CN112077329B - Preparation method of carbon-based-metal composite material - Google Patents
Preparation method of carbon-based-metal composite material Download PDFInfo
- Publication number
- CN112077329B CN112077329B CN201910511795.5A CN201910511795A CN112077329B CN 112077329 B CN112077329 B CN 112077329B CN 201910511795 A CN201910511795 A CN 201910511795A CN 112077329 B CN112077329 B CN 112077329B
- Authority
- CN
- China
- Prior art keywords
- carbon
- tetrahydrofuran
- fluoride
- naphthalene
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 51
- 239000002905 metal composite material Substances 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- 229910001512 metal fluoride Inorganic materials 0.000 claims abstract description 17
- HRZLEAFPDNDVAZ-UHFFFAOYSA-N lithium;naphthalene;oxolane Chemical compound [Li].C1CCOC1.C1=CC=CC2=CC=CC=C21 HRZLEAFPDNDVAZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- CBQKGISIWKPJMB-UHFFFAOYSA-N naphthalene;oxolane;sodium Chemical compound [Na].C1CCOC1.C1=CC=CC2=CC=CC=C21 CBQKGISIWKPJMB-UHFFFAOYSA-N 0.000 claims abstract description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 15
- 150000004820 halides Chemical class 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000012298 atmosphere Substances 0.000 claims abstract description 11
- 230000001681 protective effect Effects 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000012300 argon atmosphere Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011777 magnesium Substances 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 7
- 239000011591 potassium Substances 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 5
- 238000001291 vacuum drying Methods 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract 5
- 238000001914 filtration Methods 0.000 claims abstract 3
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract 2
- 238000001816 cooling Methods 0.000 claims abstract 2
- 238000001035 drying Methods 0.000 claims abstract 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- 239000012459 cleaning agent Substances 0.000 claims description 6
- 229910052744 lithium Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 claims description 2
- 150000001805 chlorine compounds Chemical group 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 claims description 2
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 claims 1
- 239000002071 nanotube Substances 0.000 claims 1
- -1 sodium naphthalenide-tetrahydrofuran Chemical compound 0.000 claims 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims 1
- 238000013329 compounding Methods 0.000 abstract description 2
- 239000003575 carbonaceous material Substances 0.000 description 28
- 230000008569 process Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000002131 composite material Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Composite Materials (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于材料制备技术领域,具体涉及一种碳基-金属复合材料制备的方法。The invention belongs to the technical field of material preparation, in particular to a method for preparing a carbon-based-metal composite material.
背景技术Background technique
碳材料具有优异的机械性能、电学性能和良好的化学稳定性,在储能、催化、电磁屏蔽等方面具有广泛的应用。为进一步丰富、提升碳材料的性能,以碳材料为基础材料,进行掺杂、复合,成为目前应用研究的热点。其中,以碳材料为载体,负载金属材料,是一个重要的应用方面。Carbon materials have excellent mechanical properties, electrical properties and good chemical stability, and have a wide range of applications in energy storage, catalysis, and electromagnetic shielding. In order to further enrich and improve the properties of carbon materials, doping and compounding with carbon materials as basic materials has become a hot spot of current application research. Among them, the use of carbon materials as a carrier to support metal materials is an important application aspect.
目前碳材料与金属材料的复合工艺主要包括电镀、化学镀以及共沉淀等过程。在这些过程中有由于碳材料本身化学惰性高,往往需要对其进行预处理,对其表面进行改性,提高金属在其表面的润湿性,常规技术过程包括对碳材料进行强氧化处理,提高亲水性,再根据实验需求,进行进一步的敏化和活化,提高金属在碳材料的附着以及附着的均匀性,但上述工艺过程很难获得均匀碳/金属材料复合材料。且由于金属与碳材料浸润性差,金属在碳材料表面形成过程往往是在碳材料表面先形成金属核或者岛,再以此为形核点,控制反应时间,反应金属量,实现金属在碳材料表面的覆盖,而要实现金属完全覆盖碳材料,表面金属复合层往往比较厚。At present, the composite processes of carbon materials and metal materials mainly include electroplating, electroless plating and co-precipitation. In these processes, due to the high chemical inertness of carbon materials, they often need to be pretreated to modify their surfaces to improve the wettability of metals on their surfaces. Conventional technical processes include strong oxidation treatment of carbon materials. Improve the hydrophilicity, and then perform further sensitization and activation according to the experimental requirements to improve the adhesion of metals to carbon materials and the uniformity of adhesion, but the above process is difficult to obtain uniform carbon/metal material composites. Moreover, due to the poor wettability of metals and carbon materials, the formation process of metals on the surface of carbon materials is often to form metal nuclei or islands on the surface of carbon materials, and then use this as the nucleation point to control the reaction time and the amount of reacted metals, so as to realize the metal in the carbon material. Surface coverage, and to achieve complete metal coverage of carbon materials, the surface metal composite layer is often thicker.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种碳基-金属复合材料制备的方法,本发明不仅克服了金属与碳不浸润的问题,同时实现碳与金属的均匀复合。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing a carbon-based metal composite material. The present invention not only overcomes the problem of non-wetting of metal and carbon, but also achieves uniform composite of carbon and metal.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种碳基-金属复合材料制备的方法,包括以下步骤:A method for preparing a carbon-based-metal composite material, comprising the following steps:
(1)将碳基氟化物与卤化物金属盐混合,按重量份数计,所述碳基氟化物为1~1.5份,所述卤化物金属盐为2~6份,在真空或保护气氛下,加热至280~500℃,保持6~120h,自然冷却至20~25℃,所得反应物用清洗剂洗涤,洗涤后在真空或保护气氛下60~100℃干燥12~48h,得到碳基-金属氟化物;所述卤化物金属盐为氯化物金属盐、溴化物金属盐或碘化物金属盐,所述清洗剂为乙醇或四氢呋喃;(1) Mixing carbon-based fluoride and halide metal salt, in parts by weight, the carbon-based fluoride is 1-1.5 parts, and the halide metal salt is 2-6 parts, under vacuum or protective atmosphere , heated to 280-500 °C, kept for 6-120 h, naturally cooled to 20-25 °C, the obtained reactant was washed with a cleaning agent, and dried at 60-100 °C for 12-48 h under vacuum or protective atmosphere to obtain carbonyl - metal fluoride; the halide metal salt is chloride metal salt, bromide metal salt or iodide metal salt, and the cleaning agent is ethanol or tetrahydrofuran;
(2)将所述碳基-金属氟化物与还原剂混合,所述还原剂为钾、镁、萘锂-四氢呋喃或萘钠-四氢呋喃中至少一种:当所述还原剂为钾或镁时,按重量份数计,所述碳基-金属氟化物为1~1.5份,所述金属单质还原剂为3~6份,在真空条件或保护气氛下,加热至300~600℃,保持12~120h,自然冷却至20~25℃,向所得还原产物中滴加甲醇至无气泡冒出,而后过滤、水洗、60~100℃真空干燥12~48h得到碳基-金属复合材料;当所述还原剂为萘锂-四氢呋喃或萘钠-四氢呋喃时,按照重量分数计,所述碳基-金属氟化物为1份,所述萘锂-四氢呋喃、萘钠-四氢呋喃中金属单质还原剂为5~7份,氩气气氛保护下,室温搅拌48~168h,向反应液中滴加甲醇至无气泡冒出,而后过滤、水洗、60~100℃真空干燥12~48h得到碳基-金属复合材料;(2) mixing the carbon-based-metal fluoride with a reducing agent, the reducing agent is at least one of potassium, magnesium, lithium naphthalene-tetrahydrofuran or sodium naphthalene-tetrahydrofuran: when the reducing agent is potassium or magnesium , in parts by weight, the carbon-based-metal fluoride is 1-1.5 parts, the metal element reducing agent is 3-6 parts, under vacuum conditions or protective atmosphere, heated to 300-600 ° C, keep 12 ~120h, naturally cooled to 20 ~ 25 ℃, methanol was added dropwise to the obtained reduction product until no bubbles emerged, and then filtered, washed with water, and vacuum-dried at 60 ~ 100 ℃ for 12 ~ 48h to obtain a carbon-based metal composite material; When the reducing agent is lithium naphthalene-tetrahydrofuran or sodium naphthalene-tetrahydrofuran, in terms of weight fraction, the carbon-based metal fluoride is 1 part, and the metal element reducing agent in the lithium naphthalene-tetrahydrofuran and sodium naphthalene-tetrahydrofuran is 5~ 7 parts, under the protection of argon atmosphere, stir at room temperature for 48-168 hours, add methanol dropwise to the reaction solution until no bubbles emerge, then filter, wash with water, and vacuum dry at 60-100 ℃ for 12-48 hours to obtain the carbon-based metal composite material;
在上述技术方案中,所述碳基氟化物为氟化石墨、氟化石墨微片、氟化炭黑、氟化碳纳米管、氟化石墨烯中至少一种。In the above technical solution, the carbon-based fluoride is at least one of fluorinated graphite, fluorinated graphite microplatelets, fluorinated carbon black, fluorinated carbon nanotubes, and fluorinated graphene.
在上述技术方案中,所述加热过程均在反应釜中进行,所述反应釜的材质为不锈钢或石英。In the above technical solution, the heating process is all carried out in a reaction kettle, and the material of the reaction kettle is stainless steel or quartz.
在上述技术方案中,所述卤化物金属盐为三氯化铁、氯化钴、氯化镍、氯化铋、氯化铂、氯化钽、氯化钌、氯化铜、溴化铜、碘化铜中至少一种。In the above technical scheme, the halide metal salt is ferric chloride, cobalt chloride, nickel chloride, bismuth chloride, platinum chloride, tantalum chloride, ruthenium chloride, cupric chloride, cupric bromide, At least one of copper iodide.
在上述技术方案中,所述保护气氛为氩气,所述真空条件的绝对真空度为10-5Pa~104Pa。In the above technical solution, the protective atmosphere is argon gas, and the absolute vacuum degree of the vacuum condition is 10 -5 Pa to 10 4 Pa.
在上述技术方案中,所述萘锂-四氢呋喃的制备方法为:在氩气气氛下,将锂加到溶解有萘的无水四氢呋喃中,所述锂与萘的摩尔质量比为3:1,搅拌4~24h,得到所述萘锂-四氢呋喃。In the above technical scheme, the preparation method of the lithium naphthalene-tetrahydrofuran is as follows: under an argon atmosphere, lithium is added to the anhydrous tetrahydrofuran in which naphthalene is dissolved, and the molar mass ratio of the lithium to the naphthalene is 3:1, Stir for 4-24 h to obtain the lithium naphthalene-tetrahydrofuran.
在上述技术方案中,所述萘钠-四氢呋喃的制备方法为:在氩气气氛下,将钠加到溶解有萘的无水四氢呋喃中,所述钠与萘的摩尔质量比为3:1,搅拌4~24h,得到所述萘钠-四氢呋喃。In the above technical scheme, the preparation method of the sodium naphthalene-tetrahydrofuran is as follows: under an argon atmosphere, sodium is added to the anhydrous tetrahydrofuran in which naphthalene is dissolved, and the molar mass ratio of the sodium and naphthalene is 3:1, Stir for 4-24 h to obtain the sodium naphthalene-tetrahydrofuran.
在上述技术方案中,所述步骤(1)加热过程中,升温速率为1~5℃/min;In the above technical solution, in the heating process of the step (1), the heating rate is 1~5°C/min;
在上述技术方案中,所述步骤(2)加热过程中,升温速率为1~3℃/min。In the above technical solution, during the heating process of the step (2), the heating rate is 1-3°C/min.
在上述技术方案中,所述步骤(1)中,所述碳基氟化物与卤化物金属盐的质量比为1:3,所述步骤(2)中,所述碳基-金属氟化物与还原剂的质量比为1:3。In the above technical solution, in the step (1), the mass ratio of the carbon-based fluoride to the halide metal salt is 1:3, and in the step (2), the carbon-based-metal fluoride and The mass ratio of reducing agent is 1:3.
本发明的有益效果为:The beneficial effects of the present invention are:
目前,金属-碳基复合材料制备过程多数是采用电镀、化学镀、共沉淀、蒸镀等过程,受限于金属与碳基材料浸润性差,金属与碳基材料复合过程一般是首先在碳材料表面形成岛状金属形核点,再通过控制反应时间、反应原料输入,沿形核点铺开,在碳基材料表面形成金属覆盖层。采用以上过程形成的金属覆盖层,尺度在纳米级。At present, the preparation process of metal-carbon-based composite materials is mostly electroplating, electroless plating, co-precipitation, evaporation and other processes. Due to the poor wettability of metal and carbon-based materials, the composite process of metal-carbon-based materials is generally the first in carbon materials. An island-shaped metal nucleation point is formed on the surface, and then by controlling the reaction time and the input of reaction raw materials, it spreads along the nucleation point to form a metal covering layer on the surface of the carbon-based material. The metal covering layer formed by the above process has a scale of nanometers.
本发明针对金属材料与碳基材料浸润性差,难于实现在碳基材料表面覆盖均匀的金属层。本发明以氟化碳基材料为原始材料,通过氟置换氯反应,在碳基材料表面形成了均匀稳定的金属氟化物。The present invention aims at poor wettability between the metal material and the carbon-based material, and it is difficult to achieve a uniform metal layer covering the surface of the carbon-based material. The present invention takes fluorinated carbon-based material as the original material, and forms uniform and stable metal fluoride on the surface of the carbon-based material through fluorine substitution reaction for chlorine.
金属通过氟与碳基材料相联。氟与碳是通过C-F键相连。金属(X)在碳基材料存在的形式就是C-F-X。而后通过金属蒸汽还原,碳基材料表面的氟化物被还原成金属,使得碳基材料表面形成均匀的金属覆盖层。The metal is attached to the carbon-based material through fluorine. Fluorine and carbon are connected by a C-F bond. The form of metal (X) in carbon-based materials is C-F-X. Then, through metal vapor reduction, the fluoride on the surface of the carbon-based material is reduced to metal, so that a uniform metal coating layer is formed on the surface of the carbon-based material.
与前期金属-碳材料复合过程相比,本发明利用在碳基材料表面呈原子分布状态氟为形核点,以形成氟化物的形式锚定金属原子,还原后可获得的原子尺度的金属覆盖层,得到原子尺度金属-碳基复合材料。Compared with the previous metal-carbon material composite process, the present invention uses fluorine in the atomic distribution state on the surface of the carbon-based material as the nucleation point to anchor the metal atoms in the form of fluoride, and the atomic-scale metal coverage can be obtained after reduction. layer to obtain atomic-scale metal-carbon matrix composites.
附图说明Description of drawings
图1为本发明实施例1的制备流程示意图;Fig. 1 is the preparation flow schematic diagram of the embodiment of the
图2为本发明实施例1的铁-石墨烯元素分布示意图;Fig. 2 is the iron-graphene element distribution schematic diagram of the embodiment of the
图3为本发明实施例1的铁-石墨烯高倍透射电镜图;Fig. 3 is the iron-graphene high-power transmission electron microscope diagram of the embodiment of the
图4为本发明实施例1的铁-石墨烯能谱图;Fig. 4 is the iron-graphene energy spectrogram of the embodiment of the
图5为本发明实施例2的铁-碳纳米管高倍透射电镜图;Fig. 5 is the iron-carbon nanotube high magnification transmission electron microscope picture of the embodiment of the
图6为本发明实施例2铁-碳纳米管能谱图。FIG. 6 is an energy spectrum diagram of iron-carbon nanotubes in Example 2 of the present invention.
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。For those of ordinary skill in the art, other related drawings can be obtained from the above drawings without any creative effort.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions of the present invention are further described below with reference to specific embodiments.
实施例所涉及药品的纯度和厂家The purity and manufacturer of the medicines involved in the examples
实施例所涉及仪器的型号和厂家Models and manufacturers of instruments involved in the examples
实施例1-12Examples 1-12
(1)将碳基氟化物与卤化物金属盐研磨混合,放入反应釜中,抽真空,密封,将所述反应釜置于箱式炉内加热至280~500℃,加热速率为5℃/min,保持6~120h,随炉冷却至20~25℃,打开反应釜,用清洗剂洗掉未反应的卤化物金属盐,洗涤后的反应物真空60~100℃干燥12~48h,得到碳基-金属氟化物;所述碳基氟化物为氟化石墨、氟化石墨微片、氟化炭黑、氟化碳纳米管、氟化石墨烯中至少一种;所述卤化物金属盐为氯化物、溴化物以及碘化物金属盐;所述清洗剂为乙醇或四氢呋喃;(1) grinding and mixing the carbon-based fluoride and the halide metal salt, put into the reaction kettle, vacuumize, seal, and place the reaction kettle in a box furnace to be heated to 280~500 ℃, and the heating rate is 5 ℃ /min, keep for 6~120h, cool down to 20~25℃ with the furnace, open the reaction kettle, wash off the unreacted halide metal salt with a cleaning agent, and dry the washed reactant in vacuum at 60~100℃ for 12~48h to obtain Carbon-based-metal fluoride; the carbon-based fluoride is at least one of fluorinated graphite, fluorinated graphite microplates, fluorinated carbon black, fluorinated carbon nanotubes, and fluorinated graphene; the halide metal salt For chloride, bromide and iodide metal salt; Described cleaning agent is ethanol or tetrahydrofuran;
(2)将所述碳基-金属氟化物与还原剂混合,所述还原剂为钾、镁、萘锂-四氢呋喃或萘钠-四氢呋喃中至少一种。当所述还原剂为钾或镁时,将所述还原剂与所述碳基-金属氟化物混合,放入反应釜中,抽真空,密封,将所述反应釜置于箱式炉内加热至300~600℃,加热速率为3℃/min,保持12~120h,随炉冷却至20~25℃,打开反应釜,向还原产物中滴加甲醇至无气泡冒出,而后过滤、水洗、60~100℃真空干燥12~48h得到碳基-金属复合材料;当所述还原剂为萘锂-四氢呋喃或萘钠-四氢呋喃时,将所述还原剂与所述碳基-金属氟化物混合,倒入反应釜,密封,氩气气氛保护下,室温搅拌48~168h,向反应液中滴加甲醇至无气泡冒出,而后过滤、水洗、60~100℃真空干燥12~48h得到碳基-金属复合材料;(2) Mixing the carbon-based-metal fluoride with a reducing agent, the reducing agent is at least one of potassium, magnesium, lithium naphthalene-tetrahydrofuran or sodium naphthalene-tetrahydrofuran. When the reducing agent is potassium or magnesium, the reducing agent is mixed with the carbon-based-metal fluoride, put into a reactor, evacuated, sealed, and the reactor is heated in a box furnace to 300~600℃, the heating rate is 3℃/min, keep for 12~120h, cool down to 20~25℃ with the furnace, open the reactor, add methanol dropwise to the reduced product until no bubbles emerge, then filter, wash with water, The carbon-based-metal composite material is obtained by vacuum drying at 60-100 °C for 12-48 h; when the reducing agent is lithium naphthalene-tetrahydrofuran or sodium naphthalene-tetrahydrofuran, the reducing agent is mixed with the carbon-based-metal fluoride, Pour it into the reaction kettle, seal it, under the protection of argon atmosphere, stir at room temperature for 48-168 hours, add methanol dropwise to the reaction solution until no bubbles emerge, then filter, wash with water, and vacuum dry at 60-100 ℃ for 12-48 hours to obtain carbonyl- Metal composite materials;
其中,所述碳基-金属复合材料制备过程中各反应物及其质量见表1;所述碳基-金属复合材料制备过程中反应条件见表2Wherein, each reactant and its mass in the preparation process of the carbon-based-metal composite material are shown in Table 1; the reaction conditions in the preparation process of the carbon-based-metal composite material are shown in Table 2
表1Table 1
表2Table 2
其中,实施例7在其它实施例的基础上,步骤(2)采用萘锂-四氢呋喃为还原剂,其中萘钠-四氢呋喃的制备方法为在氩气气氛下,将0.69g钠加到溶解有1.28g萘的30ml无水四氢呋喃中,搅拌6h,获得萘钠-四氢呋喃;磁力搅拌,搅拌速率200转/分钟。Wherein,
其中,实施例8在其它实施例的基础上,步骤(2)采用萘钠-四氢呋喃为还原剂,其中萘锂-四氢呋喃的制备方法为在氩气气氛下,将0.21g锂加到溶解有1.28g萘的30ml无水四氢呋喃中,搅拌5h,获得萘锂-四氢呋喃;磁力搅拌,搅拌速率200转/分钟。Wherein, Example 8, on the basis of other examples, adopts sodium naphthalene-tetrahydrofuran as reducing agent in step (2), wherein the preparation method of lithium naphthalene-tetrahydrofuran is to add 0.21 g of lithium to dissolved 1.28 g of lithium under argon atmosphere. g naphthalene in 30 ml of anhydrous tetrahydrofuran, stirring for 5 h to obtain lithium naphthalene-tetrahydrofuran; magnetic stirring, stirring speed 200 rpm.
结果分析:图2为实施例1的铁-石墨烯元素分布示意图,可以观察到铁在石墨烯表面均匀分布,没有明显的聚集。通过高倍透射电镜观察实施例1的铁-石墨烯表面(图3),未观察有铁的纳米颗粒形成。结合元素成分分析能谱图(图4),分布表征和微观结构表征,可以推断通过上述过程在石墨烯表面形成了均匀的铁。Analysis of results: Figure 2 is a schematic diagram of the distribution of iron-graphene elements in Example 1. It can be observed that iron is uniformly distributed on the graphene surface without obvious aggregation. The iron-graphene surface of Example 1 was observed by high magnification transmission electron microscope (FIG. 3), and the formation of iron nanoparticles was not observed. Combined with elemental composition analysis energy spectrogram (Fig. 4), distribution characterization and microstructure characterization, it can be inferred that uniform iron is formed on the graphene surface through the above process.
图5为实施例2的铁-碳纳米管高倍透射电镜图,透射电镜观察碳管表面、内部组份均匀,未观察到纳米颗粒。图6是铁-碳纳米管的元素成份分析能谱图,能谱分析显示,通过上述过程处理的碳管样品含有原子比2.83%的铁,可以推断通过上述过程在碳管上形成的铁分布均匀。5 is a high-power transmission electron microscope image of the iron-carbon nanotubes of Example 2. The surface and internal components of the carbon tubes are observed by transmission electron microscope to be uniform, and no nanoparticles are observed. Fig. 6 is the energy spectrogram of the elemental composition analysis of iron-carbon nanotubes. The energy spectrum analysis shows that the carbon tube sample treated by the above process contains iron with an atomic ratio of 2.83%, and it can be inferred that the iron distribution formed on the carbon tube by the above process can be inferred. evenly.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been exemplarily described above. It should be noted that, without departing from the core of the present invention, any simple deformation, modification, or other equivalent replacements that can be performed by those skilled in the art without any creative effort fall into the scope of the present invention. the scope of protection of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910511795.5A CN112077329B (en) | 2019-06-13 | 2019-06-13 | Preparation method of carbon-based-metal composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910511795.5A CN112077329B (en) | 2019-06-13 | 2019-06-13 | Preparation method of carbon-based-metal composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112077329A CN112077329A (en) | 2020-12-15 |
CN112077329B true CN112077329B (en) | 2022-10-11 |
Family
ID=73733698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910511795.5A Expired - Fee Related CN112077329B (en) | 2019-06-13 | 2019-06-13 | Preparation method of carbon-based-metal composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112077329B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008030198A1 (en) * | 2006-09-07 | 2008-03-13 | Nanyang Technological University | Electrode composite material |
EP2835177A1 (en) * | 2013-08-06 | 2015-02-11 | Bayer Technology Services GmbH | Method for preparing Co-Mn on carbon catalysts and their use in carbon nanotube synthesis |
CN106410210A (en) * | 2016-10-31 | 2017-02-15 | 复旦大学 | Preparation method of metal hydride/nano carbon composite materials |
CN108134091A (en) * | 2017-12-19 | 2018-06-08 | 中南大学 | A kind of nanometer tin/carbon composite and preparation method thereof |
CN108786868A (en) * | 2018-05-18 | 2018-11-13 | 燕山大学 | A kind of preparation method of nickel phosphorus/fluorine doped reduction-oxidation graphite liberation of hydrogen composite material |
CN109666915A (en) * | 2019-01-30 | 2019-04-23 | 中南大学 | A kind of preparation method of complex metal layer coating carbon nanotubes/graphene composite material |
CN109772379A (en) * | 2019-02-25 | 2019-05-21 | 浙江工业大学 | A nanoscale metal fluoride catalyst with confined structure and its preparation method and application |
-
2019
- 2019-06-13 CN CN201910511795.5A patent/CN112077329B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008030198A1 (en) * | 2006-09-07 | 2008-03-13 | Nanyang Technological University | Electrode composite material |
EP2835177A1 (en) * | 2013-08-06 | 2015-02-11 | Bayer Technology Services GmbH | Method for preparing Co-Mn on carbon catalysts and their use in carbon nanotube synthesis |
CN106410210A (en) * | 2016-10-31 | 2017-02-15 | 复旦大学 | Preparation method of metal hydride/nano carbon composite materials |
CN108134091A (en) * | 2017-12-19 | 2018-06-08 | 中南大学 | A kind of nanometer tin/carbon composite and preparation method thereof |
CN108786868A (en) * | 2018-05-18 | 2018-11-13 | 燕山大学 | A kind of preparation method of nickel phosphorus/fluorine doped reduction-oxidation graphite liberation of hydrogen composite material |
CN109666915A (en) * | 2019-01-30 | 2019-04-23 | 中南大学 | A kind of preparation method of complex metal layer coating carbon nanotubes/graphene composite material |
CN109772379A (en) * | 2019-02-25 | 2019-05-21 | 浙江工业大学 | A nanoscale metal fluoride catalyst with confined structure and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
模板法制备三维多孔石墨烯及其复合材料研究进展;侯朝霞 等;《人工晶体学报》;20190430;第48卷(第4期);第652-659、671页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112077329A (en) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108516528B (en) | A 3D composite structure based on 3D MXene and its general synthesis method | |
CN110467731B (en) | Preparation method of stable ultrathin mesoporous metal organic framework material | |
CN102002652B (en) | Carbon nano tube reinforced metal matrix composite material and in-situ preparation method thereof | |
CN107744822B (en) | A kind of metal phosphide-porous carbon framework composite material and its preparation method and application | |
CN109336091B (en) | A kind of graphene in-situ growth silver nanowire hybrid conductive material and preparation method and application thereof | |
CN113121838B (en) | A kind of atomic layer deposition-assisted preparation method of MOF/carbon composite material, obtained product and application | |
CN114214657B (en) | Molybdenum-based nitride/carbide electrocatalyst, and preparation method and application thereof | |
CN101864547A (en) | Preparation method of uniformly dispersed carbon nanotube reinforced aluminum matrix composite | |
CN104209515B (en) | A kind of preparation method of CNT coating metal particles | |
CN112981444A (en) | CoP @ MoS2Composite material and preparation method thereof | |
Zou et al. | Controllable self-catalytic fabrication of carbon nanomaterials mediated by a nickel metal organic framework | |
CN109249016B (en) | Preparation method of graphene/magnesium composite powder for 3D printing | |
CN110577209A (en) | Preparation method of in-situ synthesis of carbon nanotube surface-supported copper oxide nanoparticles | |
CN112077329B (en) | Preparation method of carbon-based-metal composite material | |
CN108555286A (en) | A kind of nickel copper-clad micron film, preparation method and its application of nucleocapsid | |
CN105695804B (en) | Preparation method of high-thermal-conductivity aluminum base graphene composite material | |
CN118437309A (en) | A method for synthesizing a ternary metal catalyst for synthesizing single-walled/oligo-walled carbon nanotubes | |
CN109524645B (en) | Method for preparing tin/copper/carbon composite material with assistance of chelating agent | |
CN115945689B (en) | Preparation method of graphene composite porous copper foam | |
CN106348282A (en) | Double helix carbon fiber graphene composite material and preparation method thereof | |
CN115028847B (en) | A CoNi alloy MOF porous material and its preparation and application | |
CN112979315B (en) | Preparation method of high-temperature-resistant, antioxidant and heat-conducting graphene-based ceramic composite material | |
CN117920245A (en) | A method for preparing a high entropy alloy nanocatalyst for growing carbon nanotubes | |
CN110562958B (en) | Metal nitride @ nitrogen-containing mesoporous carbon nano carbon spheres and preparation method thereof | |
CN107974675B (en) | A kind of high-strength aluminum alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221011 |