CN112062271A - Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film - Google Patents
Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film Download PDFInfo
- Publication number
- CN112062271A CN112062271A CN202010978969.1A CN202010978969A CN112062271A CN 112062271 A CN112062271 A CN 112062271A CN 202010978969 A CN202010978969 A CN 202010978969A CN 112062271 A CN112062271 A CN 112062271A
- Authority
- CN
- China
- Prior art keywords
- gas
- activated carbon
- methane
- granular activated
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000003647 oxidation Effects 0.000 title claims abstract description 19
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 19
- 238000003487 electrochemical reaction Methods 0.000 title claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000012528 membrane Substances 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 32
- 244000005700 microbiome Species 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 18
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000009826 distribution Methods 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 230000001651 autotrophic effect Effects 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 53
- 239000002351 wastewater Substances 0.000 claims description 31
- 238000005273 aeration Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 239000002912 waste gas Substances 0.000 claims description 7
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims 3
- 239000010936 titanium Substances 0.000 claims 3
- 238000005842 biochemical reaction Methods 0.000 claims 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000008187 granular material Substances 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000004065 wastewater treatment Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 9
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-BJUDXGSMSA-N carbon-11 Chemical class [11C] OKTJSMMVPCPJKN-BJUDXGSMSA-N 0.000 description 18
- 238000004064 recycling Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000001546 nitrifying effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2853—Anaerobic digestion processes using anaerobic membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/005—Combined electrochemical biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
技术领域technical field
本发明属于废水生物处理领域,具体涉及一种反硝化厌氧甲烷氧化膜生物电化学反应装置及其方法。The invention belongs to the field of biological wastewater treatment, and in particular relates to a denitrification anaerobic methane oxidation membrane bioelectrochemical reaction device and a method thereof.
背景技术Background technique
传统废水生物脱氮的硝化-反硝化工艺在反硝化段存在电子供体不足的情况,使得脱氮效率受到制约,同时在厌氧消化段生成大量的甲烷溶解于水中并最终随废水排放并释放至大气中,是全球温室效应的主要原因之一,同时也是一种资源的浪费。The traditional nitrification-denitrification process for biological denitrification of wastewater has insufficient electron donors in the denitrification section, which restricts the denitrification efficiency. At the same time, a large amount of methane is generated in the anaerobic digestion section, which is dissolved in water and finally discharged and released with the wastewater. It is one of the main causes of the global greenhouse effect, and it is also a waste of resources.
发明内容SUMMARY OF THE INVENTION
本发明针对城市废水处理中反硝化过程不彻底与生成的甲烷无序排放等问题,提供一种反硝化厌氧甲烷氧化膜生物电化学反应装置及其方法。Aiming at the problems of incomplete denitrification process and disorderly discharge of generated methane in urban wastewater treatment, the invention provides a denitrification anaerobic methane oxidation membrane bioelectrochemical reaction device and a method thereof.
本发明具体采用的技术方案如下:The technical scheme specifically adopted in the present invention is as follows:
一种反硝化厌氧甲烷氧化膜生物电化学反应装置,其包括封闭的筒体以及位于筒体内腔的阴极和阳极,阴极和阳极分别通过导线与外部电源的负极和正极相连通;A denitrification anaerobic methane oxidation membrane bioelectrochemical reaction device, which comprises a closed cylinder, a cathode and an anode located in the inner cavity of the cylinder, and the cathode and the anode are respectively connected with the negative and positive electrodes of an external power supply through wires;
所述阳极包括钛网、颗粒活性炭和MBR膜组件,钛网将颗粒活性炭包裹于MBR膜组件的表面;颗粒活性炭和MBR膜组件的表面均用于富集反硝化厌氧甲烷氧化微生物,钛网外接钛丝并与所述导线相连通,MBR膜组件的出水端通过设有出水泵的出水管与外部连通;所述阴极为表面用于富集自养反硝化微生物的碳毡;The anode includes a titanium mesh, granular activated carbon and an MBR membrane module, and the titanium mesh wraps the granular activated carbon on the surface of the MBR membrane module; the surfaces of the granular activated carbon and the MBR membrane module are both used for enriching denitrifying anaerobic methane oxidation microorganisms, and the titanium mesh The titanium wire is externally connected and communicated with the wire, and the outlet end of the MBR membrane module is communicated with the outside through a water outlet pipe provided with an outlet pump; the cathode is a carbon felt whose surface is used to enrich autotrophic denitrifying microorganisms;
位于阳极和阴极下方的筒体内腔中设有均匀开孔的布水管,布水管下方设有气体分布器;气体分布器的进气端与外部连通,用于向阳极鼓气使颗粒活性炭实现流化态;筒体上部的侧壁开设有出气口,出气口通过设有循环泵的气体管路与所述气体分布器的进气端相连通。The inner cavity of the cylinder under the anode and the cathode is provided with a water distribution pipe with uniform openings, and a gas distributor is arranged under the water distribution pipe; the air inlet end of the gas distributor is connected to the outside, and is used to blow air to the anode to make the granular activated carbon flow. A gas outlet is provided on the side wall of the upper part of the cylinder, and the gas outlet is communicated with the gas inlet end of the gas distributor through a gas pipeline provided with a circulating pump.
作为优选,所述布水管的开孔率为10%,且位于筒体外部的布水管上设有进水泵。Preferably, the opening rate of the water distribution pipe is 10%, and the water distribution pipe located outside the cylinder is provided with an inlet pump.
作为优选,所述气体分布器为盘式分布器,其位于筒体外部的进气端设有曝气泵。Preferably, the gas distributor is a disc type distributor, and an aeration pump is provided at the air inlet end outside the cylinder.
作为优选,靠近所述阳极的筒体侧壁上开设有取样口。Preferably, a sampling port is provided on the side wall of the cylinder close to the anode.
作为优选,所述钛网的网口为菱形网口,其短对角线长为1mm。Preferably, the mesh opening of the titanium mesh is a diamond mesh opening, and the short diagonal length thereof is 1 mm.
作为优选,所述MBR膜组件的材料为聚偏二氟乙烯PVDF。Preferably, the material of the MBR membrane module is polyvinylidene fluoride PVDF.
作为优选,所述导线上依次串联电压传感器和警报器,并与大小为500-1000Ω的电阻并联,以实时监测所述反应装置的电压状态。Preferably, a voltage sensor and an alarm are connected in series to the wire and connected in parallel with a resistance of 500-1000Ω, so as to monitor the voltage state of the reaction device in real time.
作为优选,所述颗粒活性炭为球形颗粒,平均粒径为2mm;颗粒活性炭在MBR膜组件表面的填充度为20%。Preferably, the granular activated carbon is spherical particles with an average particle size of 2 mm; the filling degree of the granular activated carbon on the surface of the MBR membrane module is 20%.
本发明的另一目的在于提供一种根据上述任一所述反应装置处理硝酸盐废水和甲烷废气的方法,其具体如下:Another object of the present invention is to provide a method for treating nitrate waste water and methane waste gas according to any of the above-mentioned reaction devices, which is specifically as follows:
开启进水泵,将硝酸盐废水经由布水管通入筒体内腔并实现均匀分布;同时开启曝气泵,将甲烷废气经由气体分布器通入筒体内腔并使其与废水充分接触,甲烷气溶解于废水中;Turn on the water inlet pump, and pass the nitrate waste water into the inner cavity of the cylinder through the water distribution pipe and realize uniform distribution; at the same time, open the aeration pump, pass the methane waste gas into the inner cavity of the cylinder through the gas distributor and make it fully contact with the waste water, and the methane gas dissolves in wastewater;
关闭曝气泵,开启循环泵;通过循环泵的作用使筒体内腔顶部未与废水溶解的甲烷气重新抽吸至气体分布器的进气端,实现甲烷气的循环利用;通过控制循环泵来调节甲烷气的流速,使得颗粒活性炭实现流态化;Turn off the aeration pump and turn on the circulation pump; through the action of the circulation pump, the methane gas at the top of the cylinder that is not dissolved with the waste water is re-suctioned to the intake end of the gas distributor to realize the recycling of methane gas; by controlling the circulation pump to Adjust the flow rate of methane gas to make granular activated carbon fluidized;
废水中的硝酸盐与溶解在水中的甲烷被富集在颗粒活性炭与MBR膜组件表面的反硝化厌氧甲烷氧化微生物同步转化为氮气与二氧化碳,同时,产生的电子传递至颗粒活性炭上,利用生物电化学的促进作用提高反硝化厌氧甲烷氧化微生物的活性;产生的电子通过颗粒活性炭与钛网的相互碰撞作用,从颗粒活性炭传递至钛网上,再通过外接的钛丝经由导线传递至碳毡;碳毡表面富集的自养反硝化微生物利用电子进一步将水中的硝酸盐还原为氮气;Nitrate in wastewater and methane dissolved in water are simultaneously converted into nitrogen and carbon dioxide by denitrifying anaerobic methane-oxidizing microorganisms enriched on the surface of granular activated carbon and MBR membrane modules. At the same time, the generated electrons are transferred to granular activated carbon, using biological Electrochemical promotion improves the activity of denitrifying anaerobic methane oxidation microorganisms; the generated electrons are transferred from the granular activated carbon to the titanium mesh through the collision between the granular activated carbon and the titanium mesh, and then transferred to the carbon felt through the external titanium wire through the wire ; Autotrophic denitrifying microorganisms enriched on the surface of carbon felt use electrons to further reduce nitrate in water to nitrogen;
通过设置于导线上的电压传感器实时监控所述反应装置的电压状态;当电压偏离预定值时,与电压传感器串联的警报器发出警报。The voltage state of the reaction device is monitored in real time by a voltage sensor arranged on the wire; when the voltage deviates from a predetermined value, an alarm connected in series with the voltage sensor will issue an alarm.
作为优选,通入所述筒体内的废水占筒体内腔体积的3/4。Preferably, the waste water passed into the cylinder accounts for 3/4 of the volume of the inner cavity of the cylinder.
本发明相比于现有技术,具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明的反应装置中,通过生物电化学系统、膜组件与反硝化厌氧甲烷氧化微生物的耦合实现了废水处理过程中硝酸盐与甲烷的协同去除;1) In the reaction device of the present invention, the synergistic removal of nitrate and methane in the wastewater treatment process is realized through the coupling of the bioelectrochemical system, the membrane module and the denitrifying anaerobic methane oxidizing microorganism;
2)本发明的反应装置将硝酸盐型废水和废水处理时产生的多余的甲烷转化为氮气和二氧化碳,实现废水处理中同步脱氮除碳的效果;2) The reaction device of the present invention converts nitrate-type waste water and excess methane produced during waste water treatment into nitrogen gas and carbon dioxide, thereby realizing the effect of simultaneous denitrification and carbon removal in waste water treatment;
3)本发明的反应装置兼具效率高,成本低,能耗小,空间小的特点。3) The reaction device of the present invention has the characteristics of high efficiency, low cost, low energy consumption and small space.
附图说明Description of drawings
图1为本发明反应装置的结构示意图;Fig. 1 is the structural representation of the reaction device of the present invention;
图中:出水泵1、出气口2、取样口3、循环泵4、进水泵5、进水口6、布水管7、气体分布器8、进气口9、曝气泵10、颗粒活性炭11、MBR膜组件12、钛网13、钛丝14、电压传感器15、电阻16、警报器17、导线18、碳毡19、阳极区20、阴极区21。In the figure:
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。The present invention will be further elaborated and described below with reference to the accompanying drawings and specific embodiments. The technical features of the various embodiments of the present invention can be combined correspondingly on the premise that there is no conflict with each other.
如图1所示,为本发明的一种反硝化厌氧甲烷氧化膜生物电化学反应装置,该反应装置包括封闭的圆柱状筒体以及位于筒体内腔的阳极区20和阴极区21。本发明通过流程优化,使得废水中的硝酸盐和废水处理中产生的甲烷能够被硝化厌氧甲烷氧化微生物和自养型反硝化微生物协同处理。下面详细描述各结构的具体实现方式:As shown in FIG. 1 , it is a denitrification anaerobic methane oxidation membrane bioelectrochemical reaction device of the present invention. The reaction device includes a closed cylindrical cylinder and an
阳极区20的主体为阳极,阳极包括钛网13、颗粒活性炭11和MBR膜组件12,钛网13将颗粒活性炭11包裹于MBR膜组件12的表面。需要注意的是,该包裹状态并非是将颗粒活性炭11紧紧的包裹于MBR膜组件12的表面,而是仅仅起到限位作用,也就是说,颗粒活性炭11和MBR膜组件12的表面之间具有一定空间,颗粒活性炭11能够在该空间中移动实现流化态。颗粒活性炭11在MBR膜组件12表面的填充度为20%。The main body of the
颗粒活性炭11和MBR膜组件12的表面均用于富集反硝化厌氧甲烷氧化微生物,硝酸盐和甲烷在硝化厌氧甲烷氧化微生物的作用去除,颗粒活性炭11采用平均粒径为2mm的球形颗粒。由于微生物生长速率缓慢且活性低,因此需要在阳极设置MBR膜组件12来截留微生物用于提高微生物生长速率,且设置生物电化学系统增加微生物的活性。本实施例采用的MBR膜组件12材料为聚偏二氟乙烯PVDF。由于MBR膜组件12存在膜污染问题,因此将颗粒活性炭11包围在MBR膜组件12四周用于吸附MBR膜组件12中多余的微生物。阳极中MBR膜组件12的顶部与出水泵1连接。为了使生物电化学系统的促进作用更加高效,阳极的钛网13呈四周环绕、顶部开放状,将颗粒活性炭11全部包裹在内。本实施例采用的钛网13网口为菱形网口,最短对角距离为1mm。在实际应用过程中,MBR膜组件12和钛网13的具体大小可以根据装置实际体积决定。The surfaces of granular activated
阴极为表面用于富集自养反硝化微生物的碳毡19。阴极和阳极分别通过导线18与外部电源的负极和正极相连通,共同作用实现废水中的硝酸盐和甲烷的同步去除。The cathode is a carbon felt 19 whose surface is used to enrich autotrophic denitrifying microorganisms. The cathode and the anode are respectively connected with the negative electrode and the positive electrode of the external power supply through the
位于阳极和阴极下方的筒体内腔中设有均匀开孔的布水管7,布水管7下方设有气体分布器8。位于筒体外部的布水管7上设有进水泵5,用于为废水进入筒体内腔提供动力,本实施例中进水泵5采用蠕动泵。进水导管7横穿整个反应装置,且均匀地设计孔隙,布水管7的开孔率优选为10%以便于进水更加均匀。A
气体分布器8为盘式分布器,以便于甲烷更为均匀进入,气体分布器8位于筒体外部的进气端设有曝气泵10。气体分布器8的进气端穿过开设于筒体底部的进气口9与外部连通,用于向阳极鼓气使颗粒活性炭11实现流化态。筒体上部的侧壁开设有出气口2,出气口2通过设有循环泵4的气体管路与气体分布器8的进气端相连通,用于将筒体顶部未溶解于水的甲烷气抽吸至气体分布器8的进气端,从而实现甲烷气的循环利用。反应初期甲烷通过曝气泵10抽气到进气口9,然后通过气体分布器8将甲烷均匀地输送至筒体内腔中,以便于后续的水气协同处理。曝气完成后,关闭曝气泵10并开启循环泵4。由于甲烷在水中的溶解度较低,因此将多余的处于装置上空的甲烷通过循环泵4从进气口2循环至筒体内腔,提高甲烷的可利用性,同时该过程通过调节循环泵4控制甲烷气的流速,使得阳极的颗粒活性炭11处于流化状态。The
另外,外电路区22中设有电压传感器15和警报器17,电压传感器15实时监控产生电压的情况,当电压偏离预定值时,警报器17会发出警报提示装置运行不正常。电压传感器15与警报器17串联,二者与大小为500-1000Ω的电阻16并联。同时,装置靠近阳极一侧的中部器壁上设有取样口3,并随时监测出水的各项参数。In addition, the external circuit area 22 is provided with a
本发明中,生物电化学系统、膜组件与反硝化厌氧甲烷氧化微生物的耦合实现了废水处理过程中硝酸盐与甲烷的协同去除。通过流程和处理方法的双重优化,将硝酸盐型废水和废水处理时产生的多余的甲烷转化为氮气和二氧化碳,实现废水处理中同步脱氮除碳的效果。In the present invention, the coupling of the bioelectrochemical system, the membrane module and the denitrifying anaerobic methane oxidizing microorganism realizes the synergistic removal of nitrate and methane in the wastewater treatment process. Through the double optimization of process and treatment methods, nitrate-type wastewater and excess methane generated during wastewater treatment are converted into nitrogen and carbon dioxide to achieve the effect of simultaneous denitrification and carbon removal in wastewater treatment.
因此基于上述反应装置,本发明还提供了一种处理硝酸盐废水和甲烷废气的方法,具体如下:Therefore, based on the above-mentioned reaction device, the present invention also provides a method for processing nitrate waste water and methane waste gas, which is specifically as follows:
首先,开启进水泵5,将硝酸盐废水经由布水管7通入筒体内腔并实现均匀分布。根据化学反应计量学以及气体溶解的亨利定律计算,通入筒体内的废水占筒体内腔体积的3/4。同时开启曝气泵10,将甲烷废气经由气体分布器8通入筒体内腔并使其与废水充分接触,甲烷气溶解于废水中。First, the
而后关闭曝气泵10,开启循环泵4。通过循环泵4的作用使筒体内腔顶部未与废水溶解的甲烷气重新抽吸至气体分布器8的进气端,实现甲烷气的循环利用。通过控制循环泵4来调节甲烷气的流速,使得颗粒活性炭11实现流态化。Then, the
在此期间,废水中的硝酸盐与溶解在水中的甲烷被富集在颗粒活性炭11与MBR膜组件12表面的反硝化厌氧甲烷氧化微生物同步转化为氮气与二氧化碳。同时,产生的电子传递至颗粒活性炭11上,利用生物电化学的促进作用提高反硝化厌氧甲烷氧化微生物的活性。产生的电子通过颗粒活性炭11与钛网13的相互碰撞作用,从颗粒活性炭11传递至钛网13上,再通过外接的钛丝14经由导线18传递至碳毡19。碳毡19表面富集的自养反硝化微生物利用这部分的电子进一步将水中的硝酸盐还原为氮气。During this period, the nitrates in the wastewater and the methane dissolved in the water are simultaneously converted into nitrogen and carbon dioxide by the denitrifying anaerobic methane-oxidizing microorganisms enriched on the surface of the granular activated
在本发明装置处理硝酸盐废水和甲烷废气的运行过程中,通过设置于导线18上的电压传感器15实时监控反应装置的电压状态。当电压偏离预定值时,与电压传感器15串联的警报器17发出警报,提示反应器运行异常。During the operation of the device of the present invention for treating nitrate waste water and methane waste gas, the voltage state of the reaction device is monitored in real time by the
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。The above-mentioned embodiment is only a preferred solution of the present invention, but it is not intended to limit the present invention. Various changes and modifications can also be made by those of ordinary skill in the relevant technical field without departing from the spirit and scope of the present invention. Therefore, all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010978969.1A CN112062271B (en) | 2020-09-17 | 2020-09-17 | Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010978969.1A CN112062271B (en) | 2020-09-17 | 2020-09-17 | Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112062271A true CN112062271A (en) | 2020-12-11 |
CN112062271B CN112062271B (en) | 2021-12-07 |
Family
ID=73681679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010978969.1A Active CN112062271B (en) | 2020-09-17 | 2020-09-17 | Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112062271B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113336327A (en) * | 2021-04-13 | 2021-09-03 | 西安建筑科技大学 | Synergism method of anaerobic membrane bioreactor based on biochar addition |
CN116040796A (en) * | 2022-12-29 | 2023-05-02 | 大连理工大学 | Device and process for oxidizing treatment of nitrogen-containing wastewater by electric field coupling magnetite-enhanced anaerobic methane |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050011829A1 (en) * | 2003-06-19 | 2005-01-20 | Liangjie Dong | Bionest reactor for the application of anaerobic wastewater treatment and bioenergy recovery |
WO2007069899A1 (en) * | 2005-12-15 | 2007-06-21 | St. Katholieke Universiteit Radboud Universiteit Nijmegen | Anaerobic oxidation of methane and denitrification |
CN101058463A (en) * | 2007-04-12 | 2007-10-24 | 重庆大学 | Waste water biological treatment method for realizing anaerobic ammoxidation and methanation denitrification coupling |
CN102936081A (en) * | 2012-10-30 | 2013-02-20 | 山东大学 | Photocatalytic internal-circulation anaerobic fluidized membrane bioreactor and working method thereof |
CN103274523A (en) * | 2013-05-22 | 2013-09-04 | 北京工业大学 | Device and method for realizing synchronous anaerobic ammonia oxidation and denitrification anaerobic methane oxidation |
CN106673140A (en) * | 2016-12-29 | 2017-05-17 | 湖北大学 | Electrochemical reactor and method for electrocatalytically removing chloride ions |
CN110078333A (en) * | 2019-05-16 | 2019-08-02 | 华东师范大学 | A kind of anaerobism electrochemistry sludge treatment equipment of electrode coupling plate membrane |
CN209669012U (en) * | 2019-01-30 | 2019-11-22 | 沈阳工业大学 | A kind of circulation type methane matrix membrane biofilm reactor |
-
2020
- 2020-09-17 CN CN202010978969.1A patent/CN112062271B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050011829A1 (en) * | 2003-06-19 | 2005-01-20 | Liangjie Dong | Bionest reactor for the application of anaerobic wastewater treatment and bioenergy recovery |
WO2007069899A1 (en) * | 2005-12-15 | 2007-06-21 | St. Katholieke Universiteit Radboud Universiteit Nijmegen | Anaerobic oxidation of methane and denitrification |
CN101058463A (en) * | 2007-04-12 | 2007-10-24 | 重庆大学 | Waste water biological treatment method for realizing anaerobic ammoxidation and methanation denitrification coupling |
CN102936081A (en) * | 2012-10-30 | 2013-02-20 | 山东大学 | Photocatalytic internal-circulation anaerobic fluidized membrane bioreactor and working method thereof |
CN103274523A (en) * | 2013-05-22 | 2013-09-04 | 北京工业大学 | Device and method for realizing synchronous anaerobic ammonia oxidation and denitrification anaerobic methane oxidation |
CN106673140A (en) * | 2016-12-29 | 2017-05-17 | 湖北大学 | Electrochemical reactor and method for electrocatalytically removing chloride ions |
CN209669012U (en) * | 2019-01-30 | 2019-11-22 | 沈阳工业大学 | A kind of circulation type methane matrix membrane biofilm reactor |
CN110078333A (en) * | 2019-05-16 | 2019-08-02 | 华东师范大学 | A kind of anaerobism electrochemistry sludge treatment equipment of electrode coupling plate membrane |
Non-Patent Citations (1)
Title |
---|
PEILI LU ET.: ""Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: Strengthening effect and mechanisms"", 《ENVIRONMENT INTERNATIONAL》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113336327A (en) * | 2021-04-13 | 2021-09-03 | 西安建筑科技大学 | Synergism method of anaerobic membrane bioreactor based on biochar addition |
CN116040796A (en) * | 2022-12-29 | 2023-05-02 | 大连理工大学 | Device and process for oxidizing treatment of nitrogen-containing wastewater by electric field coupling magnetite-enhanced anaerobic methane |
Also Published As
Publication number | Publication date |
---|---|
CN112062271B (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205313150U (en) | Bicathode MFC water processing system who combines together with electrodialysis | |
CN103936106B (en) | Electrochemical synchronous nitrogen and phosphorus removal apparatus and municipal sewage treatment method | |
CN107473371B (en) | A method for strengthening SBR by using adsorbed ammonia nitrogen material to realize stable nitrosation | |
CN109081426B (en) | A low internal resistance microbial fuel cell composite constructed wetland | |
CN110228911A (en) | A multi-stage series autotrophic-heterotrophic denitrification coupled nitrogen and phosphorus removal method and device | |
CN112062271A (en) | Bio-electrochemical reaction device and method for denitrifying anaerobic methane oxidation film | |
CN105032168A (en) | Device and method for removing nitrogen oxides | |
CN109912145B (en) | Aerobic granular sludge power generation device | |
CN104045158B (en) | A kind of enhanced sewage whole process autotrophic denitrification reactor and method | |
CN108483581A (en) | A kind of novel three-dimensional electrode reaction device and activated carbon particles regeneration method | |
CN205846116U (en) | Desulfurization and denitrification microbial fuel cell | |
CN209210446U (en) | A new three-dimensional electrode reaction device | |
CN215924693U (en) | CW-MFC device for treating wastewater containing Pb (II) | |
CN103601292B (en) | A kind of cultivation method of AOB-ANAMMOX granular sludge | |
CN111517591A (en) | Device and method for treating oxidized nitrogen wastewater by using ferroalloy in combination with anaerobic ammonium oxidation bacteria | |
CN203300748U (en) | Turntable type biofilm forming anode mediated ammonia-oxidation microbial fuel cell (AO-MFC) | |
CN208234701U (en) | A kind of water treatment system of three-dimensional-class electricity Fenton processing cefalexin | |
CN216918938U (en) | A treatment system for deodorizing manure water in farms | |
CN103996866B (en) | A kind of alternative expression anode and cathode microorganisms of nitrogen and phosphors removal fuel cell | |
CN107746109A (en) | A kind of environment-protection wastewater denitrification processing device and its application method | |
CN209957483U (en) | Split type wetland plant-microbial fuel cell coupling device | |
CN114380370A (en) | A hybrid membrane capacitive deionization device for denitrification and nitrate removal and method of using the same | |
CN107376631A (en) | A kind of microbiological fuel cell spray process removing ultrahigh concentration NOxMethod | |
CN203959927U (en) | A kind of enhanced sewage whole process autotrophic denitrification reactor | |
CN117228839B (en) | Integrated synchronous denitrification and desulfurization device and sewage treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |