CN112067632A - A kind of power equipment detection cloud platform and detection method - Google Patents
A kind of power equipment detection cloud platform and detection method Download PDFInfo
- Publication number
- CN112067632A CN112067632A CN202010498546.XA CN202010498546A CN112067632A CN 112067632 A CN112067632 A CN 112067632A CN 202010498546 A CN202010498546 A CN 202010498546A CN 112067632 A CN112067632 A CN 112067632A
- Authority
- CN
- China
- Prior art keywords
- detection
- data
- module
- input
- voiceprint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 328
- 230000007547 defect Effects 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims description 20
- 238000013527 convolutional neural network Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims 1
- 238000007689 inspection Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2697—Wafer or (micro)electronic parts
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Acoustics & Sound (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
技术领域technical field
本发明涉及设备检测领域,具体涉及一种电力设备检测云平台及检测方法。The invention relates to the field of equipment detection, in particular to a cloud platform for detection of electric power equipment and a detection method.
背景技术Background technique
近年来,电力设备缺陷识别检测技术的研究取得了较大进展,国内外研发了多种针对电力设备的缺陷检测方法,例如X光检测法(使用X光对电力设备进行扫描,根据扫描结果确定缺陷类型以及缺陷位置)、红外检测法(采用红外相机对电力设备进行扫描,根据扫描结果确定缺陷类型以及缺陷位置)以及声纹检测法(使用声纹采集设备对电力设备进行扫描,根据扫描结果确定缺陷类型以及缺陷位置)等。In recent years, great progress has been made in the research on defect identification and detection technology of power equipment. A variety of defect detection methods for power equipment have been developed at home and abroad, such as X-ray detection method (using X-ray to scan the power equipment, and determine the Defect type and defect location), infrared detection method (using an infrared camera to scan the power equipment, and determining the defect type and defect position according to the scanning results) and voiceprint detection method (using a voiceprint acquisition device to scan the power equipment, according to the scanning results. Determine the defect type and defect location), etc.
虽然现在有很多电力设备缺陷检测技术,但是每种检测方法均是独立的,即若需要对同一电力设备进行X光检测、红外检测以及声纹检测时,操作人员需要使用三套设备对同一电力设备分别进行检测,全面检测的周期长。并且随着电力设备数量的增加,电力设备缺陷识别检测过程中产生的数据成几何性增长,传统的电力检测系统难以处理越来越庞大的数据。Although there are many electrical equipment defect detection technologies, each detection method is independent, that is, if X-ray detection, infrared detection and voiceprint detection are required for the same electrical equipment, the operator needs to use three sets of equipment to detect the same electrical equipment. The equipment is tested separately, and the cycle of comprehensive testing is long. And with the increase of the number of power equipment, the data generated in the process of power equipment defect identification and detection increases geometrically, and it is difficult for the traditional power detection system to process the increasingly huge data.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种电力设备检测云平台及检测方法,云平台能够同时对同一设备进行多种检测,检测周期短且运行可靠性高。The purpose of the present invention is to provide a power equipment detection cloud platform and a detection method, the cloud platform can perform multiple detections on the same equipment at the same time, and the detection period is short and the operation reliability is high.
为实现上述目的,本发明公开了一种电力设备缺陷检测云平台,其包括:输入模块、分类模块、检测模块以及输出模块。电力设备的数据通过所述输入模块输入至所述云平台;所述分类模块对输入至所述云平台的数据进行识别并根据所述数据所对应的缺陷检测方法对所述数据进行分类;所述检测模块同时对经所述分类模块分类后的数据按照对应的缺陷检测方法进行检测并产生相应的检测结果;所述输出模块接收所述检测模块的检测结果并将所述检测结果输出。In order to achieve the above purpose, the present invention discloses a cloud platform for defect detection of electric power equipment, which includes: an input module, a classification module, a detection module and an output module. The data of the power equipment is input to the cloud platform through the input module; the classification module identifies the data input to the cloud platform and classifies the data according to the defect detection method corresponding to the data; The detection module simultaneously detects the data classified by the classification module according to the corresponding defect detection method and generates corresponding detection results; the output module receives the detection results of the detection module and outputs the detection results.
优选地,所述云平台还包括平台支撑模块,所述平台支撑模块保障所述输入模块、所述分类模块、所述检测模块以及所述输出模块稳定运行。Preferably, the cloud platform further includes a platform support module, which ensures stable operation of the input module, the classification module, the detection module and the output module.
优选地,所述分类模块包括用于对操作人员人工通过所述输入模块输入的数据进行分类的第一分类单元以及用于对其他设备通过所述输入模块输入的数据进行分类的第二分类单元。Preferably, the classification module includes a first classification unit for classifying data manually input by an operator through the input module and a second classification unit for classifying data input by other devices through the input module .
优选地,所述第一分类单元将所述操作人员输入的数据划分为第一X光数据、第一红外数据以及第一声纹数据;所述第二分类单元将所述其他设备输入的数据划分为第二X光数据、第二红外数据以及第二声纹数据。Preferably, the first classification unit divides the data input by the operator into the first X-ray data, the first infrared data and the first voiceprint data; the second classification unit divides the data input by the other devices It is divided into second X-ray data, second infrared data and second voiceprint data.
优选地,所述第一分类单元包括第一存储构件,所述第一存储构件存储供所述第一分类单元使用的分类规则;所述第二分类单元包括第二存储构件,所述第二存储构件存储供所述第二分类单元使用的分类规则。Preferably, the first sorting unit includes a first storage member that stores sorting rules for use by the first sorting unit; the second sorting unit includes a second storage member, the second sorting unit The storage means stores classification rules for use by the second classification unit.
优选地,所述检测模块包括X光检测单元,所述X光检测单元检测所述第一X光数据以及所述第二X光数据;红外检测单元,所述红外检测单元检测所述第一红外数据以及所述第二红外数据;以及声纹检测单元,所述声纹检测单元检测所述第一声纹数据以及所述第二声纹数据。Preferably, the detection module includes an X-ray detection unit that detects the first X-ray data and the second X-ray data; an infrared detection unit that detects the first X-ray data infrared data and the second infrared data; and a voiceprint detection unit that detects the first voiceprint data and the second voiceprint data.
优选地,所述X光检测单元包括用于对所述第一X光数据以及所述第二X光数据进行X光故障检测及故障定位的第一检测构件;所述红外检测单元包括用于对所述第一红外数据以及所述第二红外数据进行红外故障检测及故障定位的第二检测构件;所述声纹检测单元包括对所述第一声纹数据以及所述第二声纹数据进行声纹故障检测及故障定位的第三检测构件。Preferably, the X-ray detection unit includes a first detection member for performing X-ray fault detection and fault location on the first X-ray data and the second X-ray data; the infrared detection unit includes a A second detection component for infrared fault detection and fault location for the first infrared data and the second infrared data; the voiceprint detection unit includes a detection of the first voiceprint data and the second voiceprint data A third detection component for voiceprint fault detection and fault location.
优选地,所述检测模块包括至少两个所述X光检测单元、至少两个所述红外检测单元以及至少两个所述声纹检测单元。Preferably, the detection module includes at least two of the X-ray detection units, at least two of the infrared detection units and at least two of the voiceprint detection units.
优选地,所述平台支撑模块根据每个X光检测单元的配置以及负载率将输入所述检测模块中的X光数据分配至至少一个X光检测单元中;所述平台支撑模块根据每个红外检测单元的配置以及负载率将输入所述检测模块中的红外数据分配至至少一个红外检测单元中;所述平台支撑模块根据每个声纹检测单元的配置以及负载率将输入所述检测模块中的声纹数据分配至至少一个声纹检测单元中。Preferably, the platform support module distributes the X-ray data input into the detection module to at least one X-ray detection unit according to the configuration and load rate of each X-ray detection unit; the platform support module according to each infrared The configuration and load rate of the detection unit distribute the infrared data input into the detection module to at least one infrared detection unit; the platform support module will input the infrared data into the detection module according to the configuration and load rate of each voiceprint detection unit The voiceprint data is distributed to at least one voiceprint detection unit.
本发明的实施例还提供了一种使用上述云平台对电力设备进行检测的电力设备缺陷检测方法,其包括以下步骤:S1、将电力设备的数据通过所述输入模块输入至所述云平台中;S2、所述分类模块对输入所述云平台的数据进行识别并将所述数据依照对应的缺陷检测方法进行分类;S3、所述检测模块同时对经所述分类模块分类后的数据根据对应的缺陷检测方法进行检测并产生相应的检测结果;S4、以及所述输出模块接收所述检测结果并将所述检测结果输出。An embodiment of the present invention also provides a method for detecting electrical equipment defects using the above-mentioned cloud platform to detect electrical equipment, which includes the following steps: S1. Input the data of the electrical equipment into the cloud platform through the input module S2, the classification module identifies the data entered into the cloud platform and classifies the data according to the corresponding defect detection method; S3, the detection module simultaneously classifies the data through the classification module according to the corresponding The defect detection method is used to detect and generate corresponding detection results; S4, and the output module receives the detection results and outputs the detection results.
优选地,在所述步骤S2与S3之间还包括以下步骤:给所述检测模块中配置高、负载低的检测单元配置更高的权重,让其处理更多的数据;给所述检测模块中配置低、负载高的检测单元分配较低的权重,让其处理少量的数据;且为保证负载均衡,需满足公式式中,C(S)为所述检测模块中被选中的检测单元的总连接数、W(S)为所述检测模块中被选中的检测单元被分配的权重、C(Sn)为所述检测模块中未被选中的检测单元的总连接数、W(Sn)为所述检测模块中未被选中的检测单元被分配的权重。Preferably, between the steps S2 and S3, the following steps are further included: assign a higher weight to the detection unit with high configuration and low load in the detection module, so that it can process more data; The detection unit with low configuration and high load is assigned a lower weight to allow it to process a small amount of data; and in order to ensure load balance, the formula needs to be satisfied In the formula, C(S) is the total number of connections of the selected detection units in the detection module, W(S) is the weight assigned to the selected detection units in the detection module, and C(Sn) is the The total number of connections of unselected detection units in the detection module, W(Sn), is the weight assigned to the unselected detection units in the detection module.
优选地,所述步骤S2具体为:若电力设备的检测数据是操作人员人工输入至所述输入模块中的,则采用所述分类模块的第一存储构件中存储的分类规则对电力设备的检测数据进行分类;若电力设备的检测数据是检测设备输入至所述输入模块中的,则依据所述分类模块的第二存储构件中存储的分类规则对电力设备的检测数据进行分类。Preferably, the step S2 is specifically as follows: if the detection data of the power equipment is manually input by the operator into the input module, use the classification rules stored in the first storage member of the classification module to detect the power equipment classifying the data; if the detection data of the electric equipment is input into the input module by the detection equipment, classify the detection data of the electric equipment according to the classification rules stored in the second storage component of the classification module.
优选地,所述步骤S3具体为:所述检测模块中的X光检测单元检测操作人员人工输入的第一X光数据以及检测设备输入的第二X光数据、所述检测模块中的红外检测单元检测操作人员人工输入的第一红外数据以及检测设备输入的第二红外数据和/或所述检测模块中的声纹检测单元检测操作人员人工输入的第一声纹数据以及检测设备输入的第二声纹数据;Preferably, the step S3 is specifically: the X-ray detection unit in the detection module detects the first X-ray data manually input by the operator, the second X-ray data input by the detection device, and the infrared detection in the detection module. The unit detects the first infrared data manually input by the operator and the second infrared data input by the detection device and/or the voiceprint detection unit in the detection module detects the first voiceprint data manually input by the operator and the first voiceprint data input by the detection device. Two voiceprint data;
所述X光检测单元、所述红外检测单元以及所述声纹检测单元通过卷积神经网络分别对所述第一X光数据及第二X光数据、所述第一红外数据及所述第二红外数据、所述第一声纹数据及所述第二声纹数据进行分析处理得到故障类型以及故障位置,从而得到检测结果。The X-ray detection unit, the infrared detection unit and the voiceprint detection unit respectively analyze the first X-ray data and the second X-ray data, the first infrared data and the first X-ray data through a convolutional neural network. The two infrared data, the first voiceprint data and the second voiceprint data are analyzed and processed to obtain the fault type and fault location, thereby obtaining the detection result.
通过采用上述技术方案,本发明主要有以下技术效果:By adopting the above-mentioned technical scheme, the present invention mainly has the following technical effects:
1.检测单元同时进行X光检测、红外检测以及声纹检测,能够显著缩短电力设备全面检测的周期;1. The detection unit performs X-ray detection, infrared detection and voiceprint detection at the same time, which can significantly shorten the cycle of comprehensive detection of power equipment;
2.云平台可根据操作人员的人工操作对人工输入云平台中的电力设备的数据进行分类或对其他设备输入至云平台中的电力设备的数据进行自动分类,云平台满足自动操作或手动操作的工作模式,云平台的可靠性高;2. The cloud platform can classify the data manually input to the power equipment in the cloud platform according to the manual operation of the operator or automatically classify the data input by other devices to the power equipment in the cloud platform. The cloud platform can satisfy automatic operation or manual operation. The working mode of the cloud platform is high, and the reliability of the cloud platform is high;
3.根据检测单元内的负载情况合理分配电力设备的数据,提高云平台运行的可靠性,避免云平台因某一检测单元需处理的数据过多导致云平台崩溃的情况出现。3. According to the load situation in the detection unit, the data of the power equipment is reasonably allocated, so as to improve the reliability of the cloud platform operation, and avoid the cloud platform from crashing due to too much data to be processed by a certain detection unit.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为根据本发明实施例的电力设备检测云平台的结构示意图;1 is a schematic structural diagram of a cloud platform for power equipment detection according to an embodiment of the present invention;
图2为根据本发明实施例的分类模块和检测模块的结构示意图;2 is a schematic structural diagram of a classification module and a detection module according to an embodiment of the present invention;
图3为根据本发明实施例的检测方法的流程图。FIG. 3 is a flowchart of a detection method according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present invention. The appearances of the phrase in various places in the specification are not necessarily all referring to the same embodiment, nor a separate or alternative embodiment that is mutually exclusive of other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
参照图1,本实施例公开了一种电力设备检测云平台,其包括输入模块、分类模块、检测模块以及输出模块。电力设备的数据通过输入模块输入至云平台;分类模块对输入至云平台的数据进行识别并将所述数据依照对应的缺陷检测方法进行分类;检测模块同时对经分类模块分类后的数据进行对应缺陷检测方法的检测并产生相应的检测结果;输出模块接收检测结果并将检测结果输出。Referring to FIG. 1 , this embodiment discloses a power equipment detection cloud platform, which includes an input module, a classification module, a detection module, and an output module. The data of the power equipment is input to the cloud platform through the input module; the classification module identifies the data input to the cloud platform and classifies the data according to the corresponding defect detection method; the detection module also corresponds to the data classified by the classification module The defect detection method detects and generates corresponding detection results; the output module receives the detection results and outputs the detection results.
为保障云平台的稳定运行,本实施例中的云平台还包括平台支撑模块,平台支撑模块保障输入模块、分类模块、检测模块以及输出模块稳定运行。本实施例中的平台支撑模块具有服务熔断以及服务监控等功能。其中,由于本实施例中的云平台中的各模块之间采用分布式集群的方式进行部署,服务熔断是指当输入模块、分类模块、检测模块和输出模块中的某个或某多个发生故障时,平台支撑模块关闭发生故障的模块从而保证其他模块正常运行,即防止出现“雪崩效应”;服务监控指平台支撑模块监控输入模块、分类模块、检测模块以及输出模块的工作状态,保证输入模块、分类模块、检测模块以及输出模块的正常运行。In order to ensure the stable operation of the cloud platform, the cloud platform in this embodiment further includes a platform support module, and the platform support module ensures stable operation of the input module, the classification module, the detection module and the output module. The platform support module in this embodiment has functions such as service fuse and service monitoring. Among them, since the modules in the cloud platform in this embodiment are deployed in a distributed cluster manner, service fuse refers to when one or more of the input module, the classification module, the detection module and the output module occur. In the event of a failure, the platform support module shuts down the failed module to ensure the normal operation of other modules, that is, to prevent the "avalanche effect"; service monitoring refers to the platform support module monitoring the working status of the input module, classification module, detection module and output module to ensure input The normal operation of modules, classification modules, detection modules, and output modules.
参照图1及图2,输入云平台中的数据包括操作人员人工输入云平台中的数据以及其他设备输入云平台中的数据(例如巡检机器人输入的红外图像、外部摄像头拍摄到的视频画面、声纹传感器传回的相关数据等)。为方便分类模块对不同来源的数据进行分类,分类模块包括第一分类单元以及第二分类单元,其中,第一分类单元对操作人员人工通过输入模块输入的数据进行分类,第二分类单元对其他设备通过输入模块输入的数据进行分类。第一分类单元包括第一存储构件,第一存储构件中存储有供第一分类单元使用的分类规则,第一分类单元依据其储存的分类规则对操作人员人工通过输入模块输入的数据进行分类,将其划分为第一X光数据、第一红外数据以及第一声纹数据;同样地,第二分类单元包括第二存储构件,第二存储构件中存储有第二分类单元的识别规则,第二分类单元依据其储存的分类规则对其他设备通过输入模块输入的数据进行分类,将其划分为第二X光数据、第二红外数据以及第二声纹数据。在此对第一存储构件中存储的分类规则以及第二存储构件中存储的分类规则不做限定。优选地,本实施例中的第一存储构件中存储的分类规则由操作人员自行选择,即,操作人员输入电力设备的数据时,人工对电力设备的数据进行分类;第二存储构件中储存的分类规则为根据设备序号进行分类,例如,将采集红外图像的巡检机器人、摄像头等设备的编号设置为1,采集X光图像的巡检机器人、摄像头等设备的编号设置为2,将声纹传感器等声纹数据采集设备的编号设置为3,分类模块依据数据来源将编号为1的设备输入的数据划分为第二红外数据,将编号为2的设备输入的数据划分为第二X光数据以及将编号为3的设备输入的数据划分为第二声纹数据。1 and 2, the data input in the cloud platform includes the data manually input by the operator in the cloud platform and the data input by other equipment in the cloud platform (such as infrared images input by inspection robots, video images captured by external cameras, related data returned by the voiceprint sensor, etc.). In order to facilitate the classification module to classify data from different sources, the classification module includes a first classification unit and a second classification unit, wherein the first classification unit classifies the data manually input by the operator through the input module, and the second classification unit classifies other data. Devices are classified by the data entered by the input module. The first classification unit includes a first storage member, the first storage member stores classification rules for the first classification unit, and the first classification unit classifies the data manually input by the operator through the input module according to the stored classification rules, It is divided into the first X-ray data, the first infrared data and the first voiceprint data; similarly, the second classification unit includes a second storage member, and the second storage member stores the identification rules of the second classification unit, and the second classification unit includes the second storage member. The second classification unit classifies the data input by other devices through the input module according to the classification rules stored therein, and divides it into second X-ray data, second infrared data and second voiceprint data. The classification rules stored in the first storage component and the classification rules stored in the second storage component are not limited herein. Preferably, the classification rules stored in the first storage member in this embodiment are selected by the operator, that is, when the operator inputs the data of the power equipment, the data of the power equipment is manually classified; the data stored in the second storage member is The classification rule is to classify according to the device serial number. For example, set the number of the inspection robot, camera and other equipment that collects infrared images to 1, and set the number of the inspection robot, camera and other equipment to collect X-ray images to 2. The number of voiceprint data acquisition devices such as sensors is set to 3, and the classification module divides the data input by the device numbered 1 into the second infrared data according to the data source, and the data input by the device numbered 2 is divided into the second X-ray data and dividing the data input by the device numbered 3 into second voiceprint data.
为同时对分类后的数据进行检测,云平台的检测模块包括X光检测单元、红外检测单元以及声纹检测单元。其中,X光检测单元检测第一X光数据以及第二X光数据,红外检测单元检测第一红外数据以及第二红外数据,声纹检测单元检测第一声纹数据以及第二声纹数据。X光检测单元包括第一检测构件,第一检测构件对第一X光数据以及第二X光数据进行X光故障检测及故障定位;红外检测单元包括第二检测构件,第二检测构件对第一红外数据以及第二红外数据进行红外故障检测及故障定位;声纹检测单元包括第三检测构件,第三检测构件对第一声纹数据以及第二声纹数据进行声纹故障检测及故障定位。在此对第一检测构件、第二检测构件以及第三检测构件的工作方式不做限定,本实施例中第一检测构件、第二检测构件以及第三检测构件均通过卷积神经网络对数据进行分析处理,获取设备的故障位置和故障种类。In order to detect the classified data at the same time, the detection module of the cloud platform includes an X-ray detection unit, an infrared detection unit, and a voiceprint detection unit. The X-ray detection unit detects the first X-ray data and the second X-ray data, the infrared detection unit detects the first infrared data and the second infrared data, and the voiceprint detection unit detects the first voiceprint data and the second voiceprint data. The X-ray detection unit includes a first detection member, and the first detection member performs X-ray fault detection and fault location on the first X-ray data and the second X-ray data; the infrared detection unit includes a second detection member. An infrared data and a second infrared data are used for infrared fault detection and fault location; the voiceprint detection unit includes a third detection member, and the third detection member performs voiceprint fault detection and fault location on the first voiceprint data and the second voiceprint data . The working modes of the first detection component, the second detection component, and the third detection component are not limited here. In this embodiment, the first detection component, the second detection component, and the third detection component all use a convolutional neural network to analyze the data Perform analysis and processing to obtain the fault location and fault type of the equipment.
为提高云平台的检测效率,保证云平台能够同时处理多台电力设备的数据,本实施例中的检测模块包括至少两个X光检测单元、至少两个红外检测单元以及至少两个声纹检测单元。通过上述设置,检测模块能够同时处理多台电力设备的数据,保证输入云平台中的数据量大时,云平台能够快速得出检测结果,从而提高云平台的检测效率。In order to improve the detection efficiency of the cloud platform and ensure that the cloud platform can process the data of multiple power devices at the same time, the detection module in this embodiment includes at least two X-ray detection units, at least two infrared detection units, and at least two voiceprint detection units. unit. Through the above settings, the detection module can process the data of multiple power devices at the same time, ensuring that when the amount of data input into the cloud platform is large, the cloud platform can quickly obtain the detection result, thereby improving the detection efficiency of the cloud platform.
为避免云平台中因某个X光检测单元、某个红外检测单元和/或某个声纹检测单元中负载过大导致云平台出现故障甚至崩溃,平台支撑模块需要合理地将数据合理分类到每个检测单元中。本实施例中的平台支撑模块根据每个X光检测单元的配置及负载率将检测模块中的X光数据分配至至少一个X光检测单元中,即,优先将X光数据输入至配置高且负载率低的X光检测单元中;平台支撑模块根据每个红外检测单元的配置及负载率将检测模块中的红外数据分配至至少一个红外检测单元中,即,优先将红外数据输入至配置高且负载率低的红外检测单元中;平台支撑模块根据每个声纹检测单元的配置及负载率将检测模块中的声纹数据分配至至少一个声纹检测单元中,即,优先将声纹数据输入至配置高且负载率低的声纹检测单元中。通过上述设置,提高云平台的灵活性和数据处理能力。In order to prevent the cloud platform from malfunctioning or even crashing due to excessive load in an X-ray detection unit, an infrared detection unit and/or a voiceprint detection unit in the cloud platform, the platform support module needs to reasonably classify the data into in each detection unit. The platform support module in this embodiment allocates the X-ray data in the detection module to at least one X-ray detection unit according to the configuration and load rate of each X-ray detection unit, that is, preferentially inputs the X-ray data to the high-configuration and In the X-ray detection unit with a low load rate; the platform support module allocates the infrared data in the detection module to at least one infrared detection unit according to the configuration and load rate of each infrared detection unit, that is, the infrared data is preferentially input to the configuration high. In the infrared detection unit with low load rate; the platform support module allocates the voiceprint data in the detection module to at least one voiceprint detection unit according to the configuration and load rate of each voiceprint detection unit, that is, prioritizes the voiceprint data Input to the voiceprint detection unit with high configuration and low load rate. Through the above settings, the flexibility and data processing capability of the cloud platform are improved.
本实施例中输出模块采用报表的形式输出检测结果,即输出模块产生包括框选识别后的图像,缺陷类型,缺陷数量统计等内容的检测报表,操作人员根据检测报表对电力设备进行检修。In this embodiment, the output module outputs the detection result in the form of a report, that is, the output module generates a detection report including the image after frame selection and identification, defect type, defect quantity statistics, etc., and the operator repairs the power equipment according to the inspection report.
为更好地理解本实施例中电力设备检测云平台的工作原理,可将本实施例的云平台抽象为一个六元组Cloud,且Cloud={Ms,Mb,Input,Fault,Cnn,Kb}。其中Ms为分类模块、检测模块与输出模块的集合,Ms={Msg,Mai,Mse},Msg为分类模块的入口,Mai包括第一分类单元、第二分类单元、第一检测构件以及第二检测构件,Mse为输出模块,根据检测结果生成检测报表并输出,Ms的三元组表示数据进入分类模块中分类并通过检测模块检测以得到检测结果并形成检测报表通过输出模块输出。Mb为平台支撑模块,平台支撑模块保障云平台各模块的正常运行,所述平台支撑模块包括服务注册中心,检测模块中的所有检测单元均在所述服务注册中心中进行注册形成服务列表,具体来说,服务注册中心根据每个检测单元的相关信息生成包括服务名、服务请求地址、端口号等在内的注册信息并以服务列表的形式进行存储。例如{{“ser_name”:“Infrared_ser”,“ser_address”:“192.168.1.1”,“ser_prot”:“5002”},…}其中,ser_name指已注册的检测单元的服务名、ser_address指已注册的检测单元的服务请求地址,ser_prot指已注册的检测单元的端口号。Msg将得到的检测请求信息与服务列表进行对比,获取对应检测单元的地址和端口,通过网关路由的方式将电力设备的数据输入至该检测单元中进行检测。Input为输入模块,电力设备的数据通过输入模块输入至Ms中,Input中的数据包括操作人员人工输入云平台中的数据以及检测设备输入云平台中的数据。Fault为Ms得到的检测结果,Fault包括电力设备的故障位置及缺陷类型。Cnn为卷积神经网络的集合{Cnnj},Cnnj表示分析出第j个故障检测的卷积神经网络。Kb为事件规则存储库,其包括第一存储构件以及第二存储构件,云平台依据Kb中存储的分类规则对所输入的电力设备的检测数据进行分类,例如将采集红外图像的巡检机器人、摄像头等设备的编号设置为1,采集X光图像的巡检机器人、摄像头等设备的编号设置为2以及将采集声纹检测设备的编号设置为3,通过设备编号去获取对应的检测单元的请求方式,具体如下表所示。In order to better understand the working principle of the power equipment detection cloud platform in this embodiment, the cloud platform in this embodiment can be abstracted into a six-tuple Cloud, and Cloud={Ms, Mb, Input, Fault, Cnn, Kb} . Wherein Ms is the set of classification module, detection module and output module, Ms={Msg, Mai, Mse}, Msg is the entry of the classification module, Mai includes the first classification unit, the second classification unit, the first detection component and the second The detection component, Mse is the output module, and the detection report is generated and output according to the detection result. The triple of Ms indicates that the data enters the classification module for classification and is detected by the detection module to obtain the detection result and form the detection report and output through the output module. Mb is a platform support module, which ensures the normal operation of each module of the cloud platform. The platform support module includes a service registration center, and all detection units in the detection module are registered in the service registration center to form a service list. Specifically, In other words, the service registration center generates registration information including service name, service request address, port number, etc. according to the relevant information of each detection unit, and stores it in the form of a service list. For example {{"ser_name": "Infrared_ser", "ser_address": "192.168.1.1", "ser_prot": "5002"}, ...} where ser_name refers to the service name of the registered detection unit, and ser_address refers to the registered detection unit. The service request address of the detection unit, ser_prot refers to the port number of the registered detection unit. The Msg compares the obtained detection request information with the service list, obtains the address and port of the corresponding detection unit, and inputs the data of the power equipment into the detection unit for detection by means of gateway routing. Input is an input module. The data of the power equipment is input into Ms through the input module. The data in the Input includes the data manually input by the operator into the cloud platform and the data input by the detection device into the cloud platform. Fault is the detection result obtained by Ms, and Fault includes the fault location and defect type of the power equipment. Cnn is a set of convolutional neural networks {Cnnj}, and Cnnj represents the convolutional neural network that analyzes the jth fault detection. Kb is an event rule storage library, which includes a first storage component and a second storage component. The cloud platform classifies the input detection data of electric equipment according to the classification rules stored in Kb. For example, the inspection robot that collects infrared images, The number of the camera and other equipment is set to 1, the number of the inspection robot, camera and other equipment that collects X-ray images is set to 2, and the number of the voiceprint detection device is set to 3, and the request of the corresponding detection unit is obtained through the device number. method, as shown in the table below.
表1.Kb工作方式Table 1. How Kb works
上表中的Ser_name为分类规则,Req_data为分类结果。Ser_name in the above table is the classification rule, and Req_data is the classification result.
参照图3,本实施例中还包括一种使用云平台对电力设备进行检测的方法,其包括以下步骤:S1、将电力设备的数据通过输入模块输入至云平台中;S2、分类模块对输入云平台的数据进行识别并将数据依照对应的缺陷检测方法进行分类;S3、检测模块同时对经分类模块分类后的数据按照对应的缺陷检测方法进行检测并产生相应的检测结果;S4、输出模块接收检测结果并将检测结果输出。Referring to FIG. 3 , this embodiment also includes a method for detecting power equipment using a cloud platform, which includes the following steps: S1, inputting data of the power equipment into the cloud platform through an input module; S2, classifying the input module for input Identify the data of the cloud platform and classify the data according to the corresponding defect detection method; S3. The detection module simultaneously detects the data classified by the classification module according to the corresponding defect detection method and generates corresponding detection results; S4. Output module Receive the test results and output the test results.
步骤S1中将电力设备的数据通过输入模块输入至云平台中具体为:操作人员人工将电力设备的数据输入Input中和/或检测设备(巡检机器人、外部摄像头、监测传感器等用于检测电力设备的设备)将电力设备的检测数据输入Input中,Input通过无线网桥的方式将数据传输至Ms中。In step S1, inputting the data of the power equipment into the cloud platform through the input module is specifically: the operator manually inputs the data of the power equipment into the Input and/or the detection equipment (inspection robot, external camera, monitoring sensor, etc. is used to detect the power equipment) input the detection data of the power equipment into the Input, and the Input transmits the data to the Ms through a wireless bridge.
步骤S2中分类模块对输入至云平台的数据进行识别并将数据依照对应的缺陷检测方法进行分类具体为:云平台根据Kb中存储的分类规则对Input中输入的数据进行分类,即,若电力设备的检测数据是操作人员人工输入至输入模块中的,则采用第一存储构件中存储的分类规则对电力设备的检测数据进行分类和/或若电力设备的检测数据是检测设备输入至输入模块中的,则依据第二存储构件中存储的分类规则对电力设备的检测数据进行分类。In step S2, the classification module identifies the data input to the cloud platform and classifies the data according to the corresponding defect detection method. Specifically, the cloud platform classifies the data input in the Input according to the classification rules stored in Kb, that is, if the power The detection data of the equipment is manually input by the operator into the input module, then the classification rules stored in the first storage member are used to classify the detection data of the electric equipment and/or if the detection data of the electric equipment is input to the input module by the detection equipment In the case, the detection data of the power equipment is classified according to the classification rules stored in the second storage component.
步骤S3中检测模块同时对经分类模块分类后的数据按照对应的缺陷检测方法进行检测并产生相应的检测结果具体为:使用X光检测单元检测第一X光数据以及第二X光数据、使用红外检测单元检测第一红外数据以及第二红外数据和/或使用声纹检测单元检测第一声纹数据以及第二声纹数据。In step S3, the detection module simultaneously detects the data classified by the classification module according to the corresponding defect detection method and generates a corresponding detection result. Specifically, the X-ray detection unit is used to detect the first X-ray data and the second X-ray data; The infrared detection unit detects the first infrared data and the second infrared data and/or uses the voiceprint detection unit to detect the first voiceprint data and the second voiceprint data.
由于云平台中每个X光检测单元、每个红外检测单元以及每个声纹检测单元的配置和/或负载率均不相同,因此需要合理地将电力设备的检测数据输送至每个X光检测单元、每个红外检测单元以及每个声纹检测单元中,本实施例中采用负载均衡策略合理分配数据,具体为:给配置高、负载低的检测单元配置更高的权重,让其处理更多的数据;配置低、负载高的检测单元分配较低的权重,让其处理少量的数据。另外,为保证负载均衡,需要满足公式式中,C(S)为所述检测模块中被选中的检测单元的总连接数、W(S)为所述检测模块中被选中的检测单元被分配的权重、C(Sn)为所述检测模块中未被选中的检测单元的总连接数、W(Sn)为所述检测模块中未被选中的检测单元被分配的权重。Since the configuration and/or load rate of each X-ray detection unit, each infrared detection unit, and each voiceprint detection unit in the cloud platform are different, it is necessary to reasonably transmit the detection data of the power equipment to each X-ray In the detection unit, each infrared detection unit, and each voiceprint detection unit, in this embodiment, a load balancing strategy is used to reasonably distribute data, specifically: assign a higher weight to the detection unit with high configuration and low load, and let it process More data; detection units with low configuration and high load are assigned lower weights, allowing them to process small amounts of data. In addition, in order to ensure load balancing, the formula needs to be satisfied In the formula, C(S) is the total number of connections of the selected detection units in the detection module, W(S) is the weight assigned to the selected detection units in the detection module, and C(Sn) is the The total number of connections of unselected detection units in the detection module, W(Sn), is the weight assigned to the unselected detection units in the detection module.
步骤S3中检测模块同时对经分类模块分类后的数据进行对应方法的检测并产生相应的检测结果还包括:第一检测构件、第二检测构件以及第三检测构件通过卷积神经网络对X光数据、红外数据以及声纹数据进行分析处理。更具体地说,Mai接收分类后的数据后,调用Cnn对数据进行分析,Cnn生成设备图像数据,Cnn深度分析设备图像数据从而得到故障类型以及故障位置,从而得到检测结果Fault并将检测结果Fault输入至Mse中以生成检测报表。如X光数据缺陷识别则通过卷积神经网络的卷积层提取出设备图像数据特征图,通过缺陷识别模型的池化层输出目标特征图,再将目标特征图送至深度卷积神经网络得到设备缺陷类型,最后采用边框回归处理获取检测框的精确位置,得到电力设备缺陷识别的判定结果。In step S3, the detection module simultaneously performs corresponding method detection on the data classified by the classification module and generates a corresponding detection result, and further includes: the first detection component, the second detection component and the third detection component detect X-rays through a convolutional neural network. Data, infrared data and voiceprint data are analyzed and processed. More specifically, after Mai receives the classified data, it calls Cnn to analyze the data, Cnn generates device image data, and Cnn deeply analyzes the device image data to obtain the fault type and fault location, thereby obtaining the detection result Fault and the detection result Fault. Input into Mse to generate inspection report. For example, in X-ray data defect recognition, the feature map of equipment image data is extracted through the convolution layer of the convolutional neural network, and the target feature map is output through the pooling layer of the defect recognition model, and then the target feature map is sent to the deep convolutional neural network to obtain The equipment defect type, and finally the frame regression process is used to obtain the precise position of the detection frame, and the judgment result of the power equipment defect identification is obtained.
步骤S4中输出模块接收检测结果并将检测结果输出云平台具体为:Mse接收检测结果Fault并自动生成包括框选识别后的图像,缺陷类型,缺陷数量统计等信息在内的检测报表,并将检测报表输出,供操作人员对电力设备进行维修或更换电力设备时参考。In step S4, the output module receives the detection result and outputs the detection result to the cloud platform. Specifically: Mse receives the detection result Fault and automatically generates a detection report including the image after frame selection and identification, defect type, defect quantity statistics, etc. The output of the inspection report is for the operator to refer to when repairing or replacing the power equipment.
最后应说明的是:本发明实施例公开的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本申请各项实施例技术方案的精神和范围。Finally, it should be noted that the embodiments of the present invention disclose only preferred embodiments of the present invention, and are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments It should be understood by those of ordinary skill in the art; it is still possible to modify the technical solutions recorded in the foregoing embodiments, or perform equivalent replacements to some of the technical features; and these modifications or replacements do not make the corresponding technical solutions. The essence of the invention deviates from the spirit and scope of the technical solutions of the various embodiments of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010498546.XA CN112067632A (en) | 2020-06-04 | 2020-06-04 | A kind of power equipment detection cloud platform and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010498546.XA CN112067632A (en) | 2020-06-04 | 2020-06-04 | A kind of power equipment detection cloud platform and detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112067632A true CN112067632A (en) | 2020-12-11 |
Family
ID=73657236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010498546.XA Pending CN112067632A (en) | 2020-06-04 | 2020-06-04 | A kind of power equipment detection cloud platform and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112067632A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113537517A (en) * | 2021-09-16 | 2021-10-22 | 深圳市信润富联数字科技有限公司 | Defect detection model training method, device, equipment and storage medium |
CN117705816A (en) * | 2024-02-06 | 2024-03-15 | 西南交通大学 | Unmanned aerial vehicle-based steel rail surface defect detection method, system, equipment and medium |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070168461A1 (en) * | 2005-02-01 | 2007-07-19 | Moore James F | Syndicating surgical data in a healthcare environment |
WO2008057385A1 (en) * | 2006-11-02 | 2008-05-15 | The Boeing Company | Remote nondestructive inspection systems and methods |
US20140207601A1 (en) * | 2013-01-22 | 2014-07-24 | General Electric Company | Systems and methods for a non-destructive testing ecosystem |
CN104937554A (en) * | 2013-01-22 | 2015-09-23 | 通用电气公司 | Systems and methods for analyzing data in a non-destructive testing system |
US20160034809A1 (en) * | 2014-06-10 | 2016-02-04 | Sightline Innovation Inc. | System and method for network based application development and implementation |
CN105447507A (en) * | 2015-11-09 | 2016-03-30 | 南京信息工程大学 | Cloud platform and core extreme learning machine-based electrical appliance status detection method |
CN108737591A (en) * | 2018-05-22 | 2018-11-02 | 华为技术有限公司 | A kind of method and device of service configuration |
CN109154896A (en) * | 2016-04-29 | 2019-01-04 | 思杰系统有限公司 | System and method for service chaining load balance |
CN109978052A (en) * | 2019-03-25 | 2019-07-05 | 北京快电科技有限公司 | A kind of user side energy device wisdom repair method |
CN209085657U (en) * | 2017-08-02 | 2019-07-09 | 强力物联网投资组合2016有限公司 | For data gathering system related or industrial environment with chemical production technology |
CN110544247A (en) * | 2019-09-03 | 2019-12-06 | 东莞德福得精密五金制品有限公司 | method for inspecting and monitoring operation defects of artificial intelligent cloud computing multi-path equipment system |
CN110995859A (en) * | 2019-12-17 | 2020-04-10 | 四川赛康智能科技股份有限公司 | Intelligent transformer substation supporting platform system based on ubiquitous Internet of things |
CN111142003A (en) * | 2020-02-04 | 2020-05-12 | 北方民族大学 | A system and method for state monitoring and reliability analysis of power capacitors |
-
2020
- 2020-06-04 CN CN202010498546.XA patent/CN112067632A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070168461A1 (en) * | 2005-02-01 | 2007-07-19 | Moore James F | Syndicating surgical data in a healthcare environment |
WO2008057385A1 (en) * | 2006-11-02 | 2008-05-15 | The Boeing Company | Remote nondestructive inspection systems and methods |
US20140207601A1 (en) * | 2013-01-22 | 2014-07-24 | General Electric Company | Systems and methods for a non-destructive testing ecosystem |
CN104937554A (en) * | 2013-01-22 | 2015-09-23 | 通用电气公司 | Systems and methods for analyzing data in a non-destructive testing system |
US20160034809A1 (en) * | 2014-06-10 | 2016-02-04 | Sightline Innovation Inc. | System and method for network based application development and implementation |
CN105447507A (en) * | 2015-11-09 | 2016-03-30 | 南京信息工程大学 | Cloud platform and core extreme learning machine-based electrical appliance status detection method |
CN109154896A (en) * | 2016-04-29 | 2019-01-04 | 思杰系统有限公司 | System and method for service chaining load balance |
CN209085657U (en) * | 2017-08-02 | 2019-07-09 | 强力物联网投资组合2016有限公司 | For data gathering system related or industrial environment with chemical production technology |
CN108737591A (en) * | 2018-05-22 | 2018-11-02 | 华为技术有限公司 | A kind of method and device of service configuration |
CN109978052A (en) * | 2019-03-25 | 2019-07-05 | 北京快电科技有限公司 | A kind of user side energy device wisdom repair method |
CN110544247A (en) * | 2019-09-03 | 2019-12-06 | 东莞德福得精密五金制品有限公司 | method for inspecting and monitoring operation defects of artificial intelligent cloud computing multi-path equipment system |
CN110995859A (en) * | 2019-12-17 | 2020-04-10 | 四川赛康智能科技股份有限公司 | Intelligent transformer substation supporting platform system based on ubiquitous Internet of things |
CN111142003A (en) * | 2020-02-04 | 2020-05-12 | 北方民族大学 | A system and method for state monitoring and reliability analysis of power capacitors |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113537517A (en) * | 2021-09-16 | 2021-10-22 | 深圳市信润富联数字科技有限公司 | Defect detection model training method, device, equipment and storage medium |
CN117705816A (en) * | 2024-02-06 | 2024-03-15 | 西南交通大学 | Unmanned aerial vehicle-based steel rail surface defect detection method, system, equipment and medium |
CN117705816B (en) * | 2024-02-06 | 2024-04-26 | 西南交通大学 | Rail surface defect detection method, system, equipment and medium based on drone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12020417B2 (en) | Method and system for classifying defects in wafer using wafer-defect images, based on deep learning | |
CN108365557B (en) | Method and system for fine routing inspection of power transmission line by unmanned aerial vehicle | |
CN108268892B (en) | Production failure management analysis method | |
CN112070134B (en) | Power equipment image classification method, device, power equipment and storage medium | |
TW201721784A (en) | Adaptive automatic defect classification | |
CN112067632A (en) | A kind of power equipment detection cloud platform and detection method | |
US20180174000A1 (en) | Defect image classification device and defect image classification method | |
CN110569841A (en) | Object detection method for key components of catenary based on convolutional neural network | |
KR102174424B1 (en) | Method for Inspecting Component basesd Server and system and apparatus therefor | |
CN115169602A (en) | Maintenance method and device for power equipment, storage medium and computer equipment | |
RU2013143472A (en) | DISTRIBUTED ARCHITECTURE OF THE FOREST VIDEO MONITORING SYSTEM | |
CN116184950A (en) | Multisource data extraction and analysis system for automobile production line | |
CN114913460A (en) | Electric vehicle elevator entering real-time detection method based on convolutional neural network | |
TWI755468B (en) | Diagnostic methods for the classifiers and the defects captured by optical tools | |
CN113094244B (en) | Machine room operation intelligent detection system for data center | |
CN106599780A (en) | Power grid polling image intelligent identification method and device | |
US9880550B2 (en) | Updating of a recipe for evaluating a manufacturing stage of an electrical circuit | |
CN118740680A (en) | Abnormal identification method and system for power distribution IoT intelligent gateway based on IoT platform | |
CN117636310A (en) | Dust detection method, model training method, device and storage medium | |
TW202113599A (en) | System for generating detection model according to standard data to confirm soldering state and method thereof | |
US9947596B2 (en) | Range-based real-time scanning electron microscope non-visual binner | |
KR101579448B1 (en) | Problematic equipment determination method and apparatus thereof using defect map of the faulty products sample | |
CN107413674A (en) | A kind of crop seed on-line sorting method and system | |
KR101491101B1 (en) | Apparatus and method for intrusion detection based of packet and signature | |
WO2020044779A1 (en) | Installation environment estimation device and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201211 |