CN112048444A - Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof - Google Patents
Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof Download PDFInfo
- Publication number
- CN112048444A CN112048444A CN202010964667.9A CN202010964667A CN112048444A CN 112048444 A CN112048444 A CN 112048444A CN 202010964667 A CN202010964667 A CN 202010964667A CN 112048444 A CN112048444 A CN 112048444A
- Authority
- CN
- China
- Prior art keywords
- gap
- gene
- candida utilis
- laccase
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000235646 Cyberlindnera jadinii Species 0.000 title claims abstract description 65
- 108010029541 Laccase Proteins 0.000 title claims abstract description 54
- 239000013604 expression vector Substances 0.000 title claims abstract description 29
- 241000894006 Bacteria Species 0.000 title claims abstract description 16
- 238000010276 construction Methods 0.000 title claims abstract description 10
- 239000012634 fragment Substances 0.000 claims abstract description 74
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 71
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 claims abstract description 51
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 38
- 108020004463 18S ribosomal RNA Proteins 0.000 claims abstract description 16
- OWEFQTXQEHYDEJ-UHFFFAOYSA-N 2,3-dihydroxypropanal diphosphono hydrogen phosphate Chemical compound OCC(O)C=O.OP(O)(=O)OP(O)(=O)OP(O)(O)=O OWEFQTXQEHYDEJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 101710088194 Dehydrogenase Proteins 0.000 claims abstract description 11
- 235000013305 food Nutrition 0.000 claims abstract description 7
- 230000010354 integration Effects 0.000 claims abstract description 5
- 108700007698 Genetic Terminator Regions Proteins 0.000 claims abstract description 4
- 239000013612 plasmid Substances 0.000 claims description 49
- 239000013598 vector Substances 0.000 claims description 34
- 238000010367 cloning Methods 0.000 claims description 20
- 108090000790 Enzymes Proteins 0.000 claims description 18
- 102000004190 Enzymes Human genes 0.000 claims description 17
- 230000001580 bacterial effect Effects 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 102000012410 DNA Ligases Human genes 0.000 claims description 15
- 108010061982 DNA Ligases Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 108020004414 DNA Proteins 0.000 claims description 11
- 241000588724 Escherichia coli Species 0.000 claims description 10
- 238000001976 enzyme digestion Methods 0.000 claims description 9
- 239000003550 marker Substances 0.000 claims description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 239000002773 nucleotide Substances 0.000 claims description 7
- 125000003729 nucleotide group Chemical group 0.000 claims description 7
- 241000222355 Trametes versicolor Species 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 239000013600 plasmid vector Substances 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 244000144972 livestock Species 0.000 claims description 4
- 238000003757 reverse transcription PCR Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 206010059866 Drug resistance Diseases 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 238000003776 cleavage reaction Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 230000007017 scission Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims 3
- 208000005168 Intussusception Diseases 0.000 claims 1
- 108700026220 vif Genes Proteins 0.000 claims 1
- 241000233866 Fungi Species 0.000 abstract description 11
- 230000002068 genetic effect Effects 0.000 abstract description 7
- 241001465754 Metazoa Species 0.000 abstract description 4
- 230000003115 biocidal effect Effects 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 239000006041 probiotic Substances 0.000 abstract description 2
- 235000018291 probiotics Nutrition 0.000 abstract description 2
- 231100000331 toxic Toxicity 0.000 abstract description 2
- 230000002588 toxic effect Effects 0.000 abstract description 2
- 229940079593 drug Drugs 0.000 abstract 1
- 239000000047 product Substances 0.000 description 28
- 230000029087 digestion Effects 0.000 description 27
- 229920005610 lignin Polymers 0.000 description 22
- 239000010902 straw Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 239000008188 pellet Substances 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 7
- 240000008042 Zea mays Species 0.000 description 7
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 7
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 7
- 235000005822 corn Nutrition 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 108010054320 Lignin peroxidase Proteins 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 5
- 235000019621 digestibility Nutrition 0.000 description 5
- 241000235058 Komagataella pastoris Species 0.000 description 4
- 108010059896 Manganese peroxidase Proteins 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- OBMBUODDCOAJQP-UHFFFAOYSA-N 2-chloro-4-phenylquinoline Chemical compound C=12C=CC=CC2=NC(Cl)=CC=1C1=CC=CC=C1 OBMBUODDCOAJQP-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- 241000222354 Trametes Species 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229960001867 guaiacol Drugs 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000010907 stover Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- JMFRWRFFLBVWSI-NSCUHMNNSA-N coniferol Chemical compound COC1=CC(\C=C\CO)=CC=C1O JMFRWRFFLBVWSI-NSCUHMNNSA-N 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007857 nested PCR Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 238000000751 protein extraction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- LZFOPEXOUVTGJS-ONEGZZNKSA-N trans-sinapyl alcohol Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O LZFOPEXOUVTGJS-ONEGZZNKSA-N 0.000 description 2
- 239000007222 ypd medium Substances 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000228150 Penicillium chrysogenum Species 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 244000252132 Pleurotus eryngii Species 0.000 description 1
- 235000001681 Pleurotus eryngii Nutrition 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 241000196250 Prototheca Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- LZFOPEXOUVTGJS-UHFFFAOYSA-N cis-sinapyl alcohol Natural products COC1=CC(C=CCO)=CC(OC)=C1O LZFOPEXOUVTGJS-UHFFFAOYSA-N 0.000 description 1
- 229940119526 coniferyl alcohol Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000033629 detection of yeast Effects 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-N levotartaric acid Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 210000004767 rumen Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 108010027322 single cell proteins Proteins 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0055—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
- C12N9/0057—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
- C12N9/0061—Laccase (1.10.3.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y110/00—Oxidoreductases acting on diphenols and related substances as donors (1.10)
- C12Y110/03—Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
- C12Y110/03002—Laccase (1.10.3.2)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种产漆酶的产朊假丝酵母菌表达载体、其构建方法、重组工程菌及其应用。The invention belongs to the field of biotechnology, and in particular relates to a laccase-producing Candida utilis expression vector, a construction method thereof, a recombinant engineering bacterium and applications thereof.
背景技术Background technique
内蒙古有着丰富的秸秆资源,全区年产各类农作物秸秆达35亿公斤,相当于全区天然草原打草量的2倍。当前绝大多数秸秆还是以简单的粉碎、压成颗粒及青贮制作方式饲喂家畜。奶牛对简单加工玉米秸秆中的干物质(DM)的表观消化率为63.38﹪,中性洗涤纤维(NDF)的表观消化率为62.06﹪,酸性洗涤纤维(ADF)的表观消化率为50.36﹪。肉牛对简单粉碎小麦秸秆中的中性洗涤纤维的表观消化率为56.87﹪,酸性洗涤纤维的表观消化率为49.04﹪。就是说秸秆饲料饲喂当中,至少有近37﹪的干物质、38﹪~46﹪的中性洗涤纤维、49﹪~51﹪酸性洗涤纤维经粪便流失掉。我国玉米的种植面积持续增涨较快,在玉米产量提升的同时,产生大量的玉米秸秆,但是仅有不到20%的玉米秸秆被有效加工。所以,攻克秸秆饲料消化利用率的关键技术是解决我区畜牧业生产中粗饲料资源不足和利用率低,降低养殖成本,提高牛、羊饲养数量和养殖经济效益的有效途径。Inner Mongolia is rich in straw resources, with an annual output of 3.5 billion kilograms of various crop straws, which is equivalent to twice the amount of grass trimmed on natural grasslands in the region. At present, the vast majority of straw is still fed to livestock by simple crushing, pressing into pellets and making silage. The apparent digestibility of dry matter (DM) in simple processed corn stover was 63.38%, the apparent digestibility of neutral detergent fiber (NDF) was 62.06%, and the apparent digestibility of acid detergent fiber (ADF) was 62.06%. 50.36%. The apparent digestibility of neutral detergent fiber in simple crushed wheat straw by beef cattle was 56.87%, and the apparent digestibility of acid detergent fiber was 49.04%. That is to say, in the straw feed, at least nearly 37% of dry matter, 38% to 46% of neutral detergent fiber, and 49% to 51% of acid detergent fiber are lost through feces. my country's corn planting area has continued to increase rapidly. With the increase in corn yield, a large amount of corn stalk is produced, but less than 20% of the corn stalk is effectively processed. Therefore, the key technology to overcome the digestion and utilization rate of straw feed is an effective way to solve the shortage of roughage resources and low utilization rate in animal husbandry production in our region, reduce the cost of breeding, and increase the number of cattle and sheep raised and the economic benefits of breeding.
由于秸秆营养成分利用率低,适口性差,利用价值不高,每年都有大量秸秆直接还田或焚烧,用作饲料的仅占一小部分,这不仅造成资源浪费,而且焚烧还污染环境。造成农作物秸秆用作饲草利用率低的原因之一是:随着农作物的成熟,木质化程度也越高,秸秆细胞壁中木质素含量也增加。Due to the low utilization rate of straw nutrients, poor palatability and low utilization value, a large amount of straw is directly returned to the field or incinerated every year, and only a small part is used as feed, which not only causes resource waste, but also pollutes the environment. One of the reasons for the low utilization rate of crop straw as forage grass is that as the crops mature, the degree of lignification is also higher, and the lignin content in the cell wall of the straw also increases.
木质素的基本结构单元是苯丙烷,通过醚键和碳碳键连接形成复杂的无定形高聚物。典型木质素是由松柏醇、芥子醇和对香豆醇这3种不同的醇作为先体物质组成基本结构。木质素能与半纤维素分子紧密交联形成疏水的网状结构,整个细胞壁就成为一个紧密的网状,增加了细胞壁的机械强度和对微生物的抵抗能力。与此同时,也阻碍了反刍动物瘤胃微生物水解酶与细胞壁中纤维素和半纤维素接触,从而降低纤维多糖的降解效率。因此木质素被认为是抑制秸秆利用率的主要限制性因素。玉米秸秆中木质素含量可达到19%~23%,直接影响玉米秸秆的利用效率。原因之二是:目前已开发应用的酸处理、碱处理、蒸汽爆破、热水处理、氨纤维爆炸、挤出预处理、微波预处理等,虽然这些预处理方法提高了秸秆利用率,但是其高昂的设备费用使秸秆在实际应用中受到制约。The basic structural unit of lignin is phenylpropane, which is connected by ether bonds and carbon-carbon bonds to form complex amorphous polymers. Typical lignin is composed of three different alcohols, coniferyl alcohol, sinapyl alcohol and p-coumarol, as precursor substances. Lignin can be tightly cross-linked with hemicellulose molecules to form a hydrophobic network structure, and the entire cell wall becomes a tight network, which increases the mechanical strength of the cell wall and the resistance to microorganisms. At the same time, it also hinders the contact of ruminant microbial hydrolase with cellulose and hemicellulose in the cell wall, thereby reducing the degradation efficiency of cellopolysaccharide. Therefore, lignin is considered to be the main limiting factor inhibiting straw utilization. The lignin content in corn stover can reach 19% to 23%, which directly affects the utilization efficiency of corn stover. The second reason is: acid treatment, alkali treatment, steam explosion, hot water treatment, ammonia fiber explosion, extrusion pretreatment, microwave pretreatment, etc. have been developed and applied. Although these pretreatment methods improve the utilization rate of straw, their The high equipment cost restricts the practical application of straw.
到目前为止,仅有少数微生物可以降解木质素,其中绝大部分是真菌,少数是细菌,但是后者仅有较弱的木质素降解能力。由于白腐真菌能高效地选择性降解木质素,因此被认为是去除木质素最有应用前景的一大类真菌。已知白腐真菌分泌木质素降解有关的几类主要过氧化物酶:漆酶(Laccase;EC 1.10.3.2),锰过氧化物酶(MnP;EC 1.11.1.13)(这两个酶首先在黄孢原毛平革菌中发现),多功能过氧化物酶(在杏鲍菇中首先发现),木质素过氧化物酶(LiP;EC 1.11.1.14)和多种辅助酶。一些白腐菌产生上述中的3种分解木质素的酶,而大多数白腐菌仅产生2种甚至1种分解木质素的酶,因此表明上述4种酶在分解木质素的过程中并不是全都必需的。研究表明,木质素过氧化物酶、漆酶、锰过氧化物酶都能与低分子量的中介体共同作用,即酶产生具有攻击木质素结构能力的反应中间产物,间接地引起木质素的氧化反应,从而导致木质素的分解,这已被提出作为木质素的降解机制。So far, only a few microorganisms can degrade lignin, most of them are fungi, and a few are bacteria, but the latter have only weak lignin degradation ability. Because white rot fungi can efficiently and selectively degrade lignin, they are considered to be the most promising fungi for lignin removal. White rot fungi are known to secrete several major classes of peroxidases involved in lignin degradation: laccase (Laccase; EC 1.10.3.2), manganese peroxidase (MnP; EC 1.11.1.13) (these two enzymes were first described in found in P. chrysogenum), multifunctional peroxidase (first found in Pleurotus eryngii), lignin peroxidase (LiP; EC 1.11.1.14) and various auxiliary enzymes. Some white rot fungi produce the above 3 enzymes that decompose lignin, while most white rot fungi produce only 2 or even 1 enzyme that decomposes lignin, thus indicating that the above 4 enzymes are not involved in the process of decomposing lignin. All are required. Studies have shown that lignin peroxidase, laccase, and manganese peroxidase can all work together with low-molecular-weight mediators, that is, the enzymes produce reaction intermediates that have the ability to attack the structure of lignin, and indirectly cause the oxidation of lignin. reaction, resulting in the decomposition of lignin, which has been proposed as a degradation mechanism of lignin.
白腐真菌生长周期长、酶活低,不利于工业化生产。在蛋白质表达体系中,异源宿主表达高效更能满足工业化生产的需要。研究者们希望利用基因工程技术提高过氧化物酶的产量,因此对白腐菌的多个过氧化物酶基因进行克隆和异源宿主的表达。以黄孢原毛平革菌为模板,利用同源克隆技术合成一个全长为1680bp的漆酶基因,将该基因在大肠杆菌中表达,漆酶活力比原菌酶活力提高了近39%。孙亚范将木质素过氧化物酶基因在毕赤酵母(甲醇酵母)中表达,木质素过氧化物酶活力提高了122.1%。王娇将锰过氧化物酶基因在毕赤酵母中表达,木质素降解率提高了31.38%。由于毕赤酵母的表达系统研究的比较成熟,所以将木质素过氧化物酶基因在该酵母表达的研究较多。但是,毕赤酵母不是食品级微生物,它的应用受到限制。White rot fungi have a long growth cycle and low enzyme activity, which are not conducive to industrial production. In the protein expression system, the high efficiency of heterologous host expression can better meet the needs of industrial production. The researchers hope to use genetic engineering technology to increase the production of peroxidase, so they cloned and expressed multiple peroxidase genes of white rot fungi in heterologous hosts. A laccase gene with a full length of 1680 bp was synthesized by homologous cloning technology using P. chrysosporium as a template. The gene was expressed in Escherichia coli, and the laccase activity was nearly 39% higher than that of the original fungus. Sun Yafan expressed the lignin peroxidase gene in Pichia pastoris (Methanol yeast), and the lignin peroxidase activity increased by 122.1%. Wang Jiao expressed the manganese peroxidase gene in Pichia pastoris, and the lignin degradation rate was increased by 31.38%. Since the expression system of Pichia pastoris is relatively mature, there are many studies on the expression of lignin peroxidase gene in this yeast. However, Pichia pastoris is not a food-grade microorganism, and its applications are limited.
发明内容SUMMARY OF THE INVENTION
为此,本发明提供一种产漆酶的产朊假丝酵母基因工程菌及其应用,解决现有技术中异源表达木质素降解酶的微生物菌种不满足食品级要求、应用受限的技术问题。To this end, the present invention provides a laccase-producing Candida utilis genetically engineered bacterium and application thereof, which solves the problems in the prior art that microbial strains heterologously expressing lignin-degrading enzymes do not meet food-grade requirements and are limited in application. technical problem.
为解决上述技术问题,本发明提供一种产漆酶的产朊假丝酵母菌表达载体,包含18S rDNA基因片段-酵母三磷酸甘油醛脱氢酶基因启动子序列(GAP-p)-漆酶基因-酵母三磷酸甘油醛脱氢酶基因终止子序列(GAP-t)-放线菌酮(CYH)抗性基因。In order to solve the above technical problems, the present invention provides a laccase-producing Candida utilis expression vector, comprising 18S rDNA gene fragment-yeast glyceraldehyde triphosphate dehydrogenase gene promoter sequence (GAP-p)-laccase Gene - yeast glyceraldehyde triphosphate dehydrogenase gene terminator sequence (GAP-t) - cycloheximide (CYH) resistance gene.
优选的,所述漆酶基因的核苷酸序列为SEQ ID No.1。Preferably, the nucleotide sequence of the laccase gene is SEQ ID No.1.
本发明还提供一种产漆酶的产朊假丝酵母菌表达载体的构建方法,包括如下步骤:The present invention also provides a method for constructing a laccase-producing Candida utilis expression vector, comprising the following steps:
(1)漆酶(Lac)基因的克隆:提取云芝栓孔菌中总RNA,以提取的总RNA为模板进行RT-PCR扩增,获得目的基因并与pMD19-T载体连接,转化提取,得到重组质粒;(1) Cloning of the laccase (Lac) gene: Extract the total RNA from Trametes yunzhi, and carry out RT-PCR amplification with the extracted total RNA as a template to obtain the target gene and connect it with the pMD19-T vector, transform and extract, to obtain a recombinant plasmid;
(2)酵母三磷酸甘油醛脱氢酶基因(GAP)启动子(GAP-p)和终止子(GAP-t)的克隆:根据GenBank数据库中产朊假丝酵母(C.utilis)GAP-p GAP-t基因序列结合pBR322质粒序列特征设计引物,以产朊假丝酵母基因组为模板,经PCR获得酵母GAP启动子(GAP-p)片段、GAP终止子(GAP-t)片段,将目的片段GAP-p、GAP-t分别连接至载体pMD19-T simple vector上得到质粒载体pT-GP、pT-GT,转化大肠杆菌,阳性克隆进行菌液PCR鉴定并保存备用;(2) Cloning of yeast glyceraldehyde triphosphate dehydrogenase gene (GAP) promoter (GAP-p) and terminator (GAP-t): According to the GenBank database of Candida utilis (C. utilis) GAP-p GAP -t gene sequence combined with pBR322 plasmid sequence features to design primers, using Candida utilis genome as a template, the yeast GAP promoter (GAP-p) fragment and GAP terminator (GAP-t) fragment were obtained by PCR, and the target fragment GAP -p and GAP-t were respectively connected to the vector pMD19-T simple vector to obtain plasmid vectors pT-GP and pT-GT, which were transformed into Escherichia coli, and the positive clones were identified by bacterial liquid PCR and stored for future use;
(3)放线菌酮(CYH)抗性基因的克隆:根据GenBank数据库中产朊假丝酵母(C.utilis)CYH敏感基因(L41)序列结合pBR322质粒序列特征设计引物,及一对反向互补引物;以产朊假丝酵母基因组为模板,PCR扩增出L41上游片段、下游片段,这2片段的一端具有碱基重叠区;以这两上游片段、下游片段等量混合为模板,进行套叠PCR,即获得CYH抗性基因;将目的片段连接至载体pMD19-T simple vector上得到质粒载体pT-CYH,转化大肠杆菌,阳性克隆进行菌液PCR鉴定并保存备用;(3) Cloning of cycloheximide (CYH) resistance gene: Design primers according to the sequence of Candida utilis (C. utilis) CYH sensitive gene (L41) in the GenBank database combined with the sequence characteristics of pBR322 plasmid, and a pair of reverse complements Primers; take the Candida utilis genome as the template, PCR amplify the upstream fragment and downstream fragment of L41, and one end of these two fragments has a base overlapping region; take the two upstream fragments and downstream fragments as templates, and carry out nesting. The CYH resistance gene was obtained by stacking PCR; the target fragment was connected to the vector pMD19-T simple vector to obtain the plasmid vector pT-CYH, transformed into Escherichia coli, and the positive clone was identified by bacterial liquid PCR and stored for subsequent use;
(4)18S rDNA基因片段的克隆:根据GenBank数据库中产朊假丝酵母(C.utilis)18S rDNA基因序列结合pBR322质粒序列特征设计引物,以产朊假丝酵母基因组为模板,经PCR获得18S rDNA片段,将目的片段连接至载体pMD19-T simple vector上获得质粒载体pT-rD,转化大肠杆菌,阳性克隆进行菌液PCR鉴定并保存备用;(4) Cloning of the 18S rDNA gene fragment: According to the Candida utilis 18S rDNA gene sequence in the GenBank database combined with the characteristics of the pBR322 plasmid sequence, primers were designed, and the Candida utilis genome was used as the template to obtain 18S rDNA by PCR. Fragment, connect the target fragment to the carrier pMD19-T simple vector to obtain the plasmid vector pT-rD, transform Escherichia coli, the positive clone is identified by bacterial liquid PCR and stored for future use;
(5)同源整合表达载体的构建:提取pT-GP、pT-GT和pBR322质粒,分别进行酶切,回收目的片段,用T4 DNA连接酶将这3片段同时连接,获得质粒pBR-GAP;提取pT-CYH和pBR-GAP质粒,分别进行酶切,回收目的片段,用T4DNA连接酶进行连接,获得质粒pBR-G-L;提取pBR-G-L质粒和漆酶(Lac)基因重组质粒,分别进行酶切,回收目的片段,用T4 DNA连接酶进行连接,获得质粒pBR-G-Q-L;提取pT-rD和pGQL质粒,分别进行酶切,回收目的片段,用T4DNA连接酶进行连接,获得产漆酶的产朊假丝酵母菌表达载体pGQLR。(5) Construction of homologous integration expression vector: extract pT-GP, pT-GT and pBR322 plasmids, carry out enzyme digestion respectively, recover the target fragment, and use T4 DNA ligase to connect these 3 fragments at the same time to obtain plasmid pBR-GAP; The pT-CYH and pBR-GAP plasmids were extracted and digested respectively, and the target fragments were recovered and ligated with T4 DNA ligase to obtain the plasmid pBR-G-L; the pBR-G-L plasmid and the laccase (Lac) gene recombinant plasmid were extracted, and enzyme Cut, recover the target fragment, ligate with T4 DNA ligase to obtain the plasmid pBR-G-Q-L; extract the pT-rD and pGQL plasmids, carry out digestion respectively, recover the target fragment, ligate with T4 DNA ligase, and obtain the laccase-producing product. Candida prion expression vector pGQLR.
优选的,所述酵母三磷酸甘油醛脱氢酶基因(GAP)启动子(GAP-p)和终止子(GAP-t)的克隆中,引物设计如下:Preferably, in the cloning of the yeast glyceraldehyde triphosphate dehydrogenase gene (GAP) promoter (GAP-p) and terminator (GAP-t), the primers are designed as follows:
启动子(GAP-p):Promoter (GAP-p):
GAP-p1:GGATATCTTACAGCGAGCACTCAA;GAP-p1:GGATATCTTTACAGCGAGCACTCAA;
GAP-p2:GCTCTAGAATGTTGTTTGT;GAP-p2:GCTCTAGAATGTTGTTTGT;
终止子(GAP-t):Terminator (GAP-t):
GAP-t1:CTAGCTAGCTATGACTTTTAT;GAP-t1: CTAGCTAGCTATGACTTTTAT;
GAP-t2:GGGATCCTTCATTCATCCCTCACTATCG。GAP-t2: GGGATCCTTCATTCATCCCTCACTATCG.
优选的,所述放线菌酮(CYH)抗性基因的克隆中,引物设计如下:Preferably, in the cloning of the cycloheximide (CYH) resistance gene, the primers are designed as follows:
P 4:CGTCGACAGTAAGTATGAAAAGAGC;P4:CGTCGACAGTAAGTATGAAAAGAGC;
RM4:GGGATCCGG GTTTGGTCTATGTTGCT;RM4:GGGATCCGGTTTGGTCTATGTTGCT;
在引物P4中引入Sal Ⅰ酶切位点,在引物RM4中引入BamH Ⅰ酶切位点;A Sal I restriction site was introduced into primer P4, and a BamHI restriction site was introduced into primer RM4;
反向互补引物设计如下:The reverse complementary primers were designed as follows:
P5:AACCAAGCAAGTTTTCCAC;P5: AACCAAGCAAGTTTTCCAC;
R5:GTGGAAAACTTGCTTGGTT。R5: GTGGAAAACTTGCTTGGGTT.
优选的,所述18S rDNA基因片段的克隆中,引物设计如下:Preferably, in the cloning of the 18S rDNA gene fragment, the primers are designed as follows:
P3:CGATATCTGCCAGTAGTCATATGC;P3:CGATATCTGCCAGTAGTCATATGC;
R3:CGATATCTGACTTGCGCTTACTAG;R3:CGATATCTGACTTGCGCTTTACTAG;
在引物P3中引入EcoR Ⅴ酶切位点,在引物R3中引入EcoR Ⅴ酶切位点。An EcoR V restriction site was introduced into primer P3, and an EcoR V restriction site was introduced into primer R3.
本发明还提供一种产漆酶的产朊假丝酵母基因工程菌,将上述含漆酶基因的产朊假丝酵母菌表达载体pGQLR,重新拼接后得到序列为ZHQX1的产朊假丝酵母重组子,进行电转化,构建得到重组酵母菌株。The present invention also provides a laccase-producing Candida utilis genetically engineered bacterium. The Candida utilis expression vector pGQLR containing the laccase gene is re-spliced to obtain a Candida utilis recombination with the sequence ZHQX1 The recombinant yeast strains were obtained by electrotransformation.
优选的,以pGQLR载体为模板进行引物设计,将片段序列分为两个片段,重新拼接后得到序列为ZHQX1,设计引物如下:Preferably, primer design is carried out using the pGQLR vector as a template, the fragment sequence is divided into two fragments, and the sequence obtained after re-splicing is ZHQX1, and the designed primers are as follows:
优选的,所述产朊假丝酵母菌表达载体pGQLR中删除来自原核的DNA序列,所述DNA序列包括抗药性标记Amp在内的细菌质粒序列的DNA片段。Preferably, the prokaryotic DNA sequence is deleted from the Candida utilis expression vector pGQLR, and the DNA sequence includes the DNA fragment of the bacterial plasmid sequence including the drug resistance marker Amp.
本发明还提供一种产漆酶的产朊假丝酵母基因工程菌在食品、制药以及畜禽饲料中的应用。The invention also provides the application of the laccase-producing Candida utilis genetically engineered bacteria in food, pharmacy and livestock and poultry feed.
有益效果:Beneficial effects:
本发明提供的产漆酶的产朊假丝酵母基因工程菌,其整个表达系统的全部遗传元件均来自益生菌产朊假丝酵母和无毒无害的真菌,不携带抗生素抗性基因,不存在抗性基因的漂移、扩散及整合,也不携带其他有毒蛋白基因,不会对环境或人和动物带来生物安全性的危害,达到了食品级,可直接添加到食品、药物和饲料中应用。产朊假丝酵母工程菌表达的漆酶活性达到原云芝栓孔菌的10倍。The laccase-producing Candida utilis genetically engineered bacteria provided by the present invention has all the genetic elements of the entire expression system from the probiotic Candida utilis and non-toxic and harmless fungi, does not carry antibiotic resistance genes, does not There is drift, diffusion and integration of resistance genes, and it does not carry other toxic protein genes, which will not cause biological safety hazards to the environment or humans and animals. It has reached food grade and can be directly added to food, medicine and feed. application. The laccase activity expressed by the Candida utilis engineered bacteria was 10 times higher than that of Trametes prototheca.
附图说明Description of drawings
图1为本发明实施例pGQL酶切产物鉴定结果示意图;Fig. 1 is the schematic diagram of the identification result of pGQL digestion product according to the embodiment of the present invention;
图2为本发明构建的表达载体pGQLR图谱;Fig. 2 is the expression vector pGQLR map constructed by the present invention;
图3为本发明实施例pGQL R酶切产物鉴定结果示意图;Fig. 3 is the schematic diagram of the identification result of pGQL R enzyme cleavage product according to the embodiment of the present invention;
图4为本发明实施例产朊假丝酵母菌整合表达载体中删除原核序列后的PCR电泳结果示意图;4 is a schematic diagram of the results of PCR electrophoresis after deletion of prokaryotic sequences in the Candida utilis integrated expression vector according to the embodiment of the present invention;
图5为本发明实施例产朊假丝酵母重组子ZHQX1基因组PCR产物鉴定结果示意图;Figure 5 is a schematic diagram of the identification result of the PCR product of the Candida utilis recombinant ZHQX1 genome according to the embodiment of the present invention;
图6为本发明实施例检测外源基因遗传稳定性PCR电泳结果示意图;6 is a schematic diagram of PCR electrophoresis results for detecting the genetic stability of exogenous genes according to the embodiment of the present invention;
图7为本发明重组酵母菌(ZHQX1)漆酶蛋白SDS-PAGE检测结果示意图。FIG. 7 is a schematic diagram of the detection result of the recombinant yeast (ZHQX1) laccase protein by SDS-PAGE of the present invention.
具体实施方式Detailed ways
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。In order to describe in detail the technical content, achieved objects and effects of the present invention, the following descriptions are given in conjunction with the embodiments.
本说明书中所采用的试剂、原料,除特殊说明外,均为市售产品。The reagents and raw materials used in this manual are all commercially available products unless otherwise specified.
本发明漆酶基因来源于云芝栓孔菌Trametes versicolor:BNCC190652。The laccase gene of the present invention is derived from Trametes versicolor: BNCC190652.
实施例1Example 1
本实施例提供一种产漆酶的产朊假丝酵母基因工程菌,包括:The present embodiment provides a laccase-producing Candida utilis genetically engineered bacterium, comprising:
1、构建含漆酶基因(LAC)的表达载体;1. Construct an expression vector containing laccase gene (LAC);
2、产朊假丝酵母菌整合表达载体中删除来自原核微生物的DNA片段;2. Deletion of DNA fragments from prokaryotic microorganisms in the integrated expression vector of Candida utilis;
3、删除原核DNA序列后转化至酵母菌株。3. After deletion of prokaryotic DNA sequence, transform into yeast strain.
具体过程如下:The specific process is as follows:
1构建含漆酶基因(LAC)的表达载体1 Construction of expression vector containing laccase gene (LAC)
1.1漆酶基因的克隆1.1 Cloning of the laccase gene
从云芝栓孔菌Trametes versicolor中提取总RNA(参照天根(TIANGEN)RNA提取试剂盒法);以提取的云芝菌总RNA为模板,采用BCabest RNA PCR扩增试剂盒进行RT-PCR扩增。引物序列如下:Extract total RNA from Trametes versicolor (refer to TIANGEN RNA extraction kit method); take the extracted total RNA from Trametes versicolor as a template, and use BCabest RNA PCR amplification kit for RT-PCR amplification increase. The primer sequences are as follows:
LAC-R1:CAACATGTCGAGGTTTCACTCTC;LAC-R1: CAACATGTCGAGGTTTCACTCTC;
LAC-R2:CCATTTACTGGTCGCTGGGGT。LAC-R2: CCATTTACTGGTCGCTGGGGT.
使用E.L.N.ATm Gel Extraction Kit(D2500-01)凝胶回收试剂盒进行RT-PCR产物的胶回收;将目的基因与pMD19-T Vector(宝生物)载体的连接;连接产物转化Trans-5α(全式金)感受态细胞,得重组质粒进行PCR鉴定,漆酶基因的核苷酸序列见SEQ ID NO.1所示。Use E.L.N.ATm Gel Extraction Kit (D2500-01) gel recovery kit to perform gel recovery of RT-PCR products; ligate the target gene with pMD19-T Vector (Treasure Bio) vector; transform the ligated product into Trans-5α (full formula) Gold) competent cells, the recombinant plasmid was obtained for PCR identification, and the nucleotide sequence of the laccase gene was shown in SEQ ID NO.1.
1.2酵母三磷酸甘油醛脱氢酶基因(GAP)启动子(GAP-p)和终止子(GAP-t)的克隆1.2 Cloning of yeast glyceraldehyde triphosphate dehydrogenase gene (GAP) promoter (GAP-p) and terminator (GAP-t)
根据GenBank中公布的酵母GAP-p、GAP-t基因序列结合pBR322质粒序列特征设计相应引物并引入合适的酶切位点,以产朊假丝酵母(C.utilis)基因组为模板,分别以相应引物进行PCR(采用试剂盒完成),获得酵母GAP启动子(GAP-p)片段、GAP终止子(GAP-t)片段。回收目的片段连接至载体pMD19-T simple(宝生物)vector上(分别命名为pT-GP、pT-GT),连接产物转化DH5α(全式金)感受态细胞中,阳性克隆进行菌液PCR鉴定。According to the yeast GAP-p and GAP-t gene sequences published in GenBank combined with the sequence characteristics of pBR322 plasmid, the corresponding primers were designed and appropriate restriction sites were introduced. The primers are used for PCR (completed with a kit) to obtain yeast GAP promoter (GAP-p) fragment and GAP terminator (GAP-t) fragment. The recovered target fragment was connected to the vector pMD19-T simple (Bao Bio) vector (named as pT-GP, pT-GT respectively), the ligation product was transformed into DH5α (full gold) competent cells, and the positive clone was identified by bacterial liquid PCR .
引物序列如下:The primer sequences are as follows:
克隆到的启动子序列GAP-p的核苷酸序列见SEQ ID NO.2所示。The nucleotide sequence of the cloned promoter sequence GAP-p is shown in SEQ ID NO.2.
克隆到的终止子序列GAP-t的核苷酸序列见SEQ ID NO.3所示。The nucleotide sequence of the cloned terminator sequence GAP-t is shown in SEQ ID NO.3.
GAP-p,GAP-t基因的PCR扩增:PCR amplification of GAP-p, GAP-t genes:
目的基因与pMD19-T simple(宝生物)载体的连接体系:The connection system of the target gene and pMD19-T simple (Bao Bio) vector:
16℃连接过夜,连接产物转化DH5α(全式金)感受态细胞中。After ligation at 16°C overnight, the ligation product was transformed into DH5α (full gold) competent cells.
重组子进行菌液PCR鉴定PCR identification of recombinants
1.3放线菌酮(CYH)抗性基因的克隆(采用定点突变法)1.3 Cloning of cycloheximide (CYH) resistance gene (using site-directed mutagenesis)
根据GenBank中公布的酵母中CYH敏感基因(L41)序列结合pBR322质粒序列特征设计相应引物,并引入合适的酶切位点,同时设计一对反向互补引物。先以C.utilis基因组为模板,PCR扩增出L41上游片段、下游片段,这2片段的一端具有碱基重叠区。以这两上游片段、下游片段等量混合为模板,进行套叠PCR,即可获得CYH抗性基因。回收目的片段连接至载体pMD19-T simple vector上(命名为pT-CYH))转化大肠杆菌,阳性克隆进行菌液PCR鉴定。The corresponding primers were designed according to the sequence of CYH sensitive gene (L41) in yeast published in GenBank combined with the sequence characteristics of pBR322 plasmid, and appropriate restriction sites were introduced, and a pair of reverse complementary primers were designed at the same time. First, using the C. utilis genome as a template, the upstream fragment and downstream fragment of L41 were amplified by PCR, and one end of these two fragments had a base overlap region. The CYH resistance gene can be obtained by using the same amount of the two upstream fragments and the downstream fragments as templates, and performing nested PCR. The recovered target fragment was ligated to the vector pMD19-T simple vector (named pT-CYH) and transformed into E. coli, and the positive clones were identified by bacterial liquid PCR.
设计引物如下:Primers are designed as follows:
以酵母基因组为模板,分别以P4/R5,P5/RM4为引物,进行PCR实验。Using yeast genome as template and P4/R5 and P5/RM4 as primers, PCR experiments were carried out.
反应条件:Reaction conditions:
以两组回收产物为模板进行PCR实验:PCR experiments were performed using the two groups of recovered products as templates:
PCR反应条件同上。PCR reaction conditions were the same as above.
目的基因与pMD19-T Vector载体的连接体系:The connection system of the target gene and the pMD19-T Vector vector:
轻轻混匀,瞬时离心后,16℃连接过夜。连接产物转化Trans-5α(全式金)感受态细胞中。Mix gently, centrifuge briefly, and ligate overnight at 16°C. The ligation product was transformed into Trans-5α (full gold) competent cells.
用接菌环挑取10个单克隆菌体,进行菌液PCR鉴定。10 monoclonal cells were picked with the inoculating loop and identified by PCR of the bacterial liquid.
PCR反应程序同上。The PCR reaction program is the same as above.
克隆到的放线菌酮抗性基因CYH的核苷酸序列见SEQ ID NO.4所示。The nucleotide sequence of the cloned cycloheximide resistance gene CYH is shown in SEQ ID NO.4.
1.4 18S rDNA基因片段的克隆1.4 Cloning of 18S rDNA gene fragments
根据GenBank中公布的酵母18S rDNA基因序列结合pBR322质粒序列特征设计相应引物,并引入合适的酶切位点,以C.utilis基因组为模板,以相应引物进行PCR,获得18SrDNA片段。回收目的片段连接至载体pMD19-T simple vector上(命名为pT-rD)转化大肠杆菌,阳性克隆进行菌液PCR鉴定。The corresponding primers were designed according to the yeast 18S rDNA gene sequence published in GenBank combined with the sequence characteristics of the pBR322 plasmid, and appropriate restriction sites were introduced. Using the C. utilis genome as a template, PCR was performed with the corresponding primers to obtain 18S rDNA fragments. The recovered target fragment was connected to the vector pMD19-T simple vector (named pT-rD) to transform E. coli, and the positive clones were identified by bacterial liquid PCR.
18SrDNA基因引物设计如下:The 18SrDNA gene primers were designed as follows:
PCR扩增反应体系(25μL):PCR amplification reaction system (25μL):
反应条件:Reaction conditions:
克隆到的18S rDNA基因片段的核苷酸序列见SEQ ID NO.5所示。The nucleotide sequence of the cloned 18S rDNA gene fragment is shown in SEQ ID NO.5.
1.5 pBR322-GAP(pBR-GAP)载体的构建:1.5 Construction of pBR322-GAP (pBR-GAP) vector:
GAP-p、GAP-t与pBR322质粒分别用EcoRV/XBa I,XBa I/BamH I和EcoRV/BamH I进行酶切,回收目的片段。采用3片段连接法,用T4 DNA连接酶将这3片段同时连接,获得质粒pBR-GAP。GAP-p, GAP-t and pBR322 plasmids were digested with EcoRV/XBa I, XBa I/BamH I and EcoRV/BamH I, respectively, and the target fragments were recovered. Using the 3-fragment ligation method, the 3 fragments were simultaneously ligated with T4 DNA ligase to obtain the plasmid pBR-GAP.
GAP-p酶切体系如下:The GAP-p digestion system is as follows:
GAP-t酶切体系如下:The GAP-t digestion system is as follows:
PBR322酶切体系如下:The digestion system of PBR322 is as follows:
将胶回收纯化的目的片段和载体通过T4 DNA连接酶进行连接,10μL连接反应体系如下:The gel-recovered and purified target fragment and the vector are ligated by T4 DNA ligase. The 10 μL ligation reaction system is as follows:
离心混匀后,16℃水浴过夜,连接连接产物转化DH5α感受态细胞中。After centrifugation and mixing, the ligation product was transformed into DH5α competent cells in a water bath at 16°C overnight.
挑取10个单克隆菌体,进行PCR扩增,反应体系和条件如下:Pick 10 monoclonal cells and conduct PCR amplification. The reaction system and conditions are as follows:
挑取菌液鉴定阳性克隆,放于含有5mlLB培养液(+AMP)的三角瓶内,200rpm 37℃过夜培养。然后提取质粒进行EcoRV和BamHI酶切鉴定,酶切体系如下:The bacterial liquid was picked to identify positive clones, placed in a conical flask containing 5 ml of LB medium (+AMP), and cultured at 200 rpm at 37°C overnight. Then the plasmid was extracted and identified by EcoRV and BamHI digestion. The digestion system was as follows:
37℃酶切2h,提取酶切正确的质粒进行测序。Digested at 37°C for 2 h, and extracted the correctly digested plasmid for sequencing.
1.6 pBR322-GAP-L41(pBR-G-L)载体的构建1.6 Construction of pBR322-GAP-L41 (pBR-G-L) vector
提取pT-CYH和pBR-GAP质粒,分别采用引入酶切位点的相应酶进行酶切,回收目的片段,用T4 DNA连接酶进行连接,获得质粒pBR-G-L。The pT-CYH and pBR-GAP plasmids were extracted and digested with the corresponding enzymes introduced into the restriction sites, respectively, and the target fragments were recovered and ligated with T4 DNA ligase to obtain the plasmid pBR-G-L.
CYH酶切体系如下:The CYH digestion system is as follows:
pBR-GAP酶切体系如下:The pBR-GAP digestion system is as follows:
将胶回收纯化的目的片段和载体通过T4DNA连接酶进行连接,10μL连接反应体系如下:The gel-recovered and purified target fragment and the vector are ligated by T4 DNA ligase. The 10 μL ligation reaction system is as follows:
离心混匀后,16℃水浴过夜连接,连接产物转化DH5α感受态细胞中。After centrifugation and mixing, ligation was performed in a water bath at 16°C overnight, and the ligation product was transformed into DH5α competent cells.
挑取10个单克隆菌体,进行PCR扩增,反应体系和条件如下。Pick 10 monoclonal cells and conduct PCR amplification. The reaction system and conditions are as follows.
94℃预变性5min,94℃变性30secPre-denaturation at 94°C for 5min, denaturation at 94°C for 30sec
56℃退火30sec,72℃延伸2min30sec共30个循环。72℃延伸10min。Annealing at 56 °C for 30 sec, extension at 72 °C for 2 min 30 sec for a total of 30 cycles. Extend for 10 min at 72°C.
挑取菌液鉴定阳性克隆,放于含有5mlLB培养液(+Amp)的三角瓶内,200rpm 37℃过夜培养。然后提取质粒进行Sal I和BamH I酶切鉴定,酶切体系如下:The bacterial liquid was picked to identify positive clones, placed in a conical flask containing 5 ml of LB medium (+Amp), and cultured at 200 rpm at 37°C overnight. Then the plasmid was extracted for Sal I and BamH I digestion and identification, and the digestion system was as follows:
37℃酶切2h,提取酶切正确的质粒进行测序,命名为PBR-G-L。After digestion at 37°C for 2 h, the correct plasmid was extracted and sequenced and named PBR-G-L.
1.7含漆酶基因(LAC)基因的pBR322-GAP-L41-Q(pGQL)载体的构建1.7 Construction of pBR322-GAP-L41-Q (pGQL) vector containing laccase gene (LAC) gene
1)提取pBR-G-L质粒,用XBa I/Nhe I进行酶切,回收目的片段;1) extract the pBR-G-L plasmid, carry out enzyme digestion with XBa I/Nhe I, and recover the target fragment;
pBR-G-L酶切体系如下:The pBR-G-L digestion system is as follows:
2)Lac基因的克隆及酶切;2) Cloning and digestion of Lac gene;
克隆体系如下:The clone system is as follows:
酶切体系如下:The enzyme digestion system is as follows:
3)将Lac基因片段与pBR-G-L酶切片段通过T4DNA连接酶进行连接,10μL连接反应体系如下:3) The Lac gene fragment and the pBR-G-L digested fragment are ligated by T4 DNA ligase. The 10 μL ligation reaction system is as follows:
离心混匀后,16℃水浴过夜连接,连接产物转化DH5α感受态细胞中。After centrifugation and mixing, ligation was performed in a water bath at 16°C overnight, and the ligation product was transformed into DH5α competent cells.
4)重组子菌液PCR鉴定4) PCR identification of recombinant sub-bacteria
挑取10个单克隆菌体,进行PCR扩增,反应体系和条件如下。Pick 10 monoclonal cells and conduct PCR amplification. The reaction system and conditions are as follows.
5)酶切鉴定5) Enzyme digestion identification
挑取菌液鉴定阳性克隆,放于含有5ml LB培养液(+AMP)的三角瓶内,200rpm 37℃过夜培养。然后提取质粒进行XBa I和Nhe I酶切鉴定,酶切体系如下:The bacterial liquid was picked to identify positive clones, placed in a conical flask containing 5 ml of LB medium (+AMP), and cultured at 200 rpm at 37°C overnight. Then extract the plasmid for XBa I and Nhe I digestion identification, and the digestion system is as follows:
37℃酶切20min,提取酶切正确的质粒进行测序,命名为pBR-G-Q-L(pGQL),酶切结果参见图1,其中,M为Trans 2K Ⅱ Marker;1为pGQL酶切产物。After digestion at 37°C for 20 min, the plasmid with the correct digestion was extracted and sequenced, and named pBR-G-Q-L (pGQL). The digestion results are shown in Figure 1, where M is Trans 2K II Marker; 1 is the pGQL digestion product.
1.8 pBR322-GAP-L41-Q-R18(pGQLR)载体的构建1.8 Construction of pBR322-GAP-L41-Q-R18 (pGQLR) vector
提取pT-rD和pGQL,分别采用引入酶切位点的相应酶进行酶切,回收目的片段,用T4 DNA连接酶进行连接,获得同源整合表达载体(pGQLR)。转化大肠杆菌DH5a,提取质粒后采用酶切和PCR方法鉴定阳性克隆。The pT-rD and pGQL were extracted and digested with the corresponding enzymes introduced into the restriction sites respectively. The target fragments were recovered and ligated with T4 DNA ligase to obtain the homologous integration expression vector (pGQLR). Escherichia coli DH5a was transformed, and the positive clones were identified by enzyme digestion and PCR after the plasmid was extracted.
18SrDNA酶切体系如下:The 18S rDNA digestion system is as follows:
pGQL酶切体系如下:The pGQL digestion system is as follows:
将胶回收纯化的目的片段和载体通过T4 DNA连接酶进行连接,10μL连接反应体系如下:The gel-recovered and purified target fragment and the vector are ligated by T4 DNA ligase. The 10 μL ligation reaction system is as follows:
离心混匀后,16℃水浴过夜连接,连接产物转化感受态细胞中。After centrifugation and mixing, ligation was performed in a water bath at 16°C overnight, and the ligation product was transformed into competent cells.
挑取10个单克隆菌体,进行PCR扩增,反应体系和条件如下。Pick 10 monoclonal cells and conduct PCR amplification. The reaction system and conditions are as follows.
质粒进行EcoRV酶切鉴定,酶切体系如下:The plasmid was identified by EcoRV digestion, and the digestion system was as follows:
37℃酶切15min,提取酶切正确的质粒进行测序,命名为pGQLR,表达载体图谱如图2所示;酶切产物鉴定结果如图3所示,M为1kb Marker;1为pGQLR酶切产物。Digested at 37°C for 15 min, extracted the correct plasmid for sequencing, named pGQLR, and the expression vector map is shown in Figure 2; the identification result of the digestion product is shown in Figure 3, M is 1kb Marker; 1 is the pGQLR digestion product .
2产朊假丝酵母菌整合表达载体中删除来自原核微生物的DNA片段2. Deletion of DNA fragments from prokaryotic microorganisms in the integrated expression vector of Candida utilis
以pGQLR载体为模板进行引物设计,将片段序列分为两个片段,通过重叠延伸PCR实验技术删除来自原核的DNA序列(包括抗药性标记Amp在内的细菌质粒序列的DNA片段),重新拼接后的序列命名为ZHQX1。The primer design was carried out with the pGQLR vector as the template, the fragment sequence was divided into two fragments, and the DNA sequence from the prokaryotic (including the DNA fragment of the bacterial plasmid sequence including the drug resistance marker Amp) was deleted by the overlap extension PCR experimental technology. After re-splicing The sequence was named ZHQX1.
设计的引物如下:The designed primers are as follows:
分别以P1-1S、P1-1AS、P2-1S、P2-1AS为引物进行A、B两组PCR实验。P1-1S, P1-1AS, P2-1S, P2-1AS were used as primers to carry out two groups of PCR experiments A and B respectively.
体系为:The system is:
PCR反应条件:PCR reaction conditions:
以A和B两组回收产物为模板进行PCR实验。PCR experiments were carried out with two groups of recovered products A and B as templates.
用1%琼脂糖凝胶电泳检测,紫外凝胶成像系统观察结果,如图4所示,M为Trans2K Ⅱ Marker;QX为删除原核序列后的PCR电泳结果。Detected by 1% agarose gel electrophoresis and observed by UV gel imaging system, as shown in Figure 4, M is Trans2K II Marker; QX is the result of PCR electrophoresis after deletion of prokaryotic sequences.
3删除原核DNA序列后转化至酵母菌株3. After deletion of prokaryotic DNA sequences, transformation into yeast strains
将已删除来自原核的DNA序列的整合表达载体(ZHQX1)进行电转化,构建重组酵母菌株。The integrated expression vector (ZHQX1) in which the prokaryotic DNA sequence has been deleted was electroporated to construct a recombinant yeast strain.
感受态的制备:取5ul产朊假丝酵母加入到含3ml YPD培养基(含葡萄糖)的100ml摇瓶内,30℃,100rpm摇菌培养过夜(OD600约6-10)。从上一步取100μl菌液加到含有10mlYPD培养基(含PTT)的250ml摇瓶中,100rpm、30℃进行培养,直到OD值为1.0-1.3。Competent preparation: 5ul of Candida utilis was added to a 100ml shake flask containing 3ml of YPD medium (containing glucose), and the bacteria were shaken at 30°C and 100rpm overnight (OD600 was about 6-10). Add 100 μl of bacterial solution from the previous step to a 250 ml shake flask containing 10 ml of YPD medium (containing PTT), and cultivate at 100 rpm and 30° C. until the OD value is 1.0-1.3.
处理液(1ml)的配制:Preparation of treatment solution (1ml):
取1ml过夜培养物分装到1.5ml EP管内,4℃、10000g、1min离心,弃上清。沉淀用4℃预冷的无菌水洗涤,同条件离心,弃上清。
菌体处理:加入1ml处理液,室温放置20min。离心(同条件),弃上清。Bacterial treatment: add 1 ml of treatment solution and place at room temperature for 20 min. Centrifuge (same conditions) and discard the supernatant.
加入1ml 1M的Sorbitol,离心(同条件),弃上清。1ml of 1M Sorbitol was added, centrifuged (same conditions), and the supernatant was discarded.
用1M的Sorbitol洗涤2次,到最终体积约为80ul。Wash twice with 1M Sorbitol to a final volume of approximately 80ul.
外源基因转化:Exogenous gene transformation:
加入1ug外源基因,混匀后转入预冷的(冰浴中)电击杯中。1.5Kv、25uF、200Ω条件下进行电转。电击后立即加入1ml预冷的1M Sorbitol,轻柔悬浮。吸出,移入1.5ml EP管内。28℃静置培养2h。离心浓缩后,全部涂在YPD固体平板(YPD+PTT+CYH)上。28℃避光培养。2-3d开始统计和挑去转化子。Add 1ug exogenous gene, mix well and transfer to a pre-cooled (in ice bath) electric shock cup. 1.5Kv, 25uF, 200Ω for electric transfer. Immediately after shock, add 1 ml of pre-chilled 1M Sorbitol and suspend gently. Aspirate and transfer into a 1.5ml EP tube. Incubate at 28°C for 2h. After centrifugation and concentration, all were spread on YPD solid plate (YPD+PTT+CYH). Incubate at 28°C in the dark. 2-3d start counting and picking out transformants.
产朊假丝酵母重组子ZHQX1基因组PCR产物鉴定结果如图5所示,M为DL2000marker;1-6为产朊假丝酵母重组子ZHQX1基因组PCR产物;7为pGQLR质粒PCR产物(阳性对照);8为未转化质粒的产朊假丝酵母基因组PCR产物(阴性对照1);9为水PCR产物(阴性对照2)。The identification results of the Candida utilis recombinant ZHQX1 genome PCR products are shown in Figure 5, M is the DL2000 marker; 1-6 are the Candida utilis recombinant ZHQX1 genome PCR products; 7 is the pGQLR plasmid PCR product (positive control); 8 is the genome PCR product of Candida utilis without the transformed plasmid (negative control 1); 9 is the water PCR product (negative control 2).
本实施例制得的产朊假丝酵母基因工程菌检测Detection of Candida utilis genetically engineered bacteria prepared in this example
1酶活测定1 Enzyme activity assay
材料:Material:
云芝栓孔菌Trametes versicolor:BNCC190652,购自北纳创联生物技术有限公司。Trametes versicolor: BNCC190652, purchased from Beina Chuanglian Biotechnology Co., Ltd.
pGQLR:本实验室构建保存。pGQLR: This laboratory builds preservation.
培养基及试剂:Culture medium and reagents:
⑴酶活培养基(g/L):(1) Enzyme activity medium (g/L):
葡萄糖:10gGlucose: 10g
酒石酸铵:0.1gAmmonium tartrate: 0.1g
KH2PO4:0.2gKH 2 PO 4 : 0.2g
MgSO4.7H2O:0.5gMgSO 4 .7H 2 O: 0.5g
MnSO4:0.035gMnSO 4 : 0.035g
CuSO4.5H2O:0.007gCuSO4.5H 2 O: 0.007g
加水至1L,121℃灭菌20min。Add water to 1L and sterilize at 121°C for 20min.
⑵PDA培养基:(2) PDA culture medium:
9.76g PDA9.76g PDA
200ml水200ml water
高压灭菌,备用。Autoclave, set aside.
⑶溶液:(3) Solution:
20mmol/L H2O2,10mmol/L藜芦醇,50mmol/L的酒石酸缓冲液(pH3),50mmol/L的琥珀酸缓冲液(pH4.5),0.4mmol/L的愈创木酚。20mmol/L H 2 O 2 , 10mmol/L veratrol, 50mmol/L tartaric acid buffer (pH3), 50mmol/L succinic acid buffer (pH4.5), 0.4mmol/L guaiacol.
1.2方法1.2 Methods
漆酶的酶活测定:采用愈创木酚法。Determination of the enzyme activity of laccase: using the guaiacol method.
缓冲溶液常用琥珀酸钠溶液,终浓度为50mmol/L。缓冲溶液的pH为4.5。底物愈创木酚的终浓度0.4mmol/L。反应温度为30℃,反应时间是30min。测定465nm处OD值变化。The buffer solution is usually sodium succinate solution with a final concentration of 50 mmol/L. The pH of the buffer solution was 4.5. The final concentration of the substrate guaiacol was 0.4 mmol/L. The reaction temperature was 30°C, and the reaction time was 30 min. The change in OD value at 465 nm was measured.
1.3结果如下表1。1.3 The results are shown in Table 1 below.
表1 465nm处OD值变化Table 1 OD value change at 465nm
(U/L) (U/L)
可见,本发明克隆到的漆酶基因经产朊假丝酵母表达后具有降解木质素的活力,且明显高于来源于云芝栓孔菌的漆酶基因。It can be seen that the laccase gene cloned by the present invention has the activity of degrading lignin after being expressed by Candida utilis, which is significantly higher than that of the laccase gene derived from Trametes yunzhi.
2整合基因的遗传稳定性测定2 Genetic stability assay of integrated genes
2.1酵母基因组PCR检测2.1 PCR detection of yeast genome
将酵母重组子用YPD(无CYH)液体培养基进行接种传代培养后,选取第1天,第15天的酵母提取酵母基因组PCR检测目的基因,测定外源基因遗传稳定性。After the yeast recombinants were inoculated and subcultured with YPD (without CYH) liquid medium, the yeasts on the 1st and 15th days were selected to extract the yeast genome PCR to detect the target gene, and to determine the genetic stability of the exogenous gene.
2.2外源基因遗传稳定性测定结果2.2 Determination of genetic stability of foreign genes
提取重组酵母基因组DNA,通过目的基因引物进行PCR扩增,琼脂糖凝胶电泳检测,结果证明目的基因稳定存在,结果如图6所示:M为DL2000 marker;1为YPD(无CYH)培养基中生长的酵母(Day15);2:阳性对照:PGMLR质粒PCR产物3:菌阴性对照(一)未转化质粒的产朊假丝酵母基因组PCR产物;4:阴性对照(二)水PCR产物,由该结果可知,在酵母菌传代100代时仍含有目的条带,表明外源基因没有丢失,在传代培养过程中保持了较高的遗传稳定性。The recombinant yeast genomic DNA was extracted, amplified by PCR with the primers of the target gene, and detected by agarose gel electrophoresis. The results showed that the target gene was stable. The results are shown in Figure 6: M is DL2000 marker; 1 is YPD (CYH-free) medium Yeast (Day15) grown in 2: positive control: PGMLR plasmid PCR product 3: bacterial negative control (1) Candida utilis genome PCR product of untransformed plasmid; 4: negative control (2) water PCR product, by The results showed that the target band was still contained when the yeast was subcultured for 100 generations, indicating that the exogenous gene was not lost, and high genetic stability was maintained during the subculturing process.
3重组酵母菌(ZHQX1)漆酶蛋白SDS-PAGE检测3 Detection of recombinant yeast (ZHQX1) laccase protein by SDS-PAGE
采用Yeast Protein Extraction Reagent提取ZHQX1的总蛋白质。具体操作过程如下:The total protein of ZHQX1 was extracted with Yeast Protein Extraction Reagent. The specific operation process is as follows:
①取1~5×106的液体酵母菌细胞至1.5ml的离心管中,8000g 4℃离心2分钟。① Take 1-5×10 6 liquid yeast cells into a 1.5ml centrifuge tube, centrifuge at 8000g for 2 minutes at 4°C.
②小心除去上清,向沉淀中缓慢加入1ml冰预冷的灭菌水,用移液枪轻轻反复吹打,使沉淀重悬。② Carefully remove the supernatant, slowly add 1 ml of ice-cold sterilized water to the pellet, and gently pipet repeatedly with a pipette to resuspend the pellet.
③8000g,4℃离心2分钟。小心除去上清,尽量除净液体。③ Centrifuge at 8000g for 2 minutes at 4°C. Carefully remove the supernatant to remove as much liquid as possible.
④向沉淀中加入25μL的Yeast Protein Extraction Reagent,用移液枪轻轻反复吹打,使沉淀重悬。④Add 25 μL of Yeast Protein Extraction Reagent to the pellet, and gently pipet repeatedly with a pipette to resuspend the pellet.
⑤放入30℃水浴中温浴30分钟以上,期间轻轻振荡离心管1~2次。⑤Put it in a 30°C water bath for more than 30 minutes, and gently shake the
⑥将离心管从30℃水浴中取出,12000g,4℃离心5分钟。小心除去上清,再向沉淀中加入25μL的PBS溶液,25μL的2×Protein SDS PAGE Loading Buffer,涡旋振荡2分钟,使沉淀重悬。⑥ Take the centrifuge tube out of the 30°C water bath, centrifuge at 12,000g for 5 minutes at 4°C. Carefully remove the supernatant, add 25 μL of PBS solution and 25 μL of 2×Protein SDS PAGE Loading Buffer to the pellet, and vortex for 2 minutes to resuspend the pellet.
⑦取12.5μL上述悬浊液到新的1.5ml离心管内,在100℃条件下温浴10分钟后取10μL进行电泳检测。⑦ Take 12.5μL of the above suspension into a new 1.5ml centrifuge tube, incubate at 100°C for 10 minutes, and take 10μL for electrophoresis detection.
SDS-PAGE结果如图7所示,泳道M是蛋白分子量标准;泳道1、2、3、4为4组从重组酵母菌(ZHQX1)中提取的蛋白,其中P指向的蛋白为漆酶蛋白。SDS-PAGE results are shown in Figure 7, lane M is the protein molecular weight standard;
产朊假丝酵母被美国FDA认证为可作为食品添加剂的酵母,能运用于食品、制药业以及畜禽的饲料中。本发明将木质素降解酶基因,即漆酶基因,转化到产朊假丝酵母中,并应用于发酵秸秆,可破坏木质素的包裹作用,使纤维素和半纤维素暴露出来,利于瘤胃微生物降解和利用秸秆饲料;可以作为安全的单细胞蛋白,改善秸秆饲料中的营养成分含量;其发酵产品不必经过分离纯化,省时且经济实惠。通过产朊假丝酵母异源表达木质素降解酶,也是为提高其产量,为工业化生产打基础。Candida utilis has been certified by the US FDA as a yeast that can be used as a food additive, which can be used in food, pharmaceutical industry and livestock and poultry feed. The present invention transforms the lignin degrading enzyme gene, that is, the laccase gene, into Candida utilis, and applies it to fermentation straw, which can destroy the encapsulation effect of lignin and expose cellulose and hemicellulose, which is beneficial to rumen microorganisms Degradation and utilization of straw feed; it can be used as a safe single-cell protein to improve the nutrient content of straw feed; its fermented products do not need to be separated and purified, which is time-saving and economical. The heterologous expression of lignin-degrading enzymes through Candida utilis is also to increase its yield and lay the foundation for industrial production.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
序列表sequence listing
<110>内蒙古自治区农牧业科学院<110> Inner Mongolia Autonomous Region Academy of Agriculture and Animal Husbandry
<120>产漆酶的产朊假丝酵母基因工程菌及其应用<120> Laccase-producing Candida utilis genetically engineered bacteria and its application
<160>5<160>5
<170> Patent-In 3.5<170> Patent-In 3.5
<210>1<210>1
<211>1571<211>1571
<212>DNA<212> DNA
<213>云芝栓孔菌(Trametes versicolor)<213> Trametes versicolor
<400>1<400>1
caacatgtcg aggtttcact ctcttctcgc tttcgtcgtt gcttccctta cggctgtggc 60caacatgtcg aggtttcact ctcttctcgc tttcgtcgtt gcttccctta cggctgtggc 60
ccacgctggt atcggtcctg tcgccgacct caccatcacc aacgcagcgg tcagccccga 120ccacgctggt atcggtcctg tcgccgacct caccatcacc aacgcagcgg tcagccccga 120
cgggttttct cgccaggccg tcgtcgtgaa cggcggcacc cctggccctc tcatcaccgg 180cgggttttct cgccaggccg tcgtcgtgaa cggcggcacc cctggccctc tcatcaccgg 180
taacatgggg gaccgcttcc agctcaatgt catcgacaac ctcaccaacc acacgatgct 240taacatgggg gaccgcttcc agctcaatgt catcgacaac ctcaccaacc acacgatgct 240
gaagagcacc agtattcact ggcacggttt cttccagaag ggcacgaact gggccgacgg 300gaagagcacc agtattcact ggcacggttt cttccagaag ggcacgaact gggccgacgg 300
tcccgccttc atcaaccagt gcccgatctc atctggtcac tcgttcctgt acgacttcca 360tcccgccttc atcaaccagt gcccgatctc atctggtcac tcgttcctgt acgacttcca 360
ggttcctgac caggctggca ccttctggta ccacagtcac ttgtccacgc agtactgtga 420ggttcctgac caggctggca ccttctggta ccacagtcac ttgtccacgc agtactgtga 420
tggtctgagg ggtccgttcg ttgtttacga cccgaacgac ccagccgccg acttgtacga 480tggtctgagg ggtccgttcg ttgtttacga cccgaacgac ccagccgccg acttgtacga 480
cgtcgacaac gacgacactg tcattaccct cgtggattgg taccacgtcg ccgcgaagct 540cgtcgacaac gacgacactg tcattaccct cgtggattgg taccacgtcg ccgcgaagct 540
gggccccgcc ttccctctcg gcgccgatgc taccctcatc aacggtaagg gacgctcccc 600gggccccgcc ttccctctcg gcgccgatgc taccctcatc aacggtaagg gacgctcccc 600
cagcacgact accgcggacc tctctgttat cagcgtcact ccgggtaaac gctaccgttt 660cagcacgact accgcggacc tctctgttat cagcgtcact ccgggtaaac gctaccgttt 660
ccgcctggtg tccctgtcgt gcgaccccaa ctacacgttc agcatcgatg gtcacaacat 720ccgcctggtg tccctgtcgt gcgaccccaa ctacacgttc agcatcgatg gtcacaacat 720
gacgatcatc gaaaccgact cgatcaacac ggcgcccctc gtcgtcgact ccattcagat 780gacgatcatc gaaaccgact cgatcaacac ggcgcccctc gtcgtcgact ccattcagat 780
cttcgccgcc cagcgttact ccttcgtgct cgaggccaac caggccgtcg acaactactg 840cttcgccgcc cagcgttact ccttcgtgct cgaggccaac caggccgtcg acaactactg 840
gattcgcgct aacccgaact tcggtaatgt cgggttcacc ggcggcatca actcggctat 900gattcgcgct aacccgaact tcggtaatgt cgggttcacc ggcggcatca actcggctat 900
cctccgctac gatggtgccg ctgccgtcga gcccaccacc acgcaaacca cttcgaccga 960cctccgctac gatggtgccg ctgccgtcga gcccaccacc acgcaaacca cttcgaccga 960
gccgctcaac gaggtcaacc tgcacccgct ggttgccacc gctgttcctg gctctcccgt 1020gccgctcaac gaggtcaacc tgcacccgct ggttgccacc gctgttcctg gctctcccgt 1020
tgcgggtggt gttgacctgg ccatcaacat ggcgttcaac ttcaacggca ccaacttttt 1080tgcgggtggt gttgacctgg ccatcaacat ggcgttcaac ttcaacggca ccaacttttt 1080
catcaacggc gcgtctttca cgcccccgac cgtgcctgtc ctcctccaga tcatcagcgg 1140catcaacggc gcgtctttca cgcccccgac cgtgcctgtc ctcctccaga tcatcagcgg 1140
cgcgcagaac gcgcaggacc tcctgccctc cggcagcgtc tactcgctcc cctcgaacgc 1200cgcgcagaac gcgcaggacc tcctgccctc cggcagcgtc tactcgctcc cctcgaacgc 1200
cgacatcgag atctccttcc ccgccaccgc cgccgccccc ggcgcgcccc accccttcca 1260cgacatcgag atctccttcc ccgccaccgc cgccgcccccc ggcgcgcccc accccttcca 1260
cttgcacggg cacgcgttcg cggtcgtccg cagcgccggc agcacggtct acaactacga 1320cttgcacggg cacgcgttcg cggtcgtccg cagcgccggc agcacggtct acaactacga 1320
caaccccatc ttccgcgacg tcgtcagcac ggggacgcct gcggccggtg acaacgtcac 1380caaccccatc ttccgcgacg tcgtcagcac ggggacgcct gcggccggtg acaacgtcac 1380
catccgcttc cgcaccgaca accccggccc gtggttcctc cactgccaca tcgacttcca 1440catccgcttc cgcaccgaca accccggccc gtggttcctc cactgccaca tcgacttcca 1440
cctcgaggcc ggcttcgccg tcgtgttcgc ggaggacatc cccgacgtcg cgtcggcgaa 1500cctcgaggcc ggcttcgccg tcgtgttcgc ggaggacatc cccgacgtcg cgtcggcgaa 1500
ccccgtcccc caggcgtggt ccgacctctg cccgacctac gacgcgctcg accccagcga 1560ccccgtcccc caggcgtggt ccgacctctg cccgacctac gacgcgctcg accccagcga 1560
ccagtaaatg g 1571ccagtaaatg g 1571
<210>2<210>2
<211>971<211>971
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequences
<400>2<400>2
ttacagcgag cactcaaatc tgccctccga gccctccggc cctctcttca acaaactcgc 60ttacagcgag cactcaaatc tgccctccga gccctccggc cctctcttca acaaactcgc 60
gctgcacttc gtcgtcagtg gtgccaatca cccaacgtgg aggtatcaag aggtgctcca 120gctgcacttc gtcgtcagtg gtgccaatca cccaacgtgg aggtatcaag aggtgctcca 120
gcccacaaag cgacatcaaa gacaacaacc ctgccggcat acgtcctaca caccctggtg 180gcccacaaag cgacatcaaa gacaacaacc ctgccggcat acgtcctaca caccctggtg 180
atcgcagaca ttgtacaagg tgccacgcaa taacctacag gcaccgcaca tgacgatggc 240atcgcagaca ttgtacaagg tgccacgcaa taacctacag gcaccgcaca tgacgatggc 240
cttggttgtg caaccagtga cttccacggt ccacgcagca acatgaacca caccacccag 300cttggttgtg caaccagtga cttccacggt ccacgcagca acatgaacca caccacccag 300
aatcgatgcg cgcaacaaca gttgttccgg ttcactcagc cccacagcga gtcgctggca 360aatcgatgcg cgcaacaaca gttgttccgg ttcactcagc cccacagcga gtcgctggca 360
gaacacgagc ctgagggcgg aaagagggta gaggaaagcg caaggacagg ggacaacctg 420gaacacgagc ctgagggcgg aaagagggta gaggaaagcg caaggacagg ggacaacctg 420
gcccaattga tgtcatataa accctctcga tcaattgagc acactcatcc gccaattgac 480gcccaattga tgtcatataa accctctcga tcaattgagc acactcatcc gccaattgac 480
ccctgttcgc agctccacgc cccatgttcc tcgtccctgg tgtagcttct cccctaaatt 540ccctgttcgc agctccacgc cccatgttcc tcgtccctgg tgtagcttct cccctaaatt 540
ccagcgcttg gttccgccct ccctgtctcc cgggtttaac gaacgtgtgt accatctgat 600ccagcgcttg gttccgccct ccctgtctcc cgggtttaac gaacgtgtgt accatctgat 600
ggtaatccgc tcccgtccgc gcaacacaac tcacaagcag atcacacctc tacacgccgc 660ggtaatccgc tcccgtccgc gcaacacaac tcacaagcag atcacacctc tacacgccgc 660
tgctgatgcg cccaatttaa tttttttttc tctcaatgta ggggagaagc cttgggagct 720tgctgatgcg cccaatttaa ttttttttttc tctcaatgta ggggagaagc cttgggagct 720
cccgactccc agttgggcac agctgccacc tcatgacttt tcctgtgtgt gcctgtctga 780cccgactccc agttgggcac agctgccacc tcatgacttt tcctgtgtgt gcctgtctga 780
cgttacgtgt gatgtagtgg cccccgtccg gtgtgttttc gcctgttgcg ctgtgccccc 840cgttacgtgt gatgtagtgg cccccgtccg gtgtgttttc gcctgttgcg ctgtgccccc 840
cttaaaagta taaaaggaag tgcaattgct gtttgtgttg attgttgatc cttgtttcct 900cttaaaagta taaaaggaag tgcaattgct gtttgtgttg attgttgatc cttgtttcct 900
ctgttttctc ctcatcacac aagaaaggtt tcttctttcc aacagataca aaacacactt 960ctgttttctc ctcatcacac aagaaaggtt tcttctttcc aacagataca aaacacactt 960
acaaacaaca t 971acaaacaaca t 971
<210>3<210>3
<211>447<211>447
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequences
<400>3<400>3
tatgactttt atttatggga ttacgttata aattatgatc ctcatggatt atcttattaa 60tatgactttt atttatggga ttacgttata aattatgatc ctcatggatt atcttattaa 60
gtctccatct tgtagcttgt aatatgatga acactcgtga gttttccagg taattcaccg 120gtctccatct tgtagcttgt aatatgatga acactcgtga gttttccagg taattcaccg 120
tgcctcgtcc atgcactttt atcagcctcg acgtcataca ttgcattgtg agtaactggt 180tgcctcgtcc atgcactttt atcagcctcg acgtcataca ttgcattgtg agtaactggt 180
aaacggcttt ttacgttctg ttgtatatgg ctaaacgctt ctatggcacg gcgctattaa 240aaacggcttt ttacgttctg ttgtatatgg ctaaacgctt ctatggcacg gcgctattaa 240
cctgtctgac atttcaacct ggtgttgatg gcttaaacga taatacggtg agatatatag 300cctgtctgac atttcaacct ggtgttgatg gcttaaacga taatacggtg agatatatag 300
ctaacagaat gggggtgacg cactgattcc actgtatata taggcgatat gtgttgttgg 360ctaacagaat gggggtgacg cactgattcc actgtatata taggcgatat gtgttgttgg 360
atggacgttt ctttgtctcc tgatccacaa tagtagctca gctccgtgcc aactggttcg 420atggacgttt ctttgtctcc tgatccacaa tagtagctca gctccgtgcc aactggttcg 420
ctggtacgat agtgagggat gaatgaa 447ctggtacgat agtgagggat gaatgaa 447
<210>4<210>4
<211>1940<211>1940
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequences
<400>4<400>4
cgtcgacagt aagtatgaaa agagccaatg ttgagagtct caggaaccac atcgacttct 60cgtcgacagt aagtatgaaa agagccaatg ttgagagtct caggaaccac atcgacttct 60
tcgtgccatc ctcccacatt ctgaagccca agaacccaca aatcatcaaa caccaacacg 120tcgtgccatc ctcccacatt ctgaagccca agaacccaca aatcatcaaa caccaacacg 120
atgcggacgc caacccgagt tgtaacgcca caaagtacgg gtacgaccct gttccaggag 180atgcggacgc caacccgagt tgtaacgcca caaagtacgg gtacgaccct gttccaggag 180
ggctcacgcc gcaatcaaca accaaagtcg ccacgatcaa cgccagtatc aagtaaaaga 240ggctcacgcc gcaatcaaca accaaagtcg ccacgatcaa cgccagtatc aagtaaaaga 240
agaatagcat ctccagtctt ccgatagctg tgtacttcga tctgacgttg tagatgatga 300agaatagcat ctccagtctt ccgatagctg tgtacttcga tctgacgttg tagatgatga 300
tgatcatgat cacaagggca ccaatgttga caaaggcgtt accaatctgg aatatcacgg 360tgatcatgat cacaagggca ccaatgttga caaaggcgtt accaatctgg aatatcacgg 360
tattggcaac gtctatcgga cgggcgtagc actcagggat gatcccttcg ttcaggtgcg 420tattggcaac gtctatcgga cgggcgtagc actcagggat gatcccttcg ttcaggtgcg 420
tgaactgctc gttcgtcgtt gccttcacaa cctggcacaa cgggagcggc gtgttgtggc 480tgaactgctc gttcgtcgtt gccttcacaa cctggcacaa cgggagcggc gtgttgtggc 480
atagcgagtt gaaatcaccg aatgccattg tgttttatcg ttagggagac ctgtttgaag 540atagcgagtt gaaatcaccg aatgccattg tgttttatcg ttagggagac ctgtttgaag 540
ctgacagcgg gatgaagatg aggaaggaga gcacaacagc tgagcggaag tctctgtgat 600ctgacagcgg gatgaagatg aggaaggaga gcacaacagc tgagcggaag tctctgtgat 600
gcttggtgga ccgggtgtag gtggaatctc cctggtgagc gtacttgcaa cggtgctcag 660gcttggtgga ccgggtgtag gtggaatctc cctggtgagc gtacttgcaa cggtgctcag 660
cgacttcttc tcgagaggaa acgtaaacaa agaggtttca atgttgatgt tgatgtgtat 720cgacttcttc tcgagaggaa acgtaaacaa agaggtttca atgttgatgt tgatgtgtat 720
ttttgttaca aaagcagaaa ttgtaaacaa aaaggtataa ttagggctct ggtgtaatga 780ttttgttaca aaagcagaaa ttgtaaacaa aaaggtataa ttagggctct ggtgtaatga 780
tgggcacgtg acgttaccgt gctggtcgat tttagggcta ttggttcgcg tcccgctggt 840tgggcacgtg acgttaccgt gctggtcgat tttagggcta ttggttcgcg tcccgctggt 840
gtccgggtta gcgtgtcaat gtggcgcctc ccgattatta cataagaaaa cacccaccca 900gtccgggtta gcgtgtcaat gtggcgcctc ccgattatta cataagaaaa cacccaccca 900
cgcaacacct ggtgtctgga tgttgacgct ttgtatgcgt gtgtgtgttt tttcttccgt 960cgcaacacct ggtgtctgga tgttgacgct ttgtatgcgt gtgtgtgttt tttcttccgt 960
cttgttgggc cactctgcgc gagcgttggc gactcaccgg tgaaatttat cgaaaacttt 1020cttgttgggc cactctgcgc gagcgttggc gactcaccgg tgaaatttat cgaaaacttt 1020
caggctcagg cccttttcaa cactaccctt tgagatcaca tcaagcagta atcaaacaca 1080caggctcagg cccttttcaa cactaccctt tgagatcaca tcaagcagta atcaaacaca 1080
atgggtatgt gggaaacgac gacgtgtgcg gtgtgtgaat gccattagtg ggatatgtgg 1140atgggtatgt gggaaacgac gacgtgtgcg gtgtgtgaat gccattagtg ggatatgtgg 1140
tagtctcgag cgtggatatt atcgataggg atggtgcttg ttctatacgt cttgctggga 1200tagtctcgag cgtggatatt atcgataggg atggtgcttg ttctatacgt cttgctggga 1200
aggaagaaag cgatgaagta tgtgggaaga aggggtggtt taagagagga agtagacatg 1260aggaagaaag cgatgaagta tgtgggaaga aggggtggtt taagagagga agtagacatg 1260
taacaagtgt gttcagagaa caaggacgga aatatcacct atatgacgta cacatcacga 1320taacaagtgt gttcagagaa caaggacgga aatatcacct atatgacgta cacatcacga 1320
actgctcctg gaggaagcga caagatgaat atcaacaggc atcatcatat ctctacaatg 1380actgctcctg gaggaagcga caagatgaat atcaacaggc atcatcatat ctctacaatg 1380
gctcgttccc aaagcacacg cacaaacaaa tccgagactt ttgtactaac agctgtatct 1440gctcgttccc aaagcacacg cacaaacaaa tccgagactt ttgtactaac agctgtatct 1440
ctgacaaata gttaacgttc caaagaccag aagaacctac tgtaagggta aggagtgcag 1500ctgacaaata gttaacgttc caaagaccag aagaacctac tgtaagggta aggagtgcag 1500
aaagcacact caacacaagg ttacccagta caaggctggt aaggcttccc tctttgccca 1560aaagcacact caacacaagg ttacccagta caaggctggt aaggcttccc tctttgccca 1560
gggtaagcgt cgttatgacc gtaagcaatc cggttacggt ggtcaaacca agcaagtttt 1620gggtaagcgt cgttatgacc gtaagcaatc cggttacggt ggtcaaacca agcaagtttt 1620
ccacaaaaag gctaaaacca ccaagaaggt tgttttgcgt ttggagtgtg ttgtctgcaa 1680ccacaaaaag gctaaaacca ccaagaaggt tgttttgcgt ttggagtgtg ttgtctgcaa 1680
gaccaaggcc caattggctt tgaagcgttg taagcacttc gagttgggtg gtgacaagaa 1740gaccaaggcc caattggctt tgaagcgttg taagcacttc gagttgggtg gtgacaagaa 1740
gcaaaagggt caagctttgc aattctaagc ttaagacaat tgttgaaagt tttattatta 1800gcaaaagggt caagctttgc aattctaagc ttaagacaat tgttgaaagt tttattatta 1800
tcactacact gtgtttttga tgtcatctaa tgtaaaagcg tttatattac cacttggttc 1860tcactacact gtgtttttga tgtcatctaa tgtaaaagcg tttatattac cacttggttc 1860
ggtatcctgt agaagaatac ggcctgtagc gtagcattcc cacaggagga tcacagcaac 1920ggtatcctgt agaagaatac ggcctgtagc gtagcattcc cacaggagga tcacagcaac 1920
atagaccaaa cccggatccc 1940atagaccaaa cccggatccc 1940
<210>5<210>5
<211>1587<211>1587
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequences
<400>5<400>5
cgatatctgc cagtagtcat atgcttgtct caaagattaa gccatgcatg tctaagtata 60cgatatctgc cagtagtcat atgcttgtct caaagattaa gccatgcatg tctaagtata 60
agcaatttat acagtgaaac tgcgaatggc tcattaaatc agttatagtt tatttgatag 120agcaatttat acagtgaaac tgcgaatggc tcattaaatc agttatagtt tatttgatag 120
taccttacta cttggataac cgtggtaatt ctagagctaa tacatgctaa aaaccccgac 180taccttacta cttggataac cgtggtaatt ctagagctaa tacatgctaa aaaccccgac 180
tgcttgggag gggtgtattt attagataaa aaatcaatgc cctcgggctc tttgatgatt 240tgcttgggag gggtgtattt attagataaa aaatcaatgc cctcgggctc tttgatgatt 240
cataataact tgtcgaatcg catggcttta cgccggcgat ggttcattca aatttctgcc 300cataataact tgtcgaatcg catggcttta cgccggcgat ggttcattca aatttctgcc 300
ctatcaactg tcgatggtag gatagtggcc taccatggtg gcaacgggta acggggaata 360ctatcaactg tcgatggtag gatagtggcc taccatggtg gcaacgggta acggggaata 360
agggttcgat tccggagagg gagcctgaga aacggctacc acatccaagg aaggcagcag 420agggttcgat tccggagagg gagcctgaga aacggctacc acatccaagg aaggcagcag 420
gcgcgcaaat tacccaatcc taattcaggg aggtagtgac aataaataac gatacagggc 480gcgcgcaaat tacccaatcc taattcaggg aggtagtgac aataaataac gatacagggc 480
ccttctgggt cttgtaattg gaatgagtac aatgtaaata ccttaacgag gaacaattgg 540ccttctgggt cttgtaattg gaatgagtac aatgtaaata ccttaacgag gaacaattgg 540
agggcaagtc tggtgccagc agccgcggta attccagctc caatagcgta tattaaagtt 600agggcaagtc tggtgccagc agccgcggta attccagctc caatagcgta tattaaagtt 600
gttgcagtta aaaagctcgt agttgaactt tgggcctggc aggccggtcc gctttttggc 660gttgcagtta aaaagctcgt agttgaactt tgggcctggc aggccggtcc gctttttggc 660
gagtactgac cctgccgggc ctttccttct ggctaccctc ccctctggag aggcgaacca 720gagtactgac cctgccgggc ctttccttct ggctaccctc ccctctggag aggcgaacca 720
ggacttttac tttgaaaaaa ttagagtgtt caaagcaggc ctttgctcga atatattagc 780ggacttttac tttgaaaaaa ttagagtgtt caaagcaggc ctttgctcga atatattagc 780
atggaataat agaataggac gtttggttct attttgttgg tttctaggac catcgtaatg 840atggaataat agaataggac gtttggttct attttgttgg tttctaggac catcgtaatg 840
attaataggg acggtcgggg gcatcagtat tcagttgtca gaggtgaaat tcttggattt 900attaataggg acggtcgggg gcatcagtat tcagttgtca gaggtgaaat tcttggattt 900
actgaagact aactactgcg aaagcatttg ccaaggacgt tttcattaat caagaacgaa 960actgaagact aactactgcg aaagcatttg ccaaggacgt tttcattaat caagaacgaa 960
agttagggga tcgaagatga tcagataccg tcgtagtctt aaccataaac tatgccgact 1020agttagggga tcgaagatga tcagataccg tcgtagtctt aaccataaac tatgccgact 1020
agggatcggg tgttgttttt ataatgactc actcggcacc ttacgagaaa tcaaagtctt 1080agggatcggg tgttgttttt ataatgactc actcggcacc ttacgagaaa tcaaagtctt 1080
tgggttctgg ggggagtatg gtcgcaaggc tgaaacttaa aggaattgac ggaagggcac 1140tgggttctgg ggggagtatg gtcgcaaggc tgaaacttaa aggaattgac ggaagggcac 1140
caccaggagt ggagcctgcg gcttaatttg actcaacacg gggaaactca ccaggtccag 1200caccaggagt ggagcctgcg gcttaatttg actcaacacg gggaaactca ccaggtccag 1200
acacaataag gattgacaga ttgagagctc tttcttgatt ttgtgggtgg tggtgcatgg 1260acacaataag gattgacaga ttgagagctc tttcttgatt ttgtgggtgg tggtgcatgg 1260
ccgttcttag ttggtggagt gatttgtctg cttaattgcg ataacgaacg agaccttaac 1320ccgttcttag ttggtggagt gatttgtctg cttaattgcg ataacgaacg agaccttaac 1320
ctactaaata gcgcgactag cttttgctgg tgctgacgct tcttagaggg actatcgatt 1380ctactaaata gcgcgactag cttttgctgg tgctgacgct tcttagaggg actatcgatt 1380
tcaagtcgat ggaagtttga ggcaataaca ggtctgtgat gcccttagac gttctgggcc 1440tcaagtcgat ggaagtttga ggcaataaca ggtctgtgat gcccttagac gttctgggcc 1440
gcacgcgcgc tacactgacg gagccagcga gtctagcctt ggccgagagg tcatgggtaa 1500gcacgcgcgc tacactgacg gagccagcga gtctagcctt ggccgagagg tcatgggtaa 1500
tcttgtgaaa ctccgtcgtg ctggggatag agcattgcaa ttattgctct tcaacgagga 1560tcttgtgaaa ctccgtcgtg ctggggatag agcattgcaa ttattgctct tcaacgagga 1560
attcctagta agcgcaagtc agatatc 1587attcctagta agcgcaagtc agatatc 1587
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010964667.9A CN112048444A (en) | 2020-09-15 | 2020-09-15 | Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010964667.9A CN112048444A (en) | 2020-09-15 | 2020-09-15 | Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112048444A true CN112048444A (en) | 2020-12-08 |
Family
ID=73611250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010964667.9A Pending CN112048444A (en) | 2020-09-15 | 2020-09-15 | Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112048444A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113621531A (en) * | 2021-08-26 | 2021-11-09 | 大连理工大学 | A kind of yeast engineering bacteria and its construction method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111607530A (en) * | 2020-06-03 | 2020-09-01 | 内蒙古自治区农牧业科学院 | A homologous integration expression vector of Candida utilis, engineering bacteria, construction method and application |
-
2020
- 2020-09-15 CN CN202010964667.9A patent/CN112048444A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111607530A (en) * | 2020-06-03 | 2020-09-01 | 内蒙古自治区农牧业科学院 | A homologous integration expression vector of Candida utilis, engineering bacteria, construction method and application |
Non-Patent Citations (2)
Title |
---|
FAN,F.等: "Trametes sp. 48424 laccase mRNA, complete cds", 《GENBANK: HM483869.1》 * |
其布日 等: "食品级重组产朊假丝酵母菌的构建及其遗传稳定性测定", 《畜牧与饲料科学》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113621531A (en) * | 2021-08-26 | 2021-11-09 | 大连理工大学 | A kind of yeast engineering bacteria and its construction method and application |
CN113621531B (en) * | 2021-08-26 | 2022-11-29 | 大连理工大学 | A kind of yeast engineering bacteria and its construction method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100159510A1 (en) | Transgenic plants expressing civps or intein modified proteins and related method | |
CN106701606B (en) | Genetic engineering candida utilis capable of degrading and utilizing kitchen waste and construction method thereof | |
CN104651383A (en) | Recombinant pichia pastoris engineering bacteria and production method thereof | |
CN101560513A (en) | Trichoderma reesei expression cassette, recombinant strain and application thereof | |
CN104975039A (en) | Recombinant plasmid and application of recombinant plasmid to degrading cellulose raw material | |
CN1190145C (en) | Process for producing stalk protein feed by multi-culture united anaerobic fermentation | |
CN112048444A (en) | Laccase-producing Candida utilis expression vector, construction method, recombinant engineering bacteria and application thereof | |
CN106939315A (en) | A kind of preparation method and application of oxalate decarboxylase | |
CN102763771A (en) | Fermentation and coating of lysine and xylanase | |
CN102093998B (en) | Preparation method of antibacterial peptide cecropin feed additive | |
CN109997970B (en) | Acidic xylanase mutant with improved enzyme activity and heat resistance, and coding gene and application thereof | |
CN111607530A (en) | A homologous integration expression vector of Candida utilis, engineering bacteria, construction method and application | |
CN101067117A (en) | Method for producing thermostable xylanase by gene recombinant Pichia pastoris | |
CN108841852A (en) | A kind of high yield 5-ALA produces construction method and the application of bacterial strain | |
CN112852654B (en) | PAS _ chr1-3_0141 gene knockout pichia pastoris gene engineering strain and construction method and application thereof | |
CN115369049A (en) | Genetically engineered bacterium secreting glucose oxidase, and construction method and application thereof | |
CN106666076A (en) | Strain composition suitable for fermenting needle mushroom residues and brewer's grains, and application thereof | |
CN101348776B (en) | Transgenic lactobacillus secreting acidic cellulase, preparation and use thereof | |
CN110373339A (en) | A kind of three gene expression bacterial strain of candida utili and its construction method of protein degradation matter | |
Kaneko et al. | Consolidated bioprocessing ethanol production by using a mushroom | |
CN1128880C (en) | Heat shock induction exogenous gene high-efficient expressed blue-green alga transgenic expression system and the method for expressing thymosin 'alpha'1 | |
CN113416663B (en) | A method for synergistically fermenting wheat straw to prepare high-quality biological feed | |
CN110218731A (en) | A kind of recombinant phytase gene, candida utili phytic acid enzyme engineering bacteria and application | |
CN118562772B (en) | A crayfish intestinal microecological additive containing low-temperature protease and postbiotic preparations, and a preparation method and application thereof | |
CN119639594A (en) | A recombinant Pichia yeast expressing plastic-degrading enzyme LCCICCG and its construction method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |