[go: up one dir, main page]

CN111998885A - A kind of parameter calibration system for measurement - Google Patents

A kind of parameter calibration system for measurement Download PDF

Info

Publication number
CN111998885A
CN111998885A CN202010862700.7A CN202010862700A CN111998885A CN 111998885 A CN111998885 A CN 111998885A CN 202010862700 A CN202010862700 A CN 202010862700A CN 111998885 A CN111998885 A CN 111998885A
Authority
CN
China
Prior art keywords
neural network
longitudinal sliding
platform
measurement
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010862700.7A
Other languages
Chinese (zh)
Inventor
马从国
翁润庭
杨中员
曹天一
周恒瑞
王建国
丁晓红
王苏琪
张海江
陈亚娟
刘伟
李亚洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202010862700.7A priority Critical patent/CN111998885A/en
Publication of CN111998885A publication Critical patent/CN111998885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/002Automatic recalibration
    • G01D18/006Intermittent recalibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明涉及测量技术领域,公开了一种测量用的参数校准系统,包括参考物架置台、传感器架置板与基层平台,参考物架置台、传感器架置板设置于基层平台上,基层平台上还设置有第一纵向滑移组件、横向滑移组件;传感器架置板设置于横向滑移组件上,传感器架置板上设置测量传感器,其随横向滑移组件横向滑动且横向滑移组件随第一纵向滑移组件纵向滑动。传感器架置板上还设置MSP430单片机检测单元,其上设置校准算法,对测量传感器的测量值进行校准。与现有技术相比,本发明通过第一纵向滑移组件、横向滑移组件实现测量传感器的横向移动与纵向移动,通过监测单元对测量传感器的测量值进行校准,能准确的校准测量传感器的测量值。

Figure 202010862700

The invention relates to the technical field of measurement, and discloses a parameter calibration system for measurement, which comprises a reference object mounting platform, a sensor mounting plate and a base platform. A first longitudinal sliding component and a transverse sliding component are also provided; the sensor mounting plate is arranged on the transverse sliding component, and the measuring sensor is arranged on the sensor mounting plate, which slides laterally with the transverse sliding component and the transverse sliding component follows. The first longitudinal sliding component slides longitudinally. A MSP430 single-chip detection unit is also set on the sensor mounting board, and a calibration algorithm is set on it to calibrate the measurement value of the measurement sensor. Compared with the prior art, the present invention realizes the lateral movement and longitudinal movement of the measuring sensor through the first longitudinal sliding component and the lateral sliding component, and calibrates the measured value of the measuring sensor through the monitoring unit, which can accurately calibrate the measuring sensor. Measurements.

Figure 202010862700

Description

一种测量用的参数校准系统A kind of parameter calibration system for measurement

技术领域technical field

本发明涉及测量技术领域,具体涉及一种测量用的参数校准系统。The invention relates to the technical field of measurement, in particular to a parameter calibration system for measurement.

背景技术Background technique

传感器作为获取自然界信息的源头,是进行工业生产,科学研究等领域不可或缺的重要元件。现有技术中有多种测量传感器,如温湿度传感器、红外传感器、光电传感器等等。As the source of obtaining natural information, sensor is an indispensable and important element in industrial production, scientific research and other fields. There are many kinds of measurement sensors in the prior art, such as temperature and humidity sensors, infrared sensors, photoelectric sensors and so on.

而针对现有的多种多样的测量传感器,其测量过程中,环境因素对测量有很大的影响,如环境压强、环境温度等都对测量传感器的测量值有一定的影响,而如何能准确测量出参考物的实际参数值,在使用测量传感器测量时,如何对测量传感器测量的值进行校准测量,使得测出来的参数值为参考物准确的参数值,传统的测量传感器测量没有根据参考物参数变化的非线性、大滞后和测量传感器位移变化复杂等特点,无法对测量传感器测量值进行监测与预测。For the various existing measurement sensors, in the measurement process, environmental factors have a great influence on the measurement, such as environmental pressure, environmental temperature, etc., have a certain impact on the measurement value of the measurement sensor, and how to accurately The actual parameter value of the reference object is measured. When using the measurement sensor to measure, how to calibrate and measure the value measured by the measurement sensor, so that the measured parameter value is the accurate parameter value of the reference object. The traditional measurement sensor measurement is not based on the reference object. The non-linearity of parameter changes, large hysteresis and complex changes in the displacement of the measurement sensor make it impossible to monitor and predict the measurement value of the measurement sensor.

发明内容SUMMARY OF THE INVENTION

发明目的:针对现有技术中存在的问题,本发明提供一种测量用的参数校准系统,通过纵向滑移组件与横向滑移组件进行配合工作,既能快速调节测量传感器与参照物之间的纵向距离、横向距离,同时通过MSP430单片机监测单元对测量传感器的测量值进行校准,能准确的校准测量传感器的测量值。Purpose of the invention: In view of the problems existing in the prior art, the present invention provides a parameter calibration system for measurement, which can quickly adjust the difference between the measurement sensor and the reference object by cooperating with the longitudinal sliding component and the transverse sliding component. Longitudinal distance, horizontal distance, and at the same time, the measurement value of the measurement sensor is calibrated through the MSP430 single-chip monitoring unit, which can accurately calibrate the measurement value of the measurement sensor.

技术方案:本发明提供了一种测量用的参数校准系统,包括参考物架置台、传感器架置板与基层平台,所述参考物架置台、传感器架置板设置于所述基层平台上,所述基层平台上还设置有第一纵向滑移组件、横向滑移组件;所述传感器架置板设置于所述横向滑移组件上,所述传感器架置板随所述横向滑移组件横向滑动且所述横向滑移组件随所述第一纵向滑移组件纵向滑动;所述传感器架置板上还设置测量传感器和MSP430单片机监测单元,所述MSP430单片机监测单元包括时间序列DRNN神经网络预测模型、经验模态分解模型、多个Elman神经网络模型、多个NARX神经网络模型、小波神经网络融合模型和新陈代谢GM灰色预测器;所述测量传感器的输出作为时间序列DRNN神经网络预测模型的输入,时间序列DRNN神经网络预测模型的输出作为经验模态分解模型的输入,经验模态分解模型输出测量传感器的低频趋势部分和多个高频波动部分分别作为对应的多个Elman神经网络模型的输入,多个Elman神经网络模型的输出分别作为对应的多个NARX神经网络模型的输入,多个NARX神经网络模型的输出作为小波神经网络融合模型的输入,小波神经网络融合模型的输出作为新陈代谢GM灰色预测器的输入,新陈代谢GM灰色预测器的输出作为测量传感器的测量校准值。Technical solution: The present invention provides a parameter calibration system for measurement, including a reference object mounting platform, a sensor mounting plate and a base platform, wherein the reference object mounting platform and the sensor mounting plate are arranged on the base platform, so the The base platform is also provided with a first longitudinal sliding assembly and a lateral sliding assembly; the sensor mounting plate is arranged on the lateral sliding assembly, and the sensor mounting plate slides laterally with the lateral sliding assembly And the lateral sliding component slides longitudinally along with the first longitudinal sliding component; a measurement sensor and an MSP430 single-chip monitoring unit are also arranged on the sensor mounting board, and the MSP430 single-chip monitoring unit includes a time-series DRNN neural network prediction model , empirical mode decomposition model, multiple Elman neural network models, multiple NARX neural network models, wavelet neural network fusion model and metabolic GM gray predictor; the output of the measurement sensor is used as the input of the time series DRNN neural network prediction model, The output of the time series DRNN neural network prediction model is used as the input of the empirical mode decomposition model, and the output of the empirical mode decomposition model outputs the low-frequency trend part and multiple high-frequency fluctuation parts of the measurement sensor as the input of the corresponding multiple Elman neural network models, respectively. The outputs of the multiple Elman neural network models are used as the input of the corresponding multiple NARX neural network models, the outputs of the multiple NARX neural network models are used as the input of the wavelet neural network fusion model, and the output of the wavelet neural network fusion model is used as the metabolic GM gray prediction. The input of the metabolic GM gray predictor is used as the measurement calibration value of the measurement sensor.

进一步地,所述第一纵向滑移组件包括第一纵向滑移导轨与第一纵向滑移平台,所述第一纵向滑移导轨通过支架固定于所述基层平台上,其下表面沿其长度方向转动连接有第一丝杆,所述第一丝杆上螺纹连接有第一滑块,所述第一纵向滑移平台套设于所述第一纵向滑移导轨上且其与所述第一丝杆对应位置与所述第一滑块固定连接。Further, the first longitudinal sliding assembly includes a first longitudinal sliding guide rail and a first longitudinal sliding platform, the first longitudinal sliding guide rail is fixed on the base platform through a bracket, and its lower surface is along its length. A first screw rod is connected in the direction of rotation, a first sliding block is threadedly connected to the first screw rod, and the first longitudinal sliding platform is sleeved on the first longitudinal sliding guide rail and is connected with the first longitudinal sliding rail. A corresponding position of a rod is fixedly connected with the first sliding block.

进一步地,所述横向滑移组件包括垂直于所述第一纵向滑移导轨且转动连接于所述第一纵向滑移平台上表面的第二丝杆,所述第二丝杆上螺纹连接有第二滑块,所述第二滑块上固定有横向滑移平台,所述传感器架置板固定于横向滑移平台上。Further, the lateral sliding assembly includes a second screw rod that is perpendicular to the first longitudinal sliding guide rail and is rotatably connected to the upper surface of the first longitudinal sliding platform, and the second screw rod is threadedly connected with a second screw rod. A second sliding block, a lateral sliding platform is fixed on the second sliding block, and the sensor mounting plate is fixed on the lateral sliding platform.

进一步地,所述第一纵向滑移导轨的两侧边设置为向内凹陷的圆弧导轨,所述第一纵向滑移平台与所述圆弧导轨对应位置匹配设置。Further, the two sides of the first longitudinal sliding guide rail are set as inwardly recessed arc guide rails, and the first longitudinal sliding platform and the arc guide rail are matched at corresponding positions.

进一步地,所述第一纵向滑移平台上与所述圆弧导轨匹配位置还滚动设置有若干个导轨滚珠。Further, a plurality of guide rail balls are rolled and arranged on the first longitudinal sliding platform at the matching position of the arc guide rail.

进一步地,所述第一纵向滑移导轨的上表面沿所述第一纵向滑移平台滑移方向还设置有一对纵向直线导轨,所述第一纵向滑移平台与所述纵向直线导轨对应位置设置一对条形凸起,各所述条形凸起与各所述纵向直线导轨匹配设置。Further, the upper surface of the first longitudinal sliding guide rail is also provided with a pair of longitudinal linear guide rails along the sliding direction of the first longitudinal sliding platform, and the first longitudinal sliding platform and the longitudinal linear guide rails have corresponding positions. A pair of bar-shaped protrusions are provided, and each of the bar-shaped protrusions is matched with each of the longitudinal linear guide rails.

进一步地,所述横向滑移组件上还设置有第二纵向滑移组件,所述第二纵向滑移组件包括转动连接于所述横向滑移平台的垂直于所述第二丝杆的第三丝杆,所述第三丝杆上螺纹连接有第三滑块,所述第三丝杆的螺距小于所述第一丝杆的螺距,所述传感器架置板固定于所述横向滑移平台上。Further, the lateral sliding assembly is also provided with a second longitudinal sliding assembly, and the second longitudinal sliding assembly includes a third longitudinal sliding assembly that is rotatably connected to the lateral sliding platform and is perpendicular to the second screw rod. A lead screw, a third sliding block is threadedly connected to the third lead screw, the pitch of the third lead screw is smaller than that of the first lead screw, and the sensor mounting plate is fixed on the lateral sliding platform superior.

进一步地,所述第一纵向滑移组件、横向滑移组件以及第二纵向滑移组件上均设置有结构相同的驱动机构,所述驱动机构分别为第一步进电机、第二步进电机以及第三步进电机,所述第一丝杆、第二丝杆、第三丝杆的一端均设置有结构相同的主锥齿轮和从锥齿轮,3个所述步进电机输出轴均与其对应的主锥齿轮中心固定连接,所述主锥齿轮与其对应的所述从锥齿轮啮合,所述从锥齿轮套设固定于其对应的丝杆上。Further, the first longitudinal sliding assembly, the lateral sliding assembly and the second longitudinal sliding assembly are all provided with driving mechanisms with the same structure, and the driving mechanisms are the first stepping motor and the second stepping motor respectively. and a third stepper motor, one end of the first screw rod, the second screw rod and the third screw rod are all provided with a main bevel gear and a slave bevel gear with the same structure, and the output shafts of the three stepper motors are all connected with the same structure. The center of the corresponding main bevel gear is fixedly connected, the main bevel gear meshes with the corresponding secondary bevel gear, and the secondary bevel gear is sleeved and fixed on its corresponding screw rod.

进一步地,所述第一丝杆、第二丝杆和第三丝杆一端分别固定有旋转把手。Further, one end of the first screw rod, the second screw rod and the third screw rod is respectively fixed with a rotating handle.

进一步地,所述参考物架置台还包括固定于所述基层平台的垫高固定台、固定于所述垫高固定台上方的若干个竖直设置的电动推杆,所述电动推杆顶端设置有所述参考物架置台。Further, the reference object mounting platform also includes a pad height fixing platform fixed on the base platform, and a plurality of vertically arranged electric push rods fixed on the top of the pad height fixing platform, and the top of the electric push rod is set. There is the reference mount.

有益效果:Beneficial effects:

一、本发明使用时间序列DRNN神经网络预测模型是一种具有反馈的动态回归神经网络和适应时变特性的能力,该网络能够更直接生动地反映测量传感器测量值的动态变化性能,可以更加精确校准测量传感器测量值的实际值,时间序列DRNN神经网络模型为10-21-1的3层网络结构,其隐层为回归层,输出层为测量传感器的测量校准值。1. The time series DRNN neural network prediction model used in the present invention is a dynamic regression neural network with feedback and the ability to adapt to time-varying characteristics. The network can more directly and vividly reflect the dynamic changing performance of the measurement value of the measurement sensor, and can be more accurate. To calibrate the actual value of the measurement sensor, the time series DRNN neural network model is a 10-21-1 3-layer network structure, the hidden layer is the regression layer, and the output layer is the measurement calibration value of the measurement sensor.

二、本发明所采用NARX神经网络模型的输入包括了对应的Elman神经网络模型的一段时间的输出和NARX神经网络模型输出历史反馈,这部分反馈输入可以认为包含了一段时间的对应的Elman神经网络模型输出和对应的NARX神经网络模型输出的历史信息参与测量传感器测量输出值的校准。对于一个合适的反馈时间长度,NARX神经网络模型输出对传感器校准预测得到了很好的效果,本专利的经验模态分解(EMD)模型、Elman神经网络模型和NARX神经网络模型提供了一种有效的测量传感器测量值校准方法。2. The input of the NARX neural network model used in the present invention includes the output of the corresponding Elman neural network model for a period of time and the output history feedback of the NARX neural network model. This part of the feedback input can be considered to include the corresponding Elman neural network for a period of time. The historical information of the model output and the corresponding NARX neural network model output participates in the calibration of the measurement output value of the measurement sensor. For a suitable feedback time length, the NARX neural network model output has a good effect on the sensor calibration prediction. The empirical mode decomposition (EMD) model of this patent, the Elman neural network model and the NARX neural network model provide an effective The method for calibrating the measured value of the measuring sensor.

三、本发明所采用的NARX神经网络模型是一种能够有效对测量传感器测量值的非线性、非平稳时间序列进行动态校准预测的动态神经网络模型,能够在时间序列非平稳性降低的情况下提高对测量传感器时间序列测量值的校准预测精度。与传统的预测模型方法相比,此方法具有处理非平稳时间序列效果好,计算速度快,准确率高的优点。通过对非平稳的测量传感器测量值实验数据的实际对比,本专利验证了NARX神经网络模型对提高时间序列校准预测精确度和可靠性。同时,实验结果也证明了NARX神经网络模型在非平稳时间序列校准中比传统校准模型表现更加优异。3. The NARX neural network model used in the present invention is a dynamic neural network model that can effectively perform dynamic calibration and prediction on the nonlinear and non-stationary time series of the measured values of the measurement sensor. Improves the accuracy of calibration predictions for time series measurements of measurement sensors. Compared with the traditional forecasting model method, this method has the advantages of good effect in dealing with non-stationary time series, fast calculation speed and high accuracy. This patent verifies that the NARX neural network model can improve the accuracy and reliability of time series calibration prediction by comparing the actual data of the non-stationary measurement sensor measurement values. At the same time, the experimental results also prove that the NARX neural network model performs better than the traditional calibration model in the non-stationary time series calibration.

四、本发明通过NARX神经网络模型中引入延时模块及输出反馈建立型的动态递归网络,它将Elman神经网络模型的输出作为输入和NARX神经网络模型输出向量延时反馈引入网络训练中,形成新的输入向量,具有良好的非线性映射能力,NARX神经网络模型的输入不仅包括原始Elman神经网络模型输入数据,还包含经过训练后的NARX神经网络模型输出数据,NARX神经网络模型网络的泛化能力得到提高,使其在非线性测量传感器时间序列校准中较传统的静态神经网络控制具有更好的校准精度和自适应能力。4. The present invention adopts the dynamic recursive network established by introducing the delay module and output feedback into the NARX neural network model, and takes the output of the Elman neural network model as the input and the output vector delay feedback of the NARX neural network model into the network training, forming a The new input vector has good nonlinear mapping ability. The input of the NARX neural network model includes not only the input data of the original Elman neural network model, but also the output data of the trained NARX neural network model. The generalization of the NARX neural network model network The ability is improved, so that it has better calibration accuracy and adaptive ability than the traditional static neural network control in the time series calibration of nonlinear measurement sensors.

五、本发明采用新陈代谢GM(1,1)灰色预测器预测测量传感器测量值的时间跨度长。用新陈代谢GM(1,1)灰色预测器可以根据小波神经网络融合模型的历史参数值预测未来时刻测量传感器的测量值,用上述方法预测出的测量传感器测量值后,把它们再加入小波神经网络融合模型输出的原始数列中,相应地去掉数列开头的一个数据建模,再进行校准测量传感器的测量值。依此类推,校准出测量传感器的测量值。这种方法称为新陈代谢GM(1,1)灰色预测器,它可实现较长时间的校准预测。用户可以更加准确地掌握测量传感器的测量值的变化趋势,为准确测量测量值做好准备。5. The present invention uses the metabolic GM(1,1) gray predictor to predict the measurement value of the measurement sensor with a long time span. Using the metabolic GM(1,1) gray predictor, the measurement values of the measurement sensors in the future can be predicted according to the historical parameter values of the wavelet neural network fusion model. After the measurement values of the measurement sensors predicted by the above method, they are added to the wavelet neural network. In the original sequence output by the fusion model, correspondingly remove a data modeling at the beginning of the sequence, and then calibrate the measurement value of the measurement sensor. And so on, the measurement value of the measuring sensor is calibrated out. This method, called the metabolic GM(1,1) grey predictor, enables calibrated predictions over longer periods of time. Users can more accurately grasp the change trend of the measurement value of the measurement sensor and prepare for accurate measurement of the measurement value.

六、本发明设置纵向滑移组件与横向滑移组件配合使用,方便调节测量传感器与参考物之间的纵向以及横向距离,既可通过步进电机实现也可通过手摇旋转把手实现,可根据具体情况使用。Sixth, the present invention sets the longitudinal sliding component and the transverse sliding component to cooperate with each other, so as to facilitate the adjustment of the longitudinal and transverse distances between the measurement sensor and the reference object, which can be realized by either a stepping motor or a hand rotating handle. Use in specific situations.

七、本发明设置第一纵向滑移组件的第一纵向滑移导轨的两侧边设置为向内凹陷的圆弧导轨,第一纵向滑移平台与圆弧导轨对应位置匹配设置,这样当第一纵向滑移平台在第一纵向滑移导轨上滑动的时候不会出现晃动与倾斜的情况,第一纵向滑移平台被相对固定的滑动与第一纵向滑移导轨上,更加稳定。通过导轨滚珠进行减少摩擦力,减少滑动过程中的阻力。在第一纵向滑移导轨的上表面还设置有纵向直线导轨,进一步将第一纵向滑移平台相对限位在第一纵向滑移导轨上。7. In the present invention, the two sides of the first longitudinal sliding guide rail of the first longitudinal sliding assembly are set as inwardly recessed arc guide rails, and the first longitudinal sliding platform and the arc guide rail are matched at the corresponding positions, so that when the When a longitudinal sliding platform slides on the first longitudinal sliding guide rail, there will be no shaking and tilting, and the first longitudinal sliding platform is relatively fixed to slide on the first longitudinal sliding guide rail, which is more stable. The friction force is reduced by the guide balls and the resistance during the sliding process is reduced. A longitudinal linear guide rail is also arranged on the upper surface of the first longitudinal sliding guide rail, and the first longitudinal sliding platform is further limited relative to the first longitudinal sliding guide rail.

八、本发明在横向滑移组件上设置有第二纵向滑移组件,第二纵向滑移组件上丝杆的螺距比第一纵向滑移组件的丝杆螺距小,起到微调作用,调节更加精确,可以小范围的调节参考物前后的距离。8. The present invention is provided with a second longitudinal sliding assembly on the lateral sliding assembly, and the screw pitch of the lead screw on the second longitudinal sliding assembly is smaller than that of the first longitudinal sliding assembly, which plays a fine-tuning role and makes the adjustment more precise. Precise, can adjust the distance before and after the reference in a small range.

九、本发明的参考物架置台下设置电动推杆,方便调节参考物的高度,便于测量传感器的测量。9. An electric push rod is arranged under the reference object mounting platform of the present invention, which is convenient to adjust the height of the reference object and facilitate the measurement of the measurement sensor.

附图说明Description of drawings

图1为本发明整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;

图2为本发明MSP430单片机监测单元系统框图;Fig. 2 is the system block diagram of MSP430 single-chip microcomputer monitoring unit of the present invention;

图3为本发明测量传感器微调定位的整体结构示意图;3 is a schematic diagram of the overall structure of the fine-tuning positioning of the measurement sensor of the present invention;

图4为本发明第一纵向滑移平台与第一丝杆连接结构示意图;4 is a schematic diagram of the connection structure between the first longitudinal sliding platform and the first screw rod of the present invention;

图5为本发明第一纵向滑移平台结构示意图。FIG. 5 is a schematic structural diagram of the first longitudinal sliding platform of the present invention.

其中,1-基层平台,2-传感器架置板,3-参考物架置台,101-垫高固定台,102-电动推杆,201-第一纵向滑移导轨,202-第一纵向滑移平台,203-支架,204-第一丝杆,205-第一滑块,206-第二丝杆,207-第二滑块,208-横向滑移平台,209-圆弧导轨,210-导轨滚珠,211-纵向直线导轨,212-条形凸起,213-第三丝杆,214-第三滑块,215-第一步进电机,216-第二步进电机,217-第三步进电机,218-主锥齿轮,219-从锥齿轮,220-旋转把手,221-置脚槽。Among them, 1- base platform, 2- sensor mounting plate, 3- reference object mounting platform, 101- pad height fixed platform, 102- electric push rod, 201- first longitudinal sliding guide rail, 202- first longitudinal sliding Platform, 203-bracket, 204-first screw, 205-first slider, 206-second screw, 207-second slider, 208-transverse sliding platform, 209-arc guide, 210-guide Ball, 211-longitudinal linear guide, 212-stripe protrusion, 213-third screw, 214-third slider, 215-first stepper motor, 216-second stepper motor, 217-third step Incoming motor, 218-main bevel gear, 219-slave bevel gear, 220-rotating handle, 221-foot slot.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.

本发明公开了一种测量用的参数校准系统,该校准系统的结构主要包括参考物架置台3、传感器架置板2与基层平台1,参考物架置台3、传感器架置板2设置于基层平台1上,基层平台1上还设置有第一纵向滑移组件、横向滑移组件,传感器架置板2设置于横向滑移组件上,传感器架置板2随所述横向滑移组件横向滑动且横向滑移组件随第一纵向滑移组件纵向滑动。在传感器架置板2上设置有置脚槽221,方便通过三脚架等对测量传感器进行固定。The invention discloses a parameter calibration system for measurement. The structure of the calibration system mainly includes a reference object mounting platform 3, a sensor mounting plate 2 and a base layer platform 1. The reference object mounting platform 3 and the sensor mounting plate 2 are arranged on the base layer. On the platform 1, the base platform 1 is also provided with a first longitudinal sliding assembly and a lateral sliding assembly, the sensor mounting plate 2 is arranged on the lateral sliding assembly, and the sensor mounting plate 2 slides laterally with the lateral sliding assembly. And the lateral sliding component slides longitudinally along with the first longitudinal sliding component. A foot slot 221 is provided on the sensor mounting plate 2, which is convenient for fixing the measuring sensor by a tripod or the like.

参考物架置台3还包括固定于基层平台1的垫高固定台101、固定于垫高固定台101上方的若干个竖直设置的电动推杆102,电动推杆102顶端设置有参考物架置台3。The reference object mounting platform 3 also includes a pad height fixing platform 101 fixed on the base platform 1, and a plurality of vertically arranged electric push rods 102 fixed on the top of the pad height fixing platform 101. The top of the electric push rod 102 is provided with a reference object mounting platform 3.

该校准系统的校准部分主要包括MSP430单片机监测单元,MSP430单片机监测单元设置于传感器架置板2上,该MSP430单片机监测单元设置于传感器架置板2上随第一纵向滑移组件、横向滑移组件、第二纵向滑移组件进行纵向、横向距离微调。The calibration part of the calibration system mainly includes an MSP430 single-chip microcomputer monitoring unit. The MSP430 single-chip microcomputer monitoring unit is arranged on the sensor mounting plate 2. The MSP430 single-chip microcomputer monitoring unit is arranged on the sensor mounting plate 2 along with the first longitudinal sliding component and lateral sliding. The vertical and horizontal distances are fine-tuned by the assembly and the second longitudinal sliding assembly.

该MSP430单片机监测单元包括时间序列DRNN神经网络预测模型、经验模态分解(EMD)模型、多个Elman神经网络模型、多个NARX神经网络模型、小波神经网络融合模型和新陈代谢GM(1,1)灰色预测器,在MSP430单片机监测单元中设计参数校准系统,实现对测量传感器的测量值的校准与预测。参数校准系统框图参加附图2,设计过程如下:The MSP430 microcontroller monitoring unit includes a time series DRNN neural network prediction model, an empirical mode decomposition (EMD) model, multiple Elman neural network models, multiple NARX neural network models, a wavelet neural network fusion model and a metabolic GM (1,1) Grey predictor, a parameter calibration system is designed in the MSP430 single-chip monitoring unit to realize the calibration and prediction of the measurement value of the measurement sensor. The block diagram of the parameter calibration system is shown in Figure 2, and the design process is as follows:

1、时间序列DRNN神经网络预测模型设计1. Design of time series DRNN neural network prediction model

时间序列DRNN神经网络预测模型是一种具有反馈的动态回归神经网络和适应时变特性的能力,时间序列DRNN神经网络预测模型能够更直接生动地反映测量传感器测量值动态变化性能,可以更加精确预测测量传感器测量值大小,时间序列DRNN神经网络预测模型为10-21-1的3层网络结构,其隐层为回归层。在本发明时间序列DRNN神经网络预测模型中,测量传感器的输出的时间序列测量值为时间序列DRNN神经网络预测模型的输入,设I=[I1(t),I2(t),…,In(t)]为时间序列DRNN神经网络预测模型输入向量,其中Ii(t)为时间序列DRNN神经网络预测模型输入层第i个神经元t时刻的输入,回归层第j个神经元的输出为Xj(t),Sj(t)为第j个回归神经元输入总和,f(·)为S的函数,则O(t)是时间序列DRNN神经网络预测模型的输出。则时间序列DRNN神经网络预测模型的输出为:The time series DRNN neural network prediction model is a dynamic regression neural network with feedback and the ability to adapt to time-varying characteristics. The time series DRNN neural network prediction model can more directly and vividly reflect the dynamic change performance of the measurement sensor measurement value, and can predict more accurately The measurement value of the sensor is measured. The time series DRNN neural network prediction model is a 10-21-1 three-layer network structure, and its hidden layer is a regression layer. In the time series DRNN neural network prediction model of the present invention, the time series measurement value of the output of the measurement sensor is the input of the time series DRNN neural network prediction model, and I=[I 1 (t), I 2 (t),..., I n (t)] is the input vector of the time series DRNN neural network prediction model, where I i (t) is the input of the ith neuron in the input layer of the time series DRNN neural network prediction model at time t, and the jth neuron in the regression layer The output is X j (t), S j (t) is the sum of the input of the jth regression neuron, and f( ) is a function of S, then O(t) is the output of the time series DRNN neural network prediction model. Then the output of the time series DRNN neural network prediction model is:

Figure BDA0002648686130000051
Figure BDA0002648686130000051

2、经验模态分解(EMD)模型设计2. Empirical Mode Decomposition (EMD) Model Design

经验模态分解(EMD)模型是一种自适应信号筛选方法,具有计算简单、直观、基于经验和自适应的特点。它能将存在于时间序列DRNN神经网络预测模型输出的历史数据信息中不同特征的趋势逐级筛选出来,得到多个高频波动部分(IMF)和低频趋势部分。经验模态分解(EMD)模型分解出来的IMF分量包含了信息从高到低不同频率段的成分,每个频率段包含的频率分辨率都随信息本身变化,具有自适应多分辨分析特性。使用经验模态分解(EMD)模型的目的就是为了更准确地提取测量传感器的测量历史数据信息。经验模态分解方法针对时间序列DRNN神经网络预测模型输出历史数据的“筛分”过程步骤如下:Empirical Mode Decomposition (EMD) model is an adaptive signal screening method, which has the characteristics of simple calculation, intuitive, experience-based and adaptive. It can screen out the trends of different characteristics in the historical data information output by the time series DRNN neural network prediction model step by step, and obtain multiple high frequency fluctuation parts (IMF) and low frequency trend parts. The IMF components decomposed by the Empirical Mode Decomposition (EMD) model contain the components of different frequency segments from high to low information. The frequency resolution contained in each frequency segment varies with the information itself, and has the characteristics of adaptive multi-resolution analysis. The purpose of using the empirical mode decomposition (EMD) model is to extract the measurement history data information of the measurement sensor more accurately. The empirical mode decomposition method uses the following steps to "sieve" the historical data output from the time series DRNN neural network prediction model:

①确定时间序列DRNN神经网络预测模型输出历史数据信息所有的局部极值点,然后用三次样条线将左右的局部极大值点连接起来形成上包络线。① Determine all the local extremum points of the output historical data information of the time series DRNN neural network prediction model, and then connect the left and right local maxima points with a cubic spline to form an upper envelope.

②在用三次样条线时间序列DRNN神经网络预测模型输出历史数据信息的局部极小值点连接起来形成下包络线,上、下包络线应该包络所有的数据点。② The lower envelope is formed by connecting the local minimum points of the output historical data information of the cubic spline time series DRNN neural network prediction model, and the upper and lower envelopes should envelop all the data points.

③上、下包络线的平均值记为m1(t),求出:③ The average value of the upper and lower envelopes is recorded as m 1 (t), and the following is obtained:

x(t)-m1(t)=h1(t) (2)x(t)-m 1 (t)=h 1 (t) (2)

其中,x(t)为时间序列DRNN神经网络预测模型输出历史数据信息原始信号,如果h1(t)是一个IMF,那么h1(t)就是x(t)的第一个IMF分量。记c1(t)=h1k(t),则c1(t)为信号x(t)的第一个满足IMF条件的分量。Among them, x(t) is the original signal of historical data information output by the time series DRNN neural network prediction model. If h 1 (t) is an IMF, then h 1 (t) is the first IMF component of x(t). Denote c 1 (t)=h 1k (t), then c 1 (t) is the first component of the signal x(t) that satisfies the IMF condition.

④、将c1(t)从x(t)中分离出来,得到:④. Separate c 1 (t) from x(t) to get:

r1(t)=x(t)-c1(t) (3)r 1 (t)=x(t)-c 1 (t) (3)

其中,将r1(t)作为原始数据重复步骤①-步骤③,得到x(t)的第2个满足IMF条件的分量c2。重复循环n次,得到信号x(t)的n个满足IMF条件的分量。这样经验模态分解模型就把时间序列DRNN神经网络预测模型输出历史数据信息分解成低频趋势部分和多个高频波动部分。Wherein, repeating steps ① to ③ with r 1 (t) as the original data, to obtain the second component c 2 of x(t) that satisfies the IMF condition. Repeat the cycle n times to obtain n components of the signal x(t) that satisfy the IMF condition. In this way, the empirical mode decomposition model decomposes the output historical data information of the time series DRNN neural network prediction model into low-frequency trend parts and multiple high-frequency fluctuation parts.

3、Elman神经网络模型设计3. Elman neural network model design

Elman神经网络模型可以动态校准预测测量传感器的测量值,该模型是一个具有局部记忆单元和局部反馈连接的前向神经网络,关联层从隐层接收反馈信号,每一个隐层节点都有一个与之对应的关联层节点连接。关联层将上一时刻的隐层状态连同当前时刻的网络输入一起作为隐层的输入作为状态反馈。隐层的传递函数一般为Sigmoid函数,关联层和输出层为线性函数。设Elman神经网络模型的输入层、输出层和隐层的个数分别为m,n和r;w1,w2,w3和w4分别表示结构层单元到隐层、输入层到隐层、隐层到输出层、结构层到输出层的连接权矩阵,则网络的隐含层、关联层和输出层的输出值表达式分别为:The Elman neural network model can dynamically calibrate the measurement value of the predictive measurement sensor. The model is a forward neural network with local memory units and local feedback connections. The association layer receives feedback signals from the hidden layer. Each hidden layer node has a The corresponding association layer nodes are connected. The association layer uses the state of the hidden layer at the previous moment together with the network input at the current moment as the input of the hidden layer as the state feedback. The transfer function of the hidden layer is generally a sigmoid function, and the correlation layer and the output layer are linear functions. Let the number of input layer, output layer and hidden layer of Elman neural network model be m, n and r respectively; w 1 , w 2 , w 3 and w 4 represent the structure layer unit to the hidden layer, the input layer to the hidden layer, respectively , the connection weight matrix from the hidden layer to the output layer, and the structure layer to the output layer, the output value expressions of the hidden layer, the correlation layer and the output layer of the network are:

Figure BDA0002648686130000071
Figure BDA0002648686130000071

cp(k)=xp(k-1) (5)c p (k) = x p (k-1) (5)

Figure BDA0002648686130000072
Figure BDA0002648686130000072

Elman神经网络模型的输入数据为一段时间多个不同时刻经验模态分解(EMD)模型输出的低频趋势部分和多个高频波动部分的实际值数据,输出为低频趋势部分和多个高频波动部分的将来值,Elman神经网络模型的输入层、输出层和隐层的个数分别为10,1和21,Elman神经网络模型实现对低频趋势部分和多个高频波动部分的非线性预测。The input data of the Elman neural network model is the actual value data of the low-frequency trend part and multiple high-frequency fluctuation parts output by the empirical mode decomposition (EMD) model at multiple different times over a period of time, and the output is the low-frequency trend part and multiple high-frequency fluctuation parts. The number of input layer, output layer and hidden layer of Elman neural network model is 10, 1 and 21 respectively. Elman neural network model realizes nonlinear prediction of low frequency trend part and multiple high frequency fluctuation parts.

4、NARX神经网络模型设计4. NARX neural network model design

多个NARX神经网络模型的输入为对应的多个Elman神经网络模型的输出,多个NARX神经网络模型实现对应的多个Elman神经网络模型输出进行再一次预测,进一步提高测量传感器测量校准值的精确度。NARX神经网络模型(Nonlinear Auto-Regression withExternal input neural network)是一种动态的前馈神经网络,每个NARX神经网络模型是一个有着对应的Elman神经网络模型的输出作为输入的非线性自回归网络,它有一个多步时延的动态特性,并通过NARX神经网络模型反馈连接封闭网络的若干层,NARX神经网络模型是非线性动态系统中应用最广泛的一种动态神经网络,其性能普遍优于全回归神经网络。NARX神经网络模型主要由输入层、隐层、输出层及输入和输出延时构成,在应用前一般要事先确定输入和输出的延时阶数、隐层神经元个数,NARX神经网络模型的当时输出不仅取决于过去的输出y(t-n),还取决于当时的输入向量Elman神经网络模型的输出的延迟阶数。NARX神经网络模型包括输入层、输出层、隐层和时延层。其中Elman神经网络模型输出通过时延层传递给隐层,隐层对Elman神经网络模型输出的信号进行处理后传递到输出层,输出层将隐层输出信号做线性加权获得最终的NARX神经网络模型输出信号,时延层将网络反馈的信号和输入层输出的信号进行延时,然后输送到隐层。NARX神经网络模型具有非线性映射能力、良好的鲁棒性和自适应性等特点。x(t)表示NARX神经网络的外部输入,即Elman神经网络模型的输出的输出值;m表示外部输入的延迟阶数;y(t)是NARX神经网络模型的输出,即下一时段的NARX神经网络模型的输出控制量;n是输出延迟阶数;s为隐含层神经元的个数;由此可以得到第j个隐含单元的输出为:The input of multiple NARX neural network models is the output of the corresponding multiple Elman neural network models, and multiple NARX neural network models realize the output of the corresponding multiple Elman neural network models for re-prediction, further improving the accuracy of the measurement sensor calibration value. Spend. NARX neural network model (Nonlinear Auto-Regression with External input neural network) is a dynamic feedforward neural network. Each NARX neural network model is a nonlinear autoregressive network with the output of the corresponding Elman neural network model as input. It has a multi-step delay dynamic characteristic, and connects several layers of the closed network through the NARX neural network model. The NARX neural network model is the most widely used dynamic neural network in nonlinear dynamic systems, and its performance is generally better than that of full Recurrent Neural Network. The NARX neural network model is mainly composed of input layer, hidden layer, output layer and input and output delay. Before application, the delay order of input and output and the number of hidden layer neurons should be determined in advance. The output at that time depends not only on the past output y(t-n), but also on the delay order of the output of the Elman neural network model of the input vector at that time. The NARX neural network model includes input layer, output layer, hidden layer and delay layer. The output of the Elman neural network model is transmitted to the hidden layer through the delay layer. The hidden layer processes the signal output by the Elman neural network model and then transmits it to the output layer. The output layer performs linear weighting on the output signal of the hidden layer to obtain the final NARX neural network model. The output signal, the delay layer delays the signal fed back by the network and the signal output by the input layer, and then sends it to the hidden layer. The NARX neural network model has the characteristics of nonlinear mapping ability, good robustness and adaptability. x(t) represents the external input of the NARX neural network, that is, the output value of the output of the Elman neural network model; m represents the delay order of the external input; y(t) is the output of the NARX neural network model, that is, the NARX of the next period The output control amount of the neural network model; n is the output delay order; s is the number of neurons in the hidden layer; thus, the output of the jth hidden unit can be obtained as:

Figure BDA0002648686130000081
Figure BDA0002648686130000081

上式中,wji为第i个输入与第j个隐含神经元之间的连接权值,bj是第j个隐含神经元的偏置值,NARX神经网络模型的输出y(t+1)的值为:In the above formula, w ji is the connection weight between the ith input and the jth hidden neuron, b j is the bias value of the jth hidden neuron, and the output of the NARX neural network model y(t +1) is:

y(t+1)=f[y(t),y(t-1),…,y(t-n),x(t),x(t-1),…,x(t-m+1);W] (8)y(t+1)=f[y(t),y(t-1),…,y(t-n),x(t),x(t-1),…,x(t-m+1) ;W] (8)

NARX神经网络模型的输入数据为Elman神经网络模型的输出,NARX神经网络模型的输出为低频趋势部分和多个高频波动部分的将来值,NARX神经网络模型的输入层、输出层和隐层的个数分别为2,1和10,NARX神经网络模型实现对Elman神经网络模型输出的动态融合和对Elman神经网络模型输出再一次预测,提高控制测量传感器测量值的动态性能、快速性、准确型和可靠性。The input data of the NARX neural network model is the output of the Elman neural network model, and the output of the NARX neural network model is the future value of the low-frequency trend part and multiple high-frequency fluctuation parts, and the input layer, output layer and hidden layer of the NARX neural network model. The number is 2, 1 and 10 respectively. The NARX neural network model realizes the dynamic fusion of the output of the Elman neural network model and predicts the output of the Elman neural network model again, improving the dynamic performance, rapidity and accuracy of the measured values of the control and measurement sensors. and reliability.

5、小波神经网络融模型设计5. Design of wavelet neural network fusion model

小波神经网络融模型的输入为多个NARX神经网络模型的输出值,小波神经网络融模型实现对多个NARX神经网络模型输出值的高精确融合,提高测量传感器测量值融合精确度,小波神经网络融模型的输出值作为测量传感器二次校准预测值。小波神经网络融模型基于小波神经网络WNN(Wavelet Neural Networks)理论基础构建测量传感器测量值校准预测融合模型,小波神经网络以小波函数为神经元的激励函数并结合人工神经网络提出的一种前馈型网络。小波神经网络融合模型中小波的伸缩、平移因子以及连接权重在对误差能量函数的优化过程中被自适应调整。设小波神经网络融合模型的输入为多个NARX神经网络模型输出值可以表示为一维向量xi(i=1,2,…,n),输出信号是测量传感器测量值预测融合值表示为yk(k=1,2,…,m),小波神经网络融模型输出层融合值的计算公式为:The input of the wavelet neural network fusion model is the output values of multiple NARX neural network models. The wavelet neural network fusion model realizes high-precision fusion of the output values of multiple NARX neural network models, and improves the fusion accuracy of the measurement values of the measurement sensors. The wavelet neural network The output value of the fusion model is used as the predicted value of the secondary calibration of the measurement sensor. The wavelet neural network fusion model is based on the theoretical basis of the wavelet neural network WNN (Wavelet Neural Networks) to construct a measurement sensor measurement value calibration and prediction fusion model. The wavelet neural network uses the wavelet function as the excitation function of neurons and combines with artificial neural network. type network. In the wavelet neural network fusion model, the wavelet scaling, translation factor and connection weight are adaptively adjusted in the process of optimizing the error energy function. Let the input of the wavelet neural network fusion model be multiple NARX neural network models. The output value can be expressed as a one-dimensional vector x i (i=1,2,...,n), and the output signal is the measured sensor measurement value. The predicted fusion value is expressed as y k (k=1,2,...,m), the calculation formula of the fusion value of the output layer of the wavelet neural network fusion model is:

Figure BDA0002648686130000082
Figure BDA0002648686130000082

公式中ωij输入层i节点和隐含层j节点间的连接权值,

Figure BDA0002648686130000083
为小波基函数,bj为小波基函数的平移因子,aj小波基函数的伸缩因子,ωjk为隐含层j节点和输出层k节点间的连接权值。本专利中的小波神经网络融模型的权值和阈值的修正算法采用梯度修正法来更新网络权值和小波基函数参数,从而使小波神经网络融模型输出不断逼近测量传感器测量值的期望输出,小波神经网络融模型的输出为新陈代谢GM(1,1)灰色预测器的输入。In the formula, ω ij is the connection weight between the input layer i node and the hidden layer j node,
Figure BDA0002648686130000083
is the wavelet basis function, b j is the translation factor of the wavelet basis function, a j is the scaling factor of the wavelet basis function, ω jk is the connection weight between the hidden layer j node and the output layer k node. The correction algorithm for the weights and thresholds of the wavelet neural network fusion model in this patent uses the gradient correction method to update the network weights and wavelet basis function parameters, so that the output of the wavelet neural network fusion model is constantly approaching the expected output of the measurement sensor. The output of the wavelet neural network fusion model is the input of the metabolic GM(1,1) gray predictor.

6、新陈代谢GM(1,1)灰色预测器设计6. Design of a gray predictor of metabolic GM(1,1)

新陈代谢GM(1,1)灰色预测器所需建模信息少、运算方便和建模的精度较高,因而在各种预测领域有着广泛的应用,本发明专利引入它对测量传感器测量值校准预测获得了较好的效果,它的输出作为测量传感器测量校准值,实现对测量传感器测量值的多次校准预测。新陈代谢GM(1,1)灰色预测器中把小波神经网络融模型输出的历史数据作为输入,它的输出为下一阶段测量传感器测量校准预测值。新陈代谢GM(1,1)灰色预测器是用小波神经网络融模型输出的历史数据生成后建立的微分方程,它将无规律的小波神经网络融模型输出的历史数据使其变为较有规律的生成数列再建模,所以新陈代谢GM(1,1)灰色预测器实际上是生成数列模型,一般用微分方程描述。由于新陈代谢GM(1,1)灰色预测器的解是微分方程的解是指数曲线,因此要求生成数列是递增的且接近指数曲线。测量传感器测量值本身均为正值,经一次累加生成后即变为递增数列,设小波神经网络融模型输出的历史数据为:The metabolic GM(1,1) gray predictor needs less modeling information, is easy to calculate and has high modeling accuracy, so it has a wide range of applications in various prediction fields. A good effect is obtained, and its output is used as the measurement calibration value of the measurement sensor to realize multiple calibration predictions of the measurement value of the measurement sensor. Metabolism GM(1,1) gray predictor takes the historical data output by the wavelet neural network fusion model as input, and its output is the next stage measurement sensor measurement calibration prediction value. Metabolism GM(1,1) grey predictor is a differential equation established after the historical data output from the wavelet neural network fusion model is generated. The series is generated and then modeled, so the metabolic GM(1,1) gray predictor is actually a generated series model, which is generally described by differential equations. Since the solution of the metabolic GM(1,1) gray predictor is an exponential curve, the solution of the differential equation is an exponential curve, so the generated sequence is required to be increasing and close to an exponential curve. The measurement values of the measurement sensors themselves are all positive values, which will become an incremental sequence after one accumulation and generation. Let the historical data output by the wavelet neural network fusion model be:

x(0)=(x(0)(1),x(0)(2)…x(0)(n)) (10)x (0) =(x (0) (1),x (0) (2)…x (0) (n))(10)

作一次生成为:Make a build as:

x(1)=(x(1)(1),x(1)(2)…x(1)(n)) (11)x (1) =(x (1) (1),x (1) (2)…x (1) (n))(11)

对x(1)对于可以建立如下一阶一个变量的线性微分方程为:For x (1) , the linear differential equation of one variable of first order can be established as follows:

Figure BDA0002648686130000091
Figure BDA0002648686130000091

解该微分方程,并可得到测量传感器测量校准预测值:Solving this differential equation yields the measurement sensor calibration predictions:

x(0)(k+1)=x(1)(k+1)-x(1)(k) (13)x (0) (k+1)=x (1) (k+1)-x (1) (k)(13)

新陈代谢GM(1,1)灰色预测器必须等距、相邻和不得有跳跃,以最新的小波神经网络融模型输出数据作为参考点去掉最老的数据预测值下一阶段测量传感器测量值。在测量传感器测量值校准预测中可用最近小波神经网络融模型输出值来建模,由此来预测下一阶段测量传感器测量值。用上述方法预测出一阶段的测量传感器测量值后,把此标测量传感器测量值再加进原始数列中,相应地去掉数列开头的一个数据建模,再预测未来下一阶段测量传感器测量值的校准预测。依此类推,预测出测量传感器未来测量值。新陈代谢GM(1,1)灰色预测器,它可实现较长时间的预测,实现对测量传感器测量值的校准预测。Metabolism GM(1,1) gray predictor must be equidistant, adjacent and must not have jumps. The latest wavelet neural network fusion model output data is used as a reference point to remove the oldest data prediction value. The next stage measures the sensor measurement value. In the measurement sensor measurement calibration prediction, the output value of the latest wavelet neural network fusion model can be used to model, thereby predicting the measurement sensor measurement value in the next stage. After using the above method to predict the measurement value of the measurement sensor in one stage, add the measurement value of the standard measurement sensor into the original sequence, remove a data modeling at the beginning of the sequence, and then predict the measurement value of the measurement sensor in the next stage in the future. Calibrate predictions. And so on, predict the future measurement value of the measurement sensor. Metabolism GM(1,1) gray predictor, which enables longer-term predictions and enables calibrated predictions of measurement sensor measurements.

本实施方式中,第一纵向滑移组件包括第一纵向滑移导轨201与第一纵向滑移平台202,第一纵向滑移导轨201通过支架203固定于基层平台1上,其下表面沿其长度方向转动连接有第一丝杆204,第一丝杆204上螺纹连接有第一滑块205,第一纵向滑移平台202套设于第一纵向滑移导轨201上且其与第一丝杆204对应位置与第一滑块205固定连接,第一纵向滑移平台202的结构参见附图3与附图4所示。In this embodiment, the first longitudinal sliding assembly includes a first longitudinal sliding guide rail 201 and a first longitudinal sliding platform 202. The first longitudinal sliding guide rail 201 is fixed on the base platform 1 through a bracket 203, and its lower surface is along the A first screw rod 204 is rotatably connected in the longitudinal direction, a first slider 205 is threadedly connected to the first screw rod 204, and a first longitudinal sliding platform 202 is sleeved on the first longitudinal sliding guide rail 201 and is connected with the first screw The rod 204 is fixedly connected with the first sliding block 205 at the corresponding position, and the structure of the first longitudinal sliding platform 202 is shown in FIG. 3 and FIG. 4 .

横向滑移组件包括垂直于第一纵向滑移导轨201且转动连接于第一纵向滑移平台202上表面的第二丝杆206,第二丝杆206上螺纹连接有第二滑块207,第二滑块207上固定有横向滑移平台208,传感器架置板2固定于横向滑移平台208上。The lateral sliding assembly includes a second lead screw 206 that is perpendicular to the first longitudinal sliding guide rail 201 and is rotatably connected to the upper surface of the first longitudinal sliding platform 202. The second lead screw 206 is threadedly connected with a second sliding block 207. A lateral sliding platform 208 is fixed on the two sliding blocks 207 , and the sensor mounting plate 2 is fixed on the lateral sliding platform 208 .

进一步地,为了解决第一纵向滑移平台202在第一纵向滑移导轨201上滑动出现晃动的情况,将第一纵向滑移导轨201的两侧边设置为向内凹陷的圆弧导轨209,第一纵向滑移平台202与圆弧导轨209对应位置匹配设置,所以第一纵向滑移平台202与圆弧导轨209对应位置设置向圆弧导轨209凸起的圆弧形的凸起,这样圆弧导轨209与圆弧形的凸起匹配设置,当第一纵向滑移平台202在第一纵向滑移导轨201上滑动时,其上下被限位,不会出现滑动倾斜的情况,也很难出现第一纵向滑移平台202晃动的情况,。Further, in order to solve the situation that the first longitudinal sliding platform 202 slides on the first longitudinal sliding guide rail 201 and shakes, the two sides of the first longitudinal sliding guide rail 201 are set as inwardly recessed arc guide rails 209, The first longitudinal sliding platform 202 and the arc guide rail 209 are matched at the corresponding positions, so the corresponding positions of the first longitudinal sliding platform 202 and the arc guide rail 209 are provided with arc-shaped protrusions that protrude toward the arc guide rail 209, so that the circle The arc guide rail 209 is matched with the arc-shaped protrusion. When the first longitudinal sliding platform 202 slides on the first longitudinal sliding guide rail 201, its upper and lower positions are limited, and there will be no sliding and inclination, and it is difficult to A situation in which the first longitudinal sliding platform 202 shakes occurs.

进一步地,为了减少第一纵向滑移平台202与第一纵向滑移导轨201之间的摩擦力,在第一纵向滑移平台202上与圆弧导轨209匹配位置还滚动设置有若干个导轨滚珠210。这样第一纵向滑移平台202在第一纵向滑移导轨201上滑动时,导轨滚珠210可以减少两者之间的摩擦力。Further, in order to reduce the frictional force between the first longitudinal sliding platform 202 and the first longitudinal sliding guide rail 201, a number of guide rail balls are also rolled on the first longitudinal sliding platform 202 at the matching position with the arc guide rail 209. 210. In this way, when the first longitudinal sliding platform 202 slides on the first longitudinal sliding guide rail 201, the guide rail balls 210 can reduce the friction force between the two.

进一步地,为了更加稳定第一纵向滑移平台202,在第一纵向滑移导轨201的上表面沿第一纵向滑移平台202滑移方向还设置有一对纵向直线导轨211,第一纵向滑移平台202与纵向直线导轨211对应位置设置一对条形凸起212,各条形凸起212与各纵向直线导轨211匹配设置,第一纵向滑移平台202在第一纵向滑移导轨201上滑动时,第一纵向滑移平台202下表面的条形凸起212被限位在纵向直线导轨211内滑动,第一纵向滑移平台202被左右限位,不会出现倾斜。Further, in order to more stabilize the first longitudinal sliding platform 202, a pair of longitudinal linear guide rails 211 are also provided on the upper surface of the first longitudinal sliding guide rail 201 along the sliding direction of the first longitudinal sliding platform 202. A pair of bar-shaped protrusions 212 are provided at the corresponding positions of the platform 202 and the longitudinal linear guide rails 211 , each bar-shaped protrusion 212 is matched with each longitudinal linear guide rail 211 , and the first longitudinal sliding platform 202 slides on the first longitudinal sliding guide rail 201 At the time, the bar-shaped protrusions 212 on the lower surface of the first longitudinal sliding platform 202 are constrained to slide in the longitudinal linear guide rails 211, and the first longitudinal sliding platform 202 is constrained to the left and right, and will not tilt.

进一步地,在调节传感器与参照物之间的距离时,其前后距离的调节有的时候需要进行微调,第一纵向滑移组件的调节螺距比较大,有的时候很难达到要求的调整精度,所以我们在横向滑移组件上还设置有第二纵向滑移组件,第二纵向滑移组件包括转动连接于横向滑移平台208的垂直于所述第二丝杆206的第三丝杆213,第三丝杆213上螺纹连接有第三滑块214,第三丝杆213的螺距比第一丝杆204的螺距小。传感器架置板2固定于横向滑移平台208上。Further, when adjusting the distance between the sensor and the reference object, the adjustment of the front and rear distance sometimes needs to be fine-tuned. The adjustment pitch of the first longitudinal sliding component is relatively large, and sometimes it is difficult to achieve the required adjustment accuracy. Therefore, we also set a second longitudinal sliding assembly on the lateral sliding assembly. The second longitudinal sliding assembly includes a third screw 213 that is rotatably connected to the lateral sliding platform 208 and is perpendicular to the second screw 206. A third sliding block 214 is threadedly connected to the third screw rod 213 , and the pitch of the third screw rod 213 is smaller than that of the first screw rod 204 . The sensor mounting plate 2 is fixed on the lateral sliding platform 208 .

进一步地,为了实现第一纵向滑移平台202、横向滑移平台208以及传感器架置板2在相应的滑轨上滑动进行调节传感器的纵向与横向的距离,第一纵向滑移组件、横向滑移组件以及第二纵向滑移组件上均设置有结构相同的驱动机构,驱动机构分别为第一步进电机215、第二步进电机216以及第三步进电机217,第一丝杆204、第二丝杆206、第三丝杆213的一端均设置有结构相同的主锥齿轮218和从锥齿轮219,3个所述步进电机输出轴均与其对应的主锥齿轮218中心固定连接,主锥齿轮218与其对应的从锥齿轮219啮合,从锥齿轮219套设固定于其对应的丝杆上。Further, in order to realize that the first longitudinal sliding platform 202, the lateral sliding platform 208 and the sensor mounting plate 2 slide on the corresponding sliding rails to adjust the distance between the longitudinal and lateral directions of the sensor, the first longitudinal sliding assembly, the lateral sliding Both the sliding assembly and the second longitudinal sliding assembly are provided with driving mechanisms with the same structure. One end of the second screw 206 and the third screw 213 is provided with a main bevel gear 218 and a slave bevel gear 219 with the same structure, and the three output shafts of the stepping motor are fixedly connected to the center of the corresponding main bevel gear 218, The main bevel gear 218 meshes with its corresponding slave bevel gear 219, and the slave bevel gear 219 is sleeved and fixed on its corresponding screw rod.

步进电机带动主锥齿轮218转动,主锥齿轮218带动从锥齿轮219转动实现丝杆的转动,丝杆与滑块螺纹连接,丝杆转动实现滑块在丝杆上的相对位置转变,进而实现第一纵向滑移平台202、横向滑移平台208以及传感器架置板2在对应的第一丝杆204、第二丝杆206以及第三丝杆213上滑动。The stepping motor drives the main bevel gear 218 to rotate, and the main bevel gear 218 drives the secondary bevel gear 219 to rotate to realize the rotation of the lead screw. The first longitudinal sliding platform 202 , the lateral sliding platform 208 and the sensor mounting plate 2 can slide on the corresponding first screw rods 204 , second screw rods 206 and third screw rods 213 .

进一步地,如果不用电动实现第一纵向滑移平台202、横向滑移平台208以及传感器架置板2在相应的滑轨上滑动进行调节传感器的前后左右的距离,可以在第一丝杆204、第二丝杆206和第三丝杆213一端分别固定有旋转把手220,通过旋转把手220实现对应丝杆的转动进而实现第一纵向滑移平台202、横向滑移平台208以及传感器架置板2在相应的丝杆上滑动。Further, if the first longitudinal sliding platform 202, the lateral sliding platform 208 and the sensor mounting plate 2 are not electrically controlled to slide on the corresponding sliding rails to adjust the distance between the front, rear, left and right of the sensor, the first screw rod 204, One end of the second screw rod 206 and the third screw rod 213 are respectively fixed with a rotating handle 220. The rotation of the corresponding screw rod is realized by rotating the handle 220, thereby realizing the first longitudinal sliding platform 202, the lateral sliding platform 208 and the sensor mounting plate 2. Slide on the corresponding lead screw.

工作原理:working principle:

首先将测量传感器通过三脚架固定于传感器架置板2上,将参考物设置于参考物架置台3上,通过第一纵向滑移组件、横向滑移组件、第二纵向滑移组件调节测量传感器与参考物之间的距离,根据预先设定的需要将测量传感器移动到设定位置,首先启动第一步进电机215驱动第一丝杆204转动实现初步调整参考物与测量传感器的纵向距离;再启动第二步进电机216驱动第二丝杆204转动实现调整测量传感器与参考物的横向距离;最后再启动第三步进电机217驱动第三丝杆213转动实现微调参考物与测量传感器的纵向距离,实现精确定位测量传感器的位置。First, the measuring sensor is fixed on the sensor mounting plate 2 through a tripod, the reference object is set on the reference object mounting platform 3, and the measuring sensor and the For the distance between the reference objects, move the measurement sensor to the set position according to the preset needs, first start the first step motor 215 to drive the first screw rod 204 to rotate to initially adjust the longitudinal distance between the reference object and the measurement sensor; Start the second stepper motor 216 to drive the second screw rod 204 to rotate to adjust the lateral distance between the measurement sensor and the reference object; finally start the third stepper motor 217 to drive the third screw rod 213 to rotate to fine-tune the longitudinal direction between the reference object and the measurement sensor Distance, to achieve precise positioning of the measurement sensor position.

在测量传感器进行测量参考物的某点参数时,通过MSP430单片机监测单元中的校准算法进行对测量传感器的测量值进行校准并预测,使测量传感器测量值更加趋于参考物的准确参数值。When the measurement sensor measures a certain point parameter of the reference object, the measurement value of the measurement sensor is calibrated and predicted through the calibration algorithm in the monitoring unit of the MSP430 single-chip microcomputer, so that the measurement value of the measurement sensor is closer to the accurate parameter value of the reference object.

上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only intended to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those who are familiar with the art to understand the content of the present invention and implement it accordingly, and cannot limit the protection scope of the present invention. All equivalent transformations or modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.

Claims (10)

1.一种测量用的参数校准系统,包括参考物架置台(3)、传感器架置板(2)与基层平台(1),所述参考物架置台(3)、传感器架置板(2)设置于所述基层平台(1)上,其特征在于,所述基层平台(1)上还设置有第一纵向滑移组件、横向滑移组件;所述传感器架置板(2)设置于所述横向滑移组件上,所述传感器架置板(2)随所述横向滑移组件横向滑动且所述横向滑移组件随所述第一纵向滑移组件纵向滑动;所述传感器架置板(2)上还设置测量传感器和MSP430单片机监测单元,所述MSP430单片机监测单元包括时间序列DRNN神经网络预测模型、经验模态分解(EMD)模型、多个Elman神经网络模型、多个NARX神经网络模型、小波神经网络融合模型和新陈代谢GM(1,1)灰色预测器;所述测量传感器的输出作为时间序列DRNN神经网络预测模型的输入,时间序列DRNN神经网络预测模型的输出作为经验模态分解(EMD)模型的输入,经验模态分解(EMD)模型输出测量传感器的低频趋势部分和多个高频波动部分分别作为对应的多个Elman神经网络模型的输入,多个Elman神经网络模型的输出分别作为对应的多个NARX神经网络模型的输入,多个NARX神经网络模型的输出作为小波神经网络融合模型的输入,小波神经网络融合模型的输出作为新陈代谢GM(1,1)灰色预测器的输入,新陈代谢GM(1,1)灰色预测器的输出作为测量传感器的测量校准值。1. A parameter calibration system for measurement, comprising a reference object mounting table (3), a sensor mounting plate (2) and a base platform (1), the reference object mounting table (3), the sensor mounting plate (2) ) is arranged on the base-level platform (1), characterized in that, the base-level platform (1) is further provided with a first longitudinal sliding component and a lateral sliding component; the sensor mounting plate (2) is arranged on the On the lateral sliding assembly, the sensor mounting plate (2) slides laterally with the lateral sliding assembly, and the lateral sliding assembly slides longitudinally with the first longitudinal sliding assembly; the sensor mounting plate The board (2) is also provided with a measurement sensor and an MSP430 single-chip monitoring unit. The MSP430 single-chip monitoring unit includes a time-series DRNN neural network prediction model, an empirical mode decomposition (EMD) model, multiple Elman neural network models, and multiple NARX neural network models. network model, wavelet neural network fusion model and metabolic GM(1,1) gray predictor; the output of the measurement sensor is used as the input of the time series DRNN neural network prediction model, and the output of the time series DRNN neural network prediction model is used as the empirical mode The input of the decomposition (EMD) model, the output of the empirical mode decomposition (EMD) model measures the low-frequency trend part and multiple high-frequency fluctuation parts of the sensor as the input of the corresponding multiple Elman neural network models, respectively. The output is used as the input of the corresponding multiple NARX neural network models, the output of multiple NARX neural network models is used as the input of the wavelet neural network fusion model, and the output of the wavelet neural network fusion model is used as the output of the metabolic GM (1,1) gray predictor. Input, the output of the metabolic GM(1,1) gray predictor serves as the measurement calibration value of the measurement sensor. 2.根据权利要求1所述的一种测量用的参数校准系统,其特征在于,所述第一纵向滑移组件包括第一纵向滑移导轨(201)与第一纵向滑移平台(202),所述第一纵向滑移导轨(201)通过支架(203)固定于所述基层平台(1)上,其下表面沿其长度方向转动连接有第一丝杆(204),所述第一丝杆(204)上螺纹连接有第一滑块(205),所述第一纵向滑移平台(202)套设于所述第一纵向滑移导轨(201)上且其与所述第一丝杆(204)对应位置与所述第一滑块(205)固定连接。2. A parameter calibration system for measurement according to claim 1, wherein the first longitudinal sliding assembly comprises a first longitudinal sliding guide rail (201) and a first longitudinal sliding platform (202) , the first longitudinal sliding guide rail (201) is fixed on the base platform (1) through a bracket (203), and a first screw rod (204) is rotatably connected to its lower surface along its length direction. A first sliding block (205) is threadedly connected to the screw rod (204), and the first longitudinal sliding platform (202) is sleeved on the first longitudinal sliding guide rail (201) and is connected to the first longitudinal sliding rail (201). The corresponding position of the lead screw (204) is fixedly connected with the first sliding block (205). 3.根据权利要求2所述的一种测量用的参数校准系统,其特征在于,所述横向滑移组件包括垂直于所述第一纵向滑移导轨(201)且转动连接于所述第一纵向滑移平台(202)上表面的第二丝杆(206),所述第二丝杆(206)上螺纹连接有第二滑块(207),所述第二滑块(207)上固定有横向滑移平台(208),所述传感器架置板(2)固定于横向滑移平台(208)上。3 . The parameter calibration system for measurement according to claim 2 , wherein the lateral sliding component comprises a vertical sliding guide rail ( 201 ) that is perpendicular to the first longitudinal sliding and is rotatably connected to the first A second lead screw (206) on the upper surface of the longitudinal sliding platform (202), the second lead screw (206) is threadedly connected with a second slider (207), and the second slider (207) is fixed on There is a lateral sliding platform (208), and the sensor mounting plate (2) is fixed on the lateral sliding platform (208). 4.根据权利要求2所述的一种测量用的参数校准系统,其特征在于,所述第一纵向滑移导轨(201)的两侧边设置为向内凹陷的圆弧导轨(209),所述第一纵向滑移平台(202)与所述圆弧导轨(209)对应位置匹配设置。4. A parameter calibration system for measurement according to claim 2, characterized in that, both sides of the first longitudinal sliding guide rail (201) are set as inwardly recessed arc guide rails (209), The first longitudinal sliding platform (202) and the arc guide rail (209) are arranged in a corresponding position matching. 5.根据权利要求4所述的一种测量用的参数校准系统,其特征在于,所述第一纵向滑移平台(202)上与所述圆弧导轨(209)匹配位置还滚动设置有若干个导轨滚珠(210)。5 . The parameter calibration system for measurement according to claim 4 , wherein the first longitudinal sliding platform ( 202 ) and the arc guide rail ( 209 ) are also provided with a number of rolling rail balls (210). 6.根据权利要求2所述的一种测量用的参数校准系统,其特征在于,所述第一纵向滑移导轨(201)的上表面沿所述第一纵向滑移平台(202)滑移方向还设置有一对纵向直线导轨(211),所述第一纵向滑移平台(202)与所述纵向直线导轨(211)对应位置设置一对条形凸起(212),各所述条形凸起(212)与各所述纵向直线导轨(211)匹配设置。6. A parameter calibration system for measurement according to claim 2, characterized in that the upper surface of the first longitudinal sliding guide rail (201) slides along the first longitudinal sliding platform (202) A pair of longitudinal linear guide rails (211) are also provided in the direction, and a pair of bar-shaped protrusions (212) are provided at the corresponding positions of the first longitudinal sliding platform (202) and the longitudinal linear guide rails (211). The protrusions (212) are matched with each of the longitudinal linear guide rails (211). 7.根据权利要求3所述的一种测量用的参数校准系统,其特征在于,所述横向滑移组件上还设置有第二纵向滑移组件,所述第二纵向滑移组件包括转动连接于所述横向滑移平台(208)的垂直于所述第二丝杆(206)的第三丝杆(213),所述第三丝杆(213)上螺纹连接有第三滑块(214),所述第三丝杆(213)的螺距小于所述第一丝杆(204)的螺距,所述传感器架置板(2)固定于所述横向滑移平台(208)上。7 . The parameter calibration system for measurement according to claim 3 , wherein the lateral sliding assembly is further provided with a second longitudinal sliding assembly, and the second longitudinal sliding assembly comprises a rotational connection. 8 . A third lead screw (213) of the lateral sliding platform (208) that is perpendicular to the second lead screw (206), and a third slider (214) is threadedly connected to the third lead screw (213). ), the pitch of the third screw (213) is smaller than the pitch of the first screw (204), and the sensor mounting plate (2) is fixed on the lateral sliding platform (208). 8.根据权利要求7所述的一种测量用的参数校准系统,其特征在于,所述第一纵向滑移组件、横向滑移组件以及第二纵向滑移组件上均设置有结构相同的驱动机构,所述驱动机构分别为第一步进电机(215)、第二步进电机(216)以及第三步进电机(217),所述第一丝杆(204)、第二丝杆(206)、第三丝杆(213)的一端均设置有结构相同的主锥齿轮(218)和从锥齿轮(219),3个所述步进电机输出轴均与其对应的主锥齿轮(218)中心固定连接,所述主锥齿轮(218)与其对应的所述从锥齿轮(219)啮合,所述从锥齿轮(219)套设固定于其对应的丝杆上。8 . The parameter calibration system for measurement according to claim 7 , wherein the first longitudinal sliding assembly, the lateral sliding assembly and the second longitudinal sliding assembly are all provided with drives with the same structure. 9 . The driving mechanism is a first stepper motor (215), a second stepper motor (216) and a third stepper motor (217), the first screw rod (204), the second screw rod ( 206) and one end of the third screw (213) are provided with a main bevel gear (218) and a follower bevel gear (219) with the same structure, and the three stepper motor output shafts are all corresponding to the main bevel gear (218) ) are fixedly connected at the center, the main bevel gear (218) is meshed with the corresponding secondary bevel gear (219), and the secondary bevel gear (219) is sleeved and fixed on its corresponding lead screw. 9.根据权利要求7所述的一种测量用的参数校准系统,其特征在于,所述第一丝杆(204)、第二丝杆(206)和第三丝杆(213)一端分别固定有旋转把手(220)。9 . The parameter calibration system for measurement according to claim 7 , wherein one end of the first screw rod ( 204 ), the second screw rod ( 206 ) and the third screw rod ( 213 ) are respectively fixed at one end. 10 . There is a swivel handle (220). 10.根据权利要求1至9任一所述的一种测量用的参数校准系统,其特征在于,所述参考物架置台(3)还包括固定于所述基层平台(1)的垫高固定台(101)、固定于所述垫高固定台(101)上方的若干个竖直设置的电动推杆(102),所述电动推杆(102)顶端设置有所述参考物架置台(3)。10. A parameter calibration system for measurement according to any one of claims 1 to 9, wherein the reference object mounting platform (3) further comprises a pad height fixed on the base platform (1) A table (101), a plurality of vertically arranged electric push rods (102) fixed on the top of the booster fixing table (101), the reference object mounting table (3) is provided at the top of the electric push rods (102) ).
CN202010862700.7A 2020-08-25 2020-08-25 A kind of parameter calibration system for measurement Pending CN111998885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010862700.7A CN111998885A (en) 2020-08-25 2020-08-25 A kind of parameter calibration system for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010862700.7A CN111998885A (en) 2020-08-25 2020-08-25 A kind of parameter calibration system for measurement

Publications (1)

Publication Number Publication Date
CN111998885A true CN111998885A (en) 2020-11-27

Family

ID=73472149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010862700.7A Pending CN111998885A (en) 2020-08-25 2020-08-25 A kind of parameter calibration system for measurement

Country Status (1)

Country Link
CN (1) CN111998885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218598A (en) * 2021-05-07 2021-08-06 淮阴工学院 Air tightness detection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344186A (en) * 2013-07-17 2013-10-09 广西柳工机械股份有限公司 Loading machine unloading parameter testing device and method
CN203337107U (en) * 2013-07-17 2013-12-11 广西柳工机械股份有限公司 Loader unloading parameter testing device
CN106295798A (en) * 2016-08-29 2017-01-04 江苏省电力试验研究院有限公司 Empirical mode decomposition and Elman neural network ensemble wind-powered electricity generation Forecasting Methodology
CN108091111A (en) * 2017-11-20 2018-05-29 淮阴工学院 A kind of oil truck oil and gas leakage intelligent early-warning system
CN110119169A (en) * 2019-04-19 2019-08-13 淮阴工学院 A kind of tomato greenhouse temperature intelligent early warning system based on minimum vector machine
CN110119767A (en) * 2019-04-19 2019-08-13 淮阴工学院 A kind of cucumber green house temperature intelligent detection device based on LVQ neural network
CN110147825A (en) * 2019-04-19 2019-08-20 淮阴工学院 A kind of strawberry greenhouse temperature intelligent detection device based on empirical mode decomposition model
CN110163254A (en) * 2019-04-19 2019-08-23 淮阴工学院 A kind of cucumber green house yield intelligent Forecasting device based on recurrent neural network
CN111444947A (en) * 2020-03-20 2020-07-24 淮阴工学院 An intelligent detection system for bridge settlement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344186A (en) * 2013-07-17 2013-10-09 广西柳工机械股份有限公司 Loading machine unloading parameter testing device and method
CN203337107U (en) * 2013-07-17 2013-12-11 广西柳工机械股份有限公司 Loader unloading parameter testing device
CN106295798A (en) * 2016-08-29 2017-01-04 江苏省电力试验研究院有限公司 Empirical mode decomposition and Elman neural network ensemble wind-powered electricity generation Forecasting Methodology
CN108091111A (en) * 2017-11-20 2018-05-29 淮阴工学院 A kind of oil truck oil and gas leakage intelligent early-warning system
CN110119169A (en) * 2019-04-19 2019-08-13 淮阴工学院 A kind of tomato greenhouse temperature intelligent early warning system based on minimum vector machine
CN110119767A (en) * 2019-04-19 2019-08-13 淮阴工学院 A kind of cucumber green house temperature intelligent detection device based on LVQ neural network
CN110147825A (en) * 2019-04-19 2019-08-20 淮阴工学院 A kind of strawberry greenhouse temperature intelligent detection device based on empirical mode decomposition model
CN110163254A (en) * 2019-04-19 2019-08-23 淮阴工学院 A kind of cucumber green house yield intelligent Forecasting device based on recurrent neural network
CN111444947A (en) * 2020-03-20 2020-07-24 淮阴工学院 An intelligent detection system for bridge settlement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218598A (en) * 2021-05-07 2021-08-06 淮阴工学院 Air tightness detection system
CN113218598B (en) * 2021-05-07 2022-06-03 淮阴工学院 Air tightness detection system

Similar Documents

Publication Publication Date Title
CN111931411B (en) Duhem dynamic hysteresis modeling method for piezoelectric driving micro-positioning platform
CN111281743A (en) An adaptive compliance control method for an upper limb rehabilitation exoskeleton robot
CN102096373B (en) Microwave drying PID (proportion integration differentiation) control method based on increment improved BP (back propagation) neural network
CN109946975A (en) A Reinforcement Learning Optimal Tracking Control Method for Unknown Servo System
CN111982042A (en) Displacement detection device for parameter measurement
WO2022061855A1 (en) Internet of things biological data acquisition and conduction device
CN111998885A (en) A kind of parameter calibration system for measurement
WO2023020036A1 (en) Redundant manipulator tracking control method based on echo state network
CN114397043A (en) Multi-point temperature intelligent detection system
CN211492961U (en) Press bottom dead center adjustment system
CN109632183B (en) Pressure sensor calibration experimental device based on worm gear
CN118940437B (en) A calibration method and system for integrated servo joint module
CN111998887A (en) A detection device for parameter measurement
CN114386672B (en) Environment big data Internet of things intelligent detection system
CN113093545A (en) Linear servo system thermal error modeling method and compensation system based on energy balance
CN112008726A (en) Composite finite time control method based on exoskeleton robot actuator
CN117932340A (en) A regional sensing magnetic positioning method for tongue movement tracking
CN117621051A (en) Active human-computer cooperation method based on human body multi-mode information
CN111982041B (en) A displacement detection system for measurement
CN106019933B (en) Prediction control method of 'stick-slip' micro-motion platform
Ma et al. Multi-Sensor Fusion for State Estimation and Control of Cable-Driven Soft Robots
Li et al. Element: Episodic and lifelong exploration via maximum entropy
CN117148731B (en) Variable iterative motion control method and device based on single-point error extraction
Shi et al. Data driven roll bending prediction via dynamic sliding window and basis function decomposition
Wang et al. Ship attitude prediction based on dynamic sliding window and eemd-ssa-bilstm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201127