CN112080480B - 糖基转移酶突变体及其应用 - Google Patents
糖基转移酶突变体及其应用 Download PDFInfo
- Publication number
- CN112080480B CN112080480B CN201910917940.XA CN201910917940A CN112080480B CN 112080480 B CN112080480 B CN 112080480B CN 201910917940 A CN201910917940 A CN 201910917940A CN 112080480 B CN112080480 B CN 112080480B
- Authority
- CN
- China
- Prior art keywords
- rebaudioside
- mutant
- substrate
- val
- ser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/56—Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明涉及糖基转移酶突变体及其应用。揭示了一种突变型糖基转移酶UGT76G1,所述的突变型糖基转移酶UGT76G1的催化活性、底物专一性和/或底物特异性发生变化,在特定位点的突变可显著地促进含有1,2‑二葡萄糖基(槐糖基)的底物进行1,3‑糖基化的催化活性,显著地减弱其在葡萄糖单糖基底物基础上进行1,3‑糖基化的催化活性。同时,本发明也揭示了一系列弱化糖基转移酶UGT76G1的催化活性的突变体,能够增加特定甜菊糖苷中间体的积累。
Description
技术领域
本发明属于生物技术领域,更具体地,本发明涉及一种糖基转移酶突变体及其应用。
背景技术
糖基化是天然产物合成中最广泛的修饰之一。在植物体内,糖基化修饰改变天然产物的溶解性,稳定性,毒性以及生理活性,具有代谢物脱毒,防止生物侵害,改变物质的分配区间等功能。许多植物来源天然产物的糖基化由UDP依赖型糖基转移酶(UGT)催化,UGT利用UDP活化的糖作为糖基供体,将糖分子特异地转移到受体分子的糖基化位点上。目前,已发现或者被注释的植物来源的UGT多于2300个,然而蛋白结构被解析的UGT仅有约20个。
甜菊糖苷类化合物是一类高度糖基化修饰的二萜天然产物,主要来自于菊科植物甜叶菊。甜菊糖苷类化合物具有高甜度、低热量的特点,能够取代蔗糖以及其他人工合成甜味剂,在食品工业中具有巨大的经济效益。目前广泛应用的甜菊糖类主要包括天然来源的莱宝迪苷A(Rebaudioside A)和甜菊苷(Stevioside),虽然该类产品甜度达到蔗糖的300~600倍,仍然存在苦涩后味等不利缺点,口感有待改进。近年来针对甜菊糖的产业升级主要集中在将莱宝迪苷A和甜菊苷升级为口感更佳,甜度更高的莱宝迪苷D和莱宝迪苷M。
莱宝迪苷D和莱宝迪苷M在原植物中含量非常低,通过植物提取纯化的方式成本巨大,目前的产量远远不能够满足市场需求。莱宝迪苷D和莱宝迪苷M是苷元甜菊醇(steviol)分别经过5步或6步糖基化修饰形成的多糖苷,它们合成途径中的中间体包括莱宝迪苷A和甜菊苷。根据报道,UGT76G1负责催化甜菊苷生成莱宝迪苷A。莱宝迪苷A经UGT91D2(或EUGT11)催化生成莱宝迪苷D,或者经UGT76G1产生副产物莱宝迪苷I。莱宝迪苷D则进一步经UGT76G1催化产生莱宝迪苷M。因此,UGT76G1和UGT91D2是莱宝迪苷D和莱宝迪苷M合成中反复糖基化过程中所需要的两个关键酶基因。
由于糖基转移酶UGT76G1参与甜菊糖苷类合成中的多步糖基化反应,存在底物特异性不专一以及催化活性较弱等问题。现阶段本领域急需探索提高UGT76G1的底物专一性和催化活性的方法。
发明内容
本发明的目的在于提供一种糖基转移酶突变体及其应用。
在本发明的第一方面,提供糖基转移酶UGT76G1突变体,所述突变体相对于野生型的糖基转移酶UGT76G1,其空间结构中与糖基供体或糖基受体相互作用的氨基酸发生突变,其催化活性改变。
在一个优选例中,所述的催化底物莱宝迪苷D生成莱宝迪苷M的活性提高为具有统计学意义的提高,如提高20%以上、40%以上、60%以上、70%以上或更高。
在另一优选例中,所述的催化莱宝迪苷A生成副产物莱宝迪苷I的活性减弱为具有统计学意义的减弱,如减弱20%以上、40%以上、50%以上或更弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中是:
(a)氨基酸序列对应于SEQ ID NO:1,第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位发生突变的蛋白;
(b)将(a)蛋白的氨基酸序列经过一个或多个(如1-20个;较佳地1-15个;更佳地1-10个,如5个,3个)氨基酸残基的取代、缺失或添加而形成的,且具有(a)蛋白功能的由(a)衍生的蛋白,但对应于SEQ ID NO:1的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位的氨基酸与(a)蛋白相应位置突变后的氨基酸相同;
(c)与(a)蛋白的氨基酸序列有80%以上同源性(较佳地85%以上;更佳地90%以上;更佳95%以上,如98%,99%)且具有(a)蛋白功能的由(a)衍生的蛋白,但对应于SEQ IDNO:1的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位的氨基酸与(a)蛋白相应位置突变后的氨基酸相同;
(d)(a)蛋白的活性片段,其包含糖基转移酶UGT76G1空间结构中与糖基供体或糖基受体相互作用的结构,且在对应于SEQ ID NO:1的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位上的氨基酸与(a)蛋白相应位置突变后的氨基酸相同。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第284位突变为Ser,该突变体催化活性提高,较佳地其催化含有1,2-二葡萄糖基的底物进行1,3-糖基化的活性提高或催化在葡萄糖单糖基底物基础上进行1,3-糖基化的活性降低;较佳地,其对底物甜菊醇双糖苷,甜菊苷或莱宝迪苷D的催化活性提高,而对底物甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A的催化活性降低;更佳地,其催化莱宝迪苷D生成莱宝迪苷M的活性提高且催化莱宝迪苷A生成副产物莱宝迪苷I的活性减弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第284位突变为:Ala,该突变体催化活性减弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第147位突变为Ala、Asn或Gln,该突变体催化活性减弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第155位突变为Ala或Tyr,该突变体催化活性减弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第146位突变为Ala、Asn或Ser,该突变体催化活性减弱。
在另一优选例中,所述的糖基转移酶UGT76G1突变体中,所述第380位突变为Thr、Ser、Asn或Glu,该突变体催化活性减弱或消失。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第85位突变为Val,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化活性增强。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第87位突变为Phe,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第88位突变为Val,该突变体对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性增强;对于底物甜菊单糖苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第90位突变为Leu,该突变体对于底物甜菊双糖苷催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第90位突变为Val,该突变体对于底物甜菊双糖苷或甜菊苷催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第91位突变为Phe,该突变体对于底物甜菊双糖苷催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第126位突变为Phe,该突变体对于底物甜菊双糖苷、甜菊苷或莱宝迪苷D催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第126位突变为Val,该突变体对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷A催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第196位突变为Gln,该突变体对于底物甜菊单糖苷或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第199位突变为Phe,该突变体对于底物甜菊单糖苷、甜菊双糖苷或莱宝迪苷D催化活性增强。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第199位突变为Leu,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化活性增强。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第199位突变为Val,该突变体对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性增强。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第200位突变为Ile,该突变体对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化活性增强;对于底物甜菊单糖苷或甜叶悬钩子苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第200位突变为Val,该突变体对于底物莱宝迪苷A催化活性增强;对于底物甜菊单糖苷或甜叶悬钩子苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第203位突变为Leu,该突变体对于底物甜菊单糖苷、甜叶悬钩子苷、莱宝迪苷A或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第203位突变为Val,该突变体对于底物甜菊双糖苷或莱宝迪苷D催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第204位突变为Phe,该突变体对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第204位突变为Trp,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第379位突变为Phe,该突变体对于底物甜菊双糖苷催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第379位突变为Ile,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性增强。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第379位突变为Val,该突变体对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化活性增强;对于底物甜菊单糖苷、甜叶悬钩子苷或甜菊苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第379位突变为Trp,该突变体对于底物莱宝迪苷A催化活性增强;对于底物甜菊双糖苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第199,200,203位突变为Ala,该突变体对于底物莱宝迪苷A催化活性增强;对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或甜菊苷催化活性减弱。
在另一优选例中,所述糖基转移酶UGT76G1突变体中,第199,200,203,204位突变为Ala,该突变体对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性减弱。
在本发明的另一方面,提供分离的多核苷酸,所述的核酸是编码前面所述的糖基转移酶UGT76G1突变体。
在本发明的另一方面,提供一种载体,它含有所述的多核苷酸。
在本发明的另一方面,提供一种遗传工程化的宿主细胞,它含有所述的载体,或基因组中整合有所述的多核苷酸。
在一个优选例中,所述细胞中包括:基于1,2-双葡萄糖基或葡萄糖单糖基底物进行1,3-糖基化的反应系统,其中用于糖基化(包括催化1,2-双葡萄糖基或葡萄糖单糖基底物进行1,3-糖基化)的酶为糖基转移酶UGT76G1突变;较佳地,所述反应系统为莱宝迪苷M生成系统。
在另一优选例中,所述莱宝迪苷M生成系统包括:以莱宝迪苷A为底物的系统,包括:对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu或第203位突变为Val的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;较佳地,该将莱宝迪苷A转化为莱宝迪苷D的酶包括(但不限于):EUGT11,UGT91D2。
在另一优选例中,所述莱宝迪苷M生成系统包括:以甜菊苷为底物的系统,包括:将甜菊苷转化为莱宝迪苷A的酶、对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;较佳地,该将甜菊苷转化为莱宝迪苷A的酶同样为UGT76G1,突变型UGT76G1,该将莱宝迪苷A转化为莱宝迪苷D的酶包括(但不限于):EUGT11,UGT91D2。
在另一优选例中,所述莱宝迪苷M生成系统包括:以莱宝迪苷D为底物的系统,包括:对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第88位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu、第199位突变为Val、第200位突变为Ile、第203位突变为Val、第379位突变为Ile、第379位突变为Val或第379位突变为Trp的糖基转移酶UGT76G1突变体。
在另一优选例中,所述莱宝迪苷M生成系统包括:以苷元甜菊醇为底物的系统,包括:对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体,将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶;所述将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶包括(但不限于):EUGT11,UGT91D2,UGT74G1,UGT85C2,UGT75L20,UGT75L21,UGT75W2,UGT75T4,UGT85A57,UGT85A58,UGT76G1、突变型UGT76G1。
在另一优选例中,所述的宿主细胞中还包括使UDP-葡萄糖的再生循环利用的酶;较佳地,所述使UDP-葡萄糖的再生循环利用的酶包括(但不限于):AtSUS3。
在另一优选例中,所述宿主细胞包括:原核细胞或真核细胞;较佳地,所述原核宿主细胞包括大肠杆菌、枯草杆菌等;所述真核宿主细胞包括:真菌细胞、酵母细胞、昆虫细胞、哺乳动物细胞等。
在本发明的另一方面,提供一种生产前面任一所述的糖基转移酶UGT76G1突变体的方法,包括步骤:(1)培养所述的宿主细胞,获得培养物;和(2)从培养物中分离任一所述的糖基转移酶UGT76G1突变体。
在本发明的另一方面,提供一种调节糖基转移酶UGT76G1的催化活性或底物专一性的方法,包括:将其空间结构中与糖基供体或糖基受体相互作用的氨基酸进行突变;从而使其催化活性或底物专一性改变。
在一个优选例中,将对应于SEQ ID NO:1中第284位突变为Ser,提高该突变体催化含有1,2-二葡萄糖基的底物(如甜菊醇双糖苷,甜菊苷或莱宝迪苷D)进行1,3-糖基化的活性或降低该突变体催化葡萄糖单糖基底物(如甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A)基础上进行1,3-糖基化的活性;较佳地其催化莱宝迪苷D生成莱宝迪苷M的活性提高且催化莱宝迪苷A生成副产物莱宝迪苷I的活性减弱;或将对应于SEQ ID NO:1中第284位突变为Ala,减弱该突变体催化活性;或将对应于SEQ ID NO:1中第147位突变为Ala、Asn或Gln,减弱该突变体催化活性;或将对应于SEQ ID NO:1中第155位突变为Ala或Tyr,该突变体催化活性减弱;或将对应于SEQ ID NO:1中第146位突变为Ala、Asn或Ser,减弱该突变体催化活性;或将对应于SEQ ID NO:1中第380位突变为Thr、Ser、Asn或Glu,减弱该突变体催化活性或使活性消失。
在另一优选例中,还包括:将对应于SEQ ID NO:1中第85位突变为Val,增强其对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第87位突变为Phe,减弱其对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第88位突变为Val,增强其对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性,减弱对于底物甜菊单糖苷催化活性;将对应于SEQ ID NO:1中第90位突变为Leu,增强其对于底物甜菊双糖苷催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷催化活性;将对应于SEQ ID NO:1中第90位突变为Val,增强其对于底物甜菊双糖苷或甜菊苷催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷催化活性;将对应于SEQ ID NO:1中第91位突变为Phe,增强其对于底物甜菊双糖苷催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷催化活性;将对应于SEQ ID NO:1中第126位突变为Phe,增强其对于底物甜菊双糖苷、甜菊苷或莱宝迪苷D催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化活性;将对应于SEQ ID NO:1中第126位突变为Val,减弱其对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷A催化活性;将对应于SEQ ID NO:1中第196位突变为Gln,减弱其对于底物甜菊单糖苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第199位突变为Phe,增强其对于底物甜菊单糖苷、甜菊双糖苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第199位突变为Leu,增强其对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第199位突变为Val,增强其对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第200位突变为Ile,增强其对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷催化活性;将对应于SEQ ID NO:1中第200位突变为Val,增强其对于底物莱宝迪苷A催化活性;减弱其对于底物甜菊单糖苷、甜叶悬钩子苷催化活性;将对应于SEQ ID NO:1中第203位突变为Leu,减弱对于底物甜菊单糖苷、甜叶悬钩子苷、莱宝迪苷A或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第203位突变为Val,增强其对于底物甜菊双糖苷或莱宝迪苷D催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化活性;将对应于SEQ ID NO:1中第204位突变为Phe,减弱对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第204位突变为Trp,减弱对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第379位突变为Phe,增强其对于底物甜菊双糖苷催化活性,减弱对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第379位突变为Ile,增强其对于底物甜菊单糖苷、甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性;将对应于SEQ ID NO:1中第379位突变为Val,增强其对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化活性;减弱对于底物甜菊单糖苷、甜叶悬钩子苷或甜菊苷催化活性;将对应于SEQ ID NO:1中第379位突变为Trp,增强其对于底物甜菊苷或莱宝迪苷A催化活性;减弱对于底物甜菊双糖苷催化活性;将对应于SEQ ID NO:1中第199、200、203位突变为Ala,增强其对于底物莱宝迪苷A催化活性,减弱对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或甜菊苷催化活性;或将对应于SEQ ID NO:1中第199、200、203、204位突变为Ala,减弱其对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化活性。
在本发明的另一方面,提供氨基酸序列对应于SEQ ID NO:1第284位突变为Ser的糖基转移酶UGT76G1突变体的用途,用于促进含有1,2-双葡萄糖基的底物进行1,3-糖基化,减少葡萄糖单糖基底物基础上进行1,3-糖基化;较佳地,用于促进莱宝迪苷D生成莱宝迪苷M。
在本发明的另一方面,提供一种调控糖基化的方法,包括以对应于SEQ ID NO:1第284位突变为Ser的糖基转移酶UGT76G1突变体进行催化,促进含有1,2-二葡萄糖基的底物进行1,3-糖基化;以对应于SEQ ID NO:1中第284位突变为Ala的糖基转移酶UGT76G1突变体进行催化,弱化催化糖基化活性;以对应于SEQ ID NO:1中第147位突变为Ala、Asn或Gln的糖基转移酶UGT76G1突变体进行催化,弱化催化糖基化活性;以对应于SEQ ID NO:1中第155位突变为Ala或Tyr的糖基转移酶UGT76G1突变体进行催化,弱化催化糖基化活性;以对应于SEQ ID NO:1中第146位突变为Ala、Asn或Ser的糖基转移酶UGT76G1突变体进行催化,弱化催化糖基化活性;以对应于SEQ ID NO:1中第380位突变为Thr、Ser、Asn或Glu的糖基转移酶UGT76G1突变体进行催化,弱化催化糖基化活性或使活性消失;以对应于SEQ ID NO:1中第85位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第87位突变为Phe的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第88位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;弱化对于底物甜菊单糖苷催化糖基化活性;以对应于SEQ ID NO:1中第90位突变为Leu的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷催化糖基化活性;以对应于SEQ ID NO:1中第90位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷或甜菊苷催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷催化糖基化活性;以对应于SEQ ID NO:1中第91位突变为Phe的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷催化糖基化活性;以对应于SEQ ID NO:1中第126位突变为Phe的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、甜菊苷或莱宝迪苷D催化糖基化活性,弱化对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化糖基化活性;以对应于SEQ ID NO:1中第126位突变为Val的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷A催化糖基化活性;以对应于SEQ ID NO:1中第196位突变为Gln的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第199位突变为Phe的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊单糖苷、甜菊双糖苷或莱宝迪苷D催化糖基化活性;以对应于SEQ IDNO:1中第199位突变为Leu的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第199位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第200位突变为Ile的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷催化糖基化活性;以对应于SEQ IDNO:1中第200位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物莱宝迪苷A催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷催化糖基化活性;以对应于SEQID NO:1中第203位突变为Leu,弱化对于底物甜菊单糖苷、甜叶悬钩子苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第203位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷或莱宝迪苷D催化糖基化活性,弱化对于底物甜菊单糖苷、甜叶悬钩子苷或莱宝迪苷A催化糖基化活性;以对应于SEQ ID NO:1中第204位突变为Phe的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第204位突变为Trp的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第379位突变为Phe的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷催化糖基化活性,弱化对于底物甜菊单糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化糖基化活性;以对应于SEQ IDNO:1中第379位突变为Ile的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊单糖苷、甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;以对应于SEQ ID NO:1中第379位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性;弱化对于底物甜菊单糖苷、甜叶悬钩子苷或甜菊苷催化糖基化活性;以对应于SEQ ID NO:1中第379位突变为Trp的糖基转移酶UGT76G1突变体进行催化,增强对于底物莱宝迪苷A催化糖基化活性;弱化对于底物甜菊双糖苷催化糖基化活性;以对应于SEQ ID NO:1中第199、200、203位突变为Ala的糖基转移酶UGT76G1突变体进行催化,增强对于底物莱宝迪苷A催化糖基化活性,弱化对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷或甜菊苷催化糖基化活性;或以对应于SEQ ID NO:1中第199、200、203、204位突变为Ala的糖基转移酶UGT76G1突变体进行催化,弱化对于底物甜菊单糖苷、甜菊双糖苷、甜叶悬钩子苷、甜菊苷或莱宝迪苷D催化糖基化活性。
在一个优选例中,所述的糖基化产物(1,3-糖基化产物)为莱宝迪苷M,包括:以莱宝迪苷A为底物,以对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu或第203位突变为Val的糖基转移酶UGT76G1突变体和将莱宝迪苷A转化为莱宝迪苷D的酶进行催化,获得莱宝迪苷M;较佳地,该将莱宝迪苷A转化为莱宝迪苷D的酶包括:EUGT11,UGT91D2;或以甜菊苷为底物,以将甜菊苷转化为莱宝迪苷A的酶、对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶进行催化,获得莱宝迪苷M;较佳地,该将甜菊苷转化为莱宝迪苷A的酶同样为UGT76G1,突变型UGT76G1,该将莱宝迪苷A转化为莱宝迪苷D的酶包括:EGUT11,UGT91D2;或以莱宝迪苷D为底物,以对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第88位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu、第199位突变为Val、第200位突变为Ile、第203位突变为Val、第379位突变为Ile、第379位突变为Val或第379位突变为Trp的糖基转移酶UGT76G1突变体进行催化,获得莱宝迪苷M;或以苷元甜菊醇为底物,以对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体、将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶进行催化,获得莱宝迪苷M;所述将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶包括:EUGT11,UGT91D2,UGT74G1,UGT85C2,UGT75L20,UGT75L21,UGT75W2,UGT75T4,UGT85A57,UGT85A58,UGT76G1、突变型UGT76G1。
在另一优选例中,所述方法还包括:应用使UDP-葡萄糖的再生循环利用的酶;较佳地,所述使UDP-葡萄糖的再生循环利用的酶包括(但不限于):AtSUS3。
在本发明的另一方面,提供一种组合物,所述组合物中含有:所述的糖基转移酶UGT76G1突变体;或含有前面任一所述的宿主细胞。
在本发明的另一方面,提供一种试剂盒,其中含有:前面任一所述的糖基转移酶UGT76G1突变体;或前面任一所述的宿主细胞;或前面所述的组合物。
在另一优选例中,所述的组合物中,还包括药学上或工业合成上可接受的载体。
本发明的其它方面由于本文的公开内容,对本领域的技术人员而言是显而易见的。
附图说明
图1、Ni-NTA纯化后UGT76G1(53.4kDa)的SDS-PAGE。其中,P:沉淀;S:上清;F:流穿液;W:洗涤液;R:树脂;M:Marker。
图2、UGT76G1的分子排阻纯化峰图以及SDS-PAGE。
图3、UGT76G1与甜菊醇双糖苷、UDP-葡萄糖共结晶晶体。
图4、莱宝迪苷B的化学结构。1号圈:糖基1;2号圈:糖基2;3号圈:糖基3。
图5、莱宝迪苷B的结合口袋。
图6、突变体PCR产物凝胶电泳。
图7、突变体蛋白表达。
图8、H25A、D124N突变体对所有测试底物均无催化活性。a,底物甜菊醇单糖苷(steviolmonoside);b,底物甜菊醇双糖苷(steviolbioside);c,底物甜叶悬钩子苷(rubusoside);d,底物甜菊苷(stevioside);e,底物莱宝迪苷A;f,底物莱宝迪苷D。
图9、T284位点突变对不同底物的影响。a,底物甜菊醇单糖苷;b,底物甜菊醇双糖苷;c,底物甜叶悬钩子苷;d,底物甜菊苷;e,底物莱宝迪苷A;f,底物莱宝迪苷D。
图10、S147、H155位点突变对底物甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A的催化活性减弱。a,底物甜菊醇单糖苷;b,底物甜叶悬钩子苷;c,底物莱宝迪苷A;d,底物甜菊苷;e,底物莱宝迪苷A;f,底物莱宝迪苷D。
图11、稳定糖基3的T146与D380突变影响底物催化活性。a,底物甜菊醇单糖苷;b,底物甜菊醇双糖苷;c,底物甜叶悬钩子苷;d,底物甜菊苷;e,底物莱宝迪苷A;f,底物莱宝迪苷D。
图12、双突变体对底物莱宝迪苷A、莱宝迪苷D的催化活性。a,底物莱宝迪苷A;b,底物莱宝迪苷D。
图13、重组大肠杆菌系统发酵生产莱宝迪苷M。
图14、突变体构建时,PCR产物凝胶电泳结果。
图15、部分突变体(L126V,L126F,L379F,L379W,L379V)蛋白表达纯化后,SDS-PAGE检测结果。
图16、突变体对底物甜菊单糖苷(steviolmonoside)的催化活性。
图17、突变体对底物甜菊双糖苷(steviolbioside)的催化活性。
图18、突变体对底物甜叶悬钩子苷(rubusoside)的催化活性。
图19、突变体对底物甜菊苷(stevioside)的催化活性。
图20、突变体对底物莱宝迪苷A(rebaudioside A)的催化活性。
图21、突变体对底物莱宝迪苷D(rebaudioside D)的催化活性。
具体实施方式
本发明人经过深入的研究,揭示了一种突变型糖基转移酶UGT76G1,所述的突变型糖基转移酶UGT76G1的催化活性、底物专一性和/或底物特异性发生变化,可显著地促进含有1,2-二葡萄糖基的底物进行1,3-糖基化的催化活性,以及显著地减弱在葡萄糖单糖基底物基础上进行1,3-糖基化的催化活性。当所述的1,2-二葡萄糖基底物为莱宝迪苷D时,本发明的突变型糖基转移酶UGT76G1促进莱宝迪苷M产物的生成以及减少副产物的生成。本发明也揭示了其它一系列强化或弱化糖基转移酶UGT76G1的催化活性的突变体。
如本文所用,除非另外说明,所述的“糖基转移酶UGT76G1突变体”、“突变型糖基转移酶UGT76G1”可互换使用,是指对应于野生型糖基转移酶UGT76G1,在相应于其底物结合口袋附近发生突变后构成的多肽或催化活性发生改变的多肽,较佳地相应于其序列第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位发生突变后构成的多肽。
若需要表示野生型的糖基转移酶UGT76G1,其可以为“氨基酸序列如SEQ ID NO:1的蛋白,或者也可以是该蛋白的同功能变体或活性片段。较佳地,所述的野生型糖基转移酶UGT76G1来源于甜叶菊(Stevia rebaudiana);但是应理解,本发明中也涵盖来源于其它植物的与之具有同源性且功能相同的UGT76G1同源物。
如本文所用,“分离的糖基转移酶UGT76G1”是指糖基转移酶UGT76G1突变体基本上不含天然与其相关的其它蛋白、脂类、糖类或其它物质。本领域的技术人员能用标准的蛋白质纯化技术纯化糖基转移酶UGT76G1突变体。基本上纯的蛋白在非还原聚丙烯酰胺凝胶上能产生单一的主带。
如本文所用,“底物结合口袋”是指糖基转移酶UGT76G1的空间结构中与底物发生相互作用(结合)的位置。
本发明的蛋白可以是重组蛋白、天然蛋白、合成蛋白,优选重组蛋白。本发明的蛋白可以是天然纯化的产物,或是化学合成的产物,或使用重组技术从原核或真核宿主(例如,细菌、酵母、高等植物、昆虫和哺乳动物细胞)中产生。
本发明还包括所述糖基转移酶UGT76G1突变体的片段、衍生物和类似物。如本文所用,术语“片段”、“衍生物”和“类似物”是指基本上保持本发明的天然糖基转移酶UGT76G1突变体相同的生物学功能或活性的蛋白。本发明的蛋白片段、衍生物或类似物可以是(i)有一个或多个保守或非保守性氨基酸残基(优选保守性氨基酸残基)被取代的蛋白,而这样的取代的氨基酸残基可以是也可以不是由遗传密码编码的,或(ii)在一个或多个氨基酸残基中具有取代基团的蛋白,或(iii)附加的氨基酸序列融合到此蛋白序列而形成的蛋白(如前导序列或分泌序列或用来纯化此蛋白的序列或蛋白原序列,或融合蛋白)。根据本文的定义,这些片段、衍生物和类似物属于本领域熟练技术人员公知的范围。然而,所述的糖基转移酶UGT76G1突变体及其片段、衍生物和类似物的氨基酸序列中,肯定存在本发明上面所述的突变;较佳地,该突变为对应于SEQ ID NO:1中的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位氨基酸的突变。
在本发明中,术语“糖基转移酶UGT76G1突变体”还包括(但并不限于):若干个(通常为1-20个,更佳地1-10个,还更佳如1-8个、1-5个、1-3个、或1-2个)氨基酸的缺失、插入和/或取代,以及在C末端和/或N末端添加或缺失一个或数个(通常为20个以内,较佳地为10个以内,更佳地为5个以内)氨基酸。例如,在本领域中,用性能相近或相似的氨基酸进行取代时,通常不会改变蛋白质的功能。又比如,在C末端和/或N末端添加或缺失一个或数个氨基酸通常也不会改变蛋白质的功能。该术语还包括糖基转移酶UGT76G1突变体的活性片段和活性衍生物。但是在这些变异形式中,肯定存在本发明上面所述的突变;较佳地,该突变为对应于SEQ ID NO:1中的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位氨基酸的突变。
在本发明中,术语“糖基转移酶UGT76G1突变体”还包括(但并不限于):与所述的糖基转移酶UGT76G1突变体的氨基酸序列具有80%以上,较佳地85%以上,更佳地90%以上,进一步更佳地95%以上,如98%以上、99%以上序列相同性的保留其蛋白活性的衍生的蛋白。同样地,这些衍生的蛋白中,肯定存在本发明上面所述的突变;较佳地,该突变为对应于SEQ ID NO:1中的第284、147、155、146、380、85、87、88、90、91、126、196、199、200、203、204或379位氨基酸的突变。
本发明还提供了编码本发明糖基转移酶UGT76G1突变体或其保守性变异蛋白的多核苷酸序列。
本发明的多核苷酸可以是DNA形式或RNA形式。DNA形式包括cDNA、基因组DNA或人工合成的DNA。DNA可以是单链的或是双链的。DNA可以是编码链或非编码链。
编码所述突变体的成熟蛋白的多核苷酸包括:只编码成熟蛋白的编码序列;成熟蛋白的编码序列和各种附加编码序列;成熟蛋白的编码序列(和任选的附加编码序列)以及非编码序列。
“编码蛋白的多核苷酸”可以是包括编码此蛋白的多核苷酸,也可以是还包括附加编码和/或非编码序列的多核苷酸。
本发明也涉及包含本发明的多核苷酸的载体,以及用本发明的载体或糖基转移酶UGT76G1突变体编码序列经基因工程产生的宿主细胞,以及经重组技术产生本发明所述蛋白的方法。
通过常规的重组DNA技术,可利用本发明的多聚核苷酸序列来表达或生产重组的糖基转移酶UGT76G1突变体。一般来说有以下步骤:
(1).用本发明的编码糖基转移酶UGT76G1突变体的多核苷酸(或变异体),或用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2).在合适的培养基中培养的宿主细胞;
(3).从培养基或细胞中分离、纯化蛋白质。
本发明中,糖基转移酶UGT76G1突变体多核苷酸序列可插入到重组表达载体中。术语“重组表达载体”指本领域熟知的细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒或其他载体。总之,只要能在宿主体内复制和稳定,任何质粒和载体都可以用。表达载体的一个重要特征是通常含有复制起点、启动子、标记基因和翻译控制元件。
本领域的技术人员熟知的方法能用于构建含糖基转移酶UGT76G1突变体编码DNA序列和合适的转录/翻译控制信号的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。所述的DNA序列可有效连接到表达载体中的适当启动子上,以指导mRNA合成。表达载体还包括翻译起始用的核糖体结合位点和转录终止子。表达载体优选地包含一个或多个选择性标记基因,以提供用于选择转化的宿主细胞的表型性状。
包含上述的适当DNA序列以及适当启动子或者控制序列的载体,可以用于转化适当的宿主细胞,以使其能够表达蛋白质。
本发明中,所述的宿主细胞可以是原核细胞,如细菌细胞;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如植物细胞。代表性例子有:大肠杆菌、枯草杆菌、链霉菌、农杆菌;真核细胞如酵母、植物细胞等。在本发明的具体实施例中,以大肠杆菌作为宿主细胞。
本领域一般技术人员都清楚如何选择适当的载体、启动子、增强子和宿主细胞。
本发明中,所述的含有1,2-二葡萄糖基的底物包括但不限于:甜菊醇双糖苷,甜菊苷,莱宝迪苷D或莱宝迪苷E。所述的葡萄糖单糖基底物包括但不限于:甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A,甜菊醇19-O-葡萄糖酯,贝壳杉烯酸19-O-葡萄糖酯。
在获得了本发明所述的突变型糖基转移酶UGT76G1的信息后,本领域人员清楚如何运用该突变体莱对含有1,2-二葡萄糖基的底物进行1,3-糖基化。
例如,1,3-糖基化的产物为莱宝迪苷M,利用所述的突变型糖基转移酶UGT76G1催化莱宝迪苷D,从而获得莱宝迪苷M。各种胞内或胞外的制备方法均包含在本发明中,或可被运用于本发明中。
考虑到底物的成本,在本发明的一种优选方式中,以莱宝迪苷A为底物,以莱宝迪苷A为底物,以对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu或第203位突变为Val的糖基转移酶UGT76G1突变体和“将莱宝迪苷A转化为莱宝迪苷D的酶”进行催化,获得莱宝迪苷M。由于本领域中已知莱宝迪苷M的制备及其上游反应机理,因此本领域技术人员了解所述“将莱宝迪苷A转化为莱宝迪苷D的酶”在本领域中有哪些。较佳地,所述“将莱宝迪苷A转化为莱宝迪苷D的酶”可以为EUGT11,UGT91D2(SEQ ID NO:5)。
在本发明的另一种优选方式中,以甜菊苷为底物,以“将甜菊苷转化为莱宝迪苷A的酶”、对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体,以及“将莱宝迪苷A转化为莱宝迪苷D的酶”进行催化,获得莱宝迪苷M。同样地,基于本领域已知技术,本领域人员了解所述“将甜菊苷转化为莱宝迪苷A的酶”有哪些。较佳地,所述“将甜菊苷转化为莱宝迪苷A的酶”同样为UGT76G1、突变型UGT76G1;所述“将莱宝迪苷A转化为莱宝迪苷D的酶”可以为EUGT11,UGT91D2(SEQ ID NO:5)。
在本发明的另一种方式中,以莱宝迪苷D为底物,以对应于SEQ ID NO:1第284位突变为Ser、第85位突变为Val、第88位突变为Val、第126位突变为Phe、第199位突变为Phe、第199位突变为Leu、第199位突变为Val、第200位突变为Ile、第203位突变为Val、第379位突变为Ile、第379位突变为Val或第379位突变为Trp的糖基转移酶UGT76G1突变体进行催化,获得莱宝迪苷M。
在本发明的另一种方式中,以苷元甜菊醇为底物,以对应于SEQ ID NO:1第284位突变为Ser、第88位突变为Val、第90位突变为Val、第126位突变为Phe、第199位突变为Val或第379位突变为Ile的糖基转移酶UGT76G1突变体、“将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶”以及“将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶”进行催化,获得莱宝迪苷M。同样地,基于本领域已知技术,本领域人员了解所述“将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶”有哪些。较佳地,所述“将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶”包括(但不限于):EUGT11,UGT91D2,UGT74G1,UGT85C2,UGT75L20,UGT75L21,UGT75W2,UGT75T4,UGT85A57,UGT85A58。
上述的制备莱宝迪苷M的方法可在胞内或胞外进行。作为本发明的一种优选方式,提供了一种胞内生产莱宝迪苷M的方法:将对应于SEQ ID NO:1第284位突变为Ser的突变型糖基转移酶UGT76G1以及前述“将莱宝迪苷A转化为莱宝迪苷D的酶”、“将甜菊苷转化为莱宝迪苷A的酶”、“将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶”和/或“将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶”的编码基因转化入宿主细胞,培养该细胞,从而生产莱宝迪苷M。
本发明中,还提供了一系列弱化糖基转移酶UGT76G1的催化活性的突变体,其突变发生在对应于SEQ ID NO:1序列的第147、155、146或380位等,例如,它们可被用于并非以莱宝迪苷M为终产物的生产系统中,减少底物转化为莱宝迪苷M的量,积累中间产物。糖基转移酶UGT76G1的催化活性的弱化可以产生此消彼长的效果,有利于控制产物的种类,对于不同产物的生产是有意义的。
与现有技术相比,本发明的进步效果在于:本发明所获得的突变型糖基转移酶UGT76G1在体外酶反应中高效特异催化甜菊苷类化合物结构中葡萄糖基3’位的糖基化,相比于野生型蛋白,突变体催化莱宝迪苷D(Rebaudioside D)合成莱宝迪苷M的效率大幅上升,同时大幅降低催化莱宝迪苷A产生副产物莱宝迪苷I。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。
材料与仪器设备
PCR引物由生工生物工程有限公司或金斯瑞生物科技有限公司合成。桑格测序委托生工生物工程有限公司。PCR胶回收试剂盒,质粒抽提试剂盒为美国Axygen产品;PCR高保真酶PrimeSTAR Max DNA Polymerase为日本宝生物公司(Takara)产品;限制性内切酶、T4连接酶均为New England Biolabs(NEB)产品。无缝克隆试剂盒购自诺唯赞生物科技有限公司。大肠杆菌DH10B用于克隆构建,BL21(DE3)用于蛋白表达。pETDuet-1载体用于基因克隆及蛋白表达。野生型UGT76G1、EUGT11由金斯瑞生物科技有限公司合成,经大肠杆菌密码子优化。Ni-NTA购自Qiagen。蛋白分子排阻纯化使用Superdex 200column(GE Healthcare)。蛋白结晶条件筛选使用Molecular diamond(Hampton research,America)。
标准品化合物甜菊醇、莱宝迪苷A、甜菊苷、甜菊双糖苷购自上海源叶生物科技有限公司、甜叶悬钩子苷购自南京广润生物制品有限公司,莱宝迪苷D、莱宝迪苷M由四川盈嘉合生科技有限公司提供。UDP葡萄糖购自北京中泰生物有限公司。其他试剂为国产分析纯或色谱纯试剂,购自国药集团化学试剂有限公司。IPTG,MgCl2,PMSF,氨苄霉素购于生工生物工程(上海)。DnaseⅠ(10mg/mL)购于上海彦烨生物科技服务中心。PMSF购自西格玛奥德里奇(Sigma)中国。
PCR使用Arktik Thermal Cycler(Thermo Fisher Scientific);恒温培养使用ZXGP-A2050恒温培养箱(智城)和ZWY-211G恒温培养振荡器(智城);离心使用5418R高速冷冻式离心机和5418小型离心机(Eppendorf)。真空浓缩使用Concentrator plus浓缩仪(Eppendorf);OD600使用UV-1200紫外可见分光光度计检测(上海美谱达仪器有限公司)。旋转蒸发系统由IKA RV 10digital旋转蒸发仪(IKA)和MZ 2C NT化学隔膜泵、CVC3000真空控制器(vacuubrand)组成。细胞破碎使用C3高压细胞破碎仪(Sunnybay Biotech Co.,Canada)。液相色谱使用Dionex UltiMate3000液相色谱系统(Thermo FisherScientific)。晶体衍射数据在上海同步辐射光源(Shanghai Synchrotron RadiationFacility BL19U)收集,HKL3000 package进行结构解析。
实施例1、UGT76G1蛋白表达纯化结晶与结构解析
1、野生型UGT76G1表达载体pQZ11构建过程
以密码子优化的UGT76G1基因克隆载体为模板,使用特异引物对(表1)扩增目的基因。将PCR产物克隆至载体pETDuet1的BamHI/HindIII位点中,所获得的表达载体pQZ11经测序验证。
表1、野生型UGT76G1表达载体构建使用的引物
2、蛋白表达纯化
按1%v/v转接过夜培养的携带野生型UGT76G1表达载体pQZ11的大肠杆菌BL21(DE3)至1L的LB中,37℃、200rpm培养至OD600≈1.0。使用终浓度0.1mM的IPTG诱导,16℃过夜培养18h后收集菌体。使用重悬buffer重悬细胞,加入1mM PMSF,2mM MgCl2以及5μg/mLDNase I混匀后,冰上静置30min。使用高压细胞破碎仪裂解细胞后,高速离心,将离心后上清与Ni-NTA纯化树脂旋转孵育(4℃),25mM咪唑洗脱6-10个柱体积。最后,使用250mM咪唑10个柱体积洗脱纯化树脂(图1),浓缩至20mg/mL后,进行分子排阻纯化。收集FPLC出峰位置的蛋白,经SDS-PAGE验证后(图2)用于筛选晶体。
SrUGT76G1_野生型(SEQ ID NO:1):
3、蛋白结晶与结构解析
根据分子排阻纯化UGT76G1色谱结果以及SDS-PAGE结果,测定纯度最高的蛋白组分的浓度,分别浓缩至5mg/mL和10mg/mL。按照浓缩蛋白与底物浓度的摩尔比为1:20添加小分子底物,使用坐滴法20℃静置后获得优质的UGT76G1与底物(甜菊醇双糖苷、UDP-葡萄糖)复合物的晶体(图3),分辨率达
根据衍射数据解析UGT76G1的结构,本发明人获得UGT76G1蛋白与UGT76G1催化后的产物莱宝迪苷B与UDP的复合物结构。
实施例2、突变体蛋白构建与表达
根据UGT76G1-底物莱宝迪苷B(图4)和UDP的复合物结构以及反复验证,本发明人定位到底物结合口袋,并且确定了若干位于底物结合口袋中的关键氨基酸(图5),它们分别与糖基供体、糖基受体或苷元母核相互作用。本发明人根据氨基酸参与糖基化过程的功能将它们分为4类(表2),对这些氨基酸进行单点或多点突变,通过体外酶学测试,测定突变体蛋白在参与糖基化过程中的催化活性以及底物识别特异性的改变。
表2、氨基酸突变位点
1、突变体构建
使用含点突变位点的引物(表3),以野生型UGT76G1表达载体pQZ11为模板,PCR扩增突变体基因(图6),转化至DH10B,测序验证。
表3、扩增突变体所使用引物
2、突变体蛋白表达纯化
测序正确的突变体表达载体转化至大肠杆菌表达宿主BL21(DE3)。以1%v/v转接过夜培养的携带突变体表达载体的BL21(DE3)至1L LB培养基中,37℃,200rpm培养至OD600=1.0左右。使用终浓度0.1mM的IPTG诱导,16℃过夜培养18h后收集菌体。粗酶制备方法同野生型UGT76G1。粗酶液与1mL Ni-NTA纯化树脂旋转孵育(4℃),25mM咪唑洗脱6-10个柱体积。最后,使用250mM咪唑1mL在4℃孵育10-30分钟后,洗脱目的蛋白。使用BSA法测定目的蛋白的浓度,使用50%甘油保存蛋白(-20℃)。如图7所示,全部突变体蛋白均有表达。后续利用突变体蛋白进行体外酶活性测试。
实施例3突变体蛋白的体外功能验证
1、突变体体外酶反应
酶反应体系包括:10μg蛋白,1.5mM UDP-葡萄糖,250μM糖基受体底物缓冲buffer(20mM Tris-HCl,pH=8.0,100mM NaCl)。每个突变体蛋白对同一底物的反应均重复三次。
反应条件:37℃,30min。反应结束后,使用等体积的甲醇淬灭反应,剧烈震荡后,12000rpm,离心30min。取上清液进行HPLC检测。检测方法:流动相A(乙腈)-流动相B(水)梯度洗脱。计算突变体催化产物峰面积,与野生型UGT76G1的催化产物峰面积比较。
2、突变体催化活性及底物专一性
1)体外功能验证结果如图8所示,H25/D124直接参与糖基化位点去质子化过程,H25A、D124N突变体对所有底物丧失催化活性。
2)T284位点稳定底物结构中的第一个糖基。将T突变为A后,酶对所有底物的催化活性均降低,而突变为S能显著改变酶对底物的催化活性(图9)。突变体T284S对底物甜菊醇双糖苷,甜菊苷,莱宝迪苷D的相对活性分别增加74.6%、4.9%、76.5%,对底物甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A的活性分别降低16.7%、27.9%、52.4%。本发明人分析底物结构发现,相对催化活性增加的三种底物中具有槐糖基(1,2-二葡萄糖基),在此基础上进行1,3-糖基化;而在葡萄糖单糖基底物基础上直接进行1,3-糖基化的底物,其相对催化活性减弱。
3)S147、H155稳定底物结构中第二个糖基。突变体S147A、S147N、S147Q、H155A、H155Y对所有测试底物的相对催化活性均减弱(图10)。说明S147、H155位点突变不仅破坏第二个糖基的稳定情况,同时还影响底物分子与酶的结合。
4)稳定第三个糖基的T146A、T146N、T146S突变体对测试底物的催化活性减弱,而D380T、D380S、D380N、D380E突变体对底物完全失去活性(图11)。根据蛋白-底物结晶结构,D380除与催化产物的第三个糖基相互作用外,还通过氢键与糖基供体底物发生相互作用。因此,突变D380可能影响糖基供体识别,使得酶对底物的活性完全丧失。
实施例4、利用含突变体的重组大肠杆菌系统发酵生产莱宝迪苷M
莱宝迪苷M作为新一代天然甜味剂,其口感更优于目前市场主流的甜菊苷、莱宝迪苷A等。目前通过天然植物提取的方式可以廉价获得甜菊苷和莱宝迪苷A,而莱宝迪苷M由于在植物中含量稀少而制备价格昂贵。本发明人在重组大肠杆菌系统中引入转化莱宝迪苷M所需要的两种糖基转移酶基因EUGT11和UGT76G1,通过酶法转化的方式将甜菊苷、莱宝迪苷A转化为高价值的莱宝迪苷M。由于UGT76G1存在底物杂泛性,可能将底物莱宝迪苷A转化为副产物莱宝迪苷I,因此本发明人考虑选择UGT76G1的突变体T284S(SEQ ID NO:2),该突变体不仅具有更高的转化莱宝迪苷D至目标产物莱宝迪苷M的催化活性,同时对底物莱宝迪苷A的转化活性下降,能够降低副产物的比例。
>SrUGT76G1_T284S(SEQ ID NO:2)
1、质粒构建
以EUGT11(密码子优化)克隆载体为模板,通过PCR扩增EUGT11基因(编码含有SEQID NO:3所示氨基酸序列的蛋白)。以拟南芥cDNA为模板,通过PCR扩增AtSUS3基因(编码蔗糖合酶3(SEQ ID NO:4),用于UDP-葡萄糖的再生循环利用)。将EUGT11基因和AtSUS3基因分步装载至pDuet-1的BamHI/HindIII位点和FseI/KpnI位点之间,构成质粒pLW108。以突变体UGT76G1 T284S表达载体为模板,设计引物加载同源臂,通过PCR扩增突变体基因。通过无缝克隆的方式将UGT76G1 T284S基因引入pLW108的AtSUS3基因下游,构成质粒pHJ830。该质粒用于同时表达EUGT11、AtSUS3和UGT76G1 T284S三个基因。
表3、构建质粒所使用的引物
2、重组大肠杆菌系统发酵生产莱宝迪苷M
将上述质粒转化大肠杆菌BL21,挑取单克隆,接种于10mL LB培养基中(Amp=100μg/mL),37℃培养4h,以1%接种比接种于1L LB培养基中,37℃培养2h至OD600=0.5,降温至22℃,添加IPTG(终浓度100μM)诱导20h后,浓缩收集菌体,进行静息细胞转化反应,反应体系如表4所示。反应至48h收取样品进行HPLC检测。
发酵结果显示(图13),在48小时内,莱宝迪苷A(Rebaudioside A;RA)约有50%转化为莱宝迪苷D(Rebaudioside D;RD)(25%)和莱宝迪苷M(Rebaudioside M;RM)(25%),副产物莱宝迪苷I(Rebaudioside I;RI)的比例小于1%。
表4、静息细胞转化反应体系
实施例5、二萜母核相关突变体蛋白的体外功能验证
1、突变体构建
针对野生型SrUGT76G1进行点突变,位点包括第85、87、88、90、91、126、196、199、200、203、204、379位,设计点突变引物如表5,以野生型SrUGT76G1表达载体pQZ11作为模板使用PCR克隆。突变体3A是指第199、200、203位均突变为A的组合突变体,突变体4A是指第199、200、203、204位均突变为A的组合突变体。PCR产物凝胶电泳结果如图14,表明24个突变均成功扩增。经DpnⅠ酶切后,转化至大肠杆菌DH10B,测序验证。
表5、PCR克隆引物
2、突变体蛋白表达纯化
测序正确的突变体表达载体转化至大肠杆菌BL21(DE3)。按1%v/v转接过夜培养的大肠杆菌BL21(DE3)至1L的LB(Amp=100μg/mL)中,37℃,200rpm培养1~2h。降温降转速至16℃,160rpm继续培养至OD600=1.0左右。使用终浓度0.1mM的IPTG进行诱导,过夜培养18-20h后收集菌体。使用buffer A[20mM Tris-HCl(pH 8.0),100mM NaCl]重悬细胞,加1mMphenylmethylsulfonyl fluoride(PMSF),2mM MgCl2以及5μg/mL DNaseI混匀后,冰上静置30分钟。高压细胞破碎仪裂解细胞后,高速离心(10000rpm,99min)。上清与1mL Ni-NTA旋转孵育(4℃,1h),25mM咪唑洗脱6~10个柱体积。最后使用250mM咪唑1mL 4℃孵育10~30分钟后,洗脱目的蛋白。BSA法测定目的蛋白浓度,在50%甘油-20℃条件保存蛋白。
部分突变体(L126V,L126F,L379F,L379W,L379V)蛋白表达纯化后,SDS-PAGE检测如图15所示。
3、突变体体外功能验证
酶反应体系包括:10μg蛋白,1.5mM UDP-葡萄糖,250μM糖基受体底物和缓冲液[20mM Tris-HCl(pH=8.0),100mM NaCl]。每个突变体蛋白对同一底物的反应均重复三次。
反应条件:37℃,30min。反应结束后,使用等体积的甲醇淬灭反应,剧烈震荡后,12000rpm,离心30min。取上清液进行HPLC检测。检测方法:流动相A(乙腈)-流动相B(水)梯度洗脱。计算突变体催化产物峰面积,与野生型SrUGT76G1的催化产物峰面积比较。
4、突变体体外功能分析结果
(1)突变体对底物甜菊单糖苷(steviolmonoside)的催化活性
如图16,突变体L85V、I199F、I199L、L379I对底物steviolmonoside的活性分别提高了36.96%、102%、34%以及20%。而P91F、L126F、I203V、L379F、3A、4A对底物的活性降至20%。G87F几乎完全失活,M88V,I90L,I90V,L126V,N196Q,L200I,L200V,I203L,L204F,L204W,L379V也有显著性减弱。
(2)突变体对底物甜菊双糖苷(steviolbioside)的催化活性
如图17,在对底物steviolbioside的测试中发现,突变体L85V、M88V、I90L、I90V、P91F、L126F、I199F、I199L、I199V、L200I、I203L、I203V、L204F、L379F、L379I、L379V对底物活性提高,其中M88V、I199F与L200I最为显著,分别提高了1.38倍、1.29倍与1.65倍。而突变体G87F与4A对底物活性降低至3%与14%。L204W,L379W,3A也有显著性降低。
(3)突变体对底物甜叶悬钩子苷(又称甜茶素,rubusoside)的催化活性
如图18,对底物rubusoside的酶活测试发现,大部分突变体对底物的活性降低,其中G87F、L126V、L126F、I203V、L379F、3A以及4A活性分别降至0.66%、28%、28%、15%、19%、18%以及21%。I90L,I90V,P91F,L200I,L200V,I203L,L204F,L204W,L379V也有显著性减弱。但是突变体L85V、N196Q、I199F、I199L、L379I对底物活性有提升。其中L85V与I199L比较显著,分别为49%与32%。
(4)突变体对底物甜菊苷(stevioside)的催化活性
如图19,突变体对底物stevioside的活性改变,活性增强的突变体中,M88V、I90V、L126F、I199V、L200I,L379W以及L379I较为显著,分别为25%、24%、35%、32%、20%、21%、51%。而G87F、L204W、3A、4A的活性分别降至10%、25%、25%、19%。P91F,L126V,L204F,L379F,L379V也有显著性减弱。
(5)突变体对底物莱宝迪苷A(rebaudioside A)的催化活性
如图20,突变体M88V,I199V,L200V,L379I,3A对底物rebaudioside A的活性分别提高1.4倍,1.39倍,1.86倍,3.57倍以及1.67倍。L200I,L379V,L379W也有显著性提高。而突变体G87F,L126V,L126F,I203L,I203V,L204W,L379F等突变体对底物的活性减弱。
(6)突变体对底物莱宝迪苷D(rebaudioside D)的催化活性
如图21,体外酶活性验证发现,突变体L85V、M88V、L126F、I199F、I199L、I199V、L200I、I203V、L379W、L379I、L379V对底物Rebaudioside D的活性分别提高了57%、121%、35.6%、73.7%、70%、54.6%、24%、55%、12%、74.6%、55.9%。而突变体G87F、I203L、L204F、L204W、L379F、4A对底物的催化活性显著下降,分别为:7.25%、35%、39.8%、20.5%、43.3%、14.6%。N196Q也有显著性下降。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
序列表
<110> 中国科学院上海生命科学研究院
<120> 糖基转移酶突变体及其应用
<130> 193870Z1
<150> 201910515613.1
<151> 2019-06-14
<160> 93
<170> SIPOSequenceListing 1.0
<210> 1
<211> 458
<212> PRT
<213> 甜叶菊(Stevia rebaudiana)
<400> 1
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu
450 455
<210> 2
<211> 458
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile
1 5 10 15
Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu
20 25 30
Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr
35 40 45
Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg
50 55 60
Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro
65 70 75 80
Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His
85 90 95
Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser
100 105 110
Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr
115 120 125
Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu
130 135 140
Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln
145 150 155 160
Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu
165 170 175
Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser
180 185 190
Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile
195 200 205
Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu
210 215 220
Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro
225 230 235 240
Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser
245 250 255
Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro
260 265 270
Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Ser Ser Glu Val Asp
275 280 285
Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln
290 295 300
Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp
305 310 315 320
Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val
325 330 335
Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala
340 345 350
Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu
355 360 365
Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn
370 375 380
Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn
385 390 395 400
Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val
405 410 415
Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln
420 425 430
Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu
435 440 445
Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu
450 455
<210> 3
<211> 462
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Asp Ser Gly Tyr Ser Ser Ser Tyr Ala Ala Ala Ala Gly Met His
1 5 10 15
Val Val Ile Cys Pro Trp Leu Ala Phe Gly His Leu Leu Pro Cys Leu
20 25 30
Asp Leu Ala Gln Arg Leu Ala Ser Arg Gly His Arg Val Ser Phe Val
35 40 45
Ser Thr Pro Arg Asn Ile Ser Arg Leu Pro Pro Val Arg Pro Ala Leu
50 55 60
Ala Pro Leu Val Ala Phe Val Ala Leu Pro Leu Pro Arg Val Glu Gly
65 70 75 80
Leu Pro Asp Gly Ala Glu Ser Thr Asn Asp Val Pro His Asp Arg Pro
85 90 95
Asp Met Val Glu Leu His Arg Arg Ala Phe Asp Gly Leu Ala Ala Pro
100 105 110
Phe Ser Glu Phe Leu Gly Thr Ala Cys Ala Asp Trp Val Ile Val Asp
115 120 125
Val Phe His His Trp Ala Ala Ala Ala Ala Leu Glu His Lys Val Pro
130 135 140
Cys Ala Met Met Leu Leu Gly Ser Ala His Met Ile Ala Ser Ile Ala
145 150 155 160
Asp Arg Arg Leu Glu Arg Ala Glu Thr Glu Ser Pro Ala Ala Ala Gly
165 170 175
Gln Gly Arg Pro Ala Ala Ala Pro Thr Phe Glu Val Ala Arg Met Lys
180 185 190
Leu Ile Arg Thr Lys Gly Ser Ser Gly Met Ser Leu Ala Glu Arg Phe
195 200 205
Ser Leu Thr Leu Ser Arg Ser Ser Leu Val Val Gly Arg Ser Cys Val
210 215 220
Glu Phe Glu Pro Glu Thr Val Pro Leu Leu Ser Thr Leu Arg Gly Lys
225 230 235 240
Pro Ile Thr Phe Leu Gly Leu Met Pro Pro Leu His Glu Gly Arg Arg
245 250 255
Glu Asp Gly Glu Asp Ala Thr Val Arg Trp Leu Asp Ala Gln Pro Ala
260 265 270
Lys Ser Val Val Tyr Val Ala Leu Gly Ser Glu Val Pro Leu Gly Val
275 280 285
Glu Lys Val His Glu Leu Ala Leu Gly Leu Glu Leu Ala Gly Thr Arg
290 295 300
Phe Leu Trp Ala Leu Arg Lys Pro Thr Gly Val Ser Asp Ala Asp Leu
305 310 315 320
Leu Pro Ala Gly Phe Glu Glu Arg Thr Arg Gly Arg Gly Val Val Ala
325 330 335
Thr Arg Trp Val Pro Gln Met Ser Ile Leu Ala His Ala Ala Val Gly
340 345 350
Ala Phe Leu Thr His Cys Gly Trp Asn Ser Thr Ile Glu Gly Leu Met
355 360 365
Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Gly Asp Gln Gly Pro
370 375 380
Asn Ala Arg Leu Ile Glu Ala Lys Asn Ala Gly Leu Gln Val Ala Arg
385 390 395 400
Asn Asp Gly Asp Gly Ser Phe Asp Arg Glu Gly Val Ala Ala Ala Ile
405 410 415
Arg Ala Val Ala Val Glu Glu Glu Ser Ser Lys Val Phe Gln Ala Lys
420 425 430
Ala Lys Lys Leu Gln Glu Ile Val Ala Asp Met Ala Cys His Glu Arg
435 440 445
Tyr Ile Asp Gly Phe Ile Gln Gln Leu Arg Ser Tyr Lys Asp
450 455 460
<210> 4
<211> 809
<212> PRT
<213> 拟南芥(Arabidopsis thaliana)
<400> 4
Met Ala Asn Pro Lys Leu Thr Arg Val Leu Ser Thr Arg Asp Arg Val
1 5 10 15
Gln Asp Thr Leu Ser Ala His Arg Asn Glu Leu Val Ala Leu Leu Ser
20 25 30
Arg Tyr Val Asp Gln Gly Lys Gly Ile Leu Gln Pro His Asn Leu Ile
35 40 45
Asp Glu Leu Glu Ser Val Ile Gly Asp Asp Glu Thr Lys Lys Ser Leu
50 55 60
Ser Asp Gly Pro Phe Gly Glu Ile Leu Lys Ser Ala Met Glu Ala Ile
65 70 75 80
Val Val Pro Pro Phe Val Ala Leu Ala Val Arg Pro Arg Pro Gly Val
85 90 95
Trp Glu Tyr Val Arg Val Asn Val Phe Glu Leu Ser Val Glu Gln Leu
100 105 110
Thr Val Ser Glu Tyr Leu Arg Phe Lys Glu Glu Leu Val Asp Gly Pro
115 120 125
Asn Ser Asp Pro Phe Cys Leu Glu Leu Asp Phe Glu Pro Phe Asn Ala
130 135 140
Asn Val Pro Arg Pro Ser Arg Ser Ser Ser Ile Gly Asn Gly Val Gln
145 150 155 160
Phe Leu Asn Arg His Leu Ser Ser Val Met Phe Arg Asn Lys Asp Cys
165 170 175
Leu Glu Pro Leu Leu Asp Phe Leu Arg Val His Lys Tyr Lys Gly His
180 185 190
Pro Leu Met Leu Asn Asp Arg Ile Gln Ser Ile Ser Arg Leu Gln Ile
195 200 205
Gln Leu Ser Lys Ala Glu Asp His Ile Ser Lys Leu Ser Gln Glu Thr
210 215 220
Pro Phe Ser Glu Phe Glu Tyr Ala Leu Gln Gly Met Gly Phe Glu Lys
225 230 235 240
Gly Trp Gly Asp Thr Ala Gly Arg Val Leu Glu Met Met His Leu Leu
245 250 255
Ser Asp Ile Leu Gln Ala Pro Asp Pro Ser Ser Leu Glu Lys Phe Leu
260 265 270
Gly Met Val Pro Met Val Phe Asn Val Val Ile Leu Ser Pro His Gly
275 280 285
Tyr Phe Gly Gln Ala Asn Val Leu Gly Leu Pro Asp Thr Gly Gly Gln
290 295 300
Val Val Tyr Ile Leu Asp Gln Val Arg Ala Leu Glu Thr Glu Met Leu
305 310 315 320
Leu Arg Ile Lys Arg Gln Gly Leu Asp Ile Ser Pro Ser Ile Leu Ile
325 330 335
Val Thr Arg Leu Ile Pro Asp Ala Lys Gly Thr Thr Cys Asn Gln Arg
340 345 350
Leu Glu Arg Val Ser Gly Thr Glu His Thr His Ile Leu Arg Val Pro
355 360 365
Phe Arg Ser Glu Lys Gly Ile Leu Arg Lys Trp Ile Ser Arg Phe Asp
370 375 380
Val Trp Pro Tyr Leu Glu Asn Tyr Ala Gln Asp Ala Ala Ser Glu Ile
385 390 395 400
Val Gly Glu Leu Gln Gly Val Pro Asp Phe Ile Ile Gly Asn Tyr Ser
405 410 415
Asp Gly Asn Leu Val Ala Ser Leu Met Ala His Arg Met Gly Val Thr
420 425 430
Gln Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr Pro Asp Ser
435 440 445
Asp Ile Tyr Trp Lys Asp Phe Asp Asn Lys Tyr His Phe Ser Cys Gln
450 455 460
Phe Thr Ala Asp Leu Ile Ala Met Asn Asn Ala Asp Phe Ile Ile Thr
465 470 475 480
Ser Thr Tyr Gln Glu Ile Ala Gly Thr Lys Asn Thr Val Gly Gln Tyr
485 490 495
Glu Ser His Gly Ala Phe Thr Leu Pro Gly Leu Tyr Arg Val Val His
500 505 510
Gly Ile Asp Val Phe Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala
515 520 525
Asp Met Thr Ile Tyr Phe Pro Tyr Ser Glu Glu Thr Arg Arg Leu Thr
530 535 540
Ala Leu His Gly Ser Ile Glu Glu Met Leu Tyr Ser Pro Asp Gln Thr
545 550 555 560
Asp Glu His Val Gly Thr Leu Ser Asp Arg Ser Lys Pro Ile Leu Phe
565 570 575
Ser Met Ala Arg Leu Asp Lys Val Lys Asn Ile Ser Gly Leu Val Glu
580 585 590
Met Tyr Ser Lys Asn Thr Lys Leu Arg Glu Leu Val Asn Leu Val Val
595 600 605
Ile Ala Gly Asn Ile Asp Val Asn Lys Ser Lys Asp Arg Glu Glu Ile
610 615 620
Val Glu Ile Glu Lys Met His Asn Leu Met Lys Asn Tyr Lys Leu Asp
625 630 635 640
Gly Gln Phe Arg Trp Ile Thr Ala Gln Thr Asn Arg Ala Arg Asn Gly
645 650 655
Glu Leu Tyr Arg Tyr Ile Ala Asp Thr Arg Gly Ala Phe Ala Gln Pro
660 665 670
Ala Phe Tyr Glu Ala Phe Gly Leu Thr Val Val Glu Ala Met Thr Cys
675 680 685
Gly Leu Pro Thr Phe Ala Thr Cys His Gly Gly Pro Ala Glu Ile Ile
690 695 700
Glu His Gly Leu Ser Gly Phe His Ile Asp Pro Tyr His Pro Glu Gln
705 710 715 720
Ala Gly Asn Ile Met Ala Asp Phe Phe Glu Arg Cys Lys Glu Asp Pro
725 730 735
Asn His Trp Lys Lys Val Ser Asp Ala Gly Leu Gln Arg Ile Tyr Glu
740 745 750
Arg Tyr Thr Trp Lys Ile Tyr Ser Glu Arg Leu Met Thr Leu Ala Gly
755 760 765
Val Tyr Gly Phe Trp Lys Tyr Val Ser Lys Leu Glu Arg Arg Glu Thr
770 775 780
Arg Arg Tyr Leu Glu Met Phe Tyr Ile Leu Lys Phe Arg Asp Leu Val
785 790 795 800
Lys Thr Val Pro Ser Thr Ala Asp Asp
805
<210> 5
<211> 473
<212> PRT
<213> 甜叶菊(Stevia rebaudiana)
<400> 5
Met Ala Thr Ser Asp Ser Ile Val Asp Asp Arg Lys Gln Leu His Val
1 5 10 15
Ala Thr Phe Pro Trp Leu Ala Phe Gly His Ile Leu Pro Tyr Leu Gln
20 25 30
Leu Ser Lys Leu Ile Ala Glu Lys Gly His Lys Val Ser Phe Leu Ser
35 40 45
Thr Thr Arg Asn Ile Gln Arg Leu Ser Ser His Ile Ser Pro Leu Ile
50 55 60
Asn Val Val Gln Leu Thr Leu Pro Arg Val Gln Glu Leu Pro Glu Asp
65 70 75 80
Ala Glu Ala Thr Thr Asp Val His Pro Glu Asp Ile Pro Tyr Leu Lys
85 90 95
Lys Ala Ser Asp Gly Leu Gln Pro Glu Val Thr Arg Phe Leu Glu Gln
100 105 110
His Ser Pro Asp Trp Ile Ile Tyr Asp Tyr Thr His Tyr Trp Leu Pro
115 120 125
Ser Ile Ala Ala Ser Leu Gly Ile Ser Arg Ala His Phe Ser Val Thr
130 135 140
Thr Pro Trp Ala Ile Ala Tyr Met Gly Pro Ser Ala Asp Ala Met Ile
145 150 155 160
Asn Gly Ser Asp Gly Arg Thr Thr Val Glu Asp Leu Thr Thr Pro Pro
165 170 175
Lys Trp Phe Pro Phe Pro Thr Lys Val Cys Trp Arg Lys His Asp Leu
180 185 190
Ala Arg Leu Val Pro Tyr Lys Ala Pro Gly Ile Ser Asp Gly Tyr Arg
195 200 205
Met Gly Leu Val Leu Lys Gly Ser Asp Cys Leu Leu Ser Lys Cys Tyr
210 215 220
His Glu Phe Gly Thr Gln Trp Leu Pro Leu Leu Glu Thr Leu His Gln
225 230 235 240
Val Pro Val Val Pro Val Gly Leu Leu Pro Pro Glu Ile Pro Gly Asp
245 250 255
Glu Lys Asp Glu Thr Trp Val Ser Ile Lys Lys Trp Leu Asp Gly Lys
260 265 270
Gln Lys Gly Ser Val Val Tyr Val Ala Leu Gly Ser Glu Val Leu Val
275 280 285
Ser Gln Thr Glu Val Val Glu Leu Ala Leu Gly Leu Glu Leu Ser Gly
290 295 300
Leu Pro Phe Val Trp Ala Tyr Arg Lys Pro Lys Gly Pro Ala Lys Ser
305 310 315 320
Asp Ser Val Glu Leu Pro Asp Gly Phe Val Glu Arg Thr Arg Asp Arg
325 330 335
Gly Leu Val Trp Thr Ser Trp Ala Pro Gln Leu Arg Ile Leu Ser His
340 345 350
Glu Ser Val Cys Gly Phe Leu Thr His Cys Gly Ser Gly Ser Ile Val
355 360 365
Glu Gly Leu Met Phe Gly His Pro Leu Ile Met Leu Pro Ile Phe Gly
370 375 380
Asp Gln Pro Leu Asn Ala Arg Leu Leu Glu Asp Lys Gln Val Gly Ile
385 390 395 400
Glu Ile Pro Arg Asn Glu Glu Asp Gly Cys Leu Thr Lys Glu Ser Val
405 410 415
Ala Arg Ser Leu Arg Ser Val Val Val Glu Lys Glu Gly Glu Ile Tyr
420 425 430
Lys Ala Asn Ala Arg Glu Leu Ser Lys Ile Tyr Asn Asp Thr Lys Val
435 440 445
Glu Lys Glu Tyr Val Ser Gln Phe Val Asp Tyr Leu Glu Lys Asn Ala
450 455 460
Arg Ala Val Ala Ile Asp His Glu Ser
465 470
<210> 6
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 6
aagtttcttg cctgatcacc aacgcgctgt ggt 33
<210> 7
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 7
gttggtgatc aggcaagaaa cttcttcgtc ttc 33
<210> 8
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 8
tcttctctga cttcggtctg gaacagccgc tga 33
<210> 9
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 9
ttccagaccg aagtcagaga agatcatcgg aac 33
<210> 10
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 10
tcttctctga cttcggtctg aaccagccgc tga 33
<210> 11
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 11
gttcagaccg aagtcagaga agatcatcgg aac 33
<210> 12
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 12
tcttctctga cttcggtctg tctcagccgc tga 33
<210> 13
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 13
agacagaccg aagtcagaga agatcatcgg aac 33
<210> 14
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 14
tcttctctga cttcggtctg acccagccgc tga 33
<210> 15
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 15
ggtcagaccg aagtcagaga agatcatcgg aac 33
<210> 16
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 16
tcccggttcc gttccagggt gcgatcaacc cga 33
<210> 17
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 17
cgcaccctgg aacggaaccg ggaacaggat gat 33
<210> 18
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 18
gtcgtctggt tctgatgacc gcgtctctgt tca 33
<210> 19
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 19
cgcggtcatc agaaccagac gacgcaggtt cag 33
<210> 20
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 20
gtcgtctggt tctgatgacc aactctctgt tca 33
<210> 21
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 21
gttggtcatc agaaccagac gacgcaggtt cag 33
<210> 22
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 22
gtcgtctggt tctgatgacc cagtctctgt tca 33
<210> 23
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 23
ctgggtcatc agaaccagac gacgcaggtt cag 33
<210> 24
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 24
tgcgtcgtct ggttctgatg gcgtcttctc tgt 33
<210> 25
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 25
cgccatcaga accagacgac gcaggttcag aga 33
<210> 26
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 26
tgcgtcgtct ggttctgatg aactcttctc tgt 33
<210> 27
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 27
gttcatcaga accagacgac gcaggttcag aga 33
<210> 28
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 28
tgcgtcgtct ggttctgatg tcttcttctc tgt 33
<210> 29
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 29
agacatcaga accagacgac gcaggttcag aga 33
<210> 30
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 30
tgtacgtttc tttcggttct gcgtctgaag ttg 33
<210> 31
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 31
cgcagaaccg aaagaaacgt acagaacaga aga 33
<210> 32
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 32
tgtacgtttc tttcggttct tcttctgaag ttg 33
<210> 33
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 33
agaagaaccg aaagaaacgt acagaacaga aga 33
<210> 34
<211> 28
<212> DNA
<213> 引物(Primer)
<400> 34
ttcaacttcc acgcggcggt ttctctgc 28
<210> 35
<211> 21
<212> DNA
<213> 引物(Primer)
<400> 35
cgccgcgtgg aagttgaaca g 21
<210> 36
<211> 28
<212> DNA
<213> 引物(Primer)
<400> 36
ttcaacttcc acgcgtatgt ttctctgc 28
<210> 37
<211> 21
<212> DNA
<213> 引物(Primer)
<400> 37
atacgcgtgg aagttgaaca g 21
<210> 38
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 38
cgcggatcca tggactccgg ctactcctcc 30
<210> 39
<211> 61
<212> DNA
<213> 引物(Primer)
<400> 39
aagctttcaa tccttgtaag atctcaattg ccgcggatcc atggactccg gctactcctc 60
c 61
<210> 40
<211> 37
<212> DNA
<213> 引物(Primer)
<400> 40
ctcaattgga tatcggccgg ccatggcaaa ccctaag 37
<210> 41
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 41
tttaccagac tcgagggtac ctcagtcatc ggcggt 36
<210> 42
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 42
ctcgagtctg gtaaagaaac 20
<210> 43
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 43
attggtacct cagtcatcgg cgg 23
<210> 44
<211> 39
<212> DNA
<213> 引物(Primer)
<400> 44
ccgatgactg aggtaccaat aattttgttt aactttaag 39
<210> 45
<211> 40
<212> DNA
<213> 引物(Primer)
<400> 45
gtttctttac cagactcgag ttacagagaa gagatgtaag 40
<210> 46
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 46
ccgacccacg gtccggttgc gggtatgcgt atc 33
<210> 47
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 47
cggaccgtgg gtcggcaggt tagagatacg 30
<210> 48
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 48
ggtccgctgg cgttcatgcg tatcccgatc 30
<210> 49
<211> 24
<212> DNA
<213> 引物(Primer)
<400> 49
gaacgccagc ggaccgtggg tcgg 24
<210> 50
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 50
ggtccgctgg cgggtgttcg tatcccgatc 30
<210> 51
<211> 22
<212> DNA
<213> 引物(Primer)
<400> 51
acccgccagc ggaccgtggg tc 22
<210> 52
<211> 34
<212> DNA
<213> 引物(Primer)
<400> 52
ctggcgggta tgcgtctgcc gatcatcaac gaac 34
<210> 53
<211> 24
<212> DNA
<213> 引物(Primer)
<400> 53
acgcataccc gccagcggac cgtg 24
<210> 54
<211> 34
<212> DNA
<213> 引物(Primer)
<400> 54
ctggcgggta tgcgtgttcc gatcatcaac gaac 34
<210> 55
<211> 22
<212> DNA
<213> 引物(Primer)
<400> 55
acgcataccc gccagcggac cg 22
<210> 56
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 56
gcgggtatgc gtatcttcat catcaacgaa cacggt 36
<210> 57
<211> 26
<212> DNA
<213> 引物(Primer)
<400> 57
gatacgcata cccgccagcg gaccgt 26
<210> 58
<211> 32
<212> DNA
<213> 引物(Primer)
<400> 58
gcctgatcac cgacgcgttc tggtacttcg cg 32
<210> 59
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 59
cgcgtcggtg atcaggcaag aaacttcttc gtc 33
<210> 60
<211> 31
<212> DNA
<213> 引物(Primer)
<400> 60
ctgatcaccg acgcggtttg gtacttcgcg c 31
<210> 61
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 61
cgcgtcggtg atcaggcaag aaacttcttc 30
<210> 62
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 62
caaatctgcg tactctcagt ggcagatcct gaaagaaa 38
<210> 63
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 63
agagtacgca gatttgatgt ctttaacttt cagcatcg 38
<210> 64
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 64
gcgtactcta actggcagtt cctgaaagaa atcctggg 38
<210> 65
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 65
ctgccagtta gagtacgcag atttgatgtc tttaac 36
<210> 66
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 66
gcgtactcta actggcagct gctgaaagaa atcctggg 38
<210> 67
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 67
ctgccagtta gagtacgcag atttgatgtc ttt 33
<210> 68
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 68
gcgtactcta actggcaggt tctgaaagaa atcctggg 38
<210> 69
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 69
ctgccagtta gagtacgcag atttgatgtc ttt 33
<210> 70
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 70
tactctaact ggcagatcat caaagaaatc ctggg 35
<210> 71
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 71
ctgccagtta gagtacgcag atttgatgtc tttaac 36
<210> 72
<211> 38
<212> DNA
<213> 引物(Primer)
<400> 72
tactctaact ggcagatcgt taaagaaatc ctgggtaa 38
<210> 73
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 73
ctgccagtta gagtacgcag atttgatgtc tttaac 36
<210> 74
<211> 41
<212> DNA
<213> 引物(Primer)
<400> 74
ggcagatcct gaaagaactg ctgggtaaaa tgatcaaaca g 41
<210> 75
<211> 37
<212> DNA
<213> 引物(Primer)
<400> 75
ttctttcagg atctgccagt tagagtacgc agatttg 37
<210> 76
<211> 44
<212> DNA
<213> 引物(Primer)
<400> 76
ggcagatcct gaaagaagtt ctgggtaaaa tgatcaaaca gacc 44
<210> 77
<211> 37
<212> DNA
<213> 引物(Primer)
<400> 77
ttctttcagg atctgccagt tagagtacgc agatttg 37
<210> 78
<211> 44
<212> DNA
<213> 引物(Primer)
<400> 78
ggcagatcct gaaagaaatc ttcggtaaaa tgatcaaaca gacc 44
<210> 79
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 79
ctttcaggat ctgccagtta gagtacgcag 30
<210> 80
<211> 40
<212> DNA
<213> 引物(Primer)
<400> 80
gatcctgaaa gaaatctggg gtaaaatgat caaacagacc 40
<210> 81
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 81
gatttctttc aggatctgcc agttagagta cgcag 35
<210> 82
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 82
cttctctgac ttcggtttcg accagccgct gaacg 35
<210> 83
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 83
accgaagtca gagaagatca tcggaacacc ttcgc 35
<210> 84
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 84
cttctctgac ttcggtatcg accagccgct gaacg 35
<210> 85
<211> 33
<212> DNA
<213> 引物(Primer)
<400> 85
accgaagtca gagaagatca tcggaacacc ttc 33
<210> 86
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 86
cttctctgac ttcggtgttg accagccgct gaacg 35
<210> 87
<211> 30
<212> DNA
<213> 引物(Primer)
<400> 87
accgaagtca gagaagatca tcggaacacc 30
<210> 88
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 88
cttctctgac ttcggttggg accagccgct gaacg 35
<210> 89
<211> 35
<212> DNA
<213> 引物(Primer)
<400> 89
accgaagtca gagaagatca tcggaacacc ttcgc 35
<210> 90
<211> 45
<212> DNA
<213> 引物(Primer)
<400> 90
actctaactg gcaggcggcg aaagaagcgc tgggtaaaat gatca 45
<210> 91
<211> 36
<212> DNA
<213> 引物(Primer)
<400> 91
cgccgcctgc cagttagagt acgcagattt gatgtc 36
<210> 92
<211> 40
<212> DNA
<213> 引物(Primer)
<400> 92
gtactctaac tggcaggcgg cgaaagaagc ggcgggtaaa 40
<210> 93
<211> 61
<212> DNA
<213> 引物(Primer)
<400> 93
atgatcaaac agaccaaagc gccgcctgcc agttagagta cgcagatttg atgtctttaa 60
c 61
Claims (24)
1.糖基转移酶UGT76G1突变体,其特征在于,所述突变体相对于野生型的糖基转移酶UGT76G1,其空间结构中与糖基供体、糖基受体相互作用的氨基酸发生突变,其催化活性改变;所述突变体是氨基酸序列根据SEQ ID NO: 1发生突变的蛋白,其第284位突变为Ser,其催化含有1,2-双葡萄糖基的底物进行1,3-糖基化的活性提高,催化在葡萄糖单糖基底物基础上进行1,3-糖基化的活性降低;或
所述突变体是氨基酸序列根据SEQ ID NO: 1发生突变的蛋白,其第88位突变为Val。
2.如权利要求1所述的糖基转移酶UGT76G1突变体,其特征在于,所述第284位突变为Ser的突变体,其对底物甜菊醇双糖苷,甜菊苷或莱宝迪苷D的催化活性提高,而对底物甜菊醇单糖苷,甜叶悬钩子苷,莱宝迪苷A的催化活性降低。
3.如权利要求2所述的糖基转移酶UGT76G1突变体,其特征在于,所述第284位突变为Ser的突变体,其催化莱宝迪苷D生成莱宝迪苷M的活性提高且催化莱宝迪苷A生成副产物莱宝迪苷I的活性减弱。
4.如权利要求1所述的糖基转移酶UGT76G1突变体,其特征在于,所述第88位突变为Val的突变体,其对底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性增强。
5.分离的多核苷酸,其特征在于,所述的多核苷酸是编码权利要求1~4任一所述的糖基转移酶UGT76G1突变体。
6.一种载体,其特征在于,它含有权利要求5所述的多核苷酸。
7.一种遗传工程化的宿主细胞,其特征在于,它含有权利要求6所述的载体,或基因组中整合有权利要求5所述的多核苷酸;所述宿主细胞不是植物细胞。
8.如权利要求7所述的宿主细胞,其特征在于,所述细胞中包括:基于1,2-双葡萄糖基或葡萄糖单糖基底物进行1,3-糖基化的反应系统,其中用于糖基化的酶为糖基转移酶UGT76G1突变体;所述反应系统为莱宝迪苷M生成系统。
9. 如权利要求8所述的宿主细胞,其特征在于,所述莱宝迪苷M生成系统包括:
以莱宝迪苷A为底物的系统,包括:SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;或
以甜菊苷为底物的系统,包括:将甜菊苷转化为莱宝迪苷A的酶、其根据SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;或
以莱宝迪苷D为底物的系统,包括:SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体;或
以苷元甜菊醇为底物的系统,包括:SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体,将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶。
10. 如权利要求8所述的宿主细胞,其特征在于,所述莱宝迪苷M生成系统包括:
以甜菊苷为底物的系统,包括:将甜菊苷转化为莱宝迪苷A的酶、对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;或
以莱宝迪苷D为底物的系统,包括:对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体;或
以苷元甜菊醇为底物的系统,包括:对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体,将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶。
11.如权利要求9所述的宿主细胞,其特征在于,所述将莱宝迪苷A转化为莱宝迪苷D的酶包括:EUGT11,UGT91D2;
所述将甜菊苷转化为莱宝迪苷A的酶为权利要求1~4任一所述的突变型UGT76G1。
12.如权利要求7~11任一所述的宿主细胞,其特征在于,细胞中还包括使UDP-葡萄糖的再生循环利用的酶,所述使UDP-葡萄糖的再生循环利用的酶包括:AtSUS3。
13.如权利要求7~11任一所述的宿主细胞,其特征在于,所述宿主细胞包括:原核细胞或真核细胞。
14.如权利要求13所述的宿主细胞,其特征在于,所述原核宿主细胞包括大肠杆菌、枯草杆菌;所述真核宿主细胞包括:真菌细胞、昆虫细胞、哺乳动物细胞。
15. 一种生产权利要求1~4任一所述的糖基转移酶UGT76G1突变体的方法,其特征在于,包括步骤:
(1) 培养权利要求7所述的宿主细胞,获得培养物;和
(2) 从培养物中分离权利要求1~4任一所述的糖基转移酶UGT76G1突变体。
16. 一种调节糖基转移酶UGT76G1的催化活性或底物专一性的方法,包括:将其空间结构中与糖基供体或糖基受体相互作用的氨基酸进行突变,从而使其催化活性或底物专一性改变:
将SEQ ID NO: 1中第284位突变为Ser,提高该突变体催化含有1,2-双葡萄糖基的底物进行1,3-糖基化的活性或降低该突变体催化葡萄糖单糖基底物基础上进行1,3-糖基化的活性;其催化莱宝迪苷D生成莱宝迪苷M的活性提高且催化莱宝迪苷A生成副产物莱宝迪苷I的活性减弱;或
将SEQ ID NO: 1中第88位突变为Val,其对底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化活性增强。
17. 氨基酸序列根据SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体的用途,用于促进含有1,2-双葡萄糖基的底物进行1,3-糖基化,减少葡萄糖单糖基底物基础上进行1,3-糖基化,促进莱宝迪苷D生成莱宝迪苷M。
18. 一种调控糖基化的方法,其特征在于,包括:以SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体进行催化,促进含有1,2-双葡萄糖基的底物进行1,3-糖基化。
19. 如权利要求18所述的方法,其特征在于,糖基化产物为莱宝迪苷M,包括:
以莱宝迪苷A为底物,以SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体和将莱宝迪苷A转化为莱宝迪苷D的酶进行催化,获得莱宝迪苷M;该将莱宝迪苷A转化为莱宝迪苷D的酶包括:EUGT11,UGT91D2;或
以甜菊苷为底物,以将甜菊苷转化为莱宝迪苷A的酶、SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶进行催化,获得莱宝迪苷M;该将甜菊苷转化为莱宝迪苷A的酶包括UGT76G1或权利要求1所述的糖基转移酶UGT76G1突变体,该将莱宝迪苷A转化为莱宝迪苷D的酶包括:EGUT11,UGT91D2;或
以莱宝迪苷D为底物,以SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体进行催化,获得莱宝迪苷M;或
以苷元甜菊醇为底物,以SEQ ID NO: 1第284位突变为Ser的糖基转移酶UGT76G1突变体、将莱宝迪苷 A或甜菊苷转化为莱宝迪苷 D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶进行催化,获得莱宝迪苷M;所述将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶包括:EUGT11,UGT91D2,UGT74G1,UGT85C2,UGT75L20,UGT75L21,UGT75W2,UGT75T4,UGT85A57,UGT85A58,UGT76G1或权利要求1所述的糖基转移酶UGT76G1突变体。
20. 一种调控糖基化的方法,其特征在于,以SEQ ID NO: 1中第88位突变为Val的糖基转移酶UGT76G1突变体进行催化,增强对于底物甜菊双糖苷、甜菊苷、莱宝迪苷A或莱宝迪苷D催化糖基化活性。
21. 如权利要求20所述的方法,其特征在于,糖基化产物为莱宝迪苷M,包括:
以甜菊苷为底物的系统,包括:将甜菊苷转化为莱宝迪苷A的酶、对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体,以及将莱宝迪苷A转化为莱宝迪苷D的酶;或
以莱宝迪苷D为底物的系统,包括:对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体;或
以苷元甜菊醇为底物的系统,包括:对应于SEQ ID NO: 1第88位突变为Val的糖基转移酶UGT76G1突变体,将莱宝迪苷A或甜菊苷转化为莱宝迪苷D的酶以及将苷元甜菊醇催化为甜菊苷或莱宝迪苷A的酶。
22.如权利要求19所述的方法,其特征在于,所述方法还包括:应用使UDP-葡萄糖的再生循环利用的酶;所述使UDP-葡萄糖的再生循环利用的酶包括:AtSUS3。
23. 一种组合物,其特征在于,所述组合物中含有:
权利要求1~4任一所述的糖基转移酶UGT76G1 突变体;或
含有权利要求7~14任一所述的宿主细胞。
24. 一种试剂盒,其特征在于,其中含有:
权利要求1~4任一所述的糖基转移酶UGT76G1突变体;或
权利要求7~14任一所述的宿主细胞;或
权利要求23所述的组合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/618,665 US20220235335A1 (en) | 2019-06-14 | 2020-07-27 | Glycosyltransferase Mutant and Use Therefor |
PCT/CN2020/104957 WO2020249138A1 (zh) | 2019-06-14 | 2020-07-27 | 糖基转移酶突变体及其应用 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515613 | 2019-06-14 | ||
CN2019105156131 | 2019-06-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112080480A CN112080480A (zh) | 2020-12-15 |
CN112080480B true CN112080480B (zh) | 2023-01-03 |
Family
ID=73734285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910917940.XA Active CN112080480B (zh) | 2019-06-14 | 2019-09-26 | 糖基转移酶突变体及其应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220235335A1 (zh) |
CN (1) | CN112080480B (zh) |
WO (1) | WO2020249138A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109423486B (zh) * | 2017-08-29 | 2022-02-25 | 中国科学院分子植物科学卓越创新中心 | 新型udp-糖基转移酶及其应用 |
CN112553175B (zh) * | 2019-09-26 | 2023-04-07 | 中国科学院分子植物科学卓越创新中心 | 糖基转移酶ugt76g1突变体的制备及其应用 |
CN114657160B (zh) * | 2020-12-23 | 2024-04-05 | 浙江康恩贝制药股份有限公司 | 一种糖基转移酶突变体及其应用 |
CN113462670B (zh) * | 2021-08-23 | 2023-03-24 | 兴化格林生物制品有限公司 | 一种糖基转移酶突变体及其催化合成莱鲍迪苷m的方法 |
CN113862319A (zh) * | 2021-09-16 | 2021-12-31 | 华南理工大学 | 人参糖基转移酶在合成甜菊糖中的应用 |
CN113881649B (zh) * | 2021-11-15 | 2022-08-02 | 四川大学 | 糖基转移酶OsUGT91C1突变体及其用途 |
CN114045273B (zh) * | 2021-11-15 | 2022-07-22 | 四川大学 | 糖基转移酶OsUGT91C1突变体及其应用 |
CN114150031A (zh) * | 2021-11-23 | 2022-03-08 | 安徽金禾实业股份有限公司 | 一种利用枯草芽孢杆菌发酵催化制备莱鲍迪苷d的方法 |
CN114921431B (zh) * | 2022-05-05 | 2023-04-25 | 湖北大学 | 糖基转移酶突变体及其在发酵生产芳香醇糖苷中的应用 |
CN114875007B (zh) * | 2022-06-29 | 2023-09-05 | 上海交通大学 | 一种热与有机溶剂稳定性提高的糖基转移酶突变体 |
CN115975972B (zh) * | 2022-12-20 | 2023-07-25 | 杭州力文所生物科技有限公司 | 一种糖基转移酶突变体及其编码基因 |
CN118755692B (zh) * | 2024-09-06 | 2024-11-19 | 四川盈嘉合生科技有限公司 | 一种糖基转移酶及其在糖基化反应中的应用 |
CN118853624A (zh) * | 2024-09-29 | 2024-10-29 | 青岛奔月生物技术有限公司 | 催化莱鲍迪苷d生产莱鲍迪苷m的葡萄糖基转移酶突变体及其应用 |
CN119307467B (zh) * | 2024-12-10 | 2025-03-18 | 诸城市浩天药业有限公司 | 一种糖基转移酶突变体及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014122227A2 (en) * | 2013-02-06 | 2014-08-14 | Evolva Sa | Methods for improved production of rebaudioside d and rebaudioside m |
CN105492453A (zh) * | 2013-05-28 | 2016-04-13 | 可口可乐公司 | 高纯度的甜菊醇糖苷 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10364450B2 (en) * | 2015-01-30 | 2019-07-30 | Evolva Sa | Production of steviol glycoside in recombinant hosts |
WO2019178116A1 (en) * | 2018-03-12 | 2019-09-19 | Conagen Inc. | Biosynthetic production of steviol glycosides rebaudioside j and rebaudioside n |
CN110592043B (zh) * | 2019-11-01 | 2022-10-18 | 广西师范大学 | 一种udp-葡萄糖基转移酶突变体及其应用 |
-
2019
- 2019-09-26 CN CN201910917940.XA patent/CN112080480B/zh active Active
-
2020
- 2020-07-27 WO PCT/CN2020/104957 patent/WO2020249138A1/zh active Application Filing
- 2020-07-27 US US17/618,665 patent/US20220235335A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014122227A2 (en) * | 2013-02-06 | 2014-08-14 | Evolva Sa | Methods for improved production of rebaudioside d and rebaudioside m |
CN105492453A (zh) * | 2013-05-28 | 2016-04-13 | 可口可乐公司 | 高纯度的甜菊醇糖苷 |
Also Published As
Publication number | Publication date |
---|---|
US20220235335A1 (en) | 2022-07-28 |
WO2020249138A1 (zh) | 2020-12-17 |
CN112080480A (zh) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112080480B (zh) | 糖基转移酶突变体及其应用 | |
CN109750072B (zh) | 一种酶法制备莱鲍迪苷e的方法 | |
CN113136373B (zh) | 碳苷糖基转移酶及其应用 | |
WO2021170097A1 (zh) | 新型黄酮羟基化酶、合成黄酮碳苷类化合物的微生物及其应用 | |
CN113265433B (zh) | 双功能碳苷糖基转移酶及其应用 | |
CN105087739B (zh) | 一种新的制备稀有人参皂苷的催化体系及其应用 | |
CN108103039B (zh) | 一组岩藻糖基转移酶突变体及其筛选方法和应用 | |
CN109423486B (zh) | 新型udp-糖基转移酶及其应用 | |
EP4379050A1 (en) | Sucrose synthetase and use thereof | |
CN109796516B (zh) | 一组天然与非天然的原人参三醇型人参皂苷的合成方法 | |
CN115449514B (zh) | 一种β-1,2-糖基转移酶及其应用 | |
CN112063678A (zh) | 一种Siamenoside I的生物合成方法 | |
EP2948546B1 (en) | A method of production of rare disaccharides | |
CN115418358B (zh) | 一种糖基转移酶及其应用 | |
CN112553175B (zh) | 糖基转移酶ugt76g1突变体的制备及其应用 | |
US20240263152A1 (en) | Glycosyltransferase and application thereof | |
CN111424065A (zh) | 使用糖基转移酶对甜菊糖苷类化合物进行糖基化方法 | |
CN115478060B (zh) | 一种糖基转移酶及其应用 | |
CN115725528B (zh) | 一种糖基转移酶及其应用 | |
KR20230098495A (ko) | 당전이 효소 변이체 및 이를 이용한 스테비올 배당체의 제조방법 | |
CN107929296A (zh) | 一种非天然人参皂苷的制备方法及应用 | |
CN119530188A (zh) | 构建高效的糖基转移酶级联催化体系在合成新型三萜类糖苷中的应用 | |
JP2013515462A (ja) | 改善された生成物特異性を有するスクロースムターゼ | |
CN113444703B (zh) | 催化糖链延伸的糖基转移酶突变体及其应用 | |
WO2025040179A1 (zh) | 莱鲍迪苷M的制备方法和β-1,2-葡萄糖基转移酶在其中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |