CN111982271B - 一种基于Wavenet的φ-OTDR模式识别系统及方法 - Google Patents
一种基于Wavenet的φ-OTDR模式识别系统及方法 Download PDFInfo
- Publication number
- CN111982271B CN111982271B CN202010954553.6A CN202010954553A CN111982271B CN 111982271 B CN111982271 B CN 111982271B CN 202010954553 A CN202010954553 A CN 202010954553A CN 111982271 B CN111982271 B CN 111982271B
- Authority
- CN
- China
- Prior art keywords
- wavenet
- otdr
- phi
- output
- pattern recognition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000253 optical time-domain reflectometry Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000003909 pattern recognition Methods 0.000 title claims abstract description 14
- 239000013307 optical fiber Substances 0.000 claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 17
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 6
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims description 17
- 230000001364 causal effect Effects 0.000 claims description 13
- 238000012216 screening Methods 0.000 claims description 10
- 238000012567 pattern recognition method Methods 0.000 claims description 9
- 238000003062 neural network model Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000000284 extract Substances 0.000 abstract description 2
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000012549 training Methods 0.000 description 13
- 230000008447 perception Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010954553.6A CN111982271B (zh) | 2020-09-11 | 2020-09-11 | 一种基于Wavenet的φ-OTDR模式识别系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010954553.6A CN111982271B (zh) | 2020-09-11 | 2020-09-11 | 一种基于Wavenet的φ-OTDR模式识别系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111982271A CN111982271A (zh) | 2020-11-24 |
CN111982271B true CN111982271B (zh) | 2024-12-20 |
Family
ID=73449337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010954553.6A Active CN111982271B (zh) | 2020-09-11 | 2020-09-11 | 一种基于Wavenet的φ-OTDR模式识别系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111982271B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114900229A (zh) * | 2022-04-28 | 2022-08-12 | 华中科技大学 | 光时域反射仪高空间分辨率计算方法与装置 |
CN115265750B (zh) * | 2022-07-19 | 2024-08-16 | 温州市质量技术检测科学研究院 | 一种光纤分布式声波传感系统及方法 |
CN115240418B (zh) * | 2022-07-20 | 2023-07-25 | 浙江科技学院 | 基于因果门控-低通图卷积网络的短时交通流量预测方法 |
CN116863251B (zh) * | 2023-09-01 | 2023-11-17 | 湖北工业大学 | 一种分布式光纤传感扰动识别方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN212482678U (zh) * | 2020-09-11 | 2021-02-05 | 电子科技大学中山学院 | 一种基于Wavenet的φ-OTDR模式识别系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100772456B1 (ko) * | 2005-12-08 | 2007-11-01 | 한국전자통신연구원 | 다차원 시계열 신호 인식 시스템 및 방법 |
US9536523B2 (en) * | 2011-06-22 | 2017-01-03 | Vocalzoom Systems Ltd. | Method and system for identification of speech segments |
CN106225907B (zh) * | 2016-06-28 | 2018-11-20 | 浙江大学 | 一种基于φ-otdr技术的光纤振动识别系统及方法 |
CN107976248B (zh) * | 2016-10-25 | 2019-09-13 | 北京大学 | 能够实现全相位解调的分布式光纤传感系统及其测量方法 |
CN206192493U (zh) * | 2016-11-29 | 2017-05-24 | 威海北洋光电信息技术股份公司 | 基于pcie采集卡的高精度分布式光纤振动装置 |
CN107490429A (zh) * | 2017-07-21 | 2017-12-19 | 国网上海市电力公司 | 一种地埋电缆防误开挖预警装置 |
CN108932480B (zh) * | 2018-06-08 | 2022-03-15 | 电子科技大学 | 基于1d-cnn的分布式光纤传感信号特征学习与分类方法 |
CN109120335A (zh) * | 2018-09-26 | 2019-01-01 | 昆仑杰信(北京)科技有限责任公司 | 一种埋地光缆故障地面定位仪及定位方法 |
CN111507310B (zh) * | 2020-05-21 | 2023-05-23 | 国网湖北省电力有限公司武汉供电公司 | 一种基于φ-otdr的光缆通道内人为触缆作业信号识别方法 |
-
2020
- 2020-09-11 CN CN202010954553.6A patent/CN111982271B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN212482678U (zh) * | 2020-09-11 | 2021-02-05 | 电子科技大学中山学院 | 一种基于Wavenet的φ-OTDR模式识别系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111982271A (zh) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111982271B (zh) | 一种基于Wavenet的φ-OTDR模式识别系统及方法 | |
Yang et al. | A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection | |
Nguyen et al. | Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring | |
CN108932480B (zh) | 基于1d-cnn的分布式光纤传感信号特征学习与分类方法 | |
CN114357594A (zh) | 一种基于sca-gru的桥梁异常监测方法、系统、设备及存储介质 | |
Ye et al. | A deep learning-based method for automatic abnormal data detection: Case study for bridge structural health monitoring | |
Zhan et al. | A novel structural damage detection method via multisensor spatial–temporal graph-based features and deep graph convolutional network | |
CN115630278A (zh) | 基于通道-时空注意力机制的网络的振动损伤检测方法 | |
Gharehbaghi et al. | A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network | |
Zhang et al. | Timber damage identification using dynamic broad network and ultrasonic signals | |
CN112668526A (zh) | 基于深度学习和压电主动传感的螺栓群松动定位监测方法 | |
CN119251980A (zh) | 基于机器学习的光纤自然灾害预警方法及相关设备 | |
CN114492146B (zh) | 基于迁移学习的螺栓群松动定位和定量分析方法及系统 | |
Yi et al. | An intelligent crash recognition method based on 1DResNet-SVM with distributed vibration sensors | |
Huang et al. | A hybrid FCN-BiGRU with transfer learning for low-velocity impact identification on aircraft structure | |
CN115753986B (zh) | 基于相对值及数据驱动的非线性超声导波裂纹定位方法 | |
CN117387949A (zh) | 基于格兰杰因果检验的图神经网络轴承故障诊断方法 | |
Bui-Ngoc et al. | Structural health monitoring using handcrafted features and convolution neural network | |
Hao et al. | New fusion features convolutional neural network with high generalization ability on rolling bearing fault diagnosis | |
Bencharif et al. | Detection of acoustic signals from Distributed Acoustic Sensor data with Random Matrix Theory and their classification using Machine Learning | |
CN115659223A (zh) | 基于多算法的滚动轴承故障诊断方法、装置、设备及介质 | |
Parziale et al. | Transmissibility functions-based structural damage assessment with the use of explainable convolutional neural networks | |
CN114494273A (zh) | 一种基于监测数据与深度学习的桥梁阻尼比识别方法 | |
CN114357855A (zh) | 基于平行卷积神经网络的结构损伤识别方法和装置 | |
CN118706949B (zh) | 病害检测方法、装置和计算机设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: He Yuchong Inventor after: Yu Miao Inventor after: Zhang Chongfu Inventor after: Pan Xinjian Inventor after: Yu Xiaoyu Inventor after: Yi Zichuan Inventor after: Kong Qian Inventor after: Gao Qingguo Inventor after: Li Zhili Inventor before: Yu Miao Inventor before: He Yuchong Inventor before: Zhang Chongfu Inventor before: Pan Xinjian Inventor before: Yu Xiaoyu Inventor before: Yi Zichuan Inventor before: Kong Qian Inventor before: Gao Qingguo Inventor before: Li Zhili |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |