CN111983997B - A method and system for monitoring control loop performance based on coupling analysis - Google Patents
A method and system for monitoring control loop performance based on coupling analysis Download PDFInfo
- Publication number
- CN111983997B CN111983997B CN202010897208.3A CN202010897208A CN111983997B CN 111983997 B CN111983997 B CN 111983997B CN 202010897208 A CN202010897208 A CN 202010897208A CN 111983997 B CN111983997 B CN 111983997B
- Authority
- CN
- China
- Prior art keywords
- control loop
- loop
- performance
- current control
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
- G05B23/0281—Quantitative, e.g. mathematical distance; Clustering; Neural networks; Statistical analysis
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Algebra (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明公开了一种基于耦合性分析的控制回路性能监测方法及系统。该方法包括:根据当前控制回路的实际测量值、预设值和控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果;根据当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路。采用本发明的方法及系统,通过耦合性分析找到串行回路间上下游的关联性,从而找到造成控制回路性能差的根源回路,便于使用者发现并解决问题。
The invention discloses a control loop performance monitoring method and system based on coupling analysis. The method includes: according to the actual measured value, preset value and control mode of the current control loop, using a minimum variance control method to evaluate the loop performance, and obtaining the performance evaluation result of the current control loop; Meet the preset performance requirements; if it does not meet the preset performance requirements, according to the coupling relationship table, determine whether the source loop that causes the current control loop to fail to meet the preset performance requirements is the current control loop or the upstream control loop. Using the method and system of the present invention, the upstream and downstream correlation between serial loops can be found through coupling analysis, so as to find the root loop that causes poor performance of the control loop, and it is convenient for users to find and solve problems.
Description
技术领域technical field
本发明涉及控制回路性能监测技术领域,特别是涉及一种基于耦合性分析的控制回路性能监测方法及系统。The invention relates to the technical field of control loop performance monitoring, in particular to a control loop performance monitoring method and system based on coupling analysis.
背景技术Background technique
在石油炼制加工过程中,比例积分微分控制(PID控制)策略应用最为广泛。PID控制的优点是:结构简单、调整方便、鲁棒性强。而控制回路的性能会随着生产装置连续运行时间的增加而退化,装置中高达60%的控制回路存在着不同程度的性能缺陷,若不及时有效地维护重要的控制回路,控制性能变差不仅会影响装置运行的平稳性、产品质量、产品收率和物耗、能耗等,严重时,甚至危及装置运行的安全。In the process of petroleum refining, the proportional integral derivative control (PID control) strategy is the most widely used. The advantages of PID control are: simple structure, convenient adjustment and strong robustness. However, the performance of the control loop will degrade with the increase of the continuous operation time of the production equipment. Up to 60% of the control loops in the equipment have different degrees of performance defects. If the important control loops are not maintained in time and effectively, the control performance will not only deteriorate. It will affect the stability of device operation, product quality, product yield, material consumption, energy consumption, etc., and even endanger the safety of device operation in severe cases.
传统的控制回路性能监测方法仅能判断某单个回路的运行性能,然而当回路性能监测出某回路性能差时,往往不一定是当前控制回路本身的问题,有可能受其上游控制回路的影响,因此传统方法并不能找到回路性能差的根本原因,为使用者发现并解决问题带来不便。The traditional control loop performance monitoring method can only judge the operation performance of a single loop. However, when the loop performance monitoring shows that the performance of a loop is poor, it is often not necessarily the problem of the current control loop itself, but may be affected by its upstream control loop. Therefore, the traditional method cannot find the root cause of the poor loop performance, which brings inconvenience for users to find and solve the problem.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于耦合性分析的控制回路性能监测方法及系统,通过耦合性分析找到串行回路间上下游的关联性,从而找到造成控制回路性能差的根源回路,便于使用者发现并解决问题。The purpose of the present invention is to provide a control loop performance monitoring method and system based on coupling analysis. Through coupling analysis, the upstream and downstream correlation between serial loops can be found, so as to find the root loop that causes poor performance of the control loop, which is convenient for users Find and fix problems.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种控制回路性能监测方法,包括:A control loop performance monitoring method, comprising:
获取当前控制回路的实际测量值、预设值和控制模式;所述控制模式包括手动控制和自动控制;Obtain the actual measured value, preset value and control mode of the current control loop; the control mode includes manual control and automatic control;
根据所述当前控制回路的实际测量值、所述预设值和所述控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果;According to the actual measured value of the current control loop, the preset value and the control mode, a minimum variance control method is used to evaluate the loop performance, and the current control loop performance evaluation result is obtained;
根据所述当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致所述当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路;所述耦合关系表为采用耦合性分析法建立的反映当前控制回路和上游控制回路相关程度的表。Determine whether the current control loop meets the preset performance requirements according to the performance evaluation result of the current control loop; if it does not meet the preset performance requirements, then determine according to the coupling relationship table that the source loop that causes the current control loop to fail to meet the preset performance requirements is: The current control loop is still the upstream control loop; the coupling relationship table is a table established by the coupling analysis method to reflect the degree of correlation between the current control loop and the upstream control loop.
可选的,所述根据所述当前控制回路的实际测量值、所述预设值和所述控制模式,采用最小方差控制方法进行回路性能评价,具体包括:Optionally, according to the actual measurement value of the current control loop, the preset value and the control mode, the loop performance evaluation is performed using a minimum variance control method, which specifically includes:
根据所述当前控制回路的实际测量值和所述当前控制回路的预设值计算偏差标准差;Calculate the deviation standard deviation according to the actual measured value of the current control loop and the preset value of the current control loop;
根据所述当前控制回路的实际测量值、所述预设值和所述控制模式计算控制回路震荡指数;Calculate the control loop oscillation index according to the actual measured value of the current control loop, the preset value and the control mode;
获取控制回路期望稳态时间和实际稳态时间,并根据所述控制回路期望稳态时间和实际稳态时间计算控制回路相对性能指数;Obtaining the expected steady state time and the actual steady state time of the control loop, and calculating the relative performance index of the control loop according to the expected steady state time and the actual steady state time of the control loop;
根据所述偏差标准差、所述控制回路震荡指数和所述控制回路相对性能指数进行回路性能评价。Loop performance evaluation is performed according to the standard deviation of the deviation, the control loop oscillation index and the control loop relative performance index.
可选的,所述根据所述偏差标准差、所述控制回路震荡指数和所述控制回路相对性能指数进行回路性能评价,具体包括:Optionally, performing the loop performance evaluation according to the deviation standard deviation, the control loop oscillation index and the control loop relative performance index specifically includes:
获取偏差标准差预设值、控制回路震荡指数预设值和控制回路相对性能指数预设区间;Obtain the preset value of deviation standard deviation, preset value of control loop oscillation index and preset interval of relative performance index of control loop;
在同时满足所述偏差标准差小于所述偏差标准差预设值、所述控制回路震荡指数小于所述控制回路震荡指数预设值,以及所述控制回路相对性能指数在所述控制回路相对性能指数预设区间内时,当前控制回路符合预设性能要求;否则,当前控制回路不符合预设性能要求。At the same time, the deviation standard deviation is less than the deviation standard deviation preset value, the control loop oscillatory index is less than the control loop oscillatory index preset value, and the control loop relative performance index in the control loop relative performance index When the index is within the preset interval, the current control loop meets the preset performance requirements; otherwise, the current control loop does not meet the preset performance requirements.
可选的,所述耦合关系表的建立方法具体包括:Optionally, the method for establishing the coupling relationship table specifically includes:
获取与所述当前控制回路串行的所有上游控制回路的实际测量值;obtaining actual measurements of all upstream control loops in series with the current control loop;
根据每一个上游控制回路的实际测量值与所述当前控制回路的实际测量值,采用耦合性分析方法确定每一个上游控制回路和所述当前控制回路的相关程度;According to the actual measurement value of each upstream control loop and the actual measurement value of the current control loop, a coupling analysis method is used to determine the degree of correlation between each upstream control loop and the current control loop;
根据所述相关程度建立耦合关系表。A coupling relationship table is established according to the correlation degree.
可选的,所述根据耦合关系表判断导致所述当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路,具体包括:Optionally, determining whether the source loop that causes the current control loop to fail to meet the preset performance requirements is the current control loop or the upstream control loop according to the coupling relationship table, specifically including:
获取相关程度预设值;Get the preset value of correlation degree;
根据所述耦合关系表,筛选出大于所述相关程度预设值对应的上游控制回路,得到上游控制回路集合;所述上游控制回路集合中的上游控制回路两两相邻;According to the coupling relationship table, filter out the upstream control loops corresponding to the preset value of the correlation degree to obtain an upstream control loop set; the upstream control loops in the upstream control loop set are adjacent to each other;
对所述上游控制回路集合中的每个上游控制回路按照由下游至上游的顺序进行编号;Numbering each upstream control loop in the set of upstream control loops in order from downstream to upstream;
查找所述上游控制回路集合中是否存在与所述当前控制回路相邻的上游控制回路;若不存在,则确定当前控制回路为导致所述当前控制回路不符合预设性能要求的根源回路;若存在,则将所述上游控制回路集合中编号最大值对应的上游控制回路确定为导致所述当前控制回路不符合预设性能要求的根源回路。Find out whether there is an upstream control loop adjacent to the current control loop in the set of upstream control loops; if not, determine that the current control loop is the source loop that causes the current control loop to fail to meet the preset performance requirements; if If there is, the upstream control loop corresponding to the maximum number in the upstream control loop set is determined as the source loop that causes the current control loop to fail to meet the preset performance requirement.
本发明还提供一种控制回路性能监测系统,包括:The present invention also provides a control loop performance monitoring system, comprising:
数据采集模块,用于获取当前控制回路的实际测量值、预设值和控制模式;所述控制模式包括手动控制和自动控制;a data acquisition module for acquiring the actual measured value, preset value and control mode of the current control loop; the control mode includes manual control and automatic control;
回路性能监测模块,用于根据所述当前控制回路的实际测量值、所述预设值和所述控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果;a loop performance monitoring module, configured to perform loop performance evaluation using a minimum variance control method according to the actual measured value of the current control loop, the preset value and the control mode, and obtain the current control loop performance evaluation result;
耦合性分析模块,用于根据所述当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致所述当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路;所述耦合关系表为采用耦合性分析法建立的反映当前控制回路和上游控制回路相关程度的表。The coupling analysis module is used to judge whether the current control loop meets the preset performance requirements according to the performance evaluation result of the current control loop; if it does not meet the preset performance requirements, it is determined according to the coupling relationship table that the current control loop does not meet the preset performance requirements. It is assumed that the source loop of the performance requirement is the current control loop or the upstream control loop; the coupling relationship table is a table established by coupling analysis method to reflect the degree of correlation between the current control loop and the upstream control loop.
可选的,所述回路性能监测模块,具体包括:Optionally, the loop performance monitoring module specifically includes:
偏差标准差计算单元,用于根据所述当前控制回路的实际测量值和所述当前控制回路的预设值计算偏差标准差;a deviation standard deviation calculation unit, configured to calculate the deviation standard deviation according to the actual measured value of the current control loop and the preset value of the current control loop;
控制回路震荡指数计算单元,用于根据所述当前控制回路的实际测量值、所述预设值和所述控制模式计算控制回路震荡指数;a control loop oscillation index calculation unit, configured to calculate a control loop oscillation index according to the actual measured value of the current control loop, the preset value and the control mode;
控制回路相对性能指数计算单元,用于获取控制回路期望稳态时间和实际稳态时间,并根据所述控制回路期望稳态时间和实际稳态时间计算控制回路相对性能指数;a control loop relative performance index calculation unit, configured to obtain the expected steady state time and the actual steady state time of the control loop, and calculate the control loop relative performance index according to the control loop expected steady state time and the actual steady state time;
回路性能评价单元,用于根据所述偏差标准差、所述控制回路震荡指数和所述控制回路相对性能指数进行回路性能评价。A loop performance evaluation unit, configured to perform loop performance evaluation according to the deviation standard deviation, the control loop oscillation index and the control loop relative performance index.
可选的,所述回路性能评价单元,具体包括:Optionally, the loop performance evaluation unit specifically includes:
数据获取子单元,用于获取偏差标准差预设值、控制回路震荡指数预设值和控制回路相对性能指数预设区间;a data acquisition sub-unit, used for acquiring the preset value of the deviation standard deviation, the preset value of the control loop oscillation index and the preset interval of the relative performance index of the control loop;
回路性能评价子单元,用于在同时满足所述偏差标准差小于所述偏差标准差预设值、所述控制回路震荡指数小于所述控制回路震荡指数预设值,以及所述控制回路相对性能指数在所述控制回路相对性能指数预设区间内时,当前控制回路符合预设性能要求;否则,当前控制回路不符合预设性能要求。A loop performance evaluation subunit, configured to simultaneously satisfy that the standard deviation of the deviation is less than the preset value of the standard deviation of the deviation, the oscillation index of the control loop is smaller than the preset value of the oscillation index of the control loop, and the relative performance of the control loop is satisfied When the index is within the preset range of the relative performance index of the control loop, the current control loop meets the preset performance requirements; otherwise, the current control loop does not meet the preset performance requirements.
可选的,所述耦合性分析模块,具体包括:Optionally, the coupling analysis module specifically includes:
耦合关系表建立单元,用于获取与所述当前控制回路串行的所有上游控制回路的实际测量值;根据每一个上游控制回路的实际测量值与所述当前控制回路的实际测量值,采用耦合性分析方法确定每一个上游控制回路和所述当前控制回路的相关程度;根据所述相关程度建立耦合关系表。A coupling relationship table establishment unit is used to obtain the actual measured values of all upstream control loops in series with the current control loop; according to the actual measured value of each upstream control loop and the actual measured value of the current control loop, the The correlation analysis method determines the degree of correlation between each upstream control loop and the current control loop; establishes a coupling relationship table according to the degree of correlation.
可选的,所述耦合性分析模块,还包括:Optionally, the coupling analysis module further includes:
根源回路确定单元,用于获取相关程度预设值;根据所述耦合关系表,筛选出大于所述相关程度预设值对应的上游控制回路,得到上游控制回路集合;所述上游控制回路集合中的上游控制回路两两相邻;对所述上游控制回路集合中的每个上游控制回路按照由下游至上游的顺序进行编号;查找所述上游控制回路集合中是否存在与所述当前控制回路相邻的上游控制回路;若不存在,则确定当前控制回路为导致所述当前控制回路不符合预设性能要求的根源回路;若存在,则将所述上游控制回路集合中编号最大值对应的上游控制回路确定为导致所述当前控制回路不符合预设性能要求的根源回路。a root loop determination unit, configured to obtain a preset value of the correlation degree; according to the coupling relationship table, filter out the upstream control loops corresponding to the preset value of the correlation degree, and obtain an upstream control loop set; in the upstream control loop set The upstream control loops are adjacent to each other; number each upstream control loop in the set of upstream control loops in the order from downstream to upstream; find out whether there is a loop similar to the current control loop in the set of upstream control loops The adjacent upstream control loop; if it does not exist, it is determined that the current control loop is the source loop that causes the current control loop to fail to meet the preset performance requirements; if it exists, the upstream control loop set corresponding to the maximum number is determined A control loop is identified as the root loop that causes the current control loop to fail to meet preset performance requirements.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提出了一种基于耦合性分析的控制回路性能监测方法及系统,根据当前控制回路的实际测量值、预设值和控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果;根据当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路,通过耦合性分析找到串行回路间上下游的关联性,从而找到造成控制回路性能差的根源回路,便于使用者发现并解决问题。The invention proposes a method and system for monitoring the performance of a control loop based on coupling analysis. According to the actual measured value, preset value and control mode of the current control loop, the minimum variance control method is used to evaluate the loop performance, and the current control loop performance is obtained. Evaluation results; according to the current control loop performance evaluation results, determine whether the current control loop meets the preset performance requirements; if it does not meet the preset performance requirements, then determine according to the coupling relationship table that the root loop that causes the current control loop to fail to meet the preset performance requirements is the current Whether the control loop is still the upstream control loop, the correlation between the upstream and downstream of the serial loops can be found through coupling analysis, so as to find the root loop that causes the poor performance of the control loop, and it is convenient for users to find and solve the problem.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明实施例中基于耦合性分析的控制回路性能监测方法流程图;1 is a flowchart of a method for monitoring performance of a control loop based on coupling analysis in an embodiment of the present invention;
图2为本发明实施例中基于耦合性分析的控制回路性能监测系统结构图;2 is a structural diagram of a control loop performance monitoring system based on coupling analysis in an embodiment of the present invention;
图3为本发明实施例中控制回路性能监测系统示意图;3 is a schematic diagram of a control loop performance monitoring system in an embodiment of the present invention;
图4为本发明实施例中系统数据处理流程图;4 is a flow chart of system data processing in an embodiment of the present invention;
图5为本发明实施例中查找根源回路方法流程图。FIG. 5 is a flowchart of a method for finding a root loop in an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种基于耦合性分析的控制回路性能监测方法及系统,通过耦合性分析找到串行回路间上下游的关联性,从而找到造成控制回路性能差的根源回路,便于使用者发现并解决问题。The purpose of the present invention is to provide a control loop performance monitoring method and system based on coupling analysis. Through coupling analysis, the upstream and downstream correlation between serial loops can be found, so as to find the root loop that causes poor performance of the control loop, which is convenient for users Find and fix problems.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
实施例Example
图1为本发明实施例中基于耦合性分析的控制回路性能监测方法流程图,如图1所示,一种基于耦合性分析的控制回路性能监测方法,包括:FIG. 1 is a flowchart of a method for monitoring performance of a control loop based on coupling analysis in an embodiment of the present invention. As shown in FIG. 1 , a method for monitoring performance of a control loop based on coupling analysis includes:
步骤101:获取当前控制回路的实际测量值、预设值和控制模式;控制模式包括手动控制和自动控制。Step 101: Acquire the actual measured value, preset value and control mode of the current control loop; the control mode includes manual control and automatic control.
步骤102:根据当前控制回路的实际测量值、预设值和控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果。Step 102 : According to the actual measurement value, preset value and control mode of the current control loop, use the minimum variance control method to evaluate the loop performance, and obtain the current control loop performance evaluation result.
步骤102,具体包括:Step 102 specifically includes:
根据当前控制回路的实际测量值和当前控制回路的预设值计算偏差标准差;Calculate the deviation standard deviation according to the actual measured value of the current control loop and the preset value of the current control loop;
根据当前控制回路的实际测量值、预设值和控制模式计算控制回路震荡指数;Calculate the control loop oscillation index according to the actual measured value, preset value and control mode of the current control loop;
获取控制回路期望稳态时间和实际稳态时间,并根据控制回路期望稳态时间和实际稳态时间计算控制回路相对性能指数;Obtain the expected steady state time and actual steady state time of the control loop, and calculate the relative performance index of the control loop according to the expected steady state time and actual steady state time of the control loop;
根据偏差标准差、控制回路震荡指数和控制回路相对性能指数进行回路性能评价,具体包括:The loop performance is evaluated according to the standard deviation of the deviation, the oscillation index of the control loop and the relative performance index of the control loop, including:
获取偏差标准差预设值、控制回路震荡指数预设值和控制回路相对性能指数预设区间;Obtain the preset value of deviation standard deviation, preset value of control loop oscillation index and preset interval of relative performance index of control loop;
在同时满足偏差标准差小于偏差标准差预设值、控制回路震荡指数小于控制回路震荡指数预设值,以及控制回路相对性能指数在控制回路相对性能指数预设区间内时,当前控制回路符合预设性能要求;否则,当前控制回路不符合预设性能要求。When the standard deviation of the deviation is less than the preset value of the standard deviation of the deviation, the oscillation index of the control loop is less than the preset value of the oscillation index of the control loop, and the relative performance index of the control loop is within the preset range of the relative performance index of the control loop, the current control loop meets the preset value. set performance requirements; otherwise, the current control loop does not meet the preset performance requirements.
步骤103:根据当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路;耦合关系表为采用耦合性分析法建立的反映当前控制回路和上游控制回路相关程度的表。Step 103: Determine whether the current control loop meets the preset performance requirements according to the performance evaluation result of the current control loop; if it does not meet the preset performance requirements, determine according to the coupling relationship table that the source loop that causes the current control loop to fail to meet the preset performance requirements is the current control loop. The control loop is still the upstream control loop; the coupling relationship table is a table established by the coupling analysis method to reflect the degree of correlation between the current control loop and the upstream control loop.
其中,耦合关系表的具体建立方法包括:Among them, the specific establishment method of the coupling relationship table includes:
获取与当前控制回路串行的所有上游控制回路的实际测量值;Get actual measurements of all upstream control loops in series with the current control loop;
根据每一个上游控制回路的实际测量值与当前控制回路的实际测量值,采用耦合性分析方法确定每一个上游控制回路和当前控制回路的相关程度;According to the actual measured value of each upstream control loop and the actual measured value of the current control loop, the coupling analysis method is used to determine the degree of correlation between each upstream control loop and the current control loop;
根据相关程度建立耦合关系表。Create a coupling relationship table according to the degree of correlation.
根据耦合关系表判断导致当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路,具体包括:According to the coupling relationship table, determine whether the source loop that causes the current control loop to fail to meet the preset performance requirements is the current control loop or the upstream control loop, including:
获取相关程度预设值;Get the preset value of correlation degree;
根据耦合关系表,筛选出大于相关程度预设值对应的上游控制回路,得到上游控制回路集合;上游控制回路集合中的上游控制回路两两相邻;According to the coupling relationship table, filter out the upstream control loops corresponding to the preset value of the correlation degree, and obtain the upstream control loop set; the upstream control loops in the upstream control loop set are adjacent to each other;
对上游控制回路集合中的每个上游控制回路按照由下游至上游的顺序进行编号;Numbering each upstream control loop in the set of upstream control loops in order from downstream to upstream;
查找上游控制回路集合中是否存在与当前控制回路相邻的上游控制回路;若不存在,则确定当前控制回路为导致当前控制回路不符合预设性能要求的根源回路;若存在,则将上游控制回路集合中编号最大值对应的上游控制回路确定为导致当前控制回路不符合预设性能要求的根源回路。Find out whether there is an upstream control loop adjacent to the current control loop in the upstream control loop set; if not, determine that the current control loop is the source loop that causes the current control loop to fail to meet the preset performance requirements; The upstream control loop corresponding to the maximum number in the loop set is determined as the root loop that causes the current control loop to fail to meet the preset performance requirements.
图2为本发明实施例中基于耦合性分析的控制回路性能监测系统结构图。如图2所示,一种基于耦合性分析的控制回路性能监测系统,包括:FIG. 2 is a structural diagram of a control loop performance monitoring system based on coupling analysis in an embodiment of the present invention. As shown in Figure 2, a control loop performance monitoring system based on coupling analysis includes:
数据采集模块201,用于获取当前控制回路的实际测量值、预设值和控制模式;控制模式包括手动控制和自动控制。The
回路性能监测模块202,用于根据当前控制回路的实际测量值、预设值和控制模式,采用最小方差控制方法进行回路性能评价,得到当前控制回路性能评价结果。The loop
回路性能监测模块202,具体包括:The loop
偏差标准差计算单元,用于根据当前控制回路的实际测量值和当前控制回路的预设值计算偏差标准差;a deviation standard deviation calculation unit, used for calculating the deviation standard deviation according to the actual measured value of the current control loop and the preset value of the current control loop;
控制回路震荡指数计算单元,用于根据当前控制回路的实际测量值、预设值和控制模式计算控制回路震荡指数;The control loop oscillation index calculation unit is used to calculate the control loop oscillation index according to the actual measured value, preset value and control mode of the current control loop;
控制回路相对性能指数计算单元,用于获取控制回路期望稳态时间和实际稳态时间,并根据控制回路期望稳态时间和实际稳态时间计算控制回路相对性能指数;The control loop relative performance index calculation unit is used to obtain the expected steady state time and the actual steady state time of the control loop, and calculate the relative performance index of the control loop according to the expected steady state time and the actual steady state time of the control loop;
回路性能评价单元,用于根据偏差标准差、控制回路震荡指数和控制回路相对性能指数进行回路性能评价。The loop performance evaluation unit is used to evaluate the loop performance according to the deviation standard deviation, the control loop oscillation index and the control loop relative performance index.
回路性能评价单元,具体包括:Loop performance evaluation unit, including:
数据获取子单元,用于获取偏差标准差预设值、控制回路震荡指数预设值和控制回路相对性能指数预设区间;a data acquisition sub-unit, used for acquiring the preset value of the deviation standard deviation, the preset value of the control loop oscillation index and the preset interval of the relative performance index of the control loop;
回路性能评价子单元,用于在同时满足偏差标准差小于偏差标准差预设值、控制回路震荡指数小于控制回路震荡指数预设值,以及控制回路相对性能指数在控制回路相对性能指数预设区间内时,当前控制回路符合预设性能要求;否则,当前控制回路不符合预设性能要求。The loop performance evaluation subunit is used to satisfy the requirements that the standard deviation of the deviation is less than the preset value of the standard deviation of the deviation, the oscillation index of the control loop is less than the preset value of the oscillation index of the control loop, and the relative performance index of the control loop is within the preset range of the relative performance index of the control loop. When the current control loop meets the preset performance requirements; otherwise, the current control loop does not meet the preset performance requirements.
耦合性分析模块203,用于根据当前控制回路性能评价结果判断当前控制回路是否符合预设性能要求;若不符合预设性能要求,则根据耦合关系表判断导致当前控制回路不符合预设性能要求的根源回路为当前控制回路还是上游控制回路;耦合关系表为采用耦合性分析法建立的反映当前控制回路和上游控制回路相关程度的表。The
耦合性分析模块203,具体包括:The
耦合关系表建立单元,用于获取与当前控制回路串行的所有上游控制回路的实际测量值;根据每一个上游控制回路的实际测量值与当前控制回路的实际测量值,采用耦合性分析方法确定每一个上游控制回路和当前控制回路的相关程度;根据相关程度建立耦合关系表。The coupling relationship table establishment unit is used to obtain the actual measured values of all upstream control loops in series with the current control loop; according to the actual measured value of each upstream control loop and the actual measured value of the current control loop, the coupling analysis method is used to determine The degree of correlation between each upstream control loop and the current control loop; establish a coupling relationship table according to the degree of correlation.
耦合性分析模块203,还包括:The
根源回路确定单元,用于获取相关程度预设值;根据耦合关系表,筛选出大于相关程度预设值对应的上游控制回路,得到上游控制回路集合;上游控制回路集合中的上游控制回路两两相邻;对上游控制回路集合中的每个上游控制回路按照由下游至上游的顺序进行编号;查找上游控制回路集合中是否存在与当前控制回路相邻的上游控制回路;若不存在,则确定当前控制回路为导致当前控制回路不符合预设性能要求的根源回路;若存在,则将上游控制回路集合中编号最大值对应的上游控制回路确定为导致当前控制回路不符合预设性能要求的根源回路。The source loop determination unit is used to obtain the preset value of the correlation degree; according to the coupling relationship table, filter out the upstream control loops corresponding to the preset value of the correlation degree, and obtain the set of upstream control loops; the upstream control loops in the set of upstream control loops are two by two Adjacent; number each upstream control loop in the upstream control loop set in the order from downstream to upstream; find out whether there is an upstream control loop adjacent to the current control loop in the upstream control loop set; if not, determine The current control loop is the source loop that causes the current control loop to fail to meet the preset performance requirements; if it exists, the upstream control loop corresponding to the maximum number in the set of upstream control loops is determined as the root cause that causes the current control loop to fail to meet the preset performance requirements loop.
如图3所示,控制回路性能监测系统包括数据采集、回路概览、回路性能监测、耦合性分析、统计查询,历史数据存储六个模块。As shown in Figure 3, the control loop performance monitoring system includes six modules: data acquisition, loop overview, loop performance monitoring, coupling analysis, statistical query, and historical data storage.
如图4所示,系统数据处理流程为:回路概览(回路信息管理)将编辑好的回路信息传递至回路性能监测模块与耦合性分析模块;数据采集模块实时采集数据传输至回路性能监测模块与耦合性分析模块;回路性能监测模块与耦合性分析模块将计算结果传输至历史数据存储模块用以保存数据;统计查询模块通过历史数据存储模块读取数据进行统计和查询操作。As shown in Figure 4, the system data processing flow is: loop overview (loop information management) transmits the edited loop information to the loop performance monitoring module and coupling analysis module; the data acquisition module collects data in real time and transmits it to the loop performance monitoring module and the coupling analysis module The coupling analysis module; the loop performance monitoring module and the coupling analysis module transmit the calculation results to the historical data storage module to save the data; the statistical query module reads the data through the historical data storage module for statistical and query operations.
数据采集模块,用于采集回路计算所需要的实时数据,主要为回路的实时测量值(PV),设定值(SV),输出值(MV),MODE模式(手动/自动)。其中PV、SV、MV、MODE提供给给“回路性能监测模块”用于计算回路性能,PV提供给“耦合性分析模块”用于计算回路间的耦合性。数据采集模块支持OPC通信规范及MODBUS RTU协议。The data acquisition module is used to collect the real-time data required by the loop calculation, mainly the real-time measured value (PV), set value (SV), output value (MV), and MODE mode (manual/automatic) of the loop. Among them, PV, SV, MV, and MODE are provided to the "loop performance monitoring module" for calculating the loop performance, and PV is provided to the "coupling analysis module" for calculating the coupling between loops. The data acquisition module supports OPC communication specification and MODBUS RTU protocol.
回路概览主要用于对系统监控的回路信息进行管理和编辑,包含单个回路信息的添加、修改、删除,以及PV、SV、MV、MODE位号编辑(点位号必须与OPC服务器上的数据点一致,才能获取实时数据);以及回路信息批量数据导入(文件格式为CSV)。The loop overview is mainly used to manage and edit the loop information monitored by the system, including the addition, modification, deletion of single loop information, and editing of PV, SV, MV, and MODE tags (the point number must be the same as the data point on the OPC server). Real-time data can be obtained only if they are consistent with each other); and batch data import of loop information (the file format is CSV).
回路性能监测主要对控制回路性能进行实时计算。通过采集一段时间内,某回路的实时测量值(PV),设定值(SV),输出值(MV),MODE模式(手动/自动)。通过最小方差控制(MVC)评估方法(原理为以理论上最优的最小方差控制器的控制性能作为评估基准线,基于过程正常运行的数据分析,来衡量当前回路的控制性能)计算偏差均值、偏差标准差、实际稳态时间、相对性能指数等指标。The loop performance monitoring mainly calculates the control loop performance in real time. By collecting the real-time measured value (PV), set value (SV), output value (MV), and MODE mode (manual/automatic) of a circuit within a period of time. The average deviation value, Deviation standard deviation, actual steady state time, relative performance index and other indicators.
偏差均值AvgDiff计算公式:Deviation mean AvgDiff calculation formula:
式中,i为第i个样本,t为样本总数,SP[i]为第i个样本的设定值,PV[i]为第i个样本的实际测量值,Mode为1时代表自动,0为手动。In the formula, i is the ith sample, t is the total number of samples, SP[i] is the set value of the ith sample, PV[i] is the actual measured value of the ith sample, when Mode is 1, it means automatic, 0 is manual.
偏差标准差StdDiff公式:Deviation standard deviation StdDiff formula:
式中,n为mode为1(自动)时的样本总数,MODE[i]为第i个样本的模式。In the formula, n is the total number of samples when mode is 1 (automatic), and MODE[i] is the mode of the ith sample.
相对性能指数=理想稳态时间/实际稳态时间。Relative performance index = ideal steady state time/actual steady state time.
理想稳态时间是根据经验人为设定,实际稳态时间根据样本数据平滑度统计得出。The ideal steady-state time is artificially set based on experience, and the actual steady-state time is statistically derived from the smoothness of the sample data.
结合采集的PV、SV、MODE实时数据在时域、频域所展现出的特性计算出震荡指数,协助了解回路震荡情况。Combined with the characteristics of the collected PV, SV, and MODE real-time data in the time domain and frequency domain, the oscillation index is calculated to help understand the loop oscillation.
震荡指数计算如下:The Oscillator is calculated as follows:
其中,in,
式中,Osc为震荡指数,n为mode为1(自动)时的样本总数,这里计算的样本均是mode为1时的样本,x1、x2、y1、y2、y3均为中间变量。In the formula, Osc is the oscillation index, n is the total number of samples when the mode is 1 (automatic), the samples calculated here are all the samples when the mode is 1, and x 1 , x 2 , y 1 , y 2 , and y 3 are all Intermediate variables.
最后通过相对性能指数、震荡指数、偏差标准差对回路进行综合评价,得出优、良、中、差四个等级。Finally, the loop is comprehensively evaluated by relative performance index, shock index and standard deviation of deviation, and four grades of excellent, good, medium and poor are obtained.
当相对性能指数在0.4到2.5之间,说明相对性能指数较好,反之较差。When the relative performance index is between 0.4 and 2.5, it means that the relative performance index is better, and vice versa.
震荡指数则越小越好;偏差标准差越小越好。The smaller the oscillator, the better; the smaller the standard deviation of the deviation, the better.
综合三个指标,如果都处在较好的水平,则回路性能评价为优。Comprehensive three indicators, if they are at a good level, the loop performance evaluation is excellent.
若只有一个指标较好,或是所有指标都较差,则回路性能评价为差。If only one indicator is good, or all indicators are poor, the loop performance is evaluated as poor.
系统以一定的周期计算,并将偏差均值、偏差标准差、实际稳态时间、相对性能指数、震荡指数、综合评价等计算结果保存至系统的数据文件中。The system calculates in a certain period, and saves the calculation results such as deviation mean, deviation standard deviation, actual steady-state time, relative performance index, shock index, and comprehensive evaluation to the data file of the system.
耦合性分析是通过数据采集模块获取某段时间内的PV数据作为数据源,以一定的时间周期计算各回路之间的耦合度(相关系数)。耦合性分析算法,即相关分析,可以用于发现不同变量之间的关联性,关联是指数据之间变化的相似性,这可以通过相关系数来描述。相关系数是相关系数中应用比较广泛的一种,主要用于分析两个连续性变量之间的线性相关的程度耦合度。耦合性分析计算结果保存至系统数据文件中,并提供历史耦合度查询功能。Coupling analysis is to obtain PV data within a certain period of time as a data source through the data acquisition module, and calculate the coupling degree (correlation coefficient) between each loop in a certain period of time. Coupling analysis algorithms, namely correlation analysis, can be used to discover correlations between different variables. Correlation refers to the similarity of changes between data, which can be described by the correlation coefficient. Correlation coefficient is one of the most widely used correlation coefficients, and is mainly used to analyze the degree of coupling of the linear correlation between two continuous variables. The coupling analysis calculation results are saved in the system data file, and the historical coupling degree query function is provided.
系统中将不同耦合度用颜色区分,具体如表1所示。Different coupling degrees are distinguished by color in the system, as shown in Table 1.
表1耦合度与颜色对应关系Table 1 Corresponding relationship between coupling degree and color
统计查询主要对某控制回路性能指标按日、周、月、年等时间做均值计算,同时将指定时间内的等级评估分布情况以饼状图的形式展示,投用率和有效投用率以柱状图对比的形式展示。Statistical query mainly calculates the average value of a control loop performance index by day, week, month, year, etc., and displays the distribution of grade evaluation within a specified time in the form of a pie chart. Display in the form of a histogram comparison.
历史数据存储用于存储偏差均值、偏差标准差、实际稳态时间、相对性能指数、震荡指数、综合评价,回路的耦合度等计算结果。Historical data storage is used to store calculation results such as deviation mean, deviation standard deviation, actual steady-state time, relative performance index, shock index, comprehensive evaluation, and loop coupling.
本发明主要将耦合性分析算法应用在控制回路的性能评估中。当控制回路性能评估为差时,通过耦合性分析可以准确找到根源回路。将需要监测的所有回路一段时间内进行采集实时测量值(PV),采集完毕后,将上下游回路两两分别计算相关系数。The present invention mainly applies the coupling analysis algorithm to the performance evaluation of the control loop. When the control loop performance is evaluated as poor, the root loop can be accurately found by coupling analysis. Collect real-time measured values (PV) for all the loops that need to be monitored for a period of time. After the collection is completed, the correlation coefficients of the upstream and downstream loops are calculated separately.
实际操作中,首先需要获取当前回路的控制性能,如果回路性能为差,可通过耦合性分析模块,查看上游回路与当前回路的耦合度(关联性),若耦合度在0.8以上,且上游回路性能评估也为差,可认为当前回路性能差的主要原因是由于上游回路的影响。这样以此类推,直至找到最后一个高度耦合并且控制性能为差的回路,此回路则可认定为根源回路,用户可根据根源回路来查找原因,并制定此回路相关控制方案。表2为耦合度与关联性的对应关系,图5为查找根源回路方法流程图。In actual operation, the control performance of the current loop needs to be obtained first. If the loop performance is poor, the coupling degree (correlation) between the upstream loop and the current loop can be checked through the coupling analysis module. If the coupling degree is above 0.8 and the upstream loop is The performance evaluation is also poor, and it can be considered that the main reason for the poor performance of the current loop is due to the influence of the upstream loop. And so on, until the last loop with high coupling and poor control performance is found, this loop can be identified as the root loop, and the user can find the cause according to the root loop and formulate a control scheme related to this loop. Table 2 shows the corresponding relationship between coupling degree and correlation, and FIG. 5 is a flow chart of the method for finding the source loop.
表2耦合度与关联性的对应关系Table 2 Correspondence between coupling degree and correlation
耦合性分析算法,即相关分析,是一种统计分析方法。可以用于发现不同变量之间的关联性,关联是指数据之间变化的相似性,这可以通过相关系数来描述。相关系数是相关系数中应用比较广泛的一种,主要用于分析两个连续性变量之间的线性相关的程度,计算公式是:Coupling analysis algorithm, namely correlation analysis, is a statistical analysis method. It can be used to find correlations between different variables. Correlation refers to the similarity of changes between data, which can be described by the correlation coefficient. Correlation coefficient is one of the most widely used correlation coefficients. It is mainly used to analyze the degree of linear correlation between two continuous variables. The calculation formula is:
式中,n为样本总数,X和Y分别有n个样本数。i的取值是1到n。Yi为当前控制回路的第i个PV样本数值。为当前控制回路的PV均值。Xi为上游控制回路的第i个PV样本数值。为上游控制回路的PV均值。In the formula, n is the total number of samples, and X and Y have n samples respectively. The value of i is 1 to n. Y i is the i-th PV sample value of the current control loop. is the PV mean value of the current control loop. Xi is the ith PV sample value of the upstream control loop. is the PV mean value of the upstream control loop.
计算过程如下(X和Y分别代表上游回路的PV值及当前回路的PV值):首先计算样本数据X和Y的平均值:The calculation process is as follows (X and Y represent the PV value of the upstream loop and the PV value of the current loop, respectively): First calculate the average value of the sample data X and Y:
再计算样本数据方差temp_X和temp_Y:Then calculate the sample data variance temp_X and temp_Y:
计算样本数据X和Y的协方差Cov(X,Y):Compute the covariance Cov(X, Y) of the sample data X and Y:
带入到相关系数的计算公式:Bring into the calculation formula of the correlation coefficient:
最后得出耦合性计算公式:Finally, the coupling calculation formula is obtained:
其中,r是相关系数,相关系数r的取值范围是:-1≤r≤1,其特征如下:Among them, r is the correlation coefficient, and the value range of the correlation coefficient r is: -1≤r≤1, and its characteristics are as follows:
r>0表示正相关,r<0表示负相关;r>0 means positive correlation, r<0 means negative correlation;
r=0表示不存在线性关系;r=0 means that there is no linear relationship;
r=-1或r=1表示存在完全的线性关系。r=-1 or r=1 means that there is a complete linear relationship.
表示变量之间存在不同程度的线性关系,通常约定规则如下:Indicates that there are different degrees of linear relationship between variables, and the usual convention rules are as follows:
|r|>0.8:高度耦合,认为存在极强的线性关系;|r|>0.8: High coupling, it is considered that there is a strong linear relationship;
0.5<|r|≤0.8:显著线性相关,认为存在强线性相关,存在明显的线性关系;0.5<|r|≤0.8: significant linear correlation, it is considered that there is a strong linear correlation, and there is an obvious linear relationship;
0.3<|r|≤0.5:低度线性相关,认为存在线性相关,但是线性相关不明显;0.3<|r|≤0.5: low degree of linear correlation, it is considered that there is a linear correlation, but the linear correlation is not obvious;
|r|≤0.3:弱线性相关或不存在线性关系。|r|≤0.3: Weak linear correlation or no linear relationship exists.
本发明将耦合性分析算法应用在控制回路的性能评估,辅助用户查找出串行回路中引起某回路性能评估差的根源回路。The invention applies the coupling analysis algorithm to the performance evaluation of the control loop, and assists the user to find out the root loop that causes the poor performance evaluation of a certain loop in the serial loop.
下面通过三个案例对本发明进行具体说明:The present invention is specifically described below through three cases:
案例一Case number one
某炼油厂常减压装置进料罐液位为串级回路控制,主回路为罐液位,副回路为出料流量。回路性能监测系统以10秒采样周期实时采集各回路的测量值(PV),设定值(SV),输出值(MV),MODE模式(手动/自动),对于主回路而言,PV为罐的当前液位测量值,SV为罐的液位设定值,MV为液位回路的输出,MODE为控制模式;对于副回路而言,PV为出料流量测量值,SV为出料流量设定值,MV为出料流量的控制阀位,MODE为控制模式。系统的回路性能计算周期为1小时,各回路间耦合度计算周期为1小时。实际运行过程中,出料流量控制性能评估结果为差,调节参数后仍没有改善。经耦合性分析计算,发现其与液位回路高度耦合,将液位参数调整后,出料流量控制性能转好。The liquid level of the feed tank of an atmospheric and vacuum unit in an oil refinery is controlled by a cascade loop, the main loop is the tank liquid level, and the secondary loop is the discharge flow. The loop performance monitoring system collects the measured value (PV), set value (SV), output value (MV), MODE mode (manual/automatic) of each loop in real time with a 10-second sampling period. For the main loop, PV is the tank The current liquid level measurement value, SV is the liquid level setting value of the tank, MV is the output of the liquid level circuit, and MODE is the control mode; for the secondary loop, PV is the measured value of the discharge flow, and SV is the set value of the discharge flow. Fixed value, MV is the control valve position of the discharge flow, and MODE is the control mode. The calculation period of the loop performance of the system is 1 hour, and the calculation period of the coupling degree between each loop is 1 hour. In the actual operation process, the evaluation result of the discharge flow control performance is poor, and there is no improvement after adjusting the parameters. Through coupling analysis and calculation, it is found that it is highly coupled with the liquid level circuit. After adjusting the liquid level parameters, the control performance of the discharge flow improves.
案例二Case 2
某炼油厂催化裂化装置,回路性能监测系统以10秒采样周期实时采集各控制回路的测量值(PV),设定值(SV),输出值(MV),MODE模式(手动/自动)。装置中的进料预热温度控制回路与分馏塔顶温度控制回路为两个单独的控制回路,进料预热温度控制回路为分馏塔顶温度控制回路的上游回路。其中进料预热温度控制回路的PV为进料温度测量值,SV为进料温度的设定值,MV为换热三通阀位,MODE为控制模式;分馏塔顶温度控制回路的PV为塔顶温度测量值,SV为塔顶温度的设定值,MV为换热三通阀位,MODE为控制模式。In a catalytic cracking unit of an oil refinery, the loop performance monitoring system collects the measured value (PV), set value (SV), output value (MV), and MODE mode (manual/automatic) of each control loop in real time with a 10-second sampling period. The feed preheating temperature control loop and the fractionation column top temperature control loop in the device are two separate control loops, and the feed preheat temperature control loop is the upstream loop of the fractionation column top temperature control loop. The PV of the feed preheating temperature control loop is the measured value of the feed temperature, SV is the set value of the feed temperature, MV is the heat exchange three-way valve position, and MODE is the control mode; the PV of the fractionation tower top temperature control loop is The measured value of the tower top temperature, SV is the set value of the tower top temperature, MV is the heat exchange three-way valve position, and MODE is the control mode.
系统的回路性能计算周期为1小时,各回路间耦合度计算周期为1小时。经过1小时的运行,发现分馏塔顶温度回路性能诊断为差,进料预热温度回路性能诊断也为差。由于塔顶温度测量值与温度设定值偏差较大,首先调节分馏塔顶温度控制参数,但控制性能没有得到改善。经耦合性分析计算,塔顶温度回路与进料预热温度回路高度耦合。调节进料预热温度回路的控制参数,进料预热温度回路性能得到改善,评估性能为良好,同时塔顶温度控制回路性能也转为良好。The calculation period of the loop performance of the system is 1 hour, and the calculation period of the coupling degree between each loop is 1 hour. After 1 hour of operation, it was found that the performance diagnosis of the top temperature circuit of the fractionation tower was poor, and the performance diagnosis of the feed preheating temperature circuit was also poor. Due to the large deviation between the measured value of the column top temperature and the temperature set value, the control parameters of the top temperature of the fractionation column were adjusted first, but the control performance was not improved. Through coupling analysis and calculation, the top temperature loop and the feed preheating temperature loop are highly coupled. By adjusting the control parameters of the feed preheating temperature loop, the performance of the feed preheating temperature loop is improved, and the evaluation performance is good, and the performance of the top temperature control loop is also turned to be good.
案例三Case 3
某炼油厂加氢裂化装置,设有两个串联的精馏塔,分别有各自的压力控制回路。回路性能监测系统以10秒采样周期实时采集各控制回路的测量值(PV),设定值(SV),输出值(MV),MODE模式(手动/自动)。精馏塔压力控制回路的PV为压力测量值,SV为压力设定值,MV为换热三通阀位,MODE为控制模式。A hydrocracking unit in a refinery is equipped with two rectifying towers connected in series, each with its own pressure control loop. The loop performance monitoring system collects the measured value (PV), set value (SV), output value (MV), and MODE mode (manual/automatic) of each control loop in real time with a sampling period of 10 seconds. The PV of the rectifying tower pressure control loop is the pressure measurement value, the SV is the pressure setting value, the MV is the heat exchange three-way valve position, and the MODE is the control mode.
系统的回路性能计算周期为1小时,各回路间耦合度计算周期为1小时。经过1小时的运行,发现两个精馏塔压力控制回路性能均为差。经耦合性分析计算,两个串联精馏塔压力控制回路属于低度耦合。调节上游精馏塔压力回路控制参数,上游精馏塔压力回路性能得到改善,转为良好。下游精馏塔压力控制回路性能仍为差。单独调节后,下游精馏塔压力控制回路性能转为良好。The calculation period of the loop performance of the system is 1 hour, and the calculation period of the coupling degree between each loop is 1 hour. After 1 hour of operation, it was found that the performance of the pressure control loops of both rectification towers was poor. According to the coupling analysis and calculation, the pressure control loops of the two series-connected rectification towers belong to a low degree of coupling. By adjusting the control parameters of the pressure loop of the upstream rectification tower, the performance of the pressure loop of the upstream rectification tower has been improved and turned to be good. The performance of the downstream distillation column pressure control loop remains poor. After individual adjustment, the performance of the pressure control loop of the downstream distillation column turned to good.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010897208.3A CN111983997B (en) | 2020-08-31 | 2020-08-31 | A method and system for monitoring control loop performance based on coupling analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010897208.3A CN111983997B (en) | 2020-08-31 | 2020-08-31 | A method and system for monitoring control loop performance based on coupling analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111983997A CN111983997A (en) | 2020-11-24 |
CN111983997B true CN111983997B (en) | 2021-07-20 |
Family
ID=73440621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010897208.3A Active CN111983997B (en) | 2020-08-31 | 2020-08-31 | A method and system for monitoring control loop performance based on coupling analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111983997B (en) |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0812064A2 (en) * | 1996-06-03 | 1997-12-10 | Matsushita Electric Industrial Co., Ltd. | Reception automatic gain control system and method |
WO2002012968A1 (en) * | 2000-08-04 | 2002-02-14 | Yamatake Corporation | Controlling device and controlling method |
EP1766484A1 (en) * | 2004-06-12 | 2007-03-28 | Fisher-Rosemount Systems, Inc. | System and method for detecting an abnormal situation associated with a process gain of a control loop |
DE102007050026A1 (en) * | 2007-10-17 | 2009-04-23 | Robert Bosch Gmbh | Method and apparatus for monitoring control circuits in an engine system |
WO2009108414A1 (en) * | 2008-02-29 | 2009-09-03 | Fisher Controls International Llc | Estimation of process control parameters over predefined travel segments |
CN101741631A (en) * | 2008-11-17 | 2010-06-16 | 华为技术有限公司 | An alarm and performance monitoring method and network node |
CN101847004A (en) * | 2010-06-03 | 2010-09-29 | 中南大学 | Method for performance evaluation and failure diagnosis of coke oven multi-loop control system |
CN102969960A (en) * | 2011-08-05 | 2013-03-13 | 通用电气公司 | Generator regulating system and method with dual controllers |
CN103439968A (en) * | 2013-08-28 | 2013-12-11 | 浙江大学 | Control performance measuring method for chemical process with control valve stickiness |
CN103488169A (en) * | 2013-09-29 | 2014-01-01 | 中国蓝星(集团)股份有限公司 | Continuous type chemical equipment and method and device for evaluating performance of control loops thereof in real time |
CN103488168A (en) * | 2013-09-29 | 2014-01-01 | 中国蓝星(集团)股份有限公司 | Intermittent chemical device and performance real-time evaluation method and device of control loops of intermittent chemical device |
CN103778309A (en) * | 2012-10-18 | 2014-05-07 | 天津职业技术师范大学 | Numerical control system reliability rapid Bayes evaluation system under degradation tests |
WO2014141997A1 (en) * | 2013-03-14 | 2014-09-18 | 株式会社 東芝 | Control parameter adjustment method and control parameter adjustment system |
CN104698976A (en) * | 2014-12-23 | 2015-06-10 | 南京工业大学 | Deep diagnosis method for predicting performance degradation of control model |
CN104932488A (en) * | 2015-06-30 | 2015-09-23 | 南京工业大学 | Model predictive control performance evaluation and diagnosis method |
CN105278527A (en) * | 2015-12-01 | 2016-01-27 | 中国烟草总公司郑州烟草研究院 | Real-time performance evaluation method suitable for single loop control system in tobacco processing process |
CN105892443A (en) * | 2015-02-16 | 2016-08-24 | 西门子公司 | Diagnostic Device And Method For Monitoring The Operation Of A Closed Loop |
CN105929814A (en) * | 2016-05-17 | 2016-09-07 | 清华大学 | Performance monitoring, diagnosis and maintenance for industrial controller with automatic operation capability |
CN106200619A (en) * | 2016-08-15 | 2016-12-07 | 浙江大学 | The PI of subsidiary controller output constraint controls loop performance appraisal procedure |
CN106774243A (en) * | 2016-12-02 | 2017-05-31 | 浙江中控软件技术有限公司 | PID performance estimating methods |
CN106799122A (en) * | 2017-03-17 | 2017-06-06 | 北京沃尔福环保科技有限公司 | A kind of hypergravity takes off ammonium salt device and technique |
CN107085420A (en) * | 2017-05-05 | 2017-08-22 | 浙江理工大学 | Control loop performance evaluation method and system based on minimum variance |
CN107209485A (en) * | 2015-01-21 | 2017-09-26 | 莱恩斯特里姆技术有限公司 | The automatic disturbance rejection controller of cascade |
CN108121215A (en) * | 2017-09-12 | 2018-06-05 | 山东科技大学 | Process control loops method of evaluating performance and device based on full loop reconstruct emulation |
US9991911B1 (en) * | 2017-10-19 | 2018-06-05 | Tekcem | Method for automatically adjusting a tunable passive antenna and a tuning unit, and apparatus for radio communication using this method |
CN109032117A (en) * | 2018-09-06 | 2018-12-18 | 华北电力大学(保定) | Single loop control system method of evaluating performance based on arma modeling |
CN109116733A (en) * | 2018-08-15 | 2019-01-01 | 上海理工大学 | A kind of evaluation method of the parallel cascade control systems system based on minimal information entropy |
CN109508895A (en) * | 2018-11-29 | 2019-03-22 | 福建中烟工业有限责任公司 | Control performance assessment device, method and the storage medium of tobacco cutting equipment |
CN110009126A (en) * | 2019-01-23 | 2019-07-12 | 北京化工大学 | The online alarm analysis method merged based on PLS model with PCA contribution degree |
CN110285429A (en) * | 2019-06-14 | 2019-09-27 | 北京沃尔福环保科技有限公司 | A kind of sludge treatment equipment and its technique |
CN110456756A (en) * | 2019-03-25 | 2019-11-15 | 中南大学 | A method suitable for online evaluation of global operating status in continuous production process |
CN110687791A (en) * | 2019-10-31 | 2020-01-14 | 浙江大学 | A nonlinear oscillation detection method based on improved adaptive frequency modulation mode decomposition |
CN111512267A (en) * | 2018-03-28 | 2020-08-07 | 英特尔公司 | System, apparatus and method for data driven low power state control based on performance monitoring information |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444191B2 (en) * | 2005-10-04 | 2008-10-28 | Fisher-Rosemount Systems, Inc. | Process model identification in a process control system |
WO2013087972A1 (en) * | 2011-12-15 | 2013-06-20 | Metso Automation Oy | A method of operating a process or machine |
US8948946B2 (en) * | 2012-11-29 | 2015-02-03 | GM Global Technology Operations LLC | Hybrid thermal system with device-specific control logic |
WO2018029393A1 (en) * | 2016-08-08 | 2018-02-15 | Triplewin Oy | A method, system, computer program product and computer data-base for controlling an industrial process or machine |
US10666494B2 (en) * | 2017-11-10 | 2020-05-26 | Nyansa, Inc. | System and method for network incident remediation recommendations |
-
2020
- 2020-08-31 CN CN202010897208.3A patent/CN111983997B/en active Active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0812064A2 (en) * | 1996-06-03 | 1997-12-10 | Matsushita Electric Industrial Co., Ltd. | Reception automatic gain control system and method |
WO2002012968A1 (en) * | 2000-08-04 | 2002-02-14 | Yamatake Corporation | Controlling device and controlling method |
EP1766484A1 (en) * | 2004-06-12 | 2007-03-28 | Fisher-Rosemount Systems, Inc. | System and method for detecting an abnormal situation associated with a process gain of a control loop |
CN1969239A (en) * | 2004-06-12 | 2007-05-23 | 费舍-柔斯芒特系统股份有限公司 | System and method for detecting an abnormal situation associated with a process gain of a control loop |
DE102007050026A1 (en) * | 2007-10-17 | 2009-04-23 | Robert Bosch Gmbh | Method and apparatus for monitoring control circuits in an engine system |
WO2009108414A1 (en) * | 2008-02-29 | 2009-09-03 | Fisher Controls International Llc | Estimation of process control parameters over predefined travel segments |
CN101741631A (en) * | 2008-11-17 | 2010-06-16 | 华为技术有限公司 | An alarm and performance monitoring method and network node |
CN101847004A (en) * | 2010-06-03 | 2010-09-29 | 中南大学 | Method for performance evaluation and failure diagnosis of coke oven multi-loop control system |
CN101847004B (en) * | 2010-06-03 | 2011-11-09 | 中南大学 | Method for performance evaluation and failure diagnosis of coke oven multi-loop control system |
CN102969960A (en) * | 2011-08-05 | 2013-03-13 | 通用电气公司 | Generator regulating system and method with dual controllers |
CN103778309A (en) * | 2012-10-18 | 2014-05-07 | 天津职业技术师范大学 | Numerical control system reliability rapid Bayes evaluation system under degradation tests |
CN105027010A (en) * | 2013-03-14 | 2015-11-04 | 株式会社东芝 | Control parameter adjustment method and control parameter adjustment system |
WO2014141997A1 (en) * | 2013-03-14 | 2014-09-18 | 株式会社 東芝 | Control parameter adjustment method and control parameter adjustment system |
CN103439968A (en) * | 2013-08-28 | 2013-12-11 | 浙江大学 | Control performance measuring method for chemical process with control valve stickiness |
CN103488168A (en) * | 2013-09-29 | 2014-01-01 | 中国蓝星(集团)股份有限公司 | Intermittent chemical device and performance real-time evaluation method and device of control loops of intermittent chemical device |
CN103488169A (en) * | 2013-09-29 | 2014-01-01 | 中国蓝星(集团)股份有限公司 | Continuous type chemical equipment and method and device for evaluating performance of control loops thereof in real time |
CN104698976A (en) * | 2014-12-23 | 2015-06-10 | 南京工业大学 | Deep diagnosis method for predicting performance degradation of control model |
CN107209485A (en) * | 2015-01-21 | 2017-09-26 | 莱恩斯特里姆技术有限公司 | The automatic disturbance rejection controller of cascade |
CN105892443A (en) * | 2015-02-16 | 2016-08-24 | 西门子公司 | Diagnostic Device And Method For Monitoring The Operation Of A Closed Loop |
EP3056957B1 (en) * | 2015-02-16 | 2019-03-27 | Siemens Aktiengesellschaft | Diagnostic device and method for monitoring the operation of a closed loop |
CN104932488A (en) * | 2015-06-30 | 2015-09-23 | 南京工业大学 | Model predictive control performance evaluation and diagnosis method |
CN105278527A (en) * | 2015-12-01 | 2016-01-27 | 中国烟草总公司郑州烟草研究院 | Real-time performance evaluation method suitable for single loop control system in tobacco processing process |
CN105929814A (en) * | 2016-05-17 | 2016-09-07 | 清华大学 | Performance monitoring, diagnosis and maintenance for industrial controller with automatic operation capability |
CN106200619A (en) * | 2016-08-15 | 2016-12-07 | 浙江大学 | The PI of subsidiary controller output constraint controls loop performance appraisal procedure |
CN106774243A (en) * | 2016-12-02 | 2017-05-31 | 浙江中控软件技术有限公司 | PID performance estimating methods |
CN106799122A (en) * | 2017-03-17 | 2017-06-06 | 北京沃尔福环保科技有限公司 | A kind of hypergravity takes off ammonium salt device and technique |
CN107085420A (en) * | 2017-05-05 | 2017-08-22 | 浙江理工大学 | Control loop performance evaluation method and system based on minimum variance |
WO2019051963A1 (en) * | 2017-09-12 | 2019-03-21 | 山东科技大学 | Method and apparatus for evaluating industrial control loop performance based on full loop reconstruction simulation |
CN108121215A (en) * | 2017-09-12 | 2018-06-05 | 山东科技大学 | Process control loops method of evaluating performance and device based on full loop reconstruct emulation |
US9991911B1 (en) * | 2017-10-19 | 2018-06-05 | Tekcem | Method for automatically adjusting a tunable passive antenna and a tuning unit, and apparatus for radio communication using this method |
CN111512267A (en) * | 2018-03-28 | 2020-08-07 | 英特尔公司 | System, apparatus and method for data driven low power state control based on performance monitoring information |
CN109116733A (en) * | 2018-08-15 | 2019-01-01 | 上海理工大学 | A kind of evaluation method of the parallel cascade control systems system based on minimal information entropy |
CN109032117A (en) * | 2018-09-06 | 2018-12-18 | 华北电力大学(保定) | Single loop control system method of evaluating performance based on arma modeling |
CN109508895A (en) * | 2018-11-29 | 2019-03-22 | 福建中烟工业有限责任公司 | Control performance assessment device, method and the storage medium of tobacco cutting equipment |
CN110009126A (en) * | 2019-01-23 | 2019-07-12 | 北京化工大学 | The online alarm analysis method merged based on PLS model with PCA contribution degree |
CN110456756A (en) * | 2019-03-25 | 2019-11-15 | 中南大学 | A method suitable for online evaluation of global operating status in continuous production process |
CN110285429A (en) * | 2019-06-14 | 2019-09-27 | 北京沃尔福环保科技有限公司 | A kind of sludge treatment equipment and its technique |
CN110687791A (en) * | 2019-10-31 | 2020-01-14 | 浙江大学 | A nonlinear oscillation detection method based on improved adaptive frequency modulation mode decomposition |
Non-Patent Citations (7)
Title |
---|
"Controller performance benchmarking and tuning using generalised minimum variance control";Grimble, M;《Automatica》;20021231;第2111-2119页 * |
"Decoupling of square singular system by proportional state feedback";Ailon.A;《IEEE》;19911231;第95-102页 * |
"关联控制系统的性能评价方法";李昕泽;《中国优秀硕士学位论文全文数据库》;20121015;第I140-1235页 * |
"基于数据挖掘的工业过程控制性能评价方法及应用";柴骅迅;《中国优秀硕士学位论文全文数据库》;20200615;第A002-327页 * |
"基于最小方差的电厂汽包水位控制回路性能评估";史爱明;《软件导刊》;20181231;第161-164页 * |
"系统藕合度及其弱化方法";王启志;《仪器仪表学报》;20000430;第218-220页 * |
"闭环回路控制多指标性能评价";赵洪洲;《中国优秀硕士学位论文全文数据库》;20180315;第I140-854页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111983997A (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110991043B (en) | Energy consumption modeling and evaluating method of energy consumption system | |
CN109977916B (en) | Online monitoring system for dissolved gas in transformer oil based on embedded platform | |
CN102357933B (en) | Real-time quality monitoring method based on rubber mixing process | |
CN101710235A (en) | Method for automatically identifying and monitoring on-line machined workpieces of numerical control machine tool | |
CN113219910A (en) | Full-flow production self-diagnosis and optimization system | |
WO2024108641A1 (en) | Regional carbon emission smart measurement system based on low-carbon energy consumption optimization collaboration | |
CN103103570A (en) | Aluminum electrolysis cell condition diagnosis method based on principal element similarity measure | |
CN111983997B (en) | A method and system for monitoring control loop performance based on coupling analysis | |
CN112269824B (en) | Desulfurization device parameter evaluation method based on online data | |
CN102628377B (en) | A Method for Processing the Actual Measured Data of the Speed Regulation System Parameters of a Steam Turbine Unit | |
CN113777551B (en) | Current transformer transformation ratio checking method for special line special power user metering device | |
CN113944883A (en) | Monitoring and scheduling integrated system of urban water supply pipe network | |
CN112246878B (en) | Thickness judgment system and judgment method for pickling coil hot rolling process | |
CN110930060B (en) | Parameter calculation-based method for evaluating AGC regulation performance of generator set | |
CN107516902A (en) | A Real-time Coordinated Control Method for Multiple Interruptible Loads Considering Market Operation Rules | |
CN116776264A (en) | High-loss and negative-loss station household transformer relation anomaly identification method | |
CN109632205A (en) | The on-line calculation method of Tightness Property of Condenser Vacuum System | |
Bo et al. | Research of Typical Line Loss Rate in Transformer District Based on Data-Driven Method | |
CN115450710A (en) | Optimization Method of Steam Turbine Sliding Pressure Operation | |
CN108364095A (en) | Molten steel quality diagnosis method in steelmaking production process based on data mining | |
CN115392663A (en) | Data acquisition and processing method based on big data | |
CN107559944B (en) | A method for identifying the regulation mode of a central heating system | |
CN220421496U (en) | On-line monitoring system for energy consumption of offshore area | |
CN205157477U (en) | Multitube way cleanliness on -line measuring device | |
CN112686284A (en) | Building operation data quality management method, system and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |