CN112018446B - Electrolyte suitable for silicon-carbon system lithium ion battery - Google Patents
Electrolyte suitable for silicon-carbon system lithium ion battery Download PDFInfo
- Publication number
- CN112018446B CN112018446B CN202011034816.8A CN202011034816A CN112018446B CN 112018446 B CN112018446 B CN 112018446B CN 202011034816 A CN202011034816 A CN 202011034816A CN 112018446 B CN112018446 B CN 112018446B
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- carbonate
- lithium ion
- ion battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 60
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 37
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 34
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims abstract description 18
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000000996 additive effect Effects 0.000 claims abstract description 13
- -1 fluoro-substituted methyl Chemical group 0.000 claims description 21
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 claims description 11
- CBTAIOOTRCAMBD-UHFFFAOYSA-N 2-ethoxy-2,4,4,6,6-pentafluoro-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound CCOP1(F)=NP(F)(F)=NP(F)(F)=N1 CBTAIOOTRCAMBD-UHFFFAOYSA-N 0.000 claims description 11
- 229910003002 lithium salt Inorganic materials 0.000 claims description 9
- 159000000002 lithium salts Chemical class 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 8
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 4
- 229920001774 Perfluoroether Polymers 0.000 claims description 4
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 2
- VTHRQKSLPFJQHN-UHFFFAOYSA-N 3-[2-(2-cyanoethoxy)ethoxy]propanenitrile Chemical compound N#CCCOCCOCCC#N VTHRQKSLPFJQHN-UHFFFAOYSA-N 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- WVCXIIOIWJECBJ-UHFFFAOYSA-N FC(CF)(F)C(C(C(F)(F)F)(F)F)OC(C(C(F)(F)F)(F)F)C(CF)(F)F Chemical group FC(CF)(F)C(C(C(F)(F)F)(F)F)OC(C(C(F)(F)F)(F)F)C(CF)(F)F WVCXIIOIWJECBJ-UHFFFAOYSA-N 0.000 claims description 2
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 1
- LNLFLMCWDHZINJ-UHFFFAOYSA-N hexane-1,3,6-tricarbonitrile Chemical compound N#CCCCC(C#N)CCC#N LNLFLMCWDHZINJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052744 lithium Inorganic materials 0.000 claims 1
- 239000007773 negative electrode material Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 8
- 238000007600 charging Methods 0.000 abstract description 7
- 238000007599 discharging Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 abstract description 6
- 238000003860 storage Methods 0.000 abstract description 5
- 125000004122 cyclic group Chemical group 0.000 abstract description 4
- 229910018557 Si O Inorganic materials 0.000 abstract description 2
- 229910002808 Si–O–Si Inorganic materials 0.000 abstract description 2
- 125000004185 ester group Chemical group 0.000 abstract description 2
- 230000002035 prolonged effect Effects 0.000 abstract description 2
- 230000001681 protective effect Effects 0.000 abstract description 2
- 238000007142 ring opening reaction Methods 0.000 abstract description 2
- 239000006258 conductive agent Substances 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000007774 positive electrode material Substances 0.000 description 11
- 239000011888 foil Substances 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 239000001768 carboxy methyl cellulose Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 239000011267 electrode slurry Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000002931 mesocarbon microbead Substances 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000002109 single walled nanotube Substances 0.000 description 4
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 4
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- PNUGDRJNKILROY-UHFFFAOYSA-N [C].[Si].[Li] Chemical compound [C].[Si].[Li] PNUGDRJNKILROY-UHFFFAOYSA-N 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910012820 LiCoO Inorganic materials 0.000 description 2
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 239000006256 anode slurry Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- XQSBLCWFZRTIEO-UHFFFAOYSA-N hexadecan-1-amine;hydrobromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[NH3+] XQSBLCWFZRTIEO-UHFFFAOYSA-N 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910014514 LixNiyM1-yO2 Inorganic materials 0.000 description 1
- 229910014512 LixNiyM1−yO2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
The invention belongs to the technical field of lithium ion batteries, and particularly relates to an electrolyte suitable for a silicon-carbon system lithium ion battery and the silicon-carbon system lithium ion battery comprising the electrolyte. The electrolyte combination provided by the invention can obviously improve the cycle life and the safety performance of the battery, the propenyl-1, 3-sultone in the additive and the cyclic ester group in the siloxane polymer with the structure shown in the formula 1 are subjected to ring opening in cooperation with each other in the charging and discharging processes of the battery, so that a thin-layer polycycloester can be generated on the surface of the positive electrode, a firmer CEI positive electrode protective film is formed, and the high-temperature storage and high-temperature cycle performance of the battery are effectively improved; meanwhile, Si-O bonds in the siloxane polymer with the structure shown in the formula 1 are crosslinked to generate a Si-O-Si crosslinked structure with higher rigidity, so that the toughness of an SEI film on the surface of the negative electrode can be enhanced, the cyclic expansion of the silicon-carbon negative electrode material can be obviously inhibited, and the cycle life can be prolonged.
Description
Technical Field
The invention belongs to the technical field of lithium ion batteries, and particularly relates to an electrolyte suitable for a silicon-carbon system lithium ion battery and the silicon-carbon system lithium ion battery comprising the electrolyte.
Background
Since commercialization, lithium ion batteries have been widely used in the fields of digital, energy storage, power, military aerospace, and communication equipment, due to their high specific energy and good cycle performance. With the wide application of lithium ion batteries, the use environment and the demand of consumers on the lithium ion batteries are continuously improved, and meanwhile, the requirement on the endurance capacity of electronic equipment is higher and higher, so that the lithium ion batteries are required to have high and low temperature performance and higher energy density.
The silicon-carbon battery is one of effective means for raising energy density of battery, and the electrolyte is one of main materials of silicon-carbon lithium ion battery, and it can transport Li in the silicon-carbon lithium ion battery+The function of (1). Therefore, the research and development of the electrolyte is crucial to the silicon-carbon lithium ion battery, howeverAnd the electrolyte which relieves the large circulating expansion of the silicon negative electrode and gives consideration to high and low temperature performance is not easy to develop. At present, the use of additives in electrolytes is a highly effective weapon to solve the above problems. However, the current electrolyte additives are often difficult to form a strong and tough SEI film to resist the damage caused by the expansion of the silicon negative electrode during the cycle, and the high-temperature additives cause large impedance and seriously affect the low-temperature performance of the battery. Therefore, it is urgently required to develop an electrolyte suitable for a silicon-carbon system lithium ion battery, which can prolong the cycle life of the silicon-carbon battery and achieve both high and low temperatures.
Disclosure of Invention
The invention provides an electrolyte suitable for a silicon-carbon system lithium ion battery and the silicon-carbon system lithium ion battery comprising the electrolyte.
Specifically, the invention provides the following technical scheme:
an electrolyte comprising an organic solvent, an additive and a lithium salt, wherein the additive comprises a siloxane polymer containing a structure shown in formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate;
in formula 1, m is the degree of polymerization; n is an integer of 0 or more; r1Selected from alkyl or substituted alkyl; r2Selected from-O-C (═ O) -O-, -CH2-S(=O)2-O-、-O-S(=O)-O-、-O-S(=O)2-O-。
Further, m is an integer greater than 1. Further, m is an integer between 10 and 50.
Further, n is an integer between 0 and 2, for example 0, 1 or 2.
Further, R1Is selected from C1-6Alkyl or fluoro substituted C1-6Alkyl groups of (a); preferably, R1Is selected from C1-3Alkyl or fluoro substituted C1-3Alkyl groups of (a); for example methyl, ethyl, propyl, fluoro-substituted methyl, fluoro-substituted ethyl, fluoro-substituted propyl, wherein the number of fluoro substitutions is 1,2 or more than 3.
Further, the siloxane-based polymer contains one of the structures shown in formulas 1-1, 1-2, 1-3, 1-4 or 1-5:
wherein m is as defined above.
Further, the siloxane-based polymer is used in an amount of 0.1 to 10 wt%, preferably 0.2 to 5.0 wt%, and more preferably 0.2 to 2.0 wt%, for example, 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.8 wt%, 0.9 wt%, 1 wt%, 1.2 wt%, 1.3 wt%, 1.4 wt%, 1.5 wt%, 1.6 wt%, 1.7 wt%, 1.8 wt%, 1.9 wt%, 2.0 wt%, 3.0 wt%, 4.0 wt%, 5.0 wt%, 6.0 wt%, 7.0 wt%, 8.0 wt%, 9.0 wt%, 10 wt% based on the total mass of the electrolyte.
Further, the propenyl-1, 3-sultone is used in an amount of 0.1 to 2 wt% based on the total mass of the electrolyte, for example, 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.8 wt%, 0.9 wt%, 1 wt%, 1.2 wt%, 1.3 wt%, 1.4 wt%, 1.5 wt%, 1.6 wt%, 1.7 wt%, 1.8 wt%, 1.9 wt%, 2 wt%.
Further, the ethoxy (pentafluoro) cyclotriphosphazene is used in an amount of 0.1 to 2 wt% based on the total mass of the electrolyte, for example, 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.8 wt%, 0.9 wt%, 1 wt%, 1.2 wt%, 1.3 wt%, 1.4 wt%, 1.5 wt%, 1.6 wt%, 1.7 wt%, 1.8 wt%, 1.9 wt%, 2 wt%.
Further, the ethylene sulfate is used in an amount of 0.1 to 2 wt% based on the total mass of the electrolyte, for example, 0.1 wt%, 0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%, 0.8 wt%, 0.9 wt%, 1 wt%, 1.2 wt%, 1.3 wt%, 1.4 wt%, 1.5 wt%, 1.6 wt%, 1.7 wt%, 1.8 wt%, 1.9 wt%, 2 wt%.
Further, the additive further comprises at least one of succinonitrile, adiponitrile, 1,3, 6-hexanetrinitrile, 1, 2-bis (cyanoethoxy) ethane, fluoroethylene carbonate and 1, 3-propane sultone, and is used in an amount of 0 to 10 wt%, for example, 0 to 8 wt%, based on the total mass of the electrolyte.
Further, the organic solvent is selected from at least one of carbonate, carboxylic ester and fluoroether, wherein the carbonate is selected from one or more of ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and methyl propyl carbonate; the carboxylic ester is selected from one or more of ethyl propionate and propyl propionate; the fluoroether is selected from 1,1,2, 3-tetrafluoroethyl-2, 2,3, 3-tetrafluoropropyl ether.
Further, the lithium salt is selected from one or more of lithium hexafluorophosphate, lithium bis (fluorosulfonyl) imide or lithium bis (trifluoromethylsulfonyl) imide.
Further, the lithium salt is used in an amount of 10 to 20 wt%, for example, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%, 15 wt%, 16 wt%, 17 wt%, 18 wt%, 19 wt%, 20 wt% based on the total mass of the electrolyte.
The invention also provides a preparation method of the electrolyte, which comprises the following steps:
mixing an organic solvent, an additive and a lithium salt, wherein the additive comprises siloxane polymer containing a structure shown in formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate.
Illustratively, the method comprises the steps of:
preparing an organic solvent in a glove box filled with argon and qualified in water oxygen content, and then quickly adding fully dried lithium salt, siloxane polymer containing a structure shown in a formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate into the organic solvent to prepare the electrolyte.
The invention also provides a lithium ion battery which comprises the electrolyte.
Further, the lithium ion battery is a silicon-carbon system lithium ion battery.
Furthermore, the lithium ion battery also comprises a positive plate, a negative plate and a diaphragm.
Further, the negative plate comprises a negative current collector and a negative active material layer coated on one side or two sides of the negative current collector, wherein the negative active material layer comprises a negative active material selected from nano silicon and/or SiOx(x is more than or equal to 0.8 and less than or equal to 1.3) and graphite.
Further, the nano silicon and/or SiOx1-55 wt% of the total mass of the silicon-carbon negative electrode material, such as 1 wt%, 2 wt%, 5 wt%, 8 wt%, 10 wt%, 12 wt%, 15 wt%, 18 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt%, 50 wt%, 55 wt%.
Further, the anode active material layer further includes a binder, a conductive agent, and a dispersant.
Further, the mass percentage of each component in the anode active material layer is as follows: 70-99.7 wt% of negative electrode active material, 0.1-10 wt% of binder, 0.1-10 wt% of dispersant and 0.1-10 wt% of conductive agent.
Preferably, the negative electrode active material layer comprises the following components in percentage by mass: 76-98.5 wt% of negative electrode active material, 0.5-8 wt% of binder, 0.5-8 wt% of dispersant and 0.5-8 wt% of conductive agent.
Still preferably, the negative electrode active material layer contains the following components in percentage by mass: 85-98.5 wt% of negative electrode active material, 0.5-5 wt% of binder, 0.5-5 wt% of dispersant and 0.5-5 wt% of conductive agent.
Further, the binder is at least one selected from among high polymer polymers such as polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyethyleneimine (PEI), Polyaniline (PAN), polyacrylic acid (PAA), sodium alginate, Styrene Butadiene Rubber (SBR), sodium carboxymethylcellulose (CMC), phenol resin, epoxy resin, and the like.
Further, the dispersant is selected from at least one of Polypropylene (PVA), cetylammonium bromide, sodium dodecylbenzenesulfonate, a silane coupling agent, ethanol, N-methylpyrrolidone (NMP), N-Dimethylformamide (DMF), etc., and more preferably at least one of cetylammonium bromide, sodium dodecylbenzenesulfonate, a silane coupling agent, and ethanol.
Further, the conductive agent is selected from at least one of Carbon Nanotubes (CNTs), carbon fibers (VGCF), conductive graphite (KS-6, SFG-6), mesocarbon microbeads (MCMB), graphene, Ketjen black, Super P, acetylene black, conductive carbon black or hard carbon.
Further, the positive plate comprises a positive current collector and a positive active material layer coated on one side or two sides of the positive current collector, wherein the positive active material layer comprises a positive active material selected from LiCoO2、LiNiO2、LiMn2O4、LiFePO4、LixNiyM1-yO2Wherein x is more than or equal to 0.9 and less than or equal to 1.2, and y is more than or equal to 0.5 and less than or equal to 1<1, M is selected from one or more of Co, Mn, Al, Mg, Ti, Zr, Fe, Cr, Mo, Cu and Ca.
Further, the positive electrode active material layer further includes a binder and a conductive agent.
Further, the mass percentage of each component in the positive active material layer is as follows: 80-99.8 wt% of positive active material, 0.1-10 wt% of binder and 0.1-10 wt% of conductive agent.
Preferably, the positive electrode active material layer comprises the following components in percentage by mass: 84-99 wt% of positive electrode active material, 0.5-8 wt% of binder and 0.5-8 wt% of conductive agent.
Still preferably, the mass percentage of each component in the positive electrode active material layer is: 90-99 wt% of positive electrode active substance, 0.5-5 wt% of binder and 0.5-5 wt% of conductive agent.
Further, the binder is at least one selected from among high polymer polymers such as polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyethyleneimine (PEI), Polyaniline (PAN), polyacrylic acid (PAA), sodium alginate, Styrene Butadiene Rubber (SBR), sodium carboxymethylcellulose (CMC), phenol resin, epoxy resin, and the like.
Further, the conductive agent is selected from at least one of Carbon Nanotubes (CNTs), carbon fibers (VGCF), conductive graphite (KS-6, SFG-6), mesocarbon microbeads (MCMB), graphene, Ketjen black, Super P, acetylene black, conductive carbon black or hard carbon.
Further, the separator is a separator known in the art, such as a polyethylene separator, a polypropylene separator, and the like.
The invention also provides a preparation method of the lithium ion battery, which comprises the following steps:
(1) preparing a positive plate and a negative plate, wherein the positive plate contains a positive active substance, and the negative plate contains a negative active substance;
(2) mixing an organic solvent, an additive and a lithium salt to prepare an electrolyte;
(3) winding the positive plate, the diaphragm and the negative plate to obtain a naked battery cell without liquid injection; and (3) placing the bare cell in an outer packaging foil, injecting the electrolyte in the step (2) into the dried bare cell, and preparing to obtain the lithium ion battery.
Exemplarily, the method specifically comprises the following steps:
(1) preparation of positive plate
LiCoO as positive electrode active material2Mixing polyvinylidene fluoride (PVDF) serving as a binder and acetylene black serving as a conductive agent according to a weight ratio of 96.5:2:1.5, adding N-methylpyrrolidone (NMP), and stirring under the action of a vacuum stirrer until a mixed system becomes uniform and flowable anode slurry; uniformly coating the positive electrode slurry on an aluminum foil with the thickness of 9-12 mu m; baking the coated aluminum foil in 5 sections of baking ovens with different temperature gradients, drying the aluminum foil in a baking oven at 120 ℃ for 8 hours, and rolling and cutting to obtain the required positive plate.
(2) Preparation of silicon-carbon negative plate
Preparing a silicon-carbon negative electrode material (formed by compounding SiO and graphite, wherein the SiO accounts for 5 percent by mass) with the mass ratio of 95.9 percent, a single-walled carbon nanotube (SWCNT) conductive agent with the mass ratio of 0.1 percent, a conductive carbon black (SP) conductive agent with the mass ratio of 1 percent, a sodium carboxymethylcellulose (CMC) dispersing agent with the mass ratio of 1 percent and a Styrene Butadiene Rubber (SBR) binder with the mass ratio of 2 percent into negative electrode slurry by a wet process; uniformly coating the negative electrode slurry on a copper foil with the thickness of 9-12 mu m; and baking the coated copper foil in 5 sections of baking ovens with different temperature gradients, drying the copper foil in an oven at 85 ℃ for 5 hours, and rolling and cutting to obtain the required silicon-carbon negative plate.
(3) Preparation of electrolyte
Uniformly mixing ethylene carbonate, propylene carbonate, propyl propionate and ethyl propionate according to the mass ratio of 2:1:5:2 in a glove box filled with argon and qualified in water oxygen content (the solvent needs to be normalized), and then rapidly adding 1mol/L (12.5 wt%) of fully dried lithium hexafluorophosphate (LiPF)6) And 6% by mass of fluoroethylene carbonate and other additives (including siloxane polymer containing a structure shown in formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate) to obtain the electrolyte.
(4) Preparation of the separator
Selecting a polyethylene diaphragm with the thickness of 7-9 mu m.
(5) Preparation of lithium ion battery
Winding the prepared positive plate, the diaphragm and the prepared negative plate to obtain a naked battery cell without liquid injection; placing the bare cell in an outer packaging foil, injecting the prepared electrolyte into the dried bare cell, and performing vacuum packaging, standing, formation, shaping, sorting and other processes to obtain the required lithium ion battery.
The invention has the beneficial effects that:
the electrolyte combination provided by the invention can obviously improve the cycle life and the safety performance of the battery, the propenyl-1, 3-sultone in the additive and the cyclic ester group in the siloxane polymer with the structure shown in the formula 1 are subjected to synergistic ring opening in the charging and discharging processes of the battery to generate a thin-layer polycylic ester on the surface of the positive electrode, so that a firmer CEI positive electrode protective film is formed, and the high-temperature storage and high-temperature cycle performance of the battery are effectively improved; meanwhile, Si-O bonds in the siloxane polymer with the structure shown in the formula 1 are crosslinked to generate a Si-O-Si crosslinked structure with higher rigidity, so that the toughness of an SEI (solid electrolyte interphase) film on the surface of the negative electrode can be enhanced, the cyclic expansion of the silicon-carbon negative electrode material can be obviously inhibited, and the cycle life can be prolonged; the ethylene sulfate is subjected to a reductive decomposition reaction at the interface of the silicon-carbon negative electrode material to generate a layer of passivation film, the reductive decomposition of an organic solvent in the electrolyte is inhibited, the impedance of the formed passivation film is low, the chemical and dynamic properties of the negative electrode interface are remarkably improved, the rapid intercalation and deintercalation effects of lithium ions are greatly improved, the internal resistance of the battery is effectively reduced, and the low-temperature performance is improved; the ethoxy (pentafluoro) cyclotriphosphazene is gasified and decomposed when the battery is heated at high temperature, and releases flame-retardant free radical phosphorus free radical (P), so that hydrogen free radical (H) in an electrolyte system can be effectively captured, chain reaction of combustion or explosion of hydrocarbon is prevented, and the safety performance of the battery cell is effectively improved.
Detailed Description
The present invention will be described in further detail with reference to specific examples. It is to be understood that the following examples are only illustrative and explanatory of the present invention and should not be construed as limiting the scope of the present invention. All the technologies realized based on the above-mentioned contents of the present invention are covered in the protection scope of the present invention.
The experimental methods used in the following examples are all conventional methods unless otherwise specified; reagents, materials and the like used in the following examples are commercially available unless otherwise specified.
The polymer A, B, C, D, E used in the following examples is shown below, where the end capping group is methyl:
Comparative examples 1 to 4 and examples 1 to 8
The lithium ion batteries of comparative examples 1 to 4 and examples 1 to 8 were each prepared according to the following preparation method, differing only in the selection and addition amount of each component in the electrolyte, and the specific differences are shown in table 1.
(1) Preparation of positive plate
LiCoO as positive electrode active material2Mixing polyvinylidene fluoride (PVDF) serving as a binder and acetylene black serving as a conductive agent according to a weight ratio of 96.5:2:1.5, adding N-methylpyrrolidone (NMP), and stirring under the action of a vacuum stirrer until a mixed system becomes uniform and flowable anode slurry; uniformly coating the positive electrode slurry on an aluminum foil with the thickness of 9-12 mu m; baking the coated aluminum foil in 5 sections of baking ovens with different temperature gradients, drying the aluminum foil in a baking oven at 120 ℃ for 8 hours, and rolling and cutting to obtain the required positive plate.
(2) Preparation of silicon-carbon negative plate
Preparing a silicon-carbon negative electrode material (formed by compounding SiO and graphite, wherein the SiO accounts for 5 percent by mass) with the mass ratio of 95.9 percent, a single-walled carbon nanotube (SWCNT) conductive agent with the mass ratio of 0.1 percent, a conductive carbon black (SP) conductive agent with the mass ratio of 1 percent, a sodium carboxymethylcellulose (CMC) dispersing agent with the mass ratio of 1 percent and a Styrene Butadiene Rubber (SBR) binder with the mass ratio of 2 percent into negative electrode slurry by a wet process; uniformly coating the negative electrode slurry on a copper foil with the thickness of 9-12 mu m; and baking the coated copper foil in 5 sections of baking ovens with different temperature gradients, drying the copper foil in an oven at 85 ℃ for 5 hours, and rolling and cutting to obtain the required silicon-carbon negative plate.
(3) Preparation of electrolyte
Uniformly mixing ethylene carbonate, propylene carbonate, propyl propionate and ethyl propionate according to the mass ratio of 2:1:5:2 in a glove box filled with argon and qualified in water oxygen content (the solvent needs to be normalized), and then rapidly adding 1mol/L (12.5 wt%) of fully dried lithium hexafluorophosphate (LiPF)6) And 6 wt% of fluoroethylene carbonate and other additives (comprising siloxane polymer containing a structure shown in formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate, wherein the specific dosage and selection are shown in table 1) to obtain the electrolyte.
(4) Preparation of the separator
Selecting a polyethylene diaphragm with the thickness of 7-9 mu m.
(5) Preparation of lithium ion battery
Winding the prepared positive plate, the diaphragm and the prepared negative plate to obtain a naked battery cell without liquid injection; placing the bare cell in an outer packaging foil, injecting the prepared electrolyte into the dried bare cell, and performing vacuum packaging, standing, formation, shaping, sorting and other processes to obtain the required lithium ion battery.
TABLE 1 compositions of lithium ion batteries prepared in comparative examples 1-4 and examples 1-8
The cells obtained in the above comparative examples and examples were subjected to electrochemical performance tests, as described below:
(1)45 ℃ cycling experiment: placing the batteries obtained in the above examples and comparative examples in an environment of (45 +/-2) DEG C, standing for 2-3 hours, when the battery body reaches (45 +/-2) DEG C, keeping the cut-off current of the battery at 0.05C according to 1C constant current charging, standing for 5min after the battery is fully charged, then discharging to the cut-off voltage of 3.0V at 0.7C constant current, and recording the 3 times of previous cyclesThe highest discharge capacity of the ring is the initial capacity Q, the initial thickness T of the battery cell is recorded, and when the circulation reaches the required times, the last discharge capacity Q of the battery is recorded1And battery thickness T1The results are reported in Table 2.
The calculation formula used therein is as follows:
capacity retention (%) ═ Q1(ii)/Q × 100%; thickness change rate (%) - (T)1-T)/T×100%
(2) High temperature storage at 60 ℃ for 30 days experiment: the cells obtained in the above examples and comparative examples were subjected to a charge-discharge cycle test at room temperature for 3 times at a charge-discharge rate of 0.5C, and then charged to a full charge state at a rate of 0.5C, and the maximum discharge capacity Q of the previous 3 times of 0.5C cycles was recorded2And battery thickness T2. The fully charged battery was stored at 60 ℃ for 30 days, and the battery thickness T after 30 days was recorded3And 0.5C discharge capacity Q3And calculating to obtain experimental data such as the thickness change rate, the capacity retention rate and the like of the battery stored at high temperature, and recording the results as shown in table 1.
The calculation formula used therein is as follows:
capacity retention (%) ═ Q3/Q2X is 100%; thickness change rate (%) (T)3-T2)/T2×100%
(3) Thermal shock test at 130 ℃: the cells obtained in the above examples and comparative examples were heated at an initial temperature of 25. + -. 3 ℃ by convection or a circulating hot air oven at a temperature change rate of 5. + -. 2 ℃/min to 130. + -. 2 ℃ for 60min, and the test was terminated, and the results of the cell conditions were recorded as shown in Table 2.
(4) Low-temperature discharge experiment: discharging the batteries obtained in the above examples and comparative examples to 3.0V at ambient temperature of 25 + -3 deg.C at 0.2C, and standing for 5 min; charging at 0.7C, changing to constant voltage charging when the voltage at the cell terminal reaches the charging limit voltage, stopping charging until the charging current is less than or equal to the cut-off current, standing for 5 minutes, discharging to 3.0V at 0.2C, and recording the discharge capacity as the normal temperature capacity Q4. Then the cell is charged at 0.7C, when the cell terminal voltage reaches the charge limit voltage, the constant voltage charge is changed until the charge current is less than or equal to the cut-off current,stopping charging; standing the fully charged battery at-10 +/-2 ℃ for 4h, discharging to cut-off voltage of 3.0V at 0.2C, and recording discharge capacity Q5The low-temperature discharge capacity retention rate was calculated and reported in table 2.
The calculation formula used therein is as follows: low-temperature discharge capacity retention (%) ═ Q5/Q4×100%。
TABLE 2 results of experimental tests of comparative examples 1-4 and examples 1-8
As can be seen from the results of table 2:
as can be seen from comparative examples 1,2 and 3, the additive propenyl-1, 3-sultone and the siloxane polymer act synergistically to effectively improve the high-temperature storage and high-temperature cycle performance of the battery; comparing comparative examples 3 and 4, it can be seen that the ethylene sulfate effectively reduces the internal resistance of the battery and improves the low-temperature performance; further, by comparing each example with comparative example 4, it can be found that ethoxy (pentafluoro) cyclotriphosphazene is effective in improving cell safety performance.
In summary, the electrolyte for the silicon-carbon system lithium ion battery provided by the invention contains the additive combination of siloxane polymer, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate, and the silicon-carbon system lithium ion battery has excellent high-temperature cycle, high-temperature storage and low-temperature discharge performance and high safety through the synergistic effect of the additives.
The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. Any modification, equivalent replacement, or improvement made without departing from the spirit and principle of the present invention shall fall within the protection scope of the present invention.
Claims (15)
1. An electrolyte, wherein the electrolyte comprises an organic solvent, an additive and a lithium salt, wherein the additive comprises siloxane polymer containing a structure shown in formula 1, propenyl-1, 3-sultone, ethoxy (pentafluoro) cyclotriphosphazene and ethylene sulfate;
in formula 1, m is the degree of polymerization; m is an integer greater than 1; n is an integer of 0 or more; r1Selected from alkyl or substituted alkyl; r is2Is selected from-CH2-S(=O)2-O-、-O-S(=O)-O-、-O-S(=O)2-O-。
2. The electrolyte of claim 1, wherein m is an integer between 10 and 50; and/or n is an integer between 0 and 2.
3. The electrolyte of claim 1, wherein R1Is selected from C1-6Alkyl or fluoro substituted C1-6Alkyl group of (1).
4. The electrolyte of claim 3, wherein R1Is selected from C1-3Alkyl or fluoro substituted C1-3Alkyl group of (1).
5. The electrolyte of claim 4, wherein R1Selected from methyl, ethyl, propyl, fluoro-substituted methyl, fluoro-substituted ethyl, fluoro-substituted propyl, wherein the number of fluoro substitutions is 1,2 or more than 3.
7. The electrolyte of any of claims 1-6, wherein the siloxane-based polymer is used in an amount of 0.1-10 wt% of the total electrolyte mass.
8. The electrolyte of claim 7, wherein the siloxane-based polymer is used in an amount of 0.2-5.0 wt% based on the total mass of the electrolyte.
9. The electrolyte of claim 8, wherein the siloxane-based polymer is used in an amount of 0.2-2.0 wt% based on the total mass of the electrolyte.
10. The electrolyte of any one of claims 1 to 6, wherein the propenyl-1, 3-sultone is used in an amount of 0.1 to 2 wt% based on the total mass of the electrolyte; and/or the presence of a gas in the gas,
the usage amount of the ethoxy (pentafluoro) cyclotriphosphazene accounts for 0.1-2 wt% of the total mass of the electrolyte; and/or the presence of a gas in the gas,
the usage amount of the ethylene sulfate accounts for 0.1-2 wt% of the total mass of the electrolyte.
11. The electrolyte of any of claims 1-6, wherein the additive further comprises at least one of succinonitrile, adiponitrile, 1,3, 6-hexanetricarbonitrile, 1, 2-bis (cyanoethoxy) ethane, fluoroethylene carbonate, and 1, 3-propane sultone, used in an amount of 0-10 wt% based on the total mass of the electrolyte.
12. The electrolyte of any one of claims 1-6, wherein the organic solvent is selected from at least one of carbonate, carboxylic ester, and fluoroether, wherein the carbonate is selected from one or more of ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and methyl propyl carbonate; the carboxylic ester is selected from one or more of ethyl propionate and propyl propionate; the fluoroether is selected from 1,1,2, 3-tetrafluoroethyl-2, 2,3, 3-tetrafluoropropyl ether.
13. The electrolyte of any of claims 1-6, wherein the lithium salt is selected from one or more of lithium hexafluorophosphate, lithium bis-fluorosulfonylimide, or lithium bis (trifluoromethylsulfonyl) imide; and/or the presence of a gas in the gas,
the usage amount of the lithium salt accounts for 10-20 wt% of the total mass of the electrolyte.
14. A lithium-ion battery comprising the electrolyte of any of claims 1-13.
15. The lithium ion battery of claim 14, wherein the lithium ion battery is a silicon carbon system lithium ion battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034816.8A CN112018446B (en) | 2020-09-27 | 2020-09-27 | Electrolyte suitable for silicon-carbon system lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034816.8A CN112018446B (en) | 2020-09-27 | 2020-09-27 | Electrolyte suitable for silicon-carbon system lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112018446A CN112018446A (en) | 2020-12-01 |
CN112018446B true CN112018446B (en) | 2022-07-01 |
Family
ID=73528375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011034816.8A Active CN112018446B (en) | 2020-09-27 | 2020-09-27 | Electrolyte suitable for silicon-carbon system lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112018446B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115911545A (en) * | 2021-08-20 | 2023-04-04 | 深圳新宙邦科技股份有限公司 | Non-aqueous electrolyte and battery |
CN114243109B (en) * | 2021-12-10 | 2023-10-13 | 珠海冠宇电池股份有限公司 | Electrolyte and battery comprising same |
WO2025063703A1 (en) * | 2023-09-22 | 2025-03-27 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte and lithium secondary battery comprising same |
CN117497861B (en) * | 2023-12-28 | 2024-03-12 | 江苏天鹏电源有限公司 | Lithium ion battery electrolyte and lithium ion battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008198542A (en) * | 2007-02-15 | 2008-08-28 | Sony Corp | Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it |
CN106129473A (en) * | 2016-09-18 | 2016-11-16 | 珠海市赛纬电子材料股份有限公司 | A kind of nonaqueous electrolytic solution of silicon-based anode lithium ion battery |
CN107722048A (en) * | 2017-09-26 | 2018-02-23 | 常熟市常吉化工有限公司 | Ring-type sulfonic acid silicon substrate lactone and preparation method thereof |
CN111640983A (en) * | 2020-05-18 | 2020-09-08 | 珠海冠宇电池股份有限公司 | Electrolyte for silicon-carbon system lithium ion battery and silicon-carbon system lithium ion battery |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050106470A1 (en) * | 2003-01-22 | 2005-05-19 | Yoon Sang Y. | Battery having electrolyte including one or more additives |
JP4650627B2 (en) * | 2005-09-14 | 2011-03-16 | 信越化学工業株式会社 | Cyclic carbonate-modified siloxane, method for producing the same, non-aqueous electrolyte, secondary battery, and capacitor |
US9391345B2 (en) * | 2010-09-30 | 2016-07-12 | Uchicago Argonne, Llc | Non-aqueous electrolytes for electrochemical cells |
JP6047458B2 (en) * | 2013-07-29 | 2016-12-21 | 富士フイルム株式会社 | Non-aqueous secondary battery |
CN103413970B (en) * | 2013-08-06 | 2016-06-22 | 朝阳光达化工有限公司 | Low-temperature type carbonic ester lithium battery electrolyte |
CN104448324B (en) * | 2014-12-16 | 2017-01-18 | 中国人民解放军国防科学技术大学 | Grafted polysilane compound, preparation method and application of grafted polysilane compound in battery electrolyte |
CN104600362A (en) * | 2015-02-05 | 2015-05-06 | 深圳市三讯电子有限公司 | Power battery and lithium ion electrolyte thereof |
JP6260735B1 (en) * | 2016-07-06 | 2018-01-17 | セントラル硝子株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
CN111640982B (en) * | 2020-05-18 | 2021-10-26 | 珠海冠宇电池股份有限公司 | Electrolyte for lithium ion battery and lithium ion battery comprising same |
-
2020
- 2020-09-27 CN CN202011034816.8A patent/CN112018446B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008198542A (en) * | 2007-02-15 | 2008-08-28 | Sony Corp | Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it |
CN106129473A (en) * | 2016-09-18 | 2016-11-16 | 珠海市赛纬电子材料股份有限公司 | A kind of nonaqueous electrolytic solution of silicon-based anode lithium ion battery |
CN107722048A (en) * | 2017-09-26 | 2018-02-23 | 常熟市常吉化工有限公司 | Ring-type sulfonic acid silicon substrate lactone and preparation method thereof |
CN111640983A (en) * | 2020-05-18 | 2020-09-08 | 珠海冠宇电池股份有限公司 | Electrolyte for silicon-carbon system lithium ion battery and silicon-carbon system lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
CN112018446A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112467220B (en) | Electrolyte suitable for silicon-carbon system lithium ion battery | |
CN112018446B (en) | Electrolyte suitable for silicon-carbon system lithium ion battery | |
CN111640981B (en) | Electrolyte for silicon-carbon system lithium ion battery and silicon-carbon system lithium ion battery | |
CN112072180A (en) | Electrolyte and lithium ion battery comprising same | |
CN111640982B (en) | Electrolyte for lithium ion battery and lithium ion battery comprising same | |
CN113410510A (en) | Lithium ion battery | |
CN111640983B (en) | Electrolyte for silicon-carbon system lithium ion battery and silicon-carbon system lithium ion battery | |
CN111640985A (en) | Non-aqueous electrolyte and high-voltage lithium ion battery containing same | |
CN113809401B (en) | Nonaqueous electrolyte for lithium ion battery and application thereof | |
CN111640987B (en) | High-power electrolyte and lithium ion battery containing same | |
CN114024035B (en) | Battery with a battery cell | |
CN118099529B (en) | Electrolyte additive, electrolyte and battery | |
JP2016504739A (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery including the same | |
CN113193233A (en) | Lithium ion battery | |
CN112151865B (en) | Electrolyte for lithium ion battery and lithium ion battery comprising same | |
CN111710911A (en) | An electrolyte and lithium ion battery | |
CN116565322A (en) | Electrolyte and battery comprising same | |
CN111640977B (en) | High-power electrolyte and lithium ion battery containing same | |
CN112151868A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
CN118016974A (en) | Electrolyte, lithium ion battery and electricity utilization device | |
CN112117493B (en) | Electrolyte for lithium ion battery and lithium ion battery comprising same | |
CN109390566B (en) | Electrode active material, electrode sheet and electrochemical energy storage device | |
CN112234253A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
CN112582672A (en) | Ternary lithium ion battery non-aqueous electrolyte and ternary lithium ion battery containing same | |
CN118800970B (en) | Battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |