CN112030185A - 一种增强硅光电阴极表面活性的方法 - Google Patents
一种增强硅光电阴极表面活性的方法 Download PDFInfo
- Publication number
- CN112030185A CN112030185A CN202010733655.5A CN202010733655A CN112030185A CN 112030185 A CN112030185 A CN 112030185A CN 202010733655 A CN202010733655 A CN 202010733655A CN 112030185 A CN112030185 A CN 112030185A
- Authority
- CN
- China
- Prior art keywords
- silicon
- thiomolybdate
- thiotungstate
- enhancing
- silicon photocathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种增强硅光电阴极表面活性的方法,属于光电催化技术领域,提供了简单高效地制备无定形硫化钼钨薄膜修饰的硅光电阴极的方法,所制得的硅光电阴极具有优异的表面催化活性。本发明以可溶性硫代钼酸盐和硫代钨酸盐的溶液为反应原料,并以氢氟酸溶液作为反应介质,在常温条件下,通过已被氟化处理过的硅片表面在氢氟酸介质中与硫代钼酸根和硫代钨酸根离子的氧化还原作用,原位沉积无定形硫化钼钨的共沉积薄膜至硅片表面,从而增强硅光电阴极表面的催化活性。本发明工艺简单易操作,条件温和且可控,制备得到的硅光电阴极在光电催化水分解和光电催化二氧化碳还原等领域具有极大的应用潜力。
Description
技术领域
本发明属于光电催化技术领域,具体涉及一种增强硅光电阴极表面活性的方法。
背景技术
光电催化纯水分解和二氧化碳还原是开发与转化太阳能的一种非常有效的方式,其中决定光电催化性能中的关键且最基本的因素就是需要使用合适而有效的半导体光电阴极。在众多半导体中,储量丰富与价格低廉的硅是最有前景的小带隙半导体(1.12eV),其带隙吸收几乎完美匹配太阳光谱中的近红外光与可见光部分,同时其具有近乎理想的能带结构,完全能够满足光电催化纯水分解和二氧化碳还原对半导体导带位置的要求。然而,纯硅的光电催化性能极差,主要源于其表面迟缓的析氢和二氧化碳还原催化能力,因此需要在其表面沉积修饰助催化剂,才能够满足光电催化的性能要求。
作为新型廉价的助催化剂,过渡金属硫化物如硫化钼在硅基光电阴极上表现出极大的潜力。例如,无定形硫化钼纳米团簇修饰的硅光电阴极具有高效的光电催化析氢活性,在相对于标准氢电极0V的条件下达到8mA∙cm-2的光生电流,获得接近于10%的太阳能至氢能的转换效率(Nature Materials 2011, 10, 434)。又如,硫化钼钨共同修饰的硅光电阴极能获得接近0.2V的起始光生电压(Adv. Sci. 2019, 6, 1900301)。一般而言,通过硫化钼钨共同沉积能够增强硅光电阴极的表面活性,而沉积制备的过程和技术方法,决定了其与硅半导体之间的相互作用,从而影响硅光电阴极的光电催化性能。其中,化学气相沉积(MRS Commun. 2017, 7, 272),高温合成沉积(ACS Appl. Mater. Inter. 2019, 11,29910)或者光电沉积(ACS Nano 2015, 9, 3829)等是最常用的技术手段。虽然偶尔能够获得满足光电催化性能的硅光电阴极,但是这些技术手段具有沉积速率非常低或者沉积厚度不均匀等缺点。
发明内容
本发明提供了一种增强硅光电阴极表面活性的方法,所述方法简单高效地制备了无定形硫化钼钨薄膜修饰的硅光电阴极,所制得的硅光电阴极具有优异的表面催化活性。
为达到以上目的,本发明采用以下技术方案:
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,所述硫化钼钨纳米颗粒层厚度为1-10nm。
以上所述方法具体包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于50-80oC下清洗30-60min去除表面有机污染物,其后用1-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钼酸盐和硫代钨酸盐溶解于溶剂中,配制不同比例的硫代钼酸铵和硫代钨酸铵混合溶液,静置于5oC下备用;
(3)取一定体积步骤(2)配制的硫代钼酸盐和硫代钨酸盐混合溶液滴入0.5-10%氢氟酸溶液制得不同浓度比例的硫代钼酸盐加硫代钨酸盐混氢氟酸溶液,并将步骤(1)已清洗的p型单晶硅平放于所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中1-60min,其后用清洗并用氩气吹干,制得无定形硫化钼钨纳米颗粒修饰的硅光电阴极,用以增强硅光电阴极表面活性。
以上所述步骤中,步骤(1)中所述的含氟溶液为氢氟酸或氟化铵溶液;
步骤(2)中所述的硫代钼酸盐和硫代钨酸盐之间的摩尔比例为0.1-99.9%,所述可溶性硫代钼酸盐为(NH4)2MoS4或Na2MoS4,所述硫代钨酸盐为(NH4)2WS4或Na2WS4,所述的溶剂为水或乙醇;
步骤(3)所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中硫代钼酸盐加硫代钨酸盐的浓度为0.1-10mM,所述的氢氟酸的质量百分比浓度为0.5%-10%;所述的无定形硫化钼钨纳米颗粒层厚度为1-10nm,可以通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制硫化钼钨纳米颗粒层厚度。
有益效果:本发明提供了一种增强硅光电阴极表面活性的方法,将非晶态硫化钼钨纳米颗粒薄膜直接原位沉积到单晶硅光电阴极表面上,如图1所示,通过钼钨比调控硫化钼钨纳米颗粒的活性和能级位置,使光生电子更易于传输至助催化剂,增强硅光电阴极表面活性,本发明以可溶性硫代钼酸盐和硫代钨酸盐为原料,通过简单的液相氧化还原反应,可控地在硅光电阴极上原位沉积修饰无定形硫化钼钨助催化剂,从而增强硅光电阴极表面催化活性,得到的无定形硫化钼钨厚度1-10nm,可简单地通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制无定形硫化钼钨厚度,原料成本和制备效率均优于现有技术;本发明制备工艺简单易操作,反应条件温和且可控,所用试剂低廉并环保,在光电催化水分解和光电催化二氧化碳还原中等领域中具有广泛的应用前景。
附图说明
图1为本发明制备的硅光电阴极的光电催化析氢原理示意图;
图2为本发明实施例1制备的硫化钼钨纳米颗粒修饰硅光电阴极表面的原子力显微高度模拟图;
图3为本发明实施例1制备的制备的硅光电阴极的光电催化析氢性能图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用1%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钼酸铵和1.0mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:1)混合溶液,接着取0.1mL该混合溶液滴入10mL 2%氢氟酸溶液制得2.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中2min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为4.0nm,从图2可以看出,硫化钼钨的修饰膜厚度约为4nm,将上述无定形硫化钼钨薄膜修饰的硅光电阴极在AM1.5模拟太阳光照条件下进行光电催化析氢性能测试,如图3所示,在标准氢电势为0V电压下的阴极光电流高达40mA/cm2。
实施例2
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用2%氢氟酸刻蚀5min,得到无氧化层的裸硅;取0.5mmol的硫代钼酸铵和1.5mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:3)混合溶液,接着取0.2mL该混合溶液滴入10mL 5%氢氟酸溶液制得4.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中3min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为6.0nm。
实施例3
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用2%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钼酸铵和1.0mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:1)混合溶液,接着取0.4mL该混合溶液滴入10mL 2%氢氟酸溶液制得8.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中5min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为10.0nm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。
Claims (8)
1.一种增强硅光电阴极表面活性的方法,其特征在于,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面。
2.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,所述硫化钼钨纳米颗粒层厚度为1-10nm。
3.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,所述方法包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于50-80oC下清洗30-60min去除表面有机污染物,其后用1-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钼酸盐和硫代钨酸盐溶解于溶剂中,配制不同比例的硫代钼酸铵和硫代钨酸铵混合溶液,静置于5oC下备用;
(3)取一定体积步骤(2)配制的硫代钼酸盐和硫代钨酸盐混合溶液滴入0.5-10%氢氟酸溶液制得不同浓度比例的硫代钼酸盐加硫代钨酸盐混氢氟酸溶液,并将步骤(1)已清洗的p型单晶硅平放于所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中1-60min,其后用清洗并用氩气吹干,制得无定形硫化钼钨纳米颗粒修饰的硅光电阴极。
4.根据权利要求3所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(1)中所述的含氟溶液为氢氟酸或氟化铵溶液。
5.根据权利要求3所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(2)中所述的硫代钼酸盐和硫代钨酸盐之间的摩尔比例为0.1-99.9%,所述的溶剂为水或乙醇。
6.根据权利要求3或5所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(2)中所述硫代钼酸盐为(NH4)2MoS4或Na2MoS4,所述硫代钨酸盐为(NH4)2WS4或Na2WS4。
7.根据权利要求3所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(3)中所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中硫代钼酸盐加硫代钨酸盐的浓度为0.1-10mM,所述的氢氟酸的质量百分比浓度为0.5%-10%。
8.根据权利要求2或3所述的增强硅光电阴极表面活性的方法,其特征在于,通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制硫化钼钨纳米颗粒层厚度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010733655.5A CN112030185B (zh) | 2020-07-27 | 2020-07-27 | 一种增强硅光电阴极表面活性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010733655.5A CN112030185B (zh) | 2020-07-27 | 2020-07-27 | 一种增强硅光电阴极表面活性的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112030185A true CN112030185A (zh) | 2020-12-04 |
CN112030185B CN112030185B (zh) | 2021-12-21 |
Family
ID=73583260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010733655.5A Expired - Fee Related CN112030185B (zh) | 2020-07-27 | 2020-07-27 | 一种增强硅光电阴极表面活性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112030185B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2377971A1 (en) * | 2010-04-16 | 2011-10-19 | EPFL Ecole Polytechnique Fédérale de Lausanne | Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions |
CN104313637A (zh) * | 2014-10-11 | 2015-01-28 | 北京航空航天大学 | 一种具有氢还原活性的金属硫化物电极及其制备方法 |
KR101596443B1 (ko) * | 2014-10-17 | 2016-02-22 | 서강대학교산학협력단 | 광전극용 복합 나노구조체 및 이의 제조방법 |
CN106994357A (zh) * | 2016-01-22 | 2017-08-01 | 天津大学 | 一种钨掺杂的二硫化钼材料及其合成方法 |
CN107012474A (zh) * | 2016-01-28 | 2017-08-04 | 中国科学院大连化学物理研究所 | 一种规模化太阳能光催化-光电催化分解水制氢的方法 |
-
2020
- 2020-07-27 CN CN202010733655.5A patent/CN112030185B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2377971A1 (en) * | 2010-04-16 | 2011-10-19 | EPFL Ecole Polytechnique Fédérale de Lausanne | Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions |
CN104313637A (zh) * | 2014-10-11 | 2015-01-28 | 北京航空航天大学 | 一种具有氢还原活性的金属硫化物电极及其制备方法 |
KR101596443B1 (ko) * | 2014-10-17 | 2016-02-22 | 서강대학교산학협력단 | 광전극용 복합 나노구조체 및 이의 제조방법 |
CN106994357A (zh) * | 2016-01-22 | 2017-08-01 | 天津大学 | 一种钨掺杂的二硫化钼材料及其合成方法 |
CN107012474A (zh) * | 2016-01-28 | 2017-08-04 | 中国科学院大连化学物理研究所 | 一种规模化太阳能光催化-光电催化分解水制氢的方法 |
Non-Patent Citations (1)
Title |
---|
CAN LI等: "Facile electrodeposition fabrication of molybdenum-tungsten sulfide on carbon cloth for electrocatalytic hydrogen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 * |
Also Published As
Publication number | Publication date |
---|---|
CN112030185B (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107574456B (zh) | 一种超薄二硫化钼纳米片/硅纳米线异质结结构的制备方法 | |
Bielinski et al. | Atomic layer deposition of bismuth vanadate core–shell nanowire photoanodes | |
Ansari et al. | Visible light active CZTS sensitized CdS/TiO2 tandem photoanode for highly efficient photoelectrochemical hydrogen generation | |
CN109402653B (zh) | 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用 | |
Lv et al. | Design of a silicon photocatalyst for high-efficiency photocatalytic water splitting | |
CN101746715A (zh) | 一种CuInS2纳米晶半导体薄膜的制备方法 | |
Riyajuddin et al. | Silicon nanowire–Ta 2 O 5–NGQD heterostructure: an efficient photocathode for photoelectrochemical hydrogen evolution | |
Liu et al. | Effects of hydroxylation on PbS quantum dot sensitized TiO2 nanotube array photoelectrodes | |
Dang et al. | MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes | |
CN114657641A (zh) | 一种退火处理的Si基InN纳米柱异质结及其制备方法与应用 | |
CN112760668B (zh) | 一种基于石墨烯上InGaN纳米柱光电极无偏压光电化学制氢系统与应用 | |
CN111036263B (zh) | 一种Si衬底上InGaN纳米柱@Ti-Ni纳米粒子复合结构及其制备方法与应用 | |
CN107464881B (zh) | 一种面向光解水制氢的集成器件及其制作方法 | |
CN110655035A (zh) | 一种二维MXene功能化的InxGa1-xN纳米柱及其制备方法与应用 | |
CN114505080A (zh) | 原位制备SnO2/SnS2异质结光催化剂的方法及其使用方法 | |
CN112030185A (zh) | 一种增强硅光电阴极表面活性的方法 | |
CN111705333A (zh) | Ag-Pi/BiVO4异质结合成方法及其应用于光电解水 | |
CN107119286A (zh) | 一种通过补偿掺杂提高光电极光生载流子分离效率的方法 | |
CN111495365A (zh) | 一种新型n-Cu2O/CuO半导体光催化剂的制备方法 | |
CN114540875B (zh) | 一种基于InGaN/有机异质结构光电极材料及其制备方法与应用 | |
CN112030176B (zh) | 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法 | |
CN112030184B (zh) | 一种无定形硫化钼薄膜修饰的硅光电阴极及其制备方法 | |
CN103178126B (zh) | 一种胶体量子点敏化硅基太阳能电池片的制备方法 | |
CN112708905A (zh) | 一种Z型InGaN/Cu2O纳米柱异质结及其制备方法与应用 | |
CN116377594B (zh) | 一种基于p-GaAs衬底上的InN纳米柱的钝化方法、钝化终产物复合结构及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20211221 |