CN111987995A - Comb signal source based on mixing modulation feedback loop - Google Patents
Comb signal source based on mixing modulation feedback loop Download PDFInfo
- Publication number
- CN111987995A CN111987995A CN201910441106.8A CN201910441106A CN111987995A CN 111987995 A CN111987995 A CN 111987995A CN 201910441106 A CN201910441106 A CN 201910441106A CN 111987995 A CN111987995 A CN 111987995A
- Authority
- CN
- China
- Prior art keywords
- signal source
- isolator
- mixer
- frequency
- output end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 abstract description 4
- 230000009022 nonlinear effect Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
- H03D7/165—Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmitters (AREA)
Abstract
Description
技术领域technical field
本发明属于电子通讯领域,具体涉及一种梳状信号源。The invention belongs to the field of electronic communication, in particular to a comb-shaped signal source.
背景技术Background technique
梳状频率信号在电子电路、无线射频等领域具有重要的应用,例如相位校准,扩频、跳频通讯或干扰,多通道探测等。Comb frequency signals have important applications in electronic circuits, radio frequency and other fields, such as phase calibration, spread spectrum, frequency hopping communication or interference, multi-channel detection, etc.
目前,梳状频率信号的产生主要有三种方式。最常见的一种是隧道二极管、阶跃恢复二极管等器件,其原理是利用储能元件充放电产生超短脉冲信号,进而对各阶谐波进行整形处理。其梳状信号的带宽和功率一致性主要依赖于二极管的固有特性,通常难以调节。第二种方式是利用多个独立微波源合成,各频点的互相独立。由于各频点可以单独调节,可以做到很好的功率平坦度,但是相位一致性需要额外处理,另外其成本随着通道数量增加而直接增加。第三种方式是使用混频器变频,利用本振与中频信号混频时的非线性效应,输出产生多个变频信号,其中,可以通过两支中频信号的相位差来调整输出梳状谱的功率平坦度。但是输出的梳状信号特性主要依赖于混频器的固有特性,通常频点比较少,高次谐波混频的功率较差,功率平坦度的调整范围也非常有限。At present, there are mainly three ways to generate the comb frequency signal. The most common one is a tunnel diode, a step recovery diode and other devices. The principle is to use the energy storage element to charge and discharge to generate an ultra-short pulse signal, and then to shape the harmonics of each order. The bandwidth and power consistency of its comb-like signal mainly depend on the inherent characteristics of the diode, which are often difficult to tune. The second way is to use multiple independent microwave sources to synthesize, each frequency point is independent of each other. Since each frequency point can be adjusted individually, good power flatness can be achieved, but phase consistency requires additional processing, and its cost directly increases with the number of channels. The third method is to use a mixer to convert the frequency, and use the nonlinear effect when the local oscillator and the intermediate frequency signal are mixed to generate multiple frequency conversion signals. Among them, the phase difference of the two intermediate frequency signals can be used to adjust the output comb spectrum. power flatness. However, the output comb-like signal characteristics mainly depend on the inherent characteristics of the mixer. Usually, the frequency points are relatively small, the power of high-order harmonic mixing is poor, and the adjustment range of power flatness is also very limited.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于混频调制反馈环的梳状信号源,能同时输出多个频率的信号源,功率和平坦度高。The purpose of the present invention is to provide a comb-shaped signal source based on a frequency mixing modulation feedback loop, which can output a signal source of multiple frequencies at the same time, and has high power and flatness.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
一种基于混频调制反馈环的梳状信号源,包括本振信号源、第一隔离器、第一定向耦合器、第一混频器、中频信号源、第一微波放大器、第二定向耦合器、第二隔离器、输出天线和第二微波放大器;A comb-shaped signal source based on a frequency mixing modulation feedback loop, comprising a local oscillator signal source, a first isolator, a first directional coupler, a first mixer, an intermediate frequency signal source, a first microwave amplifier, a second directional signal source a coupler, a second isolator, an output antenna and a second microwave amplifier;
其中,本振信号源的输出端与第一隔离器的输入端连接,第一隔离器输出端与第一定向耦合器的输入端连接,第一定向耦合器的输出端与第一混频器的本振端连接,中频信号源的输出端与第一混频器的中频端连接,第一混频器的射频端与第一微波放大器的输入端连接,第一微波放大器的输出端与第二定向耦合器的输入端连接,第二定向耦合器的耦合端与第二微波放大器的输入端连接,第二微波放大器的输出端与第一定向耦合器的耦合端连接,第二定向耦合器输出端与第二隔离器的输入端连接,第二隔离器的输出端与输出天线的输入端连接。The output end of the local oscillator signal source is connected to the input end of the first isolator, the output end of the first isolator is connected to the input end of the first directional coupler, and the output end of the first directional coupler is connected to the first hybrid The local oscillator end of the frequency mixer is connected to the output end of the intermediate frequency signal source, the output end of the intermediate frequency signal source is connected to the intermediate frequency end of the first mixer, the radio frequency end of the first mixer is connected to the input end of the first microwave amplifier, and the output end of the first microwave amplifier is connected is connected to the input end of the second directional coupler, the coupling end of the second directional coupler is connected to the input end of the second microwave amplifier, the output end of the second microwave amplifier is connected to the coupling end of the first directional coupler, the second The output end of the directional coupler is connected to the input end of the second isolator, and the output end of the second isolator is connected to the input end of the output antenna.
一种基于混频调制反馈环的梳状信号源,包括本振信号源、第一隔离器、第一功分器、第一混频器、中频信号源、第一微波放大器、第二功分器、第二隔离器、输出天线和第二微波放大器;A comb-shaped signal source based on a frequency mixing modulation feedback loop, comprising a local oscillator signal source, a first isolator, a first power divider, a first mixer, an intermediate frequency signal source, a first microwave amplifier, and a second power divider a device, a second isolator, an output antenna and a second microwave amplifier;
其中,本振信号源的输出端与第一隔离器的输入端连接,第一隔离器输出端与第一功分器的输入端连接,第一功分器的输出端与第一混频器的本振端连接,中频信号源的输出端与第一混频器的中频端连接,第一混频器的射频端与第一微波放大器的输入端连接,第一微波放大器的输出端与第二功分器的输入端连接,第二功分器的耦合端与第二微波放大器的输入端连接,第二微波放大器的输出端与第一功分器的耦合端连接,第二功分器出端与第二隔离器的输入端连接,第二隔离器的输出端与输出天线的输入端连接。The output end of the local oscillator signal source is connected to the input end of the first isolator, the output end of the first isolator is connected to the input end of the first power divider, and the output end of the first power divider is connected to the first mixer The output end of the intermediate frequency signal source is connected to the intermediate frequency end of the first mixer, the radio frequency end of the first mixer is connected to the input end of the first microwave amplifier, and the output end of the first microwave amplifier is connected to the first The input end of the second power divider is connected to the input end of the second power divider, the coupling end of the second power divider is connected to the input end of the second microwave amplifier, the output end of the second microwave amplifier is connected to the coupling end of the first power divider, and the second power divider is connected to the input end of the second microwave amplifier. The output end is connected to the input end of the second isolator, and the output end of the second isolator is connected to the input end of the output antenna.
一种基于混频调制反馈环的梳状信号源,包括本振信号源、第一隔离器、第一功分器、第一混频器、中频信号源、第一微波放大器、第二功分器、第二隔离器、输出天线和第二微波放大器;还包括功分电桥、第二混频器、射频功分器、射频功分器和移相器;A comb-shaped signal source based on a frequency mixing modulation feedback loop, comprising a local oscillator signal source, a first isolator, a first power divider, a first mixer, an intermediate frequency signal source, a first microwave amplifier, and a second power divider a power divider, a second isolator, an output antenna and a second microwave amplifier; also include a power division bridge, a second mixer, a radio frequency power divider, a radio frequency power divider and a phase shifter;
其中,本振信号源的输出端与第一隔离器的输入端连接,第一隔离器输出端与第一定向耦合器的输入端连接;Wherein, the output end of the local oscillator signal source is connected with the input end of the first isolator, and the output end of the first isolator is connected with the input end of the first directional coupler;
第一定向耦合器的输出端与功分电桥的输入端连接,功分电桥的两个输出端分别与第一混频器的本振端和第二混频器的本振端连接,第一混频器和中频信号源之间安装功分器,功分器的两个输出端其中一个连接第一混频器的中频端,功分器的另一个输出端连接移相器的输入端,移相器的输出端与第二混频器的中频端连接。第一混频器和第二混频器的射频端分别与射频功分器的输入端口连接,射频功分器的输出端与第一微波放大器的输入端连接;The output end of the first directional coupler is connected to the input end of the power divider bridge, and the two output ends of the power divider bridge are respectively connected to the local oscillator end of the first mixer and the local oscillator end of the second mixer , a power divider is installed between the first mixer and the intermediate frequency signal source, one of the two output ends of the power divider is connected to the intermediate frequency end of the first mixer, and the other output end of the power divider is connected to the phase shifter. The input end, the output end of the phase shifter is connected with the intermediate frequency end of the second mixer. The radio frequency ends of the first mixer and the second frequency mixer are respectively connected with the input port of the radio frequency power divider, and the output end of the radio frequency power divider is connected with the input end of the first microwave amplifier;
第一微波放大器的输出端与第二定向耦合器的输入端连接,第二定向耦合器的耦合端与第二微波放大器的输入端连接,第二微波放大器的输出端与第一定向耦合器的耦合端连接,第二定向耦合器输出端与第二隔离器的输入端连接,第二隔离器的输出端与输出天线的输入端连接。The output end of the first microwave amplifier is connected to the input end of the second directional coupler, the coupling end of the second directional coupler is connected to the input end of the second microwave amplifier, and the output end of the second microwave amplifier is connected to the first directional coupler The coupling end of the second directional coupler is connected to the input end of the second isolator, and the output end of the second isolator is connected to the input end of the output antenna.
一种基于混频调制反馈环的梳状信号源,包括本振信号源、第一隔离器、第一功分器、第一混频器、中频信号源、第一微波放大器、第二功分器、第二隔离器、输出天线和第二微波放大器;还包括功分电桥、第二混频器、射频功分器、射频功分器和倍频器;A comb-shaped signal source based on a frequency mixing modulation feedback loop, comprising a local oscillator signal source, a first isolator, a first power divider, a first mixer, an intermediate frequency signal source, a first microwave amplifier, and a second power divider a power divider, a second isolator, an output antenna and a second microwave amplifier; also include a power division bridge, a second mixer, a radio frequency power divider, a radio frequency power divider and a frequency multiplier;
其中,本振信号源的输出端与第一隔离器的输入端连接,第一隔离器输出端与第一定向耦合器的输入端连接;Wherein, the output end of the local oscillator signal source is connected with the input end of the first isolator, and the output end of the first isolator is connected with the input end of the first directional coupler;
第一定向耦合器的输出端与功分电桥的输入端连接,功分电桥的两个输出端分别与第一混频器的本振端和第二混频器的本振端连接,第一混频器和中频信号源之间安装功分器,功分器的两个输出端其中一个连接第一混频器的中频端,功分器的另一个输出端连接倍频器的输入端,倍频器的输出端与第二混频器的中频端连接。第一混频器和第二混频器的射频端分别与射频功分器的输入端口连接,射频功分器的输出端与第一微波放大器的输入端连接;The output end of the first directional coupler is connected to the input end of the power divider bridge, and the two output ends of the power divider bridge are respectively connected to the local oscillator end of the first mixer and the local oscillator end of the second mixer , a power divider is installed between the first mixer and the intermediate frequency signal source, one of the two output ends of the power divider is connected to the intermediate frequency end of the first mixer, and the other output end of the power divider is connected to the frequency multiplier The input end, the output end of the frequency multiplier is connected with the intermediate frequency end of the second mixer. The radio frequency ends of the first mixer and the second frequency mixer are respectively connected with the input port of the radio frequency power divider, and the output end of the radio frequency power divider is connected with the input end of the first microwave amplifier;
第一微波放大器的输出端与第二定向耦合器的输入端连接,第二定向耦合器的耦合端与第二微波放大器的输入端连接,第二微波放大器的输出端与第一定向耦合器的耦合端连接,第二定向耦合器输出端与第二隔离器的输入端连接,第二隔离器的输出端与输出天线的输入端连接。The output end of the first microwave amplifier is connected to the input end of the second directional coupler, the coupling end of the second directional coupler is connected to the input end of the second microwave amplifier, and the output end of the second microwave amplifier is connected to the first directional coupler The coupling end of the second directional coupler is connected to the input end of the second isolator, and the output end of the second isolator is connected to the input end of the output antenna.
本发明的显著效果如下:本装置能同时产生具有多个点频的梳状频率阵列信号。相较于现有技术,在双边带混频的基础上增加了一个放大器组成的环回路,通过环回路的谐振,使混频器产生非线性效应,使多个频率的功率最终达到基本一致,产生一系列频率阵列信号,因此频率数量较多、输出功率的平坦度高。该回路使用器件较少,因此成本低。另外信号源由外部输入的本振和中频决定,可以比较容易调节频率间隔和数量。The significant effects of the present invention are as follows: the device can simultaneously generate comb-shaped frequency array signals with multiple point frequencies. Compared with the prior art, a loop loop composed of an amplifier is added on the basis of double-sideband mixing. Through the resonance of the loop loop, the mixer produces a nonlinear effect, so that the power of multiple frequencies is basically the same. A series of frequency array signals are generated, so the number of frequencies is large and the flatness of the output power is high. The circuit uses fewer components, so the cost is low. In addition, the signal source is determined by the external input local oscillator and intermediate frequency, and it is relatively easy to adjust the frequency interval and quantity.
附图说明Description of drawings
图1为基于混频调制反馈环的梳状信号源第一实施例示意图;1 is a schematic diagram of a first embodiment of a comb-shaped signal source based on a frequency mixing modulation feedback loop;
图2为基于混频调制反馈环的梳状信号源第二实施例示意图;2 is a schematic diagram of a second embodiment of a comb-shaped signal source based on a frequency mixing modulation feedback loop;
图中:1.本振信号源;2.第一隔离器;3.第一定向耦合器;4.第一混频器;5.中频信号源;6.第一微波放大器;7.第二定向耦合器;8.第二隔离器;9.输出天线;10.第二微波放大器;11.功分电桥;12.射频功分器;13.中频功分器;14.第二混频器;15.相移器。In the figure: 1. Local oscillator signal source; 2. The first isolator; 3. The first directional coupler; 4. The first mixer; 5. The intermediate frequency signal source; 6. The first microwave amplifier; 7. The first Two directional couplers; 8. Second isolator; 9. Output antenna; 10. Second microwave amplifier; 11. Power divider bridge; 12. RF power divider; 13. Intermediate frequency power divider; Frequency converter; 15. Phase shifter.
具体实施方式Detailed ways
下面通过附图及具体实施方式对本发明作进一步说明。The present invention will be further described below through the accompanying drawings and specific embodiments.
以下部件的说明中,所谓的“第一”、“第二”并不代表任何逻辑上的先后关系,仅仅是为了区分系统中包括的两个相同的部件。In the description of the following components, the so-called "first" and "second" do not represent any logical sequence relationship, but are only used to distinguish two identical components included in the system.
如图1所示本发明的一个实施方案为:One embodiment of the present invention as shown in Figure 1 is:
本振信号源1的输出端与第一隔离器2的输入端连接,第一隔离器2输出端与第一定向耦合器3的输入端连接,第一定向耦合器3的输出端与第一混频器4的本振端连接,中频信号源5的输出端与第一混频器4的中频端连接,第一混频器4的射频端与第一微波放大器6的输入端连接,第一微波放大器6的输出端与第二定向耦合器7的输入端连接,第二定向耦合器7的耦合端与第二微波放大器10的输入端连接,第二微波放大器10的输出端与第一定向耦合器3的耦合端连接,第二定向耦合器7输出端与第二隔离器8的输入端连接,第二隔离器8的输出端与输出天线9的输入端连接。The output end of the local
所述本振信号源1和中频信号源5为点频信号源,要求其功率足够驱动第一混频器4,一般取值为10-16dBm。The local
所述第一隔离器2用于防止混频环路产生的微波传入本振信号源1,起到保护作用,对于反馈环回路产生梳状信号没有直接影响。The
所述基于混频调制的反馈环,包括第一定向耦合器3、第一混频器4、信号放大器6、10和第二定向耦合器7。其中,第一定向耦合器3将环路反馈信号和外部信号合成并送入第一混频器4;第一混频器4的作用是产生与第一定向耦合器3输出信号具有一定频率差的变频信号,其混频方式不限于上/下单边带混频、双边带混频或更复杂的变频结构;第一微波放大器6的作用是放大第一混频器4的输出,其决定了最终输出梳状信号的功率;第二定向耦合器7的作用是导出环路的信号作为最终输出,并产生一路信号用作为反馈,要求该器件两路输出之间具有较高的隔离度,该功能的实现器件不限于定向耦合器,例如用功分器可以实现同样的功能;第二微波放大器10的作用是放大反馈信号并送入功合器输入端,目的是使反馈信号功率足够驱动混频器工作,其饱和功率增益的要求与第一混频器4和第二混频器14的驱动功率相关,其饱和功率为19-21dBm,功率增益与回路损耗有关,通常取20-30dB。The feedback loop based on frequency mixing modulation includes a first
第二隔离器8用于防止由外围的系统反射微波,对多反馈环回路产生影响,从而影响输出频率和功率。为减少外部系统对信号源的影响,通常要求隔离度20~30dB。The
反馈环的工作方式为:本振信号源1输出的点频信号经过第一隔离器2和第一定向耦合器3到达第一混频器4的输入端作为本振信号,中频信号源5输出的点频信号输入到第一混频器4的中频输入端,根据混频器的工作方式,第一混频器4输出的频率包含双边带变频或谐波变频等,第一混频器4输出的变频信号经放大后被第二定向耦合器7耦合一部分功率给第二微波放大器10放大,最后在第一定向耦合器3中与本振信号源1的点频信号进行合路,从而构成一个由混频器和放大器组成的环回路。The working mode of the feedback loop is as follows: the point frequency signal output by the local
本反馈环回路的简化理解为:在环回路开始上电工作后,第一定向耦合器3经环回路合路输出信号将具有多个频点,第一混频器4对这些多个频点再进行混频,产生向高次波的频点扩展,从而产生以本振信号1的频率为中心,中频信号5的频率为间隔的梳状频率阵列信号。梳状信号的中心基准频点由本振信号源1决定,梳状信号的频点间隔由中频信号源5决定,梳状信号的输出功率由主要由第一微波放大器6决定。The simplification of the feedback loop is understood as: after the loop starts to work, the output signal of the first
所述第一微波放大器6和第二微波放大器10的总增益需要大于整个反馈环回路的总损耗,环回路总损耗包括混频器的变频损耗、定向耦合器耦合度,连接线的插入损耗等,为保证系统稳定可靠运行,第一微波放大器6和第二微波放大器10的总增益比总损耗大5~10dB。The total gain of the
该梳状频率阵列信号的输出个数和功率分布主要由放大器和该环回路对各个频率的响应决定。其中梳状信号的平坦度主要由第一混频器4的特性决定,梳状信号的频带宽度主要由反馈环内所有器件的工作频带决定,通常,可以在反馈环内添加带通滤波器限制梳状信号的带宽,该滤波器可以加在环回路的任意两个部件之间,如第一混频器4和第一微波放大器6之间,或者在微波放大器6和第二定向耦合器7之间。The output number and power distribution of the comb-shaped frequency array signal are mainly determined by the response of the amplifier and the loop to each frequency. The flatness of the comb-shaped signal is mainly determined by the characteristics of the
基于实施例1的基础,本发明的基于混频调制反馈环的梳状信号源还可以改成如图2所示的复合结构,以进一步改善梳状信号的功分平坦度和分布。图2给出了本发明的第二个实施例中使用复合变频结构的梳状频率信号源结构示意图。Based on the basis of
如图2所示,在实施例1的反馈环回路中增加功分电桥11、第二混频器14、射频功分器13和射频功分器12。即第一定向耦合器3的输出端与功分电桥11的输入端连接,功分电桥11的两个输出端分别与第一混频器4的本振端和第二混频器14的本振端连接,第一混频器4和中频信号源5之间安装功分器13,功分器13的两个输出端其中一个连接第一混频器4的中频端,功分器13的另一个输出端连接移相器15的输入端,移相器15的输出端与第二混频器14的中频端连接。第一混频器4和第二混频器14的射频端分别与射频功分器12的输入端口连接,射频功分器12的输出端与第一微波放大器6的输入端连接。As shown in FIG. 2 , a
功分电桥11可以采用正交电桥或角度可调的电桥。中频信号5经功分器13分一路信号给移相器15,最后输出给第二混频器14的中频输入端。通过调节功分电桥11和移相器15的相位角度,可以调节梳状频率阵列信号的功率平坦度。The
实施例图2中,移相器15还可以用倍频器来替代,用于输出中频信号5的高次谐波给第二混频器14,以拓展输出梳状信号的频率个数。Embodiment In FIG. 2 , the
上面结合附图和实施对本发明作了详细说明,但是本发明并不限于上述实施例子,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。本项技术除了用于微波频段外,还可以用于其它射频信号段。本发明的梳状多波束信号源可用于各微波段和射频段系统中,特别是微波反射、雷达测量、通信等军事及民用。The present invention has been described in detail above in conjunction with the accompanying drawings and implementation, but the present invention is not limited to the above-mentioned embodiments, and within the scope of knowledge possessed by those of ordinary skill in the art, various Variety. In addition to the microwave frequency band, this technology can also be used in other radio frequency signal segments. The comb-shaped multi-beam signal source of the invention can be used in various microwave section and radio frequency section systems, especially for military and civil applications such as microwave reflection, radar measurement, and communication.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910441106.8A CN111987995B (en) | 2019-05-24 | 2019-05-24 | Comb signal source based on frequency mixing modulation feedback loop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910441106.8A CN111987995B (en) | 2019-05-24 | 2019-05-24 | Comb signal source based on frequency mixing modulation feedback loop |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111987995A true CN111987995A (en) | 2020-11-24 |
CN111987995B CN111987995B (en) | 2024-07-16 |
Family
ID=73437544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910441106.8A Active CN111987995B (en) | 2019-05-24 | 2019-05-24 | Comb signal source based on frequency mixing modulation feedback loop |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111987995B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112566348A (en) * | 2020-12-01 | 2021-03-26 | 大连理工大学 | Dual-band multi-beam microwave diagnosis system for electron density disturbance localized measurement |
CN113126035A (en) * | 2021-04-20 | 2021-07-16 | 核工业西南物理研究院 | Multichannel microwave detector based on comb spectrum frequency conversion |
CN113721054A (en) * | 2021-07-15 | 2021-11-30 | 宁波市信测检测技术有限公司 | Comb signal generator |
CN116415672A (en) * | 2021-12-29 | 2023-07-11 | 本源量子计算科技(合肥)股份有限公司 | Quantum control system and quantum computer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146616A (en) * | 1991-06-27 | 1992-09-08 | Hughes Aircraft Company | Ultra wideband radar transmitter employing synthesized short pulses |
US5239309A (en) * | 1991-06-27 | 1993-08-24 | Hughes Aircraft Company | Ultra wideband radar employing synthesized short pulses |
US5471665A (en) * | 1994-10-18 | 1995-11-28 | Motorola, Inc. | Differential DC offset compensation circuit |
WO2003085819A2 (en) * | 2002-04-04 | 2003-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Linearity improvement of gilbert mixers |
KR100668363B1 (en) * | 2005-12-08 | 2007-01-16 | 한국전자통신연구원 | RF transceiver for millimeter wave band radar sensor using MMC |
WO2017219954A1 (en) * | 2016-06-20 | 2017-12-28 | 深圳市华讯星通讯有限公司 | Communication transceiver |
CN210111948U (en) * | 2019-05-24 | 2020-02-21 | 核工业西南物理研究院 | A Comb Signal Source Based on Mixing Modulation Feedback Loop |
-
2019
- 2019-05-24 CN CN201910441106.8A patent/CN111987995B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146616A (en) * | 1991-06-27 | 1992-09-08 | Hughes Aircraft Company | Ultra wideband radar transmitter employing synthesized short pulses |
US5239309A (en) * | 1991-06-27 | 1993-08-24 | Hughes Aircraft Company | Ultra wideband radar employing synthesized short pulses |
US5471665A (en) * | 1994-10-18 | 1995-11-28 | Motorola, Inc. | Differential DC offset compensation circuit |
WO2003085819A2 (en) * | 2002-04-04 | 2003-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Linearity improvement of gilbert mixers |
KR100668363B1 (en) * | 2005-12-08 | 2007-01-16 | 한국전자통신연구원 | RF transceiver for millimeter wave band radar sensor using MMC |
WO2017219954A1 (en) * | 2016-06-20 | 2017-12-28 | 深圳市华讯星通讯有限公司 | Communication transceiver |
CN210111948U (en) * | 2019-05-24 | 2020-02-21 | 核工业西南物理研究院 | A Comb Signal Source Based on Mixing Modulation Feedback Loop |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112566348A (en) * | 2020-12-01 | 2021-03-26 | 大连理工大学 | Dual-band multi-beam microwave diagnosis system for electron density disturbance localized measurement |
CN113126035A (en) * | 2021-04-20 | 2021-07-16 | 核工业西南物理研究院 | Multichannel microwave detector based on comb spectrum frequency conversion |
CN113126035B (en) * | 2021-04-20 | 2024-01-23 | 核工业西南物理研究院 | Multichannel microwave detector based on comb spectrum frequency conversion |
CN113721054A (en) * | 2021-07-15 | 2021-11-30 | 宁波市信测检测技术有限公司 | Comb signal generator |
CN116415672A (en) * | 2021-12-29 | 2023-07-11 | 本源量子计算科技(合肥)股份有限公司 | Quantum control system and quantum computer |
Also Published As
Publication number | Publication date |
---|---|
CN111987995B (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111987995B (en) | Comb signal source based on frequency mixing modulation feedback loop | |
CN101262239B (en) | Mm wave RF receiving/transmission device | |
CN103401072A (en) | Periodic amplitude control-based phased-array antenna system and wave beam control method | |
US10033083B1 (en) | Ka-band waveguide hybrid divider with unequal and arbitrary power output ratio | |
CN105304998A (en) | Novel broadband radial curve gradient ridge space power distribution/synthesizer | |
CN105322265B (en) | Power divider/synthesizer based on fan-shaped waveguide | |
EP3070840B1 (en) | Power amplifier and power amplification method | |
CN104142447A (en) | High-stability and large-dynamics one-millimeter S parameter testing system | |
Qin et al. | Parametric conversion with distributedly modulated capacitors (DMC) for low-noise and non-reciprocal RF front-ends | |
CN210111948U (en) | A Comb Signal Source Based on Mixing Modulation Feedback Loop | |
CN104079242A (en) | Frequency multiplier | |
CN110212929A (en) | A kind of harmonics restraint transmitter | |
CN106685443A (en) | A Broadband High Efficiency Power Amplifier Including Active Load Modulation | |
CN113259048B (en) | X-waveband high-power suppressing interference device | |
CN107241064B (en) | A method for generating non-return-to-zero pulse signal whose top and bottom power can be precisely adjusted | |
CN116455355B (en) | Bidirectional vector modulation active phase shifter and electronic equipment | |
CN117595838A (en) | Amplitude and phase synchronous calibration circuit | |
CN111355485B (en) | System and method for eliminating phase drift of delay line | |
Steinweg et al. | A 5 dBm BiCMOS 90° phase shifter with single-voltage tuning for mm-wave beam steering | |
CN109412621B (en) | Four-channel independent amplitude-stabilized local oscillator power dividing device and method | |
CN107645349B (en) | Phase-adjustable multi-carrier passive intermodulation test system | |
CN207992463U (en) | A kind of multi-beam microwave source based on multiplexer | |
JPH10303650A (en) | Frequency converter | |
KR100573013B1 (en) | Radar system using balance structure | |
CN221960280U (en) | A multi-channel transceiver TR module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |