat ctcttctcca gcatataact actgtatgtg ctatggtatg gactatggaa 1740

tatgattaaa gataag 1756tatgattaaa gataag 1756

<210> 14<210> 14

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

gacgagcttg ctgtcgacg 19gacgagcttg ctgtcgacg 19

<210> 15<210> 15

<211> 76<211> 76

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60

ggcaccgagt cggtgc 76ggcaccgagt cggtgc 76

<210> 16<210> 16

<211> 457<211> 457

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

tatgtacagc attacgtagg tacgttttct ttttcttccc ggagagatga tacgataatc 60tatgtacagc attacgtagg tacgttttct ttttcttccc ggagagatga tacgataatc 60

atgtaaaccc agaatttaaa aaatattctt tactataaaa attttaatta gggaacgtat 120atgtaaaccc agaatttaaa aaatattctt tactataaaa attttaatta gggaacgtat 120

tattttttac atgacacctt ttgagaaaga gggacttgta atatgggaca aatgaacaat 180tattttttac atgacacctt ttgagaaaga gggacttgta atatgggaca aatgaacaat 180

ttctaagaaa tgggcatatg actctcagta caatggacca aattccctcc agtcggccca 240ttctaagaaa tgggcatatg actctcagta caatggacca aattccctcc agtcggccca 240

gcaatacaaa gggaaagaaa tgagggggcc cacaggccac ggcccacttt tctccgtggt 300gcaatacaaa gggaaagaaa tgagggggcc cacaggccac ggcccacttt tctccgtggt 300

ggggagatcc agctagaggt ccggcccaca agtggccctt gccccgtggg acggtgggat 360ggggagatcc agctagaggt ccggcccaca agtggccctt gccccgtggg acggtgggat 360

tgcagagcgc gtgggcggaa acaacagttt agtaccacct cgctcacgca acgacgcgac 420tgcagagcgc gtgggcggaa acaacagttt agtaccacct cgctcacgca acgacgcgac 420

cacttgctta taagctgctg cgctgaggct caggttg 457cacttgctta taagctgctg cgctgaggct caggttg 457

<210> 17<210> 17

<211> 252<211> 252

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

tttttttttt cgttttgcat tgagttttct ccgtcgcatg tttgcagttt tattttccgt 60tttttttttt cgttttgcat tgagttttct ccgtcgcatg tttgcagttt tattttccgt 60

tttgcattga aatttctccg tctcatgttt gcagcgtgtt caaaaagtac gcagctgtat 120tttgcattga aatttctccg tctcatgttt gcagcgtgtt caaaaagtac gcagctgtat 120

ttcacttatt tacggcgcca cattttcatg ccgtttgtgc caactatccc gagctagtga 180ttcacttatt tacggcgcca cattttcatg ccgtttgtgc caactatccc gagctagtga 180

atacagcttg gcttcacaca acactggtga cccgctgacc tgctcgtacc tcgtaccgtc 240atacagcttg gcttcacaca acactggtga cccgctgacc tgctcgtacc tcgtaccgtc 240

gtacggcaca gc 252gtacggcaca gc 252

<210> 18<210> 18

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

cactgatagt ttaaactagt atggatcatg cgaccctcgc 40cactgatagt ttaaactagt atggatcatg cgaccctcgc 40

<210> 19<210> 19

<211> 60<211> 60

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

cacctgcctg cttaaggagg ctaaaattgg tagctccgct accgtagcgc ggaatcggga 60cacctgcctg cttaaggagg ctaaaattgg tagctccgct accgtagcgc ggaatcggga 60

<210> 20<210> 20

<211> 60<211> 60

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 20<400> 20

ccttaagcag gcaggtgatg tagaagagaa ccccgggcct atgaagatga tgaacggcga 60ccttaagcag gcaggtgatg tagaagagaa ccccgggcct atgaagatga tgaacggcga 60

<210> 21<210> 21

<211> 60<211> 60

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

ctcctgcttg cttgagcagg ctaaagttgg ttgctccgga tccggcggag gtgaacttgt 60ctcctgcttg cttgagcagg ctaaagttgg ttgctccgga tccggcggag gtgaacttgt 60

<210> 22<210> 22

<211> 60<211> 60

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

gctcaagcaa gcaggagatg ttgaggaaaa tcctggcccc atgaccgcca tcaagatgaa 60gctcaagcaa gcaggagatg ttgaggaaaa tcctggcccc atgaccgcca tcaagatgaa 60

<210> 23<210> 23

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

gctagcttac tcagttaggt cttatcttta atcatattcc 40gctagcttac tcagttaggt cttatcttta atcatattcc 40

<210> 24<210> 24

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

cccgggggat ccccaatact atggccccaa agaagaagcg caagg 45cccgggggat ccccaatact atggccccaa agaagaagcg caagg 45

<210> 25<210> 25

<211> 46<211> 46

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 25<400> 25

gaaattcgga tccccaatac ttcaatcgcc gccgagttgt gagagg 46gaaattcgga tccccaatac ttcaatcgcc gccgagttgt gagagg 46

<210> 26<210> 26

<211> 49<211> 49

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 26<400> 26

tacgaattcg agctcggtac gcatactcga ggtcattcat atgcttgag 49tacgaattcg agctcggtac gcatactcga ggtcattcat atgcttgag 49

<210> 27<210> 27

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 27<400> 27

atcccccttt cgccaggggt accgagatcg tcgtccggca gc 42atcccccttt cgccaggggt accgagatcg tcgtccggca gc 42

<210> 28<210> 28

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 28<400> 28

tgccggacga cgatctcggt accatggatc atgcgaccct cg 42tgccggacga cgatctcggt accatggatc atgcgaccct cg 42

<210> 29<210> 29

<211> 59<211> 59

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 29<400> 29

cacatccccc tttcgccagg gttaacctta tctttaatca tattccatag tccatacca 59cacatcccccc tttcgccagg gttaacctta tctttaatca tattccatag tccatacca 59

<210> 30<210> 30

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 30<400> 30

gtcgtttccc gccttcagtt tatgtacagc attacgtagg 40gtcgtttccc gccttcagtt tatgtacagc attacgtagg 40

<210> 31<210> 31

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 31<400> 31

cgtcgacagc aagctcgtcc aacctgagcc tcagcgcagc agc 43cgtcgacagc aagctcgtcc aacctgagcc tcagcgcagc agc 43

<210> 32<210> 32

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 32<400> 32

ctgtcaaaca ctgatagttt aaacgctgtg ccgtacgacg gtacg 45ctgtcaaaca ctgatagttt aaacgctgtg ccgtacgacg gtacg 45

<210> 33<210> 33

<211> 50<211> 50

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 33<400> 33

ggacgagctt gctgtcgacg gttttagagc tagaaatagc aagttaaaat 50ggacgagctt gctgtcgacg gttttagagc tagaaatagc aagttaaaat 50

<210> 34<210> 34

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 34<400> 34

cacggaacgg agaccccta 19cacggaacgg agaccccta 19

<210> 35<210> 35

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 35<400> 35

agcggtccaa agtagagcac 20agcggtccaa agtagagcac 20

<210> 36<210> 36

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 36<400> 36

ggtagcggag ctaccaattt tagcctcctt aagcaggcag gtg 43ggtagcggag ctaccaattt tagcctcctt aagcaggcag gtg 43

<210> 37<210> 37

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 37<400> 37

ccttaagcag gcaggtgatg tagaagagaa ccccgggcct 40ccttaagcag gcaggtgatg tagaagagaa ccccgggcct 40

<210> 38<210> 38

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 38<400> 38

ggatccggag caaccaactt tagcctgctc aagcaagcag gag 43ggatccggag caaccaactt tagcctgctc aagcaagcag gag 43

<210> 39<210> 39

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 39<400> 39

gctcaagcaa gcaggagatg ttgaggaaaa tcctggcccc 40gctcaagcaa gcaggagatg ttgaggaaaa tcctggcccc 40

Claims (12)

1.一种提高获得基因编辑植株概率的筛选系统,其特征在于,所述筛选系统为包括RUBY基因表达盒和CRISPR/Cas基因编辑系统的植物遗传转化载体;所述RUBY基因表达盒包括顺次设置的启动子、RUBY基因、终止子。1. a screening system that improves the probability of obtaining a gene-edited plant, is characterized in that, the screening system is a plant genetic transformation vector comprising a RUBY gene expression cassette and a CRISPR/Cas gene editing system; the RUBY gene expression cassette comprises sequentially Set promoter, RUBY gene, terminator. 2.根据权利要求1所述的提高获得基因编辑植株概率的筛选系统,其特征在于,所述RUBY基因包括CYP76AD1基因、DODA基因和GT基因;2. The screening system for improving the probability of obtaining a gene-edited plant according to claim 1, wherein the RUBY gene comprises CYP76AD1 gene, DODA gene and GT gene; 所述CYP76AD1基因的核苷酸序列包含编码SEQ ID NO.1所示CYP76AD1氨基酸序列的核苷酸序列,The nucleotide sequence of the CYP76AD1 gene comprises the nucleotide sequence encoding the amino acid sequence of CYP76AD1 shown in SEQ ID NO.1, 所述DODA基因的核苷酸序列包含编码SEQ ID NO.2所示DODA氨基酸序列的核苷酸序列,The nucleotide sequence of the DODA gene comprises the nucleotide sequence encoding the DODA amino acid sequence shown in SEQ ID NO.2, 所述GT基因的核苷酸序列包含编码SEQ ID NO.3所示GT氨基酸序列的核苷酸序列;优选的,所述CYP76AD1基因的核苷酸序列如SEQ ID NO.5所示,所述DODA基因的核苷酸序列如SEQ ID NO.6所示,所述GT基因的核苷酸序列如SEQ ID NO.7所示。The nucleotide sequence of the GT gene comprises the nucleotide sequence encoding the GT amino acid sequence shown in SEQ ID NO.3; preferably, the nucleotide sequence of the CYP76AD1 gene is shown in SEQ ID NO.5, and the The nucleotide sequence of the DODA gene is shown in SEQ ID NO.6, and the nucleotide sequence of the GT gene is shown in SEQ ID NO.7. 3.根据权利要求2所述的提高获得基因编辑植株概率的筛选系统,其特征在于,所述CYP76AD1基因、DODA基因和GT基因之间通过DNA连接单元以任意顺序连接。3 . The screening system for increasing the probability of obtaining gene-edited plants according to claim 2 , wherein the CYP76AD1 gene, the DODA gene and the GT gene are linked in any order by a DNA linking unit. 4 . 4.根据权利要求3所述的提高获得基因编辑植株概率的筛选系统,其特征在于,所述DNA连接单元为能够转录和翻译成一种带有自切割功能多肽的DNA序列;4. The screening system for improving the probability of obtaining a gene-edited plant according to claim 3, wherein the DNA linking unit is a DNA sequence capable of being transcribed and translated into a self-cleaving functional polypeptide; 优选的,所述DNA连接单元的核苷酸序列包含编码SEQ ID NO.4所示2A肽氨基酸序列的核苷酸序列;Preferably, the nucleotide sequence of the DNA linking unit comprises the nucleotide sequence encoding the amino acid sequence of the 2A peptide shown in SEQ ID NO.4; 进一步优选的,所述DNA连接单元为核苷酸序列如SEQ ID NO.8所示的2A1,或核苷酸序列如SEQ ID NO.9所示的2A2。Further preferably, the DNA linking unit is 2A1 whose nucleotide sequence is shown in SEQ ID NO.8, or 2A2 whose nucleotide sequence is shown in SEQ ID NO.9. 5.根据权利要求1所述的提高获得基因编辑植株概率的筛选系统,其特征在于,所述启动子为能在植物中发挥功能的启动子,所述终止子为能在植物中发挥功能的终止子;5. The screening system for improving the probability of obtaining gene-edited plants according to claim 1, wherein the promoter is a promoter capable of functioning in plants, and the terminator is a promoter capable of functioning in plants terminator; 优选的,所述启动子为能在双子叶类植物或单子叶类植物中发挥功能的启动子,所述终止子为能在双子叶类植物或单子叶类植物中发挥功能的终止子;Preferably, the promoter is a promoter capable of functioning in dicotyledonous plants or monocotyledonous plants, and the terminator is a terminator capable of functioning in dicotyledonous plants or monocotyledonous plants; 进一步优选的,所述启动子为能在水稻中发挥功能的启动子,所述终止子为能在水稻中发挥功能的终止子;Further preferably, the promoter is a promoter that can function in rice, and the terminator is a terminator that can function in rice; 更进一步优选的,所述启动子为OsActin1的启动子,所述终止子为tHsp。More preferably, the promoter is the promoter of OsActin1, and the terminator is tHsp. 6.根据权利要求1所述的提高获得基因编辑植株概率的筛选系统,其特征在于,所述的CRISPR/Cas基因编辑系统包括Cas蛋白表达盒、gRNA转录盒。6. The screening system for improving the probability of obtaining gene-edited plants according to claim 1, wherein the CRISPR/Cas gene-editing system comprises a Cas protein expression cassette and a gRNA transcription cassette. 7.一种提高获得基因编辑植株概率的筛选系统的构建方法,其特征在于,包括以下步骤:7. A method for constructing a screening system for improving the probability of obtaining a gene-edited plant, comprising the following steps: 1)构建RUBY基因,将RUBY基因和终止子连接,获得RUBY-终止子DNA片段;1) construct RUBY gene, connect RUBY gene and terminator to obtain RUBY-terminator DNA fragment; 2)将Cas蛋白表达盒连入植物遗传转化载体,构建带有Cas蛋白表达盒的载体pCas;2) connecting the Cas protein expression cassette into a plant genetic transformation vector to construct a vector pCas with the Cas protein expression cassette; 3)将启动子连入步骤2)获得的载体pCas中,所述启动子连接在Cas表达盒之外,构建出p启动子-Cas载体;3) connecting the promoter into the vector pCas obtained in step 2), where the promoter is connected outside the Cas expression cassette, to construct a p-promoter-Cas vector; 4)将步骤1)获得的RUBY-终止子DNA片段构建到p启动子-Cas载体上,所述RUBY基因-终止子DNA片段连接在步骤3)所述启动子下游,与启动子构成RUBY基因表达盒,获得pRUBY-CRISPR载体;4) The RUBY-terminator DNA fragment obtained in step 1) is constructed on the p-promoter-Cas carrier, and the RUBY gene-terminator DNA fragment is connected to the downstream of the promoter in step 3), forming the RUBY gene with the promoter. Expression cassette to obtain pRUBY-CRISPR vector; 5)选择目的基因靶位点,将能靶向靶位点的gRNA转录盒构建到pRUBY-CRISPR载体上,获得所述筛选系统。5) Select the target site of the target gene, construct the gRNA transcription cassette capable of targeting the target site on the pRUBY-CRISPR vector, and obtain the screening system. 8.根据权利要求7所述的一种提高获得基因编辑植株概率的筛选系统的构建方法,其特征在于,所述步骤1)的具体操作为:分别获得CYP76AD1基因、DODA基因、GT基因、终止子片段;使用体外重叠延伸PCR的方法将CYP76AD1基因、DODA基因和GT基因三种DNA分子通过DNA连接单元以任意顺序组合为RUBY基因,在RUBY基因之后连接终止子,获得RUBY基因-终止子DNA片段;8. The method for constructing a screening system for improving the probability of obtaining gene-edited plants according to claim 7, wherein the specific operation of the step 1) is: respectively obtaining CYP76AD1 gene, DODA gene, GT gene, termination Sub-fragment; using the method of in vitro overlap extension PCR, three DNA molecules of CYP76AD1 gene, DODA gene and GT gene are combined into the RUBY gene in any order through the DNA linking unit, and the terminator is connected after the RUBY gene to obtain the RUBY gene-terminator DNA fragment; 优选的,所述步骤1)的具体操作为:分别获得CYP76AD1基因、DODA基因和GT基因-终止子DNA片段;使用体外重叠延伸PCR的方法将获得的CYP76AD1基因、DODA基因、GT基因-终止子DNA片段之间通过DNA连接单元顺次连接,得到RUBY基因-终止子DNA片段。Preferably, the specific operation of the step 1) is as follows: respectively obtaining CYP76AD1 gene, DODA gene and GT gene-terminator DNA fragments; using the method of in vitro overlap extension PCR to obtain CYP76AD1 gene, DODA gene, GT gene-terminator The DNA fragments are sequentially connected through a DNA linking unit to obtain RUBY gene-terminator DNA fragments. 9.根据权利要求7所述的一种提高获得基因编辑植株概率的筛选系统的构建方法,其特征在于,所述步骤5)的具体操作为:根据目标基因靶位点,设计3'端突出的能互补配对的引物,通过体外重叠PCR扩增,将能靶向目标基因的gRNA转录盒连入步骤4)获得的pRUBY-CRISPR载体上,所述gRNA转录盒在Cas表达盒以及RUBY表达盒之外,获得所述筛选系统。9. The construction method of a screening system for improving the probability of obtaining a gene-edited plant according to claim 7, wherein the specific operation of the step 5) is: according to the target gene target site, design a 3'-end overhang The primers that can be complementary paired are amplified by overlapping PCR in vitro, and the gRNA transcription cassette that can target the target gene is connected to the pRUBY-CRISPR vector obtained in step 4). The gRNA transcription cassette is in the Cas expression cassette and the RUBY expression cassette. In addition, the screening system is obtained. 10.权利要求1所述的提高获得基因编辑植株概率的筛选系统或权利要求7所述的提高获得基因编辑植株概率的筛选系统的构建方法在提高获得基因编辑植株概率中的应用。10. The application of the screening system for increasing the probability of obtaining gene-edited plants according to claim 1 or the construction method of the screening system for increasing the probability of obtaining gene-edited plants according to claim 7 in increasing the probability of obtaining gene-edited plants. 11.根据权利要求10所述的应用,其特征在于,采用所述筛选系统对植株进行基因编辑,当植物组织表达甜菜红素的颜色,表示基因编辑植株发生了靶位点突变。11 . The application according to claim 10 , wherein the screening system is used to perform gene editing on plants, and when the plant tissue expresses the color of betalain, it indicates that the gene-edited plant has undergone a target site mutation. 12 . 12.根据权利要求10所述的应用,其特征在于,所述基因编辑能够发生在各类植物整体或植物的部分或植物细胞中,12. The application according to claim 10, wherein the gene editing can occur in all kinds of plant whole or plant parts or plant cells, 优选的,所述植物为双子叶类植物和/或单子叶类植物,Preferably, the plant is a dicotyledonous plant and/or a monocotyledonous plant, 进一步优选的,所述植物为水稻。Further preferably, the plant is rice.
CN202010934721.5A 2020-09-08 2020-09-08 Screening system for improving probability of obtaining gene editing plants, construction method and application thereof Pending CN112080517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010934721.5A CN112080517A (en) 2020-09-08 2020-09-08 Screening system for improving probability of obtaining gene editing plants, construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010934721.5A CN112080517A (en) 2020-09-08 2020-09-08 Screening system for improving probability of obtaining gene editing plants, construction method and application thereof

Publications (1)

Publication Number Publication Date
CN112080517A true CN112080517A (en) 2020-12-15

Family

ID=73731590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010934721.5A Pending CN112080517A (en) 2020-09-08 2020-09-08 Screening system for improving probability of obtaining gene editing plants, construction method and application thereof

Country Status (1)

Country Link
CN (1) CN112080517A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234751A (en) * 2021-05-20 2021-08-10 中山大学 Agrobacterium tumefaciens transformation vector based on rhizobium III type effector NopP and application thereof
CN113322262A (en) * 2021-06-30 2021-08-31 中国热带农业科学院三亚研究院 Gene HuDOPA for controlling synthesis of pitaya beet pigment
CN113549647A (en) * 2021-06-16 2021-10-26 北京大学现代农业研究院 Efficient watermelon genetic transformation system and application
CN113832181A (en) * 2021-08-24 2021-12-24 北大荒垦丰种业股份有限公司 Gene editing method of japonica rice improved strain fragrance control gene and application thereof
CN115851756A (en) * 2022-07-22 2023-03-28 云南中烟工业有限责任公司 A plant gene editing recombination vector capable of screening out false positive callus and its application
CN117904192A (en) * 2024-01-29 2024-04-19 河北农业大学 Transgenic universal vector pCamT-ARuby without antibiotic screening and application thereof
CN119020353A (en) * 2023-05-23 2024-11-26 南京农业大学 A plant gene editing method for insufficient editing of target genes
CN119082197A (en) * 2024-11-08 2024-12-06 北京林业大学 Plant visualized traceless editing vector and its construction method and application
WO2025055926A1 (en) * 2023-09-14 2025-03-20 中国农业大学 Method for creating and propagating recessive genic male sterile line of plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544322A (en) * 2016-12-06 2017-03-29 东华大学 A kind of reporting system and its construction method for studying Kiss1 gene expression regulations
CN108699559A (en) * 2015-09-10 2018-10-23 耶达研究及发展有限公司 Compositions comprising CYP76AD1-beta clade polypeptides and uses thereof
CN109689693A (en) * 2016-11-03 2019-04-26 深圳华大生命科学研究院 Methods and systems for improving gene editing efficiency
CN110184295A (en) * 2019-06-11 2019-08-30 聊城大学 The building of novel visual strike Reporter gene vector and its application
CN110607320A (en) * 2018-11-23 2019-12-24 电子科技大学 A plant genome directed base editing backbone vector and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699559A (en) * 2015-09-10 2018-10-23 耶达研究及发展有限公司 Compositions comprising CYP76AD1-beta clade polypeptides and uses thereof
CN109689693A (en) * 2016-11-03 2019-04-26 深圳华大生命科学研究院 Methods and systems for improving gene editing efficiency
CN106544322A (en) * 2016-12-06 2017-03-29 东华大学 A kind of reporting system and its construction method for studying Kiss1 gene expression regulations
CN110607320A (en) * 2018-11-23 2019-12-24 电子科技大学 A plant genome directed base editing backbone vector and its application
CN110184295A (en) * 2019-06-11 2019-08-30 聊城大学 The building of novel visual strike Reporter gene vector and its application

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
GUY POLTURAK ET AL.: ""Advances and future directions in betalain metabolic engineering"", 《NEW PHYTOLOGIST》 *
GUY POLTURAK ET AL.: ""Advances and future directions in betalain metabolic engineering"", 《NEW PHYTOLOGIST》, vol. 224, 31 December 2019 (2019-12-31), pages 1472 - 1478, XP055867303, DOI: 10.1111/nph.15973 *
HATLESTAD,G.J. ET AL.: ""RecName: Full=4,5-DOPA dioxygenase extradiol 1",Accession Number:I3PFJ9.1", 《GENBANK》 *
HATLESTAD,G.J. ET AL.: ""RecName: Full=4,5-DOPA dioxygenase extradiol 1",Accession Number:I3PFJ9.1", 《GENBANK》, 11 December 2019 (2019-12-11), pages 1 - 2 *
SASAKI,N.ET AL.: ""cyclo-DOPA 5-O-glucosyltransferase [Mirabilis jalapa]",Accession Number:BAD91803.1", 《GENBANK》 *
SASAKI,N.ET AL.: ""cyclo-DOPA 5-O-glucosyltransferase [Mirabilis jalapa]",Accession Number:BAD91803.1", 《GENBANK》, 29 April 2005 (2005-04-29), pages 1 *
XIUHUA GAO ET AL.: ""An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing"", 《PLANT PHYSIOLOGY》 *
XIUHUA GAO ET AL.: ""An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing"", 《PLANT PHYSIOLOGY》, vol. 171, 15 May 2016 (2016-05-15), pages 1 - 2 *
YUBING HE ET AL.: ""A reporter for noninvasively monitoring gene expression and plant transformation"", 《HORTICULTURE RESEARCH 》 *
YUBING HE ET AL.: ""A reporter for noninvasively monitoring gene expression and plant transformation"", 《HORTICULTURE RESEARCH 》, vol. 7, 19 September 2020 (2020-09-19), pages 1 - 6 *
张惠展: "《基因工程》", vol. 4, 31 January 2017, 华东理工大学出版社, pages: 392 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234751A (en) * 2021-05-20 2021-08-10 中山大学 Agrobacterium tumefaciens transformation vector based on rhizobium III type effector NopP and application thereof
CN113549647A (en) * 2021-06-16 2021-10-26 北京大学现代农业研究院 Efficient watermelon genetic transformation system and application
CN113549647B (en) * 2021-06-16 2023-07-14 北京大学现代农业研究院 Efficient watermelon genetic transformation system and application
CN113322262A (en) * 2021-06-30 2021-08-31 中国热带农业科学院三亚研究院 Gene HuDOPA for controlling synthesis of pitaya beet pigment
CN113832181A (en) * 2021-08-24 2021-12-24 北大荒垦丰种业股份有限公司 Gene editing method of japonica rice improved strain fragrance control gene and application thereof
CN113832181B (en) * 2021-08-24 2023-06-27 北大荒垦丰种业股份有限公司 Gene editing method of japonica rice improved strain aroma control gene and application thereof
CN115851756A (en) * 2022-07-22 2023-03-28 云南中烟工业有限责任公司 A plant gene editing recombination vector capable of screening out false positive callus and its application
CN119020353A (en) * 2023-05-23 2024-11-26 南京农业大学 A plant gene editing method for insufficient editing of target genes
WO2025055926A1 (en) * 2023-09-14 2025-03-20 中国农业大学 Method for creating and propagating recessive genic male sterile line of plant
CN117904192A (en) * 2024-01-29 2024-04-19 河北农业大学 Transgenic universal vector pCamT-ARuby without antibiotic screening and application thereof
CN119082197A (en) * 2024-11-08 2024-12-06 北京林业大学 Plant visualized traceless editing vector and its construction method and application

Similar Documents

Publication Publication Date Title
CN112080517A (en) Screening system for improving probability of obtaining gene editing plants, construction method and application thereof
US10640779B2 (en) Engineered transgene integration platform (ETIP) for gene targeting and trait stacking
CN110157726B (en) Method for site-directed substitution of plant genome
KR20190139318A (en) Chimeric Genome Manipulation Molecules and Methods
KR20200078685A (en) Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
CN110607320B (en) Plant genome directional base editing framework vector and application thereof
EP4242330A2 (en) Generating northern leaf blight resistant maize
JP2024166200A (en) Gene silencing by genome editing
CN113846075A (en) MAD7-NLS fusion protein, nucleic acid construct for site-directed editing of plant genome and application thereof
Li et al. TALEN utilization in rice genome modifications
CN114761547B (en) Methods and compositions for DNA base editing
CN106978438B (en) Method for improving homologous recombination efficiency
EP4243608A1 (en) Fusion protein for editing endogenous dna of a eukaryotic cell
TWI686477B (en) Cloning vector, kit, and method for specifically inducing mutagenesis in chloroplast genes, and transgenic plant cells and agrobacterium generated by the same
CN117925686A (en) Gene editing vector for improving regenerated red seedling proportion and gene editing plant proportion, and construction method and application thereof
WO2024080067A1 (en) Genome editing method and composition for genome editing
CN116064512A (en) An Improved Guidance Editing System and Its Application
US20230114951A1 (en) Targeted insertion sites in the maize genome
CN116751795A (en) Gene for identifying NNTA specific site, gene editing system and application thereof
CN116615226A (en) Fusion protein for editing endogenous DNA of eukaryotic cells
JP2005192551A (en) New vector
EA041676B1 (en) BUILDING MAIS RESISTANT TO NORTHERN LEAF SPOT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201215