CN112046745B - A Portable Modular UAV Platform - Google Patents
A Portable Modular UAV Platform Download PDFInfo
- Publication number
- CN112046745B CN112046745B CN202010856395.0A CN202010856395A CN112046745B CN 112046745 B CN112046745 B CN 112046745B CN 202010856395 A CN202010856395 A CN 202010856395A CN 112046745 B CN112046745 B CN 112046745B
- Authority
- CN
- China
- Prior art keywords
- control
- steering engine
- blade
- fixed
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 43
- 230000000737 periodic effect Effects 0.000 claims abstract description 28
- 238000004806 packaging method and process Methods 0.000 claims abstract description 7
- 238000005096 rolling process Methods 0.000 claims abstract 14
- 239000000428 dust Substances 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 18
- 230000009471 action Effects 0.000 claims description 3
- 241000251468 Actinopterygii Species 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/54—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
- B64C27/58—Transmitting means, e.g. interrelated with initiating means or means acting on blades
- B64C27/68—Transmitting means, e.g. interrelated with initiating means or means acting on blades using electrical energy, e.g. having electrical power amplification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C37/00—Convertible aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明属于无人机平台设计领域,特别是一种便携式模块化无人机平台。The invention belongs to the field of unmanned aerial vehicle platform design, in particular to a portable modular unmanned aerial vehicle platform.
背景技术Background technique
随着近几年微电子技术及传统信息、控制等领域的不断发展,传统无人机领域得到了飞速发展,无人机正由传统的高空、大型、快速向着低空、小型、低速的方向发展。并由于其独特的作业高度,有效的填补了传统低空空域工作单位的空白。With the continuous development of microelectronics technology and traditional information, control and other fields in recent years, the field of traditional UAVs has developed rapidly. UAVs are developing from the traditional high-altitude, large, and fast to low-altitude, small, and low-speed directions . And because of its unique working height, it effectively fills the gap of traditional low-altitude airspace work units.
但就目前便携式无人机构型,旋翼构型的便携式无人机尺寸微小,载荷低,抗风性能弱,近几年虽有共轴筒型双旋翼的无人机被设计出来,类似的有便携式小型筒式共轴反桨三叶片旋翼式无人机(专利号CN111332462A) ,但其控制机构为单上旋翼周期变距控制,该控制方式由于只有一组旋翼为无人机主体提供俯仰及滚转控制力矩,其飞行性能受到一定限制。并且其无人机主体重心偏下,其周期变距的控制旋翼所产生控制力矩将进一步被削弱,其在抗风性能及最大水平飞行速度上都会受到部分制约。同时目前单兵无人机的构型较为单一,仅有纯旋翼构型或固定翼构型,整体泛用性较差。However, as far as the current portable UAV is concerned, the portable UAV with the rotor configuration is small in size, low in load and weak in wind resistance. Portable small cylindrical coaxial anti-propeller three-blade rotor UAV (patent number CN111332462A), but its control mechanism is single-rotor periodic variable pitch control, because only one set of rotors provides pitch and Roll control torque, its flight performance is limited. And the center of gravity of the main body of the UAV is deviated, the control torque generated by the periodically variable control rotor will be further weakened, and its wind resistance performance and maximum horizontal flight speed will be partially restricted. At the same time, the configuration of the current individual UAV is relatively simple, only a pure rotor configuration or a fixed wing configuration, and the overall versatility is poor.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种便携式模块化无人机平台,以实现便携式模块化无人机在共轴反桨旋翼机与尾座式垂直起降固定翼飞机之间实现转化。The purpose of the present invention is to provide a portable modular unmanned aerial vehicle platform, so as to realize the transformation of the portable modular unmanned aerial vehicle between the coaxial anti-propeller rotorcraft and the tailstock type vertical take-off and landing fixed-wing aircraft.
实现本发明目的的技术解决方案为:The technical solution that realizes the object of the present invention is:
一种便携式模块化无人机平台,包括共轴双旋翼控制部分、固定翼模块部分;所述共轴双旋翼控制部分固定在固定翼模块部分前端;A portable modular UAV platform, comprising a coaxial dual rotor control part and a fixed wing module part; the coaxial dual rotor control part is fixed on the front end of the fixed wing module part;
所述共轴双旋翼控制部分包括上桨叶周期变距控制机构、控制舵机机构、下桨叶周期变距控制机构、封装壳体;所述上桨叶周期变距控制机构、控制舵机机构、下桨叶周期变距控制机构均设置在封装壳体内;The coaxial dual-rotor control part includes an upper blade cyclic pitch control mechanism, a control steering gear mechanism, a lower blade cyclic pitch control mechanism, and an encapsulation shell; the upper blade cyclic pitch control mechanism, a control steering gear The mechanism and the lower blade periodic pitch control mechanism are all arranged in the package shell;
所述上桨叶周期变距控制机构与下桨叶周期变距控制机构结构相同,呈90度交错布置,且对称布置在控制舵机机构的上下两端;The upper blade cyclic pitch control mechanism and the lower blade cyclic pitch control mechanism have the same structure, are arranged in a 90-degree staggered arrangement, and are symmetrically arranged at the upper and lower ends of the control steering gear mechanism;
所述桨叶周期变距控制机构与下桨叶周期变距控制机构均包括空心轴电机、电机座、桨毂、桨叶轴、十字盘、变距拉杆、桨叶挥舞限动件;所述电机座固定在中心支撑管上,空心轴电机定子固定在电机座上,中心支撑管通过轴承穿过桨叶轴,桨叶轴与空心轴电机转子固连,空心轴电机转子旋转将带动桨叶轴旋转;所述桨毂位于空心轴电机下端;所述桨毂套在桨叶轴上,且与桨叶轴之间通过两个螺杆连接,螺杆轴线垂直于桨叶轴轴线;螺杆与桨毂通过轴承连接,使得桨毂可绕螺杆轴线旋转,用于执行桨叶周期变距动作;所述桨叶挥舞限动件与桨毂通过转轴连接,可沿转轴向下摆动,无法向上摆动;所述桨叶与桨叶挥舞限动件固连;The blade cyclic pitch control mechanism and the lower blade cyclic pitch control mechanism both include a hollow shaft motor, a motor base, a propeller hub, a blade shaft, a swash plate, a pitch-change lever, and a blade swing stopper; the The motor base is fixed on the central support tube, the stator of the hollow shaft motor is fixed on the motor base, the central support tube passes through the blade shaft through the bearing, the blade shaft is fixedly connected with the rotor of the hollow shaft motor, and the rotation of the hollow shaft motor rotor will drive the blade The shaft rotates; the propeller hub is located at the lower end of the hollow shaft motor; the propeller hub is sleeved on the propeller shaft, and is connected with the propeller shaft through two screws, the screw axis is perpendicular to the blade shaft axis; the screw and the propeller hub Through the bearing connection, the propeller hub can rotate around the axis of the screw, which is used to perform the periodic pitch change action of the propeller blade; the propeller blade swing stopper is connected with the propeller hub through the rotating shaft, and can swing down along the rotating shaft, but cannot swing upward; The paddle is fixedly connected with the paddle swing stopper;
所述十字盘通过鱼眼轴承与中心支撑管连接;所述十字盘与桨毂之间通过一对变距拉杆连接,变距拉杆用于传递十字盘对桨毂周期变距控制;The swash plate is connected with the central support pipe through a fisheye bearing; the swash plate and the propeller hub are connected by a pair of pitch-changing tie rods, and the pitch-changing tie rods are used to transmit the swash plate to the propeller hub periodical variable pitch control;
所述控制舵机机构包括俯仰控制舵机、滚转控制舵机及舵机座;所述舵机座与中心支撑管固连;所述俯仰控制舵机、滚转控制舵机均与舵机座固连;所述俯仰控制舵机、滚转控制舵机输出轴上均连接有摇臂,摇臂上连接有舵机拉杆;俯仰控制舵机上的摇臂通过舵机拉杆连接十字盘俯仰控制杆,滚转控制舵机上的摇臂通过舵机拉杆连接十字盘的滚转控制杆。The control steering gear mechanism includes a pitch control steering gear, a roll control steering gear and a steering gear base; the steering gear base is fixedly connected with the central support pipe; the pitch control steering gear and the roll control steering gear are all connected to the steering gear. The base is fixedly connected; the output shafts of the pitch control steering gear and the roll control steering gear are all connected with rocker arms, and the rocker arms are connected with steering gear rods; the rocker arms on the pitch control steering gear are connected to the swashplate pitch control through the steering gear rods The rocker arm on the roll control servo is connected to the roll control rod of the swashplate through the pull rod of the servo.
本发明与现有技术相比,其显著优点是:Compared with the prior art, the present invention has the following significant advantages:
(1)通过使用上下双旋翼变距结构,且使用上下斜盘90度错位联动设计,及上下十字盘的联动设计,使舵机数量减少到2,同时相较传统的双旋翼的单旋翼周期变距的控制特点,其飞行控制效率将大大提高。(1) By using the upper and lower dual-rotor variable-pitch structure, and using the 90-degree dislocation linkage design of the upper and lower swashplates, and the linkage design of the upper and lower swashplates, the number of steering gears is reduced to 2. Compared with the traditional dual-rotor single-rotor cycle With the control characteristics of variable pitch, its flight control efficiency will be greatly improved.
(2)通过独特的固定翼模块设计,使该飞行器在特定需求下,安装固定翼模块,使无人机平台将从共轴双桨旋翼飞行器转变为尾座式垂直起降固定翼飞行器,将大大提高本无人机平台在巡航状态下的滞空时间、飞行速度、载荷重量等性能。(2) Through the unique fixed-wing module design, the aircraft can be installed with a fixed-wing module under specific needs, so that the UAV platform will be transformed from a coaxial two-screw rotorcraft to a tail-mounted vertical take-off and landing fixed-wing aircraft. Greatly improve the performance of the UAV platform in the cruising state, such as the staying time, flight speed, load weight and so on.
(3)固定翼模块不设置控制舵面,控制将依旧使用旋翼转速及周期变距实现控制需求。且不设置电气设备将提高本模块的可靠性,并降低该模块的重量。(3) The fixed-wing module does not have a control surface, and the control will still use the rotor speed and periodic pitch change to achieve the control requirements. And the absence of electrical equipment will improve the reliability of the module and reduce the weight of the module.
附图说明Description of drawings
图1为便携式模块化无人机平台尾座式固定翼模式示意图。Figure 1 is a schematic diagram of the tailstock fixed-wing mode of the portable modular UAV platform.
图2为旋翼模块控制部分机械结构示意图。Figure 2 is a schematic diagram of the mechanical structure of the control part of the rotor module.
图3为上桨毂与上桨叶轴连接剖面示意图。3 is a schematic cross-sectional view of the connection between the upper hub and the upper blade shaft.
图4为上桨叶挥舞限动件局部示意图图。FIG. 4 is a partial schematic diagram of the swing stopper of the upper blade.
图5为旋翼模式桨叶收纳示意图。FIG. 5 is a schematic diagram of the storage of blades in a rotor mode.
图6为旋翼模式桨叶展开示意图。FIG. 6 is a schematic diagram of a rotor mode blade deployment.
图7为旋翼控制模块防尘壳整体示意图。FIG. 7 is an overall schematic diagram of the dust cover of the rotor control module.
图8为固定翼模块示意图。FIG. 8 is a schematic diagram of a fixed wing module.
1-上桨叶轴 2-上变距拉杆 3-俯仰控制舵机 4-下十字盘 5-下桨毂 6-下桨叶挥舞限动件 7-下空心轴电机 8-下电机座 9-中心支撑管 10-下桨叶轴 11-下变距拉杆 12-舵机拉杆 13-滚转控制舵机 14-舵机座 15-上十字盘 16-上桨叶挥舞限动件 17-上桨毂18-上空心轴电机 19-上电机座 20-桨叶防尘盖 21-舵机防尘盖 22-下电机防尘盖 23-下桨叶 24—上桨叶 25-上电机防尘盖 26-顶部防尘盖 27-固定翼模块主机翼 28-固定翼模块连接件 29-翼尖小翼 30-倒V尾翼 31-尾翼连接件 32-轴承 33-螺栓1- Upper blade shaft 2- Upper pitch control rod 3- Pitch control steering gear 4- Lower swash plate 5- Lower propeller hub 6- Lower blade swing stopper 7- Lower hollow shaft motor 8- Lower motor seat 9- Central support tube 10 - Lower blade shaft 11 - Lower pitch change rod 12 - Steering gear rod 13 - Roll control steering gear 14 - Steering gear seat 15 - Upper swashplate 16 - Upper blade swing stopper 17 - Upper paddle Hub 18 - Upper hollow shaft motor 19 - Upper motor base 20 - Blade dust cover 21 - Steering gear dust cover 22 - Lower motor dust cover 23 - Lower blade 24 - Upper blade 25 - Upper motor dust cover 26-Top dust cover 27-Main wing of fixed wing module 28-Fixed wing module connecting piece 29-Wing tip winglet 30-Inverted V tail 31- tail connecting piece 32-bearing 33-bolt
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明做进一步的介绍。The present invention will be further introduced below with reference to the accompanying drawings and specific embodiments.
结合图1-图6,本发明的一种便携式模块化无人机平台,包括共轴双旋翼控制部分I、固定翼模块部分II;1-6, a portable modular UAV platform of the present invention includes a coaxial dual-rotor control part I and a fixed-wing module part II;
所述共轴双旋翼控制部分I包括上桨叶周期变距控制机构、控制舵机机构、下桨叶周期变距控制机构、封装壳体Described coaxial double
所述上桨叶周期变距控制机构与下桨叶周期变距控制机构结构相同,呈90度交错布置,且对称布置在控制舵机机构的上下两端;The upper blade cyclic pitch control mechanism and the lower blade cyclic pitch control mechanism have the same structure, are arranged in a 90-degree staggered arrangement, and are symmetrically arranged at the upper and lower ends of the control steering gear mechanism;
所述上桨叶周期变距控制机构包括上空心轴电机18、上电机座19、上桨毂17、上桨叶轴1、上十字盘15、上变距拉杆2、上桨叶挥舞限动件16;The upper blade period variable pitch control mechanism includes an upper
所述中心支撑管9穿过上桨叶轴1,所述上桨叶轴1为空心轴,上桨叶轴1内上下端分别设有轴承,中心支撑管9通过轴承支撑在上桨叶轴1内;所述上电机座19与中心支撑管9固连,上空心轴电机18的定子与上电机座19固连,上空心轴电机18转子与上桨叶轴1上端固连;电机转子旋转将带动上桨叶轴1旋转,为上桨叶24传递旋转动力。所述上桨毂17位于上空心轴电机18下端;结合图3,所述上桨毂17套在上桨叶轴1上,且与上桨叶轴1之间通过螺栓33连接,螺栓轴线垂直于上桨叶轴1轴线;螺栓33与上桨毂17通过轴承32连接,使得上桨毂17可绕螺栓轴线旋转,用于执行桨叶周期变距动作。所述上桨叶挥舞限动件16与上桨毂17通过转轴连接,可沿转轴向下摆动;结合图4,所述上桨叶挥舞限动件16上端设有限位凸台16-1,使得上桨叶挥舞限动件16无法相对上桨毂17向上摆动。所述上桨叶24与上桨叶挥舞限动件16固连,结合图5,上桨叶24可以通过上桨叶挥舞限动件16完成向下旋转折叠工作,便于实际收纳作业。结合图6,当桨叶旋转时,由于离心作用的影响,桨叶会自动甩开至正常工作状态的水平位置。The
所述上十字盘15通过鱼眼GE系列轴承与中心支撑管9连接;所述上十字盘15位于上桨叶轴1下端;上桨叶轴1内下端的轴承内圈支撑在鱼眼GE系列轴承上;所述上十字盘15与上桨毂17之间通过一对上变距拉杆2连接,上变距拉杆2用于传递上十字盘15对上桨毂17周期变距控制。The
所述下桨叶周期变距控制机构包括下空心轴电机7、下电机座8、下桨毂5、下桨叶轴10、下十字盘4、下变距拉杆2、下桨叶挥舞限动件6。下桨叶周期变距控制机构与上桨叶周期变距控制机构结构及工作方式同理。The lower blade periodic pitch control mechanism includes a lower
所述控制舵机机构包括俯仰控制舵机3、滚转控制舵机13及舵机座14;所述舵机座14通过螺栓与中心支撑管9固连;所述俯仰控制舵机3、滚转控制舵机13均与舵机座14固连;所述俯仰控制舵机3、滚转控制舵机13输出轴上均连接有摇臂,摇臂上连接有舵机拉杆12;俯仰控制舵机3上的摇臂分别通过舵机拉杆12连接上十字盘15和下十字盘4的俯仰控制杆,滚转控制舵机13上的摇臂分别通过舵机拉杆12连接上十字盘15和下十字盘4的滚转控制杆。The control steering gear mechanism includes a pitch
当俯仰控制舵机3工作时,舵机摇臂将通过舵机拉杆12带动上十字盘15及下十字盘4向指定方向倾斜。并通过上变距拉杆2将上十字盘15的倾斜量传递给上桨毂17,使得上桨毂17转到相应位置时,对上桨叶24完成周期变距工作。滚转控制舵机及下桨叶23周期变距工作与之同理。通过相关舵机对上下十字盘的周期变距控制,从而达到对飞行器整体旋翼模式下的俯仰及滚转姿态的操作控制。而偏航控制将由上下空心轴电机差速实现对飞行器整体旋翼模式下的偏航控制。飞行器高度将由上下空心轴电机的整体转速控制实现控制。When the pitch
所述封装壳体包括桨叶防尘盖20、舵机防尘盖21、下电机防尘盖22、上电机防尘盖25、顶部防尘盖26;The encapsulation housing includes a
结合图7,所述桨叶防尘盖20分别于上桨叶轴1和下桨叶轴10固连,桨叶防尘盖20将随桨叶轴一起转动,舵机防尘盖21与舵机座14固连,上电机防尘盖25与上电机座19固连,下电机防尘盖22同理;顶部防尘盖22与上电机座19及上电机防尘盖25进行固连。防尘盖的设置保证飞行器本体可在恶劣天气下的飞行需求。7, the
所述固定翼模块部分II包括固定翼模块主机翼27、固定翼模块连接件28、翼尖小翼29、倒V尾翼30、尾翼连接件31;The fixed wing module part II includes a fixed wing module
结合图8,所述固定翼模块连接件28固定在尾翼连接件31前部下端,用于固定翼模块部分II与共轴双旋翼控制部分I之间的固连,可根据重心情况进行调节。所述固定翼模块主机翼27固定在尾翼连接件31前部上端,为飞行器整体提供固定翼模式下水平飞行时竖直方向的升力及安定作用。固定翼模块主机翼27两侧固定有翼尖小翼29,尾翼连接件31后端下侧固定有倒V尾翼30;翼尖小翼29及倒V尾翼30为飞行器整体提供安定面作用,提供高飞行器的固定翼模式下飞行的稳定性。8 , the fixed
当安装固定翼模块部分II后,本飞行器将由共轴双旋翼飞行器变为尾座式垂直起降固定翼飞行器。当其为尾座式垂直起降模式时,其控制方式与共轴双旋翼模式下相同。当变为固定翼飞行模式时,其滚转方向控制将由上下空心轴电机差速实现。俯仰方向控制,仍由俯仰控制舵机3执行,带动桨叶完成相关周期变距实现。偏航方向控制,将由滚转控制舵机13执行,带动桨叶完成相关周期变距实现。飞行速度油门将由上下空心轴电机整体转速的变化实现。When the fixed-wing module part II is installed, the aircraft will change from a coaxial dual-rotor aircraft to a tail-mounted vertical take-off and landing fixed-wing aircraft. When it is in the tailstock vertical take-off and landing mode, its control method is the same as that in the coaxial twin-rotor mode. When changing to fixed-wing flight mode, its roll direction control will be realized by the differential speed of the upper and lower hollow shaft motors. The pitch direction control is still performed by the pitch
在狭窄复杂空域环境下,使用共轴双旋翼模式进行飞行作业,实现悬停、低空、低速、外形紧凑的任务要求。在开放空旷空域,安装固定翼模块,使飞行模式变为尾座式固定翼飞行模式,即起飞降落时,飞行器整体竖直悬停降落,巡航模式时,整体水平呈固定翼飞行模式。实现高速、高空、高载荷、长航时的任务要求。可根据使用人对实际任务需求进行选择调整具体飞行模式。In the narrow and complex airspace environment, the coaxial dual-rotor mode is used for flight operations to achieve the mission requirements of hovering, low altitude, low speed and compact shape. In the open airspace, install the fixed-wing module to change the flight mode to tail-mounted fixed-wing flight mode, that is, when taking off and landing, the aircraft hovers vertically as a whole to land, and when in cruise mode, the entire aircraft is in fixed-wing flight mode horizontally. To achieve high-speed, high-altitude, high-load, long-duration mission requirements. The specific flight mode can be adjusted according to the user's actual task requirements.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010856395.0A CN112046745B (en) | 2020-08-24 | 2020-08-24 | A Portable Modular UAV Platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010856395.0A CN112046745B (en) | 2020-08-24 | 2020-08-24 | A Portable Modular UAV Platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112046745A CN112046745A (en) | 2020-12-08 |
CN112046745B true CN112046745B (en) | 2022-04-08 |
Family
ID=73600745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010856395.0A Active CN112046745B (en) | 2020-08-24 | 2020-08-24 | A Portable Modular UAV Platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112046745B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113562164A (en) * | 2021-08-27 | 2021-10-29 | 珠海璇玑科技有限公司 | Coaxial propeller folding mechanism, coaxial unmanned aerial vehicle and propeller folding control method |
CN113581449A (en) * | 2021-08-27 | 2021-11-02 | 珠海璇玑科技有限公司 | Coaxial propeller folding mechanism, coaxial unmanned aerial vehicle and propeller folding control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104015925A (en) * | 2014-05-27 | 2014-09-03 | 南京航空航天大学 | Multi-purpose vertical take-off and landing unmanned aerial vehicle |
CN106828919A (en) * | 2017-02-20 | 2017-06-13 | 西安爱生技术集团公司 | It is a kind of can VTOL the coaxial Fan Jiang tailless configurations aircraft of tailstock formula |
CN108128448A (en) * | 2018-01-08 | 2018-06-08 | 浙江大学 | The coaxial tilting rotor wing unmanned aerial vehicle of double shoe formulas and its control method |
CN211281465U (en) * | 2019-07-17 | 2020-08-18 | 北京中航智科技有限公司 | Coaxial dual-rotor tilting unmanned aerial vehicle |
-
2020
- 2020-08-24 CN CN202010856395.0A patent/CN112046745B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104015925A (en) * | 2014-05-27 | 2014-09-03 | 南京航空航天大学 | Multi-purpose vertical take-off and landing unmanned aerial vehicle |
CN106828919A (en) * | 2017-02-20 | 2017-06-13 | 西安爱生技术集团公司 | It is a kind of can VTOL the coaxial Fan Jiang tailless configurations aircraft of tailstock formula |
CN108128448A (en) * | 2018-01-08 | 2018-06-08 | 浙江大学 | The coaxial tilting rotor wing unmanned aerial vehicle of double shoe formulas and its control method |
CN211281465U (en) * | 2019-07-17 | 2020-08-18 | 北京中航智科技有限公司 | Coaxial dual-rotor tilting unmanned aerial vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN112046745A (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106585976B (en) | A kind of long endurance aircraft layout of tilting rotor/lift fan high speed | |
CN101837195B (en) | Model airplane with vertical takeoff and landing | |
CN106005395B (en) | The inclining rotary mechanism of wing can be hidden in | |
CN106882371A (en) | A kind of hybrid tilting rotor wing unmanned aerial vehicle | |
CN106428548A (en) | Vertical take-off and landing unmanned aerial vehicle | |
WO2016066131A1 (en) | Combined vertical take-off and landing aircraft | |
CN110386248A (en) | A kind of rotation quadrotor high-speed unmanned aerial vehicle and its control method | |
CN106143895B (en) | Thrust type tilt rotor aircraft | |
CN106938701A (en) | It is a kind of can VTOL the rotor canard configuration aircraft of tailstock formula four | |
CN106927040A (en) | It is a kind of can VTOL the rotor tailless configuration aircraft of tailstock formula four | |
CN101879945A (en) | Electric Tilt Rotor UAV | |
CN201712787U (en) | Electric tilt rotor unmanned aircraft | |
CN207997982U (en) | Screw mechanism and VTOL fixed wing unmanned aerial vehicle vert | |
CN109515704B (en) | Ducted plume rotorcraft based on cycloidal propeller technology | |
CN206125421U (en) | VTOL unmanned vehicles | |
CN106828919A (en) | It is a kind of can VTOL the coaxial Fan Jiang tailless configurations aircraft of tailstock formula | |
CN106915459A (en) | A kind of hybrid tilting rotor wing unmanned aerial vehicle | |
CN108313285A (en) | propeller tilt mechanism | |
CN112046745B (en) | A Portable Modular UAV Platform | |
CN110294114A (en) | Attitude control system of a coaxial double propeller aircraft | |
CN111762316A (en) | Tilt-rotor UAV tilting component, tilt-rotor UAV and method of use | |
CN105173076B (en) | A kind of vertical take-off and landing drone | |
CN201744174U (en) | Model airplane vertically taking off and landing | |
CN106828920A (en) | It is a kind of can VTOL tailstock formula tailless configuration aircraft | |
CN207956057U (en) | A kind of active main rotor vertically taking off and landing flyer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |