CN112038360A - Distance sensor pixel array structure, distance sensor and working method - Google Patents
Distance sensor pixel array structure, distance sensor and working method Download PDFInfo
- Publication number
- CN112038360A CN112038360A CN202010933572.0A CN202010933572A CN112038360A CN 112038360 A CN112038360 A CN 112038360A CN 202010933572 A CN202010933572 A CN 202010933572A CN 112038360 A CN112038360 A CN 112038360A
- Authority
- CN
- China
- Prior art keywords
- pixel
- distance sensor
- pixel units
- array structure
- adjacent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000002955 isolation Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 6
- 230000000750 progressive effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4865—Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
技术领域technical field
本发明涉及传感器技术领域,特别是涉及一种距离传感器像素阵列结构、距离传感器及工作方法。The present invention relates to the technical field of sensors, in particular to a distance sensor pixel array structure, a distance sensor and a working method.
背景技术Background technique
D TOF(直接飞行时间)距离传感器是基于spad(单光子雪崩二极管)的雪崩触发。在分辨率高时,pixel pitch(相邻像素间距)需要非常小,如1μm、2.5μm、3.5μm,5μm、10μm等,小的pixel pitch时容易受到相邻像素的串扰影响。The D TOF (Direct Time of Flight) distance sensor is avalanche triggering based on spad (single photon avalanche diode). When the resolution is high, the pixel pitch (the distance between adjacent pixels) needs to be very small, such as 1 μm, 2.5 μm, 3.5 μm, 5 μm, 10 μm, etc. Small pixel pitch is easily affected by crosstalk between adjacent pixels.
当pixel pitch降低时,串扰会急速增加。相对于image sensor或者I TOF,DTOF的串扰将引起相邻spad的误触发,直接导致图像糊成一片,而不是只带来距离误差或者分辨率降低。因此,目前D TOF的pixel pitch很大,如20μm、30μm等,导致分辨率较低。As the pixel pitch decreases, crosstalk increases rapidly. Compared with image sensor or ITOF, the crosstalk of DTOF will cause false triggering of adjacent spads, which directly causes the image to be blurred, instead of only bringing distance error or resolution reduction. Therefore, the pixel pitch of the current D TOF is very large, such as 20μm, 30μm, etc., resulting in low resolution.
因此,当D TOF实现VGA、QVGA等分辨率时,需要把pixel pitch降低到如5μm,此时就必须要解决串扰问题。Therefore, when D TOF realizes resolutions such as VGA and QVGA, it is necessary to reduce the pixel pitch to 5μm, and at this time, the problem of crosstalk must be solved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,提供一种距离传感器像素阵列结构、距离传感器及工作方法,降低相邻像素单元之间的串扰,规避单光子雪崩二极管的误触发。The purpose of the present invention is to provide a distance sensor pixel array structure, a distance sensor and a working method, which can reduce crosstalk between adjacent pixel units and avoid false triggering of single photon avalanche diodes.
为解决上述技术问题,根据本发明的第一方面,提供一种距离传感器像素阵列结构,包括:In order to solve the above technical problems, according to the first aspect of the present invention, a distance sensor pixel array structure is provided, including:
呈阵列排布的多个像素单元,每个像素单元包括单光子雪崩二极管,相邻所述像素单元分时工作。A plurality of pixel units are arranged in an array, each pixel unit includes a single-photon avalanche diode, and adjacent pixel units work in time division.
可选的,相邻i行j列的像素单元构成一组像素单元,所述的距离传感器像素阵列结构包括所述多组像素单元。Optionally, pixel units in adjacent i rows and j columns form a group of pixel units, and the distance sensor pixel array structure includes the multiple groups of pixel units.
可选的,相邻所述像素单元之间设置有完全金属隔离结构。Optionally, a complete metal isolation structure is provided between adjacent pixel units.
可选的,还设置有多个滤光片,每个所述滤光片对应设置在每个像素单元上,至少部分所述滤光片为不同波长的滤光片。Optionally, a plurality of filters are further provided, each of the filters is correspondingly provided on each pixel unit, and at least some of the filters are filters of different wavelengths.
根据本发明的第二方面,提供一种距离传感器,包括如第一方面所述的距离传感器像素阵列结构。According to a second aspect of the present invention, a distance sensor is provided, including the distance sensor pixel array structure as described in the first aspect.
根据本发明的第三方面,提供一种距离传感器的工作方法,包括:According to a third aspect of the present invention, a working method of a distance sensor is provided, comprising:
相邻像素单元之间的单光子雪崩二极管分时工作。The single-photon avalanche diodes between adjacent pixel units work in time-sharing.
可选的,所述距离传感器包括多组像素单元的阵列,每组像素单元在不同时间段开启不同的像素单元,且相邻组像素单元开启的像素单元之间至少间隔一个像素单元。Optionally, the distance sensor includes an array of multiple groups of pixel units, each group of pixel units turns on different pixel units at different time periods, and at least one pixel unit is spaced between pixel units turned on in adjacent groups of pixel units.
可选的,每个像素单元阵列按照像素排列位置分时工作。Optionally, each pixel unit array works time-sharing according to the pixel arrangement position.
可选的,采用逐行扫描形式,奇数列和偶数列的像素单元分时工作。Optionally, in the form of progressive scanning, the pixel units of odd-numbered columns and even-numbered columns work in time division.
可选的,采用逐列扫描形式,奇数行和偶数行的像素单元分时工作。Optionally, in the form of column-by-column scanning, the pixel units of odd-numbered rows and even-numbered rows work in time division.
与现有技术相比,本发明的技术方案中,距离传感器像素阵列结构,包括呈阵列排布的多个像素单元,每个像素单元包括单光子雪崩二极管,相邻所述像素单元分时工作,由此在工作时,可以分时段依次开启相应位置的单光子雪崩二极管,则在某个像素单元工作时,它上下左右相邻的像素单元都处于非工作状态,则串扰很难达到另一个正在工作状态的像素单元,使得串扰情况得以改善,而且,也不会产生误触发;基于此,本发明实现了相邻像素间距得以缩小,从而能够大大提高分辨率。Compared with the prior art, in the technical solution of the present invention, the pixel array structure of the distance sensor includes a plurality of pixel units arranged in an array, each pixel unit includes a single-photon avalanche diode, and the adjacent pixel units work in a time-sharing manner. , so that when working, the single-photon avalanche diodes at the corresponding positions can be turned on in sequence in different periods of time. When a pixel unit is working, its adjacent pixel units are in non-working state, so it is difficult for crosstalk to reach another pixel unit. The pixel unit in the working state improves the crosstalk situation and does not generate false triggering; based on this, the present invention realizes that the distance between adjacent pixels is reduced, thereby greatly improving the resolution.
附图说明Description of drawings
图1为一种D TOF像素单元阵列示意图;1 is a schematic diagram of a D TOF pixel unit array;
图2为一种D TOF像素单元阵列的剖面示意图一;2 is a schematic cross-sectional view one of a D TOF pixel unit array;
图3为一种D TOF像素单元阵列的剖面示意图二;3 is a schematic cross-sectional view II of a D TOF pixel unit array;
图4为一种D TOF像素单元串扰时的示意图;4 is a schematic diagram of a D TOF pixel unit crosstalk;
图5为本发明一实施例中提供的距离传感器像素阵列结构的示意图;FIG. 5 is a schematic diagram of a pixel array structure of a distance sensor provided in an embodiment of the present invention;
图6为本发明一实施例中提供的距离传感器像素阵列结构的剖面示意图一;6 is a schematic
图7为本发明一实施例中提供的距离传感器像素阵列结构的剖面示意图二;7 is a second schematic cross-sectional view of a pixel array structure of a distance sensor provided in an embodiment of the present invention;
图8为本发明一实施例中提供的不同波长入射光照射一组像素单元的示意图。FIG. 8 is a schematic diagram of a group of pixel units irradiated by incident light of different wavelengths according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合示意图对本发明的距离传感器像素阵列结构、距离传感器及工作方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The pixel array structure of the distance sensor, the distance sensor and the working method of the present invention will be described in more detail below with reference to the schematic diagrams, wherein the preferred embodiments of the present invention are shown, and it should be understood that those skilled in the art can modify the present invention described herein, and The advantageous effects of the present invention are still achieved. Therefore, the following description should be construed as widely known to those skilled in the art and not as a limitation of the present invention.
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The invention is described in more detail by way of example in the following paragraphs with reference to the accompanying drawings. The advantages and features of the present invention will become apparent from the following description and claims. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
在下面的描述中,应该理解,当层(或膜)、区域、图案或结构被称作在基底、层(或膜)、区域和/或图案“上”时,它可以直接位于另一个层或基底上,和/或还可以存在插入层。另外,应该理解,当层被称作在另一个层“下”时,它可以直接位于另一个层下,和/或还可以存在一个或多个插入层。另外,可以基于附图进行关于在各层“上”和“下”的指代。In the following description, it will be understood that when a layer (or film), region, pattern or structure is referred to as being "on" a substrate, layer (or film), region and/or pattern, it can be directly on another layer or on the substrate, and/or intervening layers may also be present. In addition, it will be understood that when a layer is referred to as being "under" another layer, it can be directly under the other layer, and/or one or more intervening layers may also be present. In addition, reference to "on" and "under" various layers may be made based on the drawings.
请参考图1,对于m*n分辨率D TOF像素单元阵列,每个像素单元(pixel)包含一个单光子雪崩二极管(spad)。通常工作模式是m*n个pixel同时工作,或者逐行、逐列工作。但是,单光子雪崩二极管雪崩时会产生次光子,当次光子串扰到隔壁pixel时,会引起隔壁的spad雪崩。如果隔壁的spad也处于工作状态会引起隔壁spad误触发,从而产生假输出信号。当D TOF串扰存在时,会引起整个距离画面糊成一块,没法后续处理矫正,因此必须要解决串扰。Referring to FIG. 1 , for an m*n resolution D TOF pixel unit array, each pixel unit (pixel) includes a single-photon avalanche diode (spad). The usual working mode is that m*n pixels work at the same time, or work row by row and column by column. However, when a single-photon avalanche diode avalanches, secondary photons will be generated, and when the secondary photons crosstalk to the pixel next door, it will cause the spad avalanche next door. If the next-door spad is also in working state, it will cause the next-door spad to trigger falsely, resulting in a false output signal. When the D TOF crosstalk exists, it will cause the entire distance picture to be blurred, and subsequent processing and correction cannot be performed. Therefore, the crosstalk must be solved.
无论是对于前照式(FSI)传感器,如图2所示,还是背照式(BSI)传感器,如图3所示,主要结构包括相邻交替的spad区域(设置在像素单元1中),光从晶圆正面或者背面照射到半导体器件中。但是由于相邻spad(也即是相邻pixel)之间并没有完全阻隔,例如图2所示STI(浅沟槽隔离)结构2下方仍存在未被隔离部分,以及如图3所示的STI结构2和DTI(深沟槽隔离)结构3之间仍存在未被隔离部分,因此都会产生串扰。Whether for a front-illuminated (FSI) sensor, as shown in Figure 2, or a back-illuminated (BSI) sensor, as shown in Figure 3, the main structure consists of adjacent and alternating spad areas (disposed in pixel unit 1), Light is irradiated into the semiconductor device from the front or back of the wafer. However, since the adjacent spads (that is, adjacent pixels) are not completely blocked, for example, there is still an unisolated part under the STI (Shallow Trench Isolation)
如图4所示,以FSI的应用进行说明,相邻像素单元1之间设置有隔离结构2,当相邻的pixel同时工作时,位于中间的第j个pixel的spad雪崩后,产生的次光子会串扰到相邻的第J-1和J+1个pixel。具体来说,第J个pixel雪崩产生次光子O,有多种路径串扰到隔壁像素。A情况是次光子O直接串扰到隔壁像素;B情况是次光子O通过上表面(例如金属层3)反射后串扰到隔壁像素;C情况是次光子O通过底部反射后串扰到隔壁像素。由于相邻pixel同时工作,次光子O会引起隔壁的spad误触发,从而产生假输出信号。As shown in Figure 4, the application of FSI is used for illustration. An
于是,发明人突破现有技术局限,使得相邻pixel之间分时工作,由此,规避了串扰和误触发情况的发送,使得pixel间距缩小变为可能。Therefore, the inventor breaks through the limitations of the prior art and makes time-sharing work between adjacent pixels, thereby avoiding the transmission of crosstalk and false triggering, and making it possible to reduce the pixel pitch.
实施例1Example 1
本发明实施例1提供一种距离传感器像素阵列结构。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例的示意图可参考图5,包括:
呈阵列排布的多个像素单元101、102、103、104,每个像素单元包括单光子雪崩二极管(未图示),相邻所述像素单元分时工作。A plurality of
由此,本发明实施例通过使得像素单元具备相邻的像素单元分时工作的特性,实现了间距变小,避免了较小的间距时串扰和误触发情况发生。Therefore, in the embodiment of the present invention, by making the pixel units work in time-sharing with adjacent pixel units, the spacing is reduced, and the occurrence of crosstalk and false triggering when the spacing is small is avoided.
实施例2Example 2
本发明实施例2提供一种距离传感器像素阵列结构,可以是在实施例1的基础上进一步优化或改进。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例包括:
相邻所述像素单元之间的间距小于等于5μm,例如,相邻所述像素单元之间的间距可以是1μm、2μm、3μm、4μm等。可以看出,现有技术中的间距在20μm以上,因此本发明大大缩小了间距。The spacing between adjacent pixel units is less than or equal to 5 μm, for example, the spacing between adjacent pixel units may be 1 μm, 2 μm, 3 μm, 4 μm, and so on. It can be seen that the pitch in the prior art is above 20 μm, so the present invention greatly reduces the pitch.
可以理解的是,对于相邻所述像素单元之间的间距在5~20μm的情况,甚至大于20μm的情况,本发明实施例也都可以实现。本领域技术人员可以依据实际需要,灵活调整相邻所述像素单元之间的间距。It can be understood that, for the case where the spacing between the adjacent pixel units is 5-20 μm, or even greater than 20 μm, the embodiments of the present invention can also be implemented. Those skilled in the art can flexibly adjust the spacing between adjacent pixel units according to actual needs.
实施例3Example 3
本发明实施例3提供一种距离传感器像素阵列结构,可以是在实施例1或实施例2的基础上进一步优化或改进。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例的示意图可参考图5,包括:
在本实施例中,相邻i行j列的像素单元构成一组像素单元10,所述的距离传感器像素阵列结构包括所述多组像素单元10。In this embodiment, pixel units in adjacent i rows and j columns form a group of
例如,每一组像素单元10为2×2的像素单元的组合。For example, each group of
通常,每一组像素单元为相同的阵列。Typically, each group of pixel cells is the same array.
此外,每组像素单元10还可以是其他的阵列形式,例如2×3,3×3等。在本实施例中,每组像素单元10的阵列可不用太过复杂,以简单的2×2为例,例如每组像素单元10中都依次是像素单元101、像素单元102、像素单元103和像素单元104这样的开启顺序时,就能够避免整个阵列中出现相邻像素单元同时开启的状况,由此,较简单组的像素单元10能够在避免串扰时,实现更高的效率。In addition, each group of
以2×2组的像素阵列为例,对于m×n分辨率的整个阵列,实际上是m/2×n/2个组的像素阵列构成。Taking a pixel array of 2×2 groups as an example, the entire array with m×n resolution is actually composed of pixel arrays of m/2×n/2 groups.
请结合图4,例如出现次光子A/B/C等状况时,例如此时是J像素单元开启,其周边四个(图4示意了一个对侧的J-1像素单元和J+1像素单元)像素单元都不是处于开启状态,则次光子进入周边的像素单元,并不会产生影响,不会使得spad被误触发。而也正是由于周边四个像素单元都不是出于开启状态,因此次光子进入相邻像素单元时也会被这个像素单元阻挡,而不会进入开启状态的像素单元,从这个意义上说,串扰现象被规避掉。Please refer to Figure 4. For example, when the secondary photon A/B/C occurs, for example, the J pixel unit is turned on at this time, and there are four around it (Figure 4 shows a J-1 pixel unit and J+1 pixel unit on the opposite side. unit) pixel unit is not in the open state, the secondary photon entering the surrounding pixel units will not have an impact, and will not cause the spad to be triggered by mistake. And it is precisely because the four surrounding pixel units are not in the open state, so when the secondary photon enters the adjacent pixel unit, it will also be blocked by this pixel unit, and will not enter the pixel unit in the open state. In this sense, Crosstalk is avoided.
实施例4Example 4
本发明实施例4提供一种距离传感器像素阵列结构,可以是在实施例1或实施例2或实施例3的基础上进一步优化或改进。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例的示意图可参考图6,包括:
相邻所述像素单元1之间设置有完全金属隔离结构4。A complete
所述完全金属隔离结构4使得相邻像素单元1的侧壁之间被完全的隔离。例如,所述完全金属隔离结构4呈桶状,仅暴露出像素单元1的上下两个面。The complete
实施例5Example 5
本发明实施例5提供一种距离传感器像素阵列结构,可以是在实施例1~4中任何一个的基础上进一步优化或改进。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例的示意图可参考图7和图8,包括:
还设置有多个滤光片5,每个所述滤光片5对应设置在每个像素单元1上,至少部分所述滤光片为不同波长的滤光片。A plurality of
请参考图8,示意了光照射到一组像素单元后的情况,每个像素单元1上设置有滤光片,而且图8中示意为一组像素单元上设置的4个滤波片分别为940nm滤光片,900nm滤光片,920nm滤光片和960nm滤光片,则对应入射不同波长的光,分别是940nm入射光,900nm入射光,920nm入射光和960nm入射光。Please refer to FIG. 8 , which illustrates the situation after light is irradiated to a group of pixel units, each
可以理解的是,滤波片的设置并不受本实施例所描述的例子所限。It can be understood that, the setting of the filter is not limited by the examples described in this embodiment.
实施例6Example 6
本发明实施例6一种距离传感器,本实施例的距离传感器包括如实施例1~5中任何一个所述的距离传感器像素阵列结构。所述距离传感器例如为D TOF距离传感器Embodiment 6 of the present invention provides a distance sensor. The distance sensor in this embodiment includes the distance sensor pixel array structure described in any one of
实施例7Example 7
本发明实施例7提供一种距离传感器的工作方法。下面对本实施例的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。本实施例可以是基于实施例6的结构进行,也可以不限于本发明所提供的结构。本发明实施例的方法包括:Embodiment 7 of the present invention provides a working method of a distance sensor. The implementation details of this embodiment will be specifically described below, and the following content is only provided for the convenience of understanding, and is not necessary for implementing this solution. This embodiment may be performed based on the structure of Embodiment 6, and may not be limited to the structure provided by the present invention. The method of the embodiment of the present invention includes:
一种距离传感器的工作方法,相邻像素单元之间的单光子雪崩二极管分时工作。In a working method of a distance sensor, the single-photon avalanche diodes between adjacent pixel units work in time-sharing.
具体的,所述距离传感器包括多组像素单元的阵列,每组像素单元在不同时间段开启不同的像素单元,且相邻组像素单元开启的像素单元之间至少间隔一个像素单元。Specifically, the distance sensor includes an array of multiple groups of pixel units, each group of pixel units turns on different pixel units at different time periods, and at least one pixel unit is spaced between pixel units turned on in adjacent groups of pixel units.
在本实施例中,每个像素单元阵列按照像素排列位置分时工作。例如图2所示,每组像素单元包括像素单元101-104,分别在时间段t1、t2、t3和t4时开启,并且t1-t4不存在重叠。In this embodiment, each pixel unit array works in time division according to the pixel arrangement position. For example, as shown in FIG. 2, each group of pixel units includes pixel units 101-104, which are turned on at time periods t1, t2, t3, and t4, respectively, and there is no overlap between t1-t4.
可以理解的是,对于其他阵列类型的一组像素单元,也可以是依次在不同的时间段开启。It can be understood that, for a group of pixel units of other array types, they may also be turned on in different time periods in sequence.
实施例8Example 8
本实施例可以是在实施例7的基础上进一步优化或改进,本实施例8主要在于,采用逐行扫描形式,奇数列和偶数列的像素单元分时工作。This embodiment may be further optimized or improved on the basis of Embodiment 7. Embodiment 8 mainly lies in that the pixel units of odd-numbered columns and even-numbered columns work in a time-sharing manner by adopting a progressive scanning format.
实施例9Example 9
本实施例可以是在实施例7的基础上进一步优化或改进,本实施例9主要在于,采用逐列扫描形式,奇数行和偶数行的像素单元分时工作。This embodiment may be further optimized or improved on the basis of Embodiment 7. Embodiment 9 mainly lies in that a column-by-column scanning format is adopted, and the pixel units of odd-numbered rows and even-numbered rows work in time division.
本发明的技术方案中,距离传感器像素阵列结构,包括呈阵列排布的多个像素单元,每个像素单元包括单光子雪崩二极管,相邻所述像素单元分时工作,由此在工作时,可以分时段依次开启相应位置的单光子雪崩二极管,则在某个像素单元工作时,它上下左右相邻的像素单元都处于非工作状态,则串扰很难达到另一个正在工作状态的像素单元,使得串扰情况得以改善,而且,也不会产生误触发;基于此,本发明实现了相邻像素间距得以缩小,从而能够大大提高分辨率。In the technical solution of the present invention, the pixel array structure of the distance sensor includes a plurality of pixel units arranged in an array, each pixel unit includes a single-photon avalanche diode, and the adjacent pixel units work in a time-sharing manner, so that during operation, The single-photon avalanche diodes at the corresponding positions can be turned on in turn in different time periods. When a pixel unit is working, its adjacent pixel units are in the non-working state, so it is difficult for the crosstalk to reach another pixel unit that is working. The crosstalk situation is improved, and false triggering will not occur; based on this, the present invention realizes that the distance between adjacent pixels is reduced, thereby greatly improving the resolution.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010933572.0A CN112038360A (en) | 2020-09-08 | 2020-09-08 | Distance sensor pixel array structure, distance sensor and working method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010933572.0A CN112038360A (en) | 2020-09-08 | 2020-09-08 | Distance sensor pixel array structure, distance sensor and working method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112038360A true CN112038360A (en) | 2020-12-04 |
Family
ID=73584267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010933572.0A Pending CN112038360A (en) | 2020-09-08 | 2020-09-08 | Distance sensor pixel array structure, distance sensor and working method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112038360A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022002174A1 (en) * | 2020-07-02 | 2022-01-06 | 华为技术有限公司 | Image sensor, 3d camera, image sensor control method |
CN115267728A (en) * | 2021-05-24 | 2022-11-01 | 深圳阜时科技有限公司 | Optical sensing device and sensing method thereof, optical receiver and electronic device |
CN116960133A (en) * | 2022-04-15 | 2023-10-27 | 浙桂(杭州)半导体科技有限责任公司 | Avalanche diode sensor with high filling coefficient |
CN117059632A (en) * | 2022-05-05 | 2023-11-14 | 浙桂(杭州)半导体科技有限责任公司 | Avalanche diode sensor with low detection dead zone |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040058691A (en) * | 2002-12-27 | 2004-07-05 | 주식회사 하이닉스반도체 | CMOS image sensor with reduced crosstalk and method for fabricating thereof |
CN101290941A (en) * | 2007-04-17 | 2008-10-22 | 东部高科股份有限公司 | Image sensor and manufacturing method thereof |
JP2016145776A (en) * | 2015-02-09 | 2016-08-12 | 三菱電機株式会社 | Laser receiver |
JP2016225453A (en) * | 2015-05-29 | 2016-12-28 | シャープ株式会社 | Photosensor |
CN108417724A (en) * | 2018-03-15 | 2018-08-17 | 京东方科技集团股份有限公司 | Light-emitting diode display and its manufacturing method |
CN109643722A (en) * | 2016-11-29 | 2019-04-16 | 索尼半导体解决方案公司 | Sensor chip and electronic device |
EP3572833A1 (en) * | 2017-09-29 | 2019-11-27 | Sony Semiconductor Solutions Corporation | Time measurement device and time measurement apparatus |
CN110828523A (en) * | 2019-11-19 | 2020-02-21 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display panel |
CN110888117A (en) * | 2018-08-17 | 2020-03-17 | 西克股份公司 | Detecting light using multiple avalanche photodiode elements |
CN211148917U (en) * | 2019-10-15 | 2020-07-31 | 深圳奥锐达科技有限公司 | Distance measuring system |
CN213124441U (en) * | 2020-09-08 | 2021-05-04 | 上海大芯半导体有限公司 | Distance sensor pixel array structure and distance sensor |
-
2020
- 2020-09-08 CN CN202010933572.0A patent/CN112038360A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040058691A (en) * | 2002-12-27 | 2004-07-05 | 주식회사 하이닉스반도체 | CMOS image sensor with reduced crosstalk and method for fabricating thereof |
CN101290941A (en) * | 2007-04-17 | 2008-10-22 | 东部高科股份有限公司 | Image sensor and manufacturing method thereof |
JP2016145776A (en) * | 2015-02-09 | 2016-08-12 | 三菱電機株式会社 | Laser receiver |
JP2016225453A (en) * | 2015-05-29 | 2016-12-28 | シャープ株式会社 | Photosensor |
CN109643722A (en) * | 2016-11-29 | 2019-04-16 | 索尼半导体解决方案公司 | Sensor chip and electronic device |
EP3572833A1 (en) * | 2017-09-29 | 2019-11-27 | Sony Semiconductor Solutions Corporation | Time measurement device and time measurement apparatus |
CN108417724A (en) * | 2018-03-15 | 2018-08-17 | 京东方科技集团股份有限公司 | Light-emitting diode display and its manufacturing method |
CN110888117A (en) * | 2018-08-17 | 2020-03-17 | 西克股份公司 | Detecting light using multiple avalanche photodiode elements |
CN211148917U (en) * | 2019-10-15 | 2020-07-31 | 深圳奥锐达科技有限公司 | Distance measuring system |
CN110828523A (en) * | 2019-11-19 | 2020-02-21 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display panel |
CN213124441U (en) * | 2020-09-08 | 2021-05-04 | 上海大芯半导体有限公司 | Distance sensor pixel array structure and distance sensor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022002174A1 (en) * | 2020-07-02 | 2022-01-06 | 华为技术有限公司 | Image sensor, 3d camera, image sensor control method |
CN115267728A (en) * | 2021-05-24 | 2022-11-01 | 深圳阜时科技有限公司 | Optical sensing device and sensing method thereof, optical receiver and electronic device |
CN116960133A (en) * | 2022-04-15 | 2023-10-27 | 浙桂(杭州)半导体科技有限责任公司 | Avalanche diode sensor with high filling coefficient |
CN117059632A (en) * | 2022-05-05 | 2023-11-14 | 浙桂(杭州)半导体科技有限责任公司 | Avalanche diode sensor with low detection dead zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112038360A (en) | Distance sensor pixel array structure, distance sensor and working method | |
JP7114647B2 (en) | Photodetector and photodetection system | |
US11616152B2 (en) | Semiconductor devices with single-photon avalanche diodes and hybrid isolation structures | |
JP7362352B2 (en) | Photoelectric conversion devices, photoelectric conversion systems, and mobile objects | |
US11670664B2 (en) | Light-receiving element and distance measurement module using indirect time of flight | |
TWI853004B (en) | Light receiving device and distance measuring module | |
US20220310866A1 (en) | Light detector | |
US11601608B2 (en) | Photoelectric conversion apparatus, photoelectric conversion system, and moving body | |
US20230215960A1 (en) | Semiconductor devices with single-photon avalanche diodes and hybrid isolation structures | |
JP2015179731A (en) | Solid-state imaging device | |
JPH01168058A (en) | Network of photosensitive elements | |
TWI872053B (en) | Light receiving device and distance measuring module | |
US8119440B2 (en) | Method and apparatus providing refractive index structure for a device capturing or displaying images | |
JP2025020298A (en) | Optical detection device, optical detection system | |
US12317614B2 (en) | Semiconductor device and electronic apparatus including PN junction portions | |
CN213124441U (en) | Distance sensor pixel array structure and distance sensor | |
US12113138B2 (en) | Semiconductor devices with single-photon avalanche diodes and light scattering structures | |
US20230197750A1 (en) | Single-photon avalanche diode covered by multiple microlenses | |
US20240192054A1 (en) | Light detection apparatus and electronic device | |
US20220026542A1 (en) | Optical detection apparatus and optical detection system | |
CN114830338A (en) | Solid-state image pickup device | |
TWI881264B (en) | Light detection method | |
US20250150723A1 (en) | Solid-state imaging device | |
US12199198B2 (en) | Semiconductor devices with single-photon avalanche diodes, light scattering structures, and multiple isolation structures | |
JP7653793B2 (en) | Photoelectric conversion device, photoelectric conversion system and mobile body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |