CN111987278B - Composite diaphragm for lithium metal secondary battery and preparation method and application thereof - Google Patents
Composite diaphragm for lithium metal secondary battery and preparation method and application thereof Download PDFInfo
- Publication number
- CN111987278B CN111987278B CN202010753375.0A CN202010753375A CN111987278B CN 111987278 B CN111987278 B CN 111987278B CN 202010753375 A CN202010753375 A CN 202010753375A CN 111987278 B CN111987278 B CN 111987278B
- Authority
- CN
- China
- Prior art keywords
- lithium metal
- lithium
- separator
- battery
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 73
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 15
- -1 magnesium nitride Chemical class 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 21
- 239000011149 active material Substances 0.000 claims description 16
- 239000010410 layer Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000006255 coating slurry Substances 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 238000004146 energy storage Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000000661 sodium alginate Substances 0.000 claims description 3
- 235000010413 sodium alginate Nutrition 0.000 claims description 3
- 229940005550 sodium alginate Drugs 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims 2
- 230000008021 deposition Effects 0.000 abstract description 9
- 210000001787 dendrite Anatomy 0.000 abstract description 7
- 150000002500 ions Chemical class 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 4
- 239000010416 ion conductor Substances 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 229910001512 metal fluoride Inorganic materials 0.000 description 4
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 3
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021583 Cobalt(III) fluoride Inorganic materials 0.000 description 2
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910021569 Manganese fluoride Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 2
- RRZKHZBOZDIQJG-UHFFFAOYSA-N azane;manganese Chemical compound N.[Mn] RRZKHZBOZDIQJG-UHFFFAOYSA-N 0.000 description 2
- BCZWPKDRLPGFFZ-UHFFFAOYSA-N azanylidynecerium Chemical compound [Ce]#N BCZWPKDRLPGFFZ-UHFFFAOYSA-N 0.000 description 2
- IBIOTXDDKRNYMC-UHFFFAOYSA-N azanylidynedysprosium Chemical compound [Dy]#N IBIOTXDDKRNYMC-UHFFFAOYSA-N 0.000 description 2
- QCLQZCOGUCNIOC-UHFFFAOYSA-N azanylidynelanthanum Chemical compound [La]#N QCLQZCOGUCNIOC-UHFFFAOYSA-N 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 2
- XLWMYKCPNRBIDK-UHFFFAOYSA-N azanylidyneytterbium Chemical compound [Yb]#N XLWMYKCPNRBIDK-UHFFFAOYSA-N 0.000 description 2
- QCCDYNYSHILRDG-UHFFFAOYSA-K cerium(3+);trifluoride Chemical compound [F-].[F-].[F-].[Ce+3] QCCDYNYSHILRDG-UHFFFAOYSA-K 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- YCYBZKSMUPTWEE-UHFFFAOYSA-L cobalt(ii) fluoride Chemical compound F[Co]F YCYBZKSMUPTWEE-UHFFFAOYSA-L 0.000 description 2
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- CTNMMTCXUUFYAP-UHFFFAOYSA-L difluoromanganese Chemical compound F[Mn]F CTNMMTCXUUFYAP-UHFFFAOYSA-L 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000011532 electronic conductor Substances 0.000 description 2
- GGJOARIBACGTDV-UHFFFAOYSA-N germanium difluoride Chemical compound F[Ge]F GGJOARIBACGTDV-UHFFFAOYSA-N 0.000 description 2
- BIXHRBFZLLFBFL-UHFFFAOYSA-N germanium nitride Chemical compound N#[Ge]N([Ge]#N)[Ge]#N BIXHRBFZLLFBFL-UHFFFAOYSA-N 0.000 description 2
- 238000000713 high-energy ball milling Methods 0.000 description 2
- 229910001337 iron nitride Inorganic materials 0.000 description 2
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 2
- 239000011533 mixed conductor Substances 0.000 description 2
- LNDHQUDDOUZKQV-UHFFFAOYSA-J molybdenum tetrafluoride Chemical compound F[Mo](F)(F)F LNDHQUDDOUZKQV-UHFFFAOYSA-J 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 2
- 229910001637 strontium fluoride Inorganic materials 0.000 description 2
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- FWQVINSGEXZQHB-UHFFFAOYSA-K trifluorodysprosium Chemical compound F[Dy](F)F FWQVINSGEXZQHB-UHFFFAOYSA-K 0.000 description 2
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 2
- XASAPYQVQBKMIN-UHFFFAOYSA-K ytterbium(iii) fluoride Chemical compound F[Yb](F)F XASAPYQVQBKMIN-UHFFFAOYSA-K 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical group [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 description 1
- MBLUWALPEKUVHJ-UHFFFAOYSA-N [Se].[C] Chemical compound [Se].[C] MBLUWALPEKUVHJ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NFVUDQKTAWONMJ-UHFFFAOYSA-I pentafluorovanadium Chemical compound [F-].[F-].[F-].[F-].[F-].[V+5] NFVUDQKTAWONMJ-UHFFFAOYSA-I 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于电化学电源领域,具体涉及一种锂金属二次电池功能性复合隔膜及其制备方法、使用该隔膜所组装的锂金属二次电池及其在储能器件中的应用。The invention belongs to the field of electrochemical power sources, and in particular relates to a functional composite diaphragm of a lithium metal secondary battery, a preparation method thereof, a lithium metal secondary battery assembled by using the diaphragm, and its application in an energy storage device.
背景技术Background technique
锂离子二次电池在消费电子和通信领域已经得到广泛应用。但由于其理论容量有限,开发利用已经接近极限。随着未来在混合电动汽车和智能电网等领域的迅猛发展,人们对储能环节的锂离子电池提出了越来越高的性能要求,比如高能量密度、高安全性等。Lithium-ion secondary batteries have been widely used in consumer electronics and communications. However, due to its limited theoretical capacity, its development and utilization are approaching the limit. With the rapid development of hybrid electric vehicles and smart grids in the future, people put forward higher and higher performance requirements for lithium-ion batteries in the energy storage link, such as high energy density and high safety.
金属锂由于具有较高的理论比容量(3860mAh/g)和最低的负极电化学势(-3.04V,氢标电势)而备受重视,拥有广阔的发展前景。锂金属二次电池可提供远高于传统电池的能量密度,被视为下一代最重要的储能技术之一。Lithium metal has attracted much attention due to its high theoretical specific capacity (3860mAh/g) and the lowest negative electrode electrochemical potential (-3.04V, hydrogen standard potential), and has broad development prospects. Lithium metal secondary batteries can provide much higher energy density than conventional batteries and are regarded as one of the most important energy storage technologies for the next generation.
然而,在电池循环过程中,锂金属负极表面的金属锂沉积不均匀,造成锂枝晶的产生,容易刺穿隔膜,造成极大的安全隐患。另一方面,锂金属负极和电解液之间的反应活性极高,在界面固态电解质层(SEI)不断崩溃瓦解之后,又重新形成新的SEI,不断消耗电解液,生成有害副产物,降低电池的循环寿命。所以,保护金属锂负极成为金属锂电池实现商业化发展的关键挑战。However, during the battery cycle process, the uneven deposition of metallic lithium on the surface of the lithium metal negative electrode results in the formation of lithium dendrites, which are easy to pierce the separator and cause great safety hazards. On the other hand, the reaction activity between the lithium metal anode and the electrolyte is extremely high. After the interfacial solid electrolyte layer (SEI) continues to collapse and disintegrate, a new SEI is formed again, which continuously consumes the electrolyte and generates harmful by-products. cycle life. Therefore, protecting the lithium metal anode has become a key challenge for the commercialization of lithium metal batteries.
目前最常见的保护金属锂负极的手段是增加电解液添加剂,或者在锂负极上修饰一层保护层,防止电解液和锂金属的持续反应,均匀锂的沉积;或者将锂负极做成三维集流体,增加比表面积,降低电流密度,引导锂的均匀沉积。但是,这些手段都涉及复杂的制备工艺和苛刻的制造环境,不利于规模化的实际生产。At present, the most common means to protect the metal lithium negative electrode is to add electrolyte additives, or to modify a protective layer on the lithium negative electrode to prevent the continuous reaction between the electrolyte and lithium metal, and to uniformly deposit lithium; or to make the lithium negative electrode into a three-dimensional collection fluid, increasing the specific surface area, decreasing the current density, and guiding the uniform deposition of lithium. However, these methods all involve complex preparation processes and harsh manufacturing environments, which are not conducive to large-scale actual production.
因此,亟需开发一种工艺简单且成本较低的保护金属锂负极的方法,在负极循环过程中实现抑制金属锂枝晶的效果,提高电池的安全性和循环稳定性,促使金属锂电池走向实用化。Therefore, there is an urgent need to develop a simple and low-cost method for protecting the lithium metal negative electrode, which can achieve the effect of suppressing metal lithium dendrites during the cycle of the negative electrode, improve the safety and cycle stability of the battery, and promote the development of lithium metal batteries. Practical.
发明内容SUMMARY OF THE INVENTION
因此,本发明的目的是解决现有二次电池中存在锂金属负极容易产生锂枝晶,刺穿隔膜,造成严重的安全隐患的问题,提供一种简单易操作的功能性复合隔膜,能够均匀锂离子的沉积,抑制锂枝晶的产生,提高电池的循环稳定性和安全性,同时避免现有技术对锂金属直接修饰的繁琐工序和苛刻的操作环境。Therefore, the purpose of the present invention is to solve the problem that the lithium metal negative electrode in the existing secondary battery is easy to generate lithium dendrites, pierce the diaphragm, and cause serious safety hazards, and provide a simple and easy-to-operate functional composite diaphragm, which can uniformly The deposition of lithium ions can inhibit the generation of lithium dendrites, improve the cycle stability and safety of the battery, and avoid the tedious procedures and harsh operating environment of the direct modification of lithium metal in the prior art.
一方面,本发明提供了一种锂金属二次电池用复合隔膜,所述复合隔膜包括隔膜基层和涂覆在所述隔膜基层的至少一个表面上的功能涂层,其中,所述功能涂层包含能够与锂金属反应的物质颗粒。In one aspect, the present invention provides a composite separator for a lithium metal secondary battery, the composite separator comprising a separator base layer and a functional coating coated on at least one surface of the separator base layer, wherein the functional coating layer Contains particles of substances capable of reacting with lithium metal.
根据本发明提供的复合隔膜,其中,所述能够与锂金属反应的物质颗粒包括至少一种金属氮化物和/或金属氟化物。其中,所述金属氮化物可以选自氮化镁、氮化铜、氮化锶、氮化镝、氮化镧、氮化铈、氮化镱、氮化铁、氮化锰、氮化钛、氮化钒、氮化钴、氮化镍、氮化钼、氮化锗和氮化铝中的一种或多种。所述金属氟化物可以选自氟化镁、氟化铜、氟化锶、氟化镝、氟化镧、氟化铈、氟化镱、氟化铁、氟化锰、氟化钛、氟化钒、氟化钴、氟化镍、氟化钼、氟化锗和氟化铝中的一种或多种。According to the composite separator provided by the present invention, the substance particles capable of reacting with lithium metal include at least one metal nitride and/or metal fluoride. Wherein, the metal nitride can be selected from magnesium nitride, copper nitride, strontium nitride, dysprosium nitride, lanthanum nitride, cerium nitride, ytterbium nitride, iron nitride, manganese nitride, titanium nitride, One or more of vanadium nitride, cobalt nitride, nickel nitride, molybdenum nitride, germanium nitride and aluminum nitride. The metal fluoride may be selected from magnesium fluoride, copper fluoride, strontium fluoride, dysprosium fluoride, lanthanum fluoride, cerium fluoride, ytterbium fluoride, iron fluoride, manganese fluoride, titanium fluoride, fluoride One or more of vanadium, cobalt fluoride, nickel fluoride, molybdenum fluoride, germanium fluoride, and aluminum fluoride.
根据本发明提供的复合隔膜,其中,所述功能涂层的厚度可以为0.1~30μm,优选为0.5~5μm。According to the composite separator provided by the present invention, the thickness of the functional coating may be 0.1-30 μm, preferably 0.5-5 μm.
在一种优选的实施方案中,所述物质颗粒的粒径为5nm~5μm,优选为200~500nm。In a preferred embodiment, the particle size of the substance particles is 5 nm˜5 μm, preferably 200˜500 nm.
根据本发明提供的复合隔膜,其中,对所述隔膜基层没有特别限定,采用本领域常见的二次电池所用的隔膜即可。例如,所述隔膜基层可以选自聚乙烯隔膜、聚丙烯隔膜、聚乙烯/聚丙烯隔膜、氧化铝聚乙烯隔膜和陶瓷纤维纸隔膜。According to the composite separator provided by the present invention, the separator base layer is not particularly limited, and a separator commonly used in secondary batteries in the art can be used. For example, the membrane base layer may be selected from polyethylene membranes, polypropylene membranes, polyethylene/polypropylene membranes, alumina polyethylene membranes, and ceramic fiber paper membranes.
本发明提供的复合隔膜是一种功能性隔膜,其能够在电池的装配过程中将预先涂覆在隔膜上的涂层化合物转移到锂金属表面,对锂金属进行保护。这样极大的避免了传统繁琐的锂金属保护方案,步骤简单,利于生产,节约成本。更重要的是,此涂层能在电化学反应过程中原位转换生成混合电子离子导体层,同时调节锂负极界面处的电子和离子分布,缓解离子浓度梯度,均匀锂的沉积,避免锂枝晶的产生,提高电池的安全性和循环稳定性。The composite separator provided by the present invention is a functional separator, which can transfer the coating compound pre-coated on the separator to the surface of lithium metal during the battery assembly process to protect the lithium metal. In this way, the traditional and cumbersome lithium metal protection scheme is greatly avoided, and the steps are simple, which is beneficial to production and saves costs. More importantly, this coating can in-situ convert to form a mixed electron-ion conductor layer during the electrochemical reaction, and simultaneously adjust the electron and ion distribution at the lithium anode interface, ease the ion concentration gradient, uniform lithium deposition, and avoid lithium dendrites. production, improve the safety and cycle stability of the battery.
另一方面,本发明还提供了所述复合隔膜的制备方法,所述制备方法包括以下步骤:On the other hand, the present invention also provides a preparation method of the composite diaphragm, and the preparation method comprises the following steps:
(1)将活性物质颗粒和粘结剂分散在有机溶剂中,得到涂层浆料;(1) disperse the active material particles and the binder in an organic solvent to obtain a coating slurry;
(2)将步骤(1)制备的涂层浆料涂覆在隔膜基层的至少一个表面上,干燥即得所述复合隔膜。(2) Coating the coating slurry prepared in step (1) on at least one surface of the diaphragm base layer, and drying to obtain the composite diaphragm.
根据本发明提供的制备方法,其中,所述活性物质颗粒包括至少一种金属氮化物和/或金属氟化物,优选地,所述金属氮化物选自氮化镁、氮化铜、氮化锶、氮化镝、氮化镧、氮化铈、氮化镱、氮化铁、氮化锰、氮化钛、氮化钒、氮化钴、氮化镍、氮化钼、氮化锗和氮化铝中的一种或多种;所述金属氟化物可以选自氟化镁、氟化铜、氟化锶、氟化镝、氟化镧、氟化铈、氟化镱、氟化铁、氟化锰、氟化钛、氟化钒、氟化钴、氟化镍、氟化钼、氟化锗和氟化铝中的一种或多种。According to the preparation method provided by the present invention, the active material particles include at least one metal nitride and/or metal fluoride, preferably, the metal nitride is selected from magnesium nitride, copper nitride, and strontium nitride , dysprosium nitride, lanthanum nitride, cerium nitride, ytterbium nitride, iron nitride, manganese nitride, titanium nitride, vanadium nitride, cobalt nitride, nickel nitride, molybdenum nitride, germanium nitride and nitrogen One or more of aluminum fluoride; the metal fluoride can be selected from magnesium fluoride, copper fluoride, strontium fluoride, dysprosium fluoride, lanthanum fluoride, cerium fluoride, ytterbium fluoride, iron fluoride, One or more of manganese fluoride, titanium fluoride, vanadium fluoride, cobalt fluoride, nickel fluoride, molybdenum fluoride, germanium fluoride and aluminum fluoride.
根据本发明提供的制备方法,其中,所述粘结剂选自聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、丁苯橡胶、海藻酸钠、聚氧化乙烯、聚乙烯醇、聚四氟乙烯和聚酰胺中的一种或多种;优选地,所述溶剂选自二甲基亚砜、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙醚、乙腈、环己烷、二氯甲烷、丙酮、乙醇和甲醇中的一种或多种。According to the preparation method provided by the present invention, wherein the binder is selected from polyvinylidene fluoride, carboxymethyl cellulose, sodium carboxymethyl cellulose, styrene-butadiene rubber, sodium alginate, polyethylene oxide, polyvinyl alcohol , one or more of polytetrafluoroethylene and polyamide; preferably, the solvent is selected from dimethyl sulfoxide, N-methylpyrrolidone, N,N-dimethylformamide, N,N- One or more of dimethylacetamide, diethyl ether, acetonitrile, cyclohexane, dichloromethane, acetone, ethanol and methanol.
本发明制备方法对所述活性物质颗粒和粘结剂在所述涂层浆料中的含量没有特别限定。在一些实施方案中,活性物质颗粒在所述涂层浆料中的质量分数为1~50wt.%,优选为10~20wt.%。在一些实施方案中,粘结剂在所述涂层浆料中的质量分数为0.1~20wt.%,优选为1~10wt.%。In the preparation method of the present invention, the content of the active material particles and the binder in the coating slurry is not particularly limited. In some embodiments, the mass fraction of active material particles in the coating slurry is 1-50 wt.%, preferably 10-20 wt.%. In some embodiments, the mass fraction of the binder in the coating slurry is 0.1-20 wt.%, preferably 1-10 wt.%.
在本发明的一种优选的实施方案中,通过高能球磨将所述涂层浆料混合均匀,球磨转速为300~800rpm,优选为400~600rpm;球磨时间为3~10小时,优选为4~8小时。In a preferred embodiment of the present invention, the coating slurry is uniformly mixed by high-energy ball milling, and the ball milling speed is 300-800 rpm, preferably 400-600 rpm; the ball milling time is 3-10 hours, preferably 4- 8 hours.
根据本发明提供的制备方法,其中,所述干燥的温度可以为10~80℃,优选为30~60℃。According to the preparation method provided by the present invention, the drying temperature may be 10-80°C, preferably 30-60°C.
再一方面,本发明还提供了一种锂金属二次电池,所述锂金属二次电池包括正极、锂负极、电解液和隔膜,其中所述隔膜为上述复合隔膜,并且所述复合隔膜朝向所述锂负极的表面涂覆有涂层。In yet another aspect, the present invention also provides a lithium metal secondary battery, the lithium metal secondary battery includes a positive electrode, a lithium negative electrode, an electrolyte, and a separator, wherein the separator is the above-mentioned composite separator, and the composite separator faces toward The surface of the lithium negative electrode is coated with a coating.
根据本发明提供的锂金属二次电池,其中,所述正极可以为用于锂金属二次电池的常规正极,例如可以包括正极活性物质、导电添加剂和粘结剂等。According to the lithium metal secondary battery provided by the present invention, the positive electrode may be a conventional positive electrode used for lithium metal secondary batteries, for example, may include a positive electrode active material, a conductive additive, a binder, and the like.
本发明对所述正极活性物质没有特别的限定,一般锂金属二次电池所用的正极活性物质均可,比如镍钴锰酸锂,钴酸锂、锰酸锂、镍锰酸锂、镍钴铝酸锂、硫-柯琴黑复合材料、硫-Super P复合材料、硫-碳纳米管复合材料、硫-酸化碳纳米管复合材料、硒-柯琴黑复合材料、硒-Super P复合材料、硒-碳纳米管复合材料、硒-酸化碳纳米管复合材料中的一种或多种。The present invention has no particular limitation on the positive electrode active material. Generally, any positive electrode active material used in lithium metal secondary batteries can be used, such as nickel cobalt lithium manganate, lithium cobalt oxide, lithium manganate, lithium nickel manganate, nickel cobalt aluminum Lithium oxide, sulfur-Ketjen black composite material, sulfur-Super P composite material, sulfur-carbon nanotube composite material, sulfur-acidified carbon nanotube composite material, selenium-Ketjen black composite material, selenium-Super P composite material, One or more of selenium-carbon nanotube composite materials and selenium-acidified carbon nanotube composite materials.
用于所述正极的导电添加剂可以为Super P、柯琴黑、石墨烯、导电碳纳米管中的一种或多种;所述粘结剂可以为聚偏二氟乙烯、羧甲基纤维素钠、丁苯橡胶/羧甲基纤维素钠、海藻酸钠中的一种或多种。The conductive additive used for the positive electrode can be one or more of Super P, Ketjen black, graphene, and conductive carbon nanotubes; the binder can be polyvinylidene fluoride, carboxymethyl cellulose One or more of sodium, styrene-butadiene rubber/sodium carboxymethyl cellulose, and sodium alginate.
在本发明的一些实施方案中,所述正极中正极活性物质的质量占正极总体质量的70%~90%,导电添加剂占正极总体质量的5%~20%,粘结剂占正极总质量的5%~20%。In some embodiments of the present invention, the mass of the positive active material in the positive electrode accounts for 70% to 90% of the total mass of the positive electrode, the conductive additive accounts for 5% to 20% of the total mass of the positive electrode, and the binder accounts for the total mass of the positive electrode. 5% to 20%.
根据本发明提供的锂金属二次电池,其中,所述负极为金属锂负极。According to the lithium metal secondary battery provided by the present invention, the negative electrode is a metal lithium negative electrode.
根据本发明提供的锂金属二次电池,其中,所述电解液包括溶剂和锂盐。其中,所述溶剂可以选自1,3二氧戊环、1,4二氧己环、四氢呋喃、三羟甲基丙烷三缩水甘油基醚、乙二醇二甲醚、三乙二醇二甲醚、碳酸甲酯、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯中的至少一种;所述锂盐可以为六氟磷酸锂、二草酸硼酸锂、三氟甲基磺酸锂、双(三氟甲基磺酸)亚胺锂、高氯酸锂中的至少一种。优选地,所述锂盐的浓度为0.5~3M。According to the lithium metal secondary battery provided by the present invention, the electrolyte includes a solvent and a lithium salt. Wherein, the solvent can be selected from 1,3 dioxolane, 1,4 dioxane, tetrahydrofuran, trimethylolpropane triglycidyl ether, ethylene glycol dimethyl ether, triethylene glycol dimethyl ether At least one of ether, methyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; the lithium salt can be lithium hexafluorophosphate, lithium dioxalate borate, trifluoromethane At least one of lithium sulfonate, lithium bis(trifluoromethanesulfonate)imide, and lithium perchlorate. Preferably, the concentration of the lithium salt is 0.5-3M.
又一方面,本发明还提供了一种能量存储器件,其包含上述锂金属二次电池。In yet another aspect, the present invention also provides an energy storage device comprising the above-mentioned lithium metal secondary battery.
本发明提供的锂金属二次电池功能性复合隔膜与现有技术相比具有以下的优势:Compared with the prior art, the lithium metal secondary battery functional composite separator provided by the present invention has the following advantages:
1.避免了常规的对锂金属负极或锂金属界面的修饰的复杂程序以及苛刻的环境条件。1. The conventional complex procedures for modification of the lithium metal anode or the lithium metal interface and harsh environmental conditions are avoided.
2.将涂层涂覆在隔膜上,此隔膜则作为电池常规组件进行储存和使用。所得的功能性复合隔膜作为锂金属二次电池隔膜被组装后,可以将涂层转移到锂金属表面,简化了工艺,节约了成本,具有很高的商业化前景。2. The coating is applied to the separator, which is stored and used as a conventional battery component. After the obtained functional composite separator is assembled as a lithium metal secondary battery separator, the coating can be transferred to the lithium metal surface, which simplifies the process, saves the cost, and has a high commercialization prospect.
3.涂层与锂金属在电化学循环的过程中发生原位转化反应,生成电子导体和快离子导体。电子导体能均匀电子分布,同时,快离子导体部分能够迅速传导锂离子,缓解浓度梯度,促进锂的均匀沉积,有效改善金属负极的枝晶问题,提升电池安全性与稳定性。3. The in-situ conversion reaction occurs between the coating and lithium metal during the electrochemical cycle to generate electronic conductors and fast ion conductors. The electronic conductor can distribute electrons evenly, and at the same time, the fast ion conductor part can quickly conduct lithium ions, alleviate the concentration gradient, promote the uniform deposition of lithium, effectively improve the dendrite problem of the metal negative electrode, and improve the safety and stability of the battery.
附图说明Description of drawings
以下,结合附图来详细说明本发明的实施方案,其中:Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein:
图1(a)为本发明实施例1制得的复合隔膜的涂层表面SEM图;Fig. 1 (a) is the SEM image of the coating surface of the composite diaphragm prepared in Example 1 of the present invention;
图1(b)为本发明实施例1制得的复合隔膜的截面SEM图;Figure 1 (b) is a cross-sectional SEM image of the composite diaphragm prepared in Example 1 of the present invention;
图2(a)为本发明实施例1制得的电池在0.5C倍率下的库伦效率及循环性能图;Figure 2(a) is a diagram of the Coulombic efficiency and cycle performance of the battery prepared in Example 1 of the present invention at a rate of 0.5C;
图2(b)为本发明实施例1制得的电池在0.5C倍率下的首圈充放电曲线;Figure 2(b) is the first cycle charge-discharge curve of the battery prepared in Example 1 of the present invention at a rate of 0.5C;
图3(a)为对比例1制得的电池在0.5C倍率下的库伦效率及循环性能图;Figure 3(a) shows the Coulomb efficiency and cycle performance of the battery prepared in Comparative Example 1 at a rate of 0.5C;
图3(b)为对比例1制得的电池在0.5C倍率下的首圈充放电曲线。Figure 3(b) is the first cycle charge-discharge curve of the battery prepared in Comparative Example 1 at a rate of 0.5C.
图4:本发明锂金属二次电池用复合隔膜的示意图。FIG. 4 is a schematic diagram of the composite separator for a lithium metal secondary battery of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。The present invention will be further described in detail below with reference to the specific embodiments, and the given examples are only for illustrating the present invention, rather than for limiting the scope of the present invention.
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,均可从商业途径获得。The experimental methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials can be obtained from commercial sources.
实施例1Example 1
本实施例用于说明本发明复合隔膜的制备及其在镍钴锰酸锂(NCM622)电池中的应用This example is used to illustrate the preparation of the composite separator of the present invention and its application in nickel cobalt lithium manganate (NCM622) batteries
(1)将聚偏氟乙烯(质量分数2wt.%)和氮化镁颗粒(粒径约200nm,质量分数20wt.%)以及N-甲基吡咯烷酮混合,进行高能球磨,转速450rpm,球磨时间4小时。混合完成后,用间隙为1μm的刮刀将此溶液刮涂在商业化聚乙烯隔膜表面。将此隔膜放置于50℃下进行烘干处理,得到表面涂覆氮化镁的复合隔膜。(1) Mix polyvinylidene fluoride (mass fraction 2 wt.%), magnesium nitride particles (particle size is about 200 nm,
图1(a)为涂覆氮化镁一侧的形貌扫描图,图1(b)为复合隔膜的截面扫描图片。从图a中可以看出,氮化镁颗粒均匀涂敷在隔膜表面,截面图b可以看出氮化镁颗粒薄且均匀,紧密地修饰在隔膜基层上。Figure 1(a) is a scanning image of the topography of one side coated with magnesium nitride, and Figure 1(b) is a scanning image of the cross-section of the composite diaphragm. It can be seen from Figure a that the magnesium nitride particles are uniformly coated on the surface of the separator, and the cross-sectional view b shows that the magnesium nitride particles are thin and uniform, and are closely decorated on the base layer of the separator.
(2)高纯氩气下,以NCM622为正极活性物质(200mg),Super P为导电添加剂(25mg),PVDF为粘结剂(25mg),按质量比为8:1:1制备正极片。得到上述极片后,依次叠放复合隔膜,电解液(1M LiPF6溶于EC:DEC:DMC=1:1:1)和锂负极。(2) Under high-purity argon, NCM622 was used as positive active material (200 mg), Super P was used as conductive additive (25 mg), and PVDF was used as binder (25 mg), and the positive electrode sheet was prepared at a mass ratio of 8:1:1. After the above-mentioned pole pieces are obtained, a composite separator, an electrolyte (1M LiPF6 dissolved in EC:DEC:DMC=1:1:1) and a lithium negative electrode are stacked in sequence.
(3)将电池壳完全密封,静置6小时,进行电池性能测试。(3) Completely seal the battery case and let it stand for 6 hours to test the battery performance.
电池性能测试Battery performance test
在电池测试系统中测试电池的电化学性能。测试温度为25℃,测试电压区间为在0.5C下,2.8-4.3V电压条件下进行循环测试,其中1C=200mA h g-1。The electrochemical performance of the battery is tested in a battery test system. The test temperature is 25°C, and the test voltage range is 0.5C and 2.8-4.3V voltage conditions for the cycle test, where 1C=200mA hg -1 .
图2为实施例1制得的NCM622电池在0.5C倍率下的库伦效率及循环性能图(图(2a))以及在0.5C倍率下的首圈充放电曲线(图(2b))。可以看出,使用了复合隔膜的NCM622电池循环稳定,初始放电容量为170.1mAh/g,循环100圈后,容量仍然159.1mAh/g,保持率为93.5%,说明复合隔膜的使用提高的电池的循环稳定性和容量保持率。Figure 2 shows the coulombic efficiency and cycle performance of the NCM622 battery prepared in Example 1 at a rate of 0.5C (Figure (2a)) and the first cycle charge-discharge curve at a rate of 0.5C (Figure (2b)). It can be seen that the NCM622 battery using the composite separator is stable in cycling, with an initial discharge capacity of 170.1mAh/g. After 100 cycles, the capacity is still 159.1mAh/g, and the retention rate is 93.5%, indicating that the use of the composite separator improves the battery’s performance. Cycling stability and capacity retention.
实施例2Example 2
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层活性物质颗粒粒径约50nm。The composite separator and battery were prepared in the same manner as in Example 1, except that the particle size of the coating active material used in step (1) was about 50 nm.
实施例3Example 3
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层活性物质为粒径约1μm。The composite separator and battery were prepared in the same manner as in Example 1, except that the coating active material used in step (1) had a particle size of about 1 μm.
实施例4Example 4
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层活性物质粒径约2μm。The composite separator and battery were prepared in the same manner as in Example 1, except that the particle size of the coating active material used in step (1) was about 2 μm.
实施例5Example 5
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层活性物质粒径约500nm。The composite separator and battery were prepared in the same manner as in Example 1, except that the particle size of the coating active material used in step (1) was about 500 nm.
实施例1-5的比较可见,涂层活性物质的粒径对电池性能有影响,其中200~500nm比较优选。It can be seen from the comparison of Examples 1-5 that the particle size of the coating active material has an influence on the battery performance, and 200-500 nm is preferred.
实施例6Example 6
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层刮刀间隙约5μm。The composite separator and battery were prepared in the same manner as in Example 1, except that the coating blade gap used in step (1) was about 5 μm.
实施例7Example 7
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层刮刀间隙约0.5μm。The composite separator and battery were prepared in the same manner as in Example 1, except that the coating blade gap used in step (1) was about 0.5 μm.
实施例8Example 8
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用涂层刮刀间隙约8μm。The composite separator and battery were prepared in the same manner as in Example 1, except that the coating blade gap used in step (1) was about 8 μm.
实施例6-8的比较可见,涂层厚度对电池性能也有一定影响,厚度为0.5~5μm优选,其中0.5~5μm比较优选。The comparison of Examples 6-8 shows that the thickness of the coating also has a certain influence on the battery performance, and the thickness is preferably 0.5-5 μm, and 0.5-5 μm is more preferred.
实施例9Example 9
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中活性材料为氮化铜。The composite separator and battery were prepared in the same manner as in Example 1, except that the active material in step (1) was copper nitride.
实施例10Example 10
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中活性材料为氟化镁。The composite separator and battery were prepared in the same manner as in Example 1, except that the active material in step (1) was magnesium fluoride.
实施例1、9、10的比较可见,多种氮化物和氟化物都可以达到比较号的效果。It can be seen from the comparison of Examples 1, 9 and 10 that various nitrides and fluorides can achieve the effect of the comparison number.
实施例11Example 11
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中浆料中活性物质的质量分数为5%。The composite separator and battery were prepared in the same manner as in Example 1, except that the mass fraction of the active material in the slurry in step (1) was 5%.
实施例12Example 12
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中浆料中活性物质的质量分数为15%。The composite separator and battery were prepared in the same manner as in Example 1, except that the mass fraction of the active material in the slurry in step (1) was 15%.
实施例13Example 13
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中浆料中活性物质的质量分数为25%。The composite separator and battery were prepared in the same manner as in Example 1, except that the mass fraction of the active material in the slurry in step (1) was 25%.
实施例11、12、13和实施例1的比较可见,浆料中活性物质的质量份数对电池性能有一定影响,但影响较小。The comparison of Examples 11, 12, 13 and Example 1 shows that the mass fraction of the active material in the slurry has a certain influence on the battery performance, but the influence is small.
实施例14Example 14
按照与实施例7相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中的浆料溶剂为丙酮。The composite separator and battery were prepared in the same manner as in Example 7, except that the slurry solvent in step (1) was acetone.
实施例15Example 15
按照与实施例7相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中的浆料溶剂为二甲基亚砜。The composite separator and battery were prepared in the same manner as in Example 7, except that the slurry solvent in step (1) was dimethyl sulfoxide.
实施例16Example 16
按照与实施例7相同的方式制备复合隔膜和电池,不同之处在于,步骤(1)中所用基膜为聚丙烯隔膜。The composite separator and battery were prepared in the same manner as in Example 7, except that the base film used in step (1) was a polypropylene separator.
实施例17Example 17
按照与实施例1相同的方式制备复合隔膜和电池,不同之处在于,步骤(2)所用正极材料为NCM811。The composite separator and battery were prepared in the same manner as in Example 1, except that the positive electrode material used in step (2) was NCM811.
对比例1Comparative Example 1
按照与实施例1步骤(2)相同的方式制备电池,不同之处在于,使用商业化聚乙烯隔膜。A battery was prepared in the same manner as in step (2) of Example 1, except that a commercial polyethylene separator was used.
图3(a)和图3(b)分别为循环性能和对应的第一圈充放电曲线图。可以看出,初始放电容量正常,为168.1mAh/g,经过100圈循环,放电容量仅为147.1mAh/g,容量保持率为87.5%,远低于复合隔膜电池。反证复合隔膜对于调节锂离子均匀沉积,稳定锂负极界面具有显著成效。Figure 3(a) and Figure 3(b) are the cycle performance and the corresponding first cycle charge-discharge curves, respectively. It can be seen that the initial discharge capacity is normal, which is 168.1mAh/g. After 100 cycles, the discharge capacity is only 147.1mAh/g, and the capacity retention rate is 87.5%, which is much lower than that of the composite diaphragm battery. It is contradicted that the composite separator has a remarkable effect on regulating the uniform deposition of lithium ions and stabilizing the lithium anode interface.
将实施例和对比例得到的锂电池进行电化学性能测试,结果如下表1所示:The lithium battery obtained by the embodiment and the comparative example is carried out to the electrochemical performance test, and the results are shown in Table 1 below:
本发明创造性地将对锂金属的修饰保护转移到对隔膜的修饰上,在装配的过程中将保护层直接转移到锂金属负极的表面,并在随后的电化学循环的过程中,原位发生转换反应,形成一层混合导体层,同时对电子离子进行调控,使其均匀分布,引导锂的均匀沉积。进而提高了电池的循环稳定性和动力学性能。与NCM622正极匹配全电池在0.5C下循环比容量明显高于未修饰的普通隔膜,且容量衰减明显得到有效抑制,充放电平台曲线可见修饰后极化明显减小。这说明形成的混合导体层有效地促进了界面离子传输,引导了均匀的锂沉积,从而抑制了的副反应,降低了极化,稳定了界面结构,提升了电池的库伦效率、循环稳定性以及倍率性能。该方法操作简便,均一性好,效果显著,适用于规模化生产。The present invention creatively transfers the modification and protection of lithium metal to the modification of the separator. During the assembly process, the protective layer is directly transferred to the surface of the lithium metal negative electrode, and during the subsequent electrochemical cycle, the in situ occurs. The conversion reaction forms a mixed conductor layer, and at the same time, the electron ions are regulated to make them evenly distributed and guide the uniform deposition of lithium. In turn, the cycling stability and kinetic performance of the battery are improved. The cycle specific capacity of the full battery matched with the NCM622 cathode at 0.5C is significantly higher than that of the unmodified ordinary separator, and the capacity decay is significantly suppressed. The charge-discharge plateau curve shows that the polarization is significantly reduced after modification. This shows that the formed mixed conductor layer effectively promotes the interfacial ion transport and guides uniform lithium deposition, thereby suppressing the side reactions, reducing polarization, stabilizing the interface structure, and improving the coulombic efficiency, cycle stability and stability of the battery. rate performance. The method has the advantages of simple operation, good uniformity and remarkable effect, and is suitable for large-scale production.
以上具体的实施例只是对本发明内容的示意性说明,不代表本发明内容的限制。本领域技术人员可以根据本发明的主要思想和实际研究体系对应用中的具体结构进行修改。本发明的保护范围应以权利要求书所要求的保护范围为准。The above specific embodiments are only schematic illustrations of the content of the present invention, and do not represent the limitation of the content of the present invention. Those skilled in the art can modify the specific structure in the application according to the main idea of the present invention and the actual research system. The protection scope of the present invention shall be subject to the protection scope required by the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010753375.0A CN111987278B (en) | 2020-07-30 | 2020-07-30 | Composite diaphragm for lithium metal secondary battery and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010753375.0A CN111987278B (en) | 2020-07-30 | 2020-07-30 | Composite diaphragm for lithium metal secondary battery and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111987278A CN111987278A (en) | 2020-11-24 |
CN111987278B true CN111987278B (en) | 2022-05-10 |
Family
ID=73445557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010753375.0A Active CN111987278B (en) | 2020-07-30 | 2020-07-30 | Composite diaphragm for lithium metal secondary battery and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111987278B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112430832B (en) * | 2020-12-04 | 2024-10-29 | 金川集团股份有限公司 | Electrolytic diaphragm bag |
CN114628849A (en) * | 2020-12-14 | 2022-06-14 | 宁波大学 | Preparation method and application of super-hydrophobic and super-hydrophilic organic electrolyte diaphragm |
CN113314801B (en) * | 2021-05-21 | 2022-08-30 | 中南大学 | Slow-release functional diaphragm, preparation method thereof and lithium battery |
CN113451580B (en) * | 2021-06-30 | 2024-07-16 | 珠海冠宇电池股份有限公司 | Interfacial layer and lithium ion battery comprising same |
CN116120766B (en) * | 2021-11-12 | 2024-06-14 | 钢研工程设计有限公司 | Hot galvanizing shielding paint, preparation method and use method |
CN114242942B (en) * | 2021-11-30 | 2023-05-02 | 厦门大学 | Composite buffer layer with stable anode interface and solid-state lithium metal battery thereof |
CN116606574A (en) * | 2023-05-22 | 2023-08-18 | 山东锌派新能源科技有限公司 | Coating material for improving ion transfer-diffusion effect on battery interface, preparation method and application thereof |
CN119231095A (en) * | 2023-06-30 | 2024-12-31 | 宁德时代新能源科技股份有限公司 | Isolator and preparation method thereof, lithium ion battery and electric device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107665966A (en) * | 2016-07-27 | 2018-02-06 | 中国科学院大连化学物理研究所 | A kind of lithium-sulfur cell |
CN110783554A (en) * | 2019-11-27 | 2020-02-11 | 江苏红东科技有限公司 | A high-rate, low-temperature and long-life lithium-ion battery anode material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140039208A (en) * | 2011-06-02 | 2014-04-01 | 시리엔 아펙스 차이나 홀딩 컴퍼니 리미티드 | High capacitance lithium ion battery containing metallic conducting materials |
US9812706B2 (en) * | 2012-12-28 | 2017-11-07 | Industrial Technology Research Institute | Protected active metal electrode and device with the electrode |
US10476065B2 (en) * | 2015-01-09 | 2019-11-12 | Applied Materials, Inc. | Lithium metal coating on battery separators |
CN105140449A (en) * | 2015-08-14 | 2015-12-09 | 中国人民解放军63971部队 | Method for protecting anode of lithium sulfur battery |
CN109728249A (en) * | 2017-10-30 | 2019-05-07 | 中国科学院宁波材料技术与工程研究所 | An interface protection structure, a preparation method and a battery comprising the structure |
US11248303B2 (en) * | 2018-06-06 | 2022-02-15 | Molecule Works Inc. | Electrochemical device comprising thin porous metal sheet |
CN109216675A (en) * | 2018-09-05 | 2019-01-15 | 中国科学院物理研究所 | A kind of lithium battery material and its preparation method and application that copper nitride is modified |
-
2020
- 2020-07-30 CN CN202010753375.0A patent/CN111987278B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107665966A (en) * | 2016-07-27 | 2018-02-06 | 中国科学院大连化学物理研究所 | A kind of lithium-sulfur cell |
CN110783554A (en) * | 2019-11-27 | 2020-02-11 | 江苏红东科技有限公司 | A high-rate, low-temperature and long-life lithium-ion battery anode material |
Also Published As
Publication number | Publication date |
---|---|
CN111987278A (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111987278B (en) | Composite diaphragm for lithium metal secondary battery and preparation method and application thereof | |
CN103794800B (en) | Lithium battery collector, pole piece and lithium battery and preparation method thereof, lithium battery applications | |
CN103904291B (en) | Aquo-lithium ion battery electrode and preparation method thereof, aquo-lithium ion battery | |
CN106711430A (en) | Production method of lithium/carbon fiber or porous carbon paper/copper foil composite negative electrode used for lithium-sulfur battery | |
CN108232141B (en) | High-compaction lithium ion battery silicon-carbon composite negative electrode material and preparation method thereof | |
CN112635915A (en) | Modified diaphragm for metal lithium cathode and preparation method and application thereof | |
WO2022267535A1 (en) | Lithium metal negative electrode plate, electrochemical apparatus, and electronic device | |
CN103855358A (en) | Lithium battery negative electrode as well as preparation method thereof, lithium battery and application | |
CN110010895A (en) | Carbon fiber-supported magnesium oxide particle cross-linked nanosheet array composite and its preparation method and application | |
WO2020220945A1 (en) | Positive plate of sulfide solid-state battery, sulfide solid-state battery and device | |
WO2018059180A1 (en) | High-power, high-energy chemical power supply and preparation method therefor | |
CN116435448A (en) | Positive electrode sheet, secondary battery, battery module, battery pack, and power consumption device | |
Wu et al. | A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes | |
CN112952292B (en) | Composite diaphragm capable of being used for metal lithium battery and metal sodium battery, and preparation method and application thereof | |
WO2023070992A1 (en) | Electrochemical device and electronic device comprising same | |
CN115336068A (en) | Electrochemical device and electronic device including same | |
CN110676447A (en) | A high-voltage workable composite positive electrode and preparation method thereof | |
WO2020124328A1 (en) | Pre-lithiated negative electrode fabrication method, fabricated pre-lithiated negative electrode, energy storage device, energy storage system, and electrical device | |
CN114597421A (en) | A kind of anode-free lithium metal battery anode current collector and preparation method and application thereof | |
WO2025130004A1 (en) | Positive electrode sheet, preparation method for positive electrode sheet, and lithium-ion battery | |
CN112786848A (en) | Silicon-based negative electrode material | |
CN116207264A (en) | A positive electrode lithium supplement slurry, preparation method and application, lithium ion battery | |
CN115411220A (en) | Positive plates, cells and batteries | |
CN112768647A (en) | Negative electrode for lithium-transition metal oxide battery and preparation method | |
CN109786810A (en) | Fast charge lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |