CN111975759A - An optical sensor-embedded artificial muscle and its use and preparation method - Google Patents
An optical sensor-embedded artificial muscle and its use and preparation method Download PDFInfo
- Publication number
- CN111975759A CN111975759A CN202010738865.3A CN202010738865A CN111975759A CN 111975759 A CN111975759 A CN 111975759A CN 202010738865 A CN202010738865 A CN 202010738865A CN 111975759 A CN111975759 A CN 111975759A
- Authority
- CN
- China
- Prior art keywords
- optical
- light
- artificial muscle
- sensor
- pressure detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/1075—Programme-controlled manipulators characterised by positioning means for manipulator elements with muscles or tendons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0095—Means or methods for testing manipulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/241—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Measuring Fluid Pressure (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明公开了一种光学传感器嵌入式的人工肌肉及其使用和制备方法。目前气动肌肉驱动系统的反馈控制主要依赖于外部压力传感器和位置传感器或编码器的使用实现。本发明包括光学压力检测端盖、人工肌肉基体和光学长度检测端盖。人工肌肉基体包括弹性筒身、光长度检测膜片和光压力检测膜片。光压力检测膜片、光长度检测膜片分别固定在弹性筒身内腔的压力检测端、长度检测端。光压力检测膜片的两侧不连通。光长度检测膜片的两侧通过通气孔连通。弹性筒身的内侧面吸光。光压力检测膜片及光长度检测膜片的外侧面反光。本发明通过设计光学传感器来反馈人工肌肉的收缩长度和收缩力,具有重量轻、顺应性好等方面的优势。
The invention discloses an optical sensor-embedded artificial muscle and its use and preparation method. The current feedback control of pneumatic muscle actuation systems mainly relies on the use of external pressure sensors and position sensors or encoders. The present invention includes an optical pressure detection end cap, an artificial muscle base and an optical length detection end cap. The artificial muscle base includes an elastic cylinder, an optical length detection diaphragm and an optical pressure detection diaphragm. The optical pressure detection diaphragm and the optical length detection diaphragm are respectively fixed on the pressure detection end and the length detection end of the inner cavity of the elastic cylinder body. The two sides of the optical pressure detection diaphragm are not connected. The two sides of the optical length detection film are communicated through the ventilation holes. The inner side of the elastic barrel absorbs light. The outer sides of the light pressure detection film and the light length detection film reflect light. The present invention feedbacks the contraction length and contraction force of the artificial muscle by designing an optical sensor, and has the advantages of light weight, good compliance and the like.
Description
技术领域technical field
本发明属于软机器人技术领域,具体涉及一种光学传感器嵌入式的软体气动人工肌肉。The invention belongs to the technical field of soft robots, in particular to a soft pneumatic artificial muscle embedded with an optical sensor.
背景技术Background technique
由于软机器人的重量轻和顺应性,软机器人领域在可穿戴设备和人机交互方面处于有利地位。对于这样的应用,位置和力的感知对于增强人机交互是至关重要的,由于软体材料的非线性特性,因此在软体系统中实现这些功能是一个挑战。目前气动肌肉驱动系统的反馈控制主要依赖于外部压力传感器和位置传感器或编码器的使用实现。虽然这适用于一些机器人系统,但额外的传感硬件会增加设计的复杂性,并抵消软体机器人在重量轻、顺应性等方面的优势。特别是在可穿戴设备的情况下,外部传感可能会增加佩戴者的体积和负重并抑制其运动。The field of soft robotics is well-positioned for wearables and human-robot interaction due to its light weight and compliance. For such applications, the perception of position and force is crucial for enhancing human-computer interaction, and implementing these functions in soft-body systems is a challenge due to the nonlinear nature of soft-body materials. The current feedback control of pneumatic muscle actuation systems mainly relies on the use of external pressure sensors and position sensors or encoders. While this works for some robotic systems, additional sensing hardware adds complexity to the design and negates the advantages of soft robotics in terms of light weight, compliance, and more. Especially in the case of wearable devices, external sensing may add bulk and weight to the wearer and inhibit movement.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种光学传感器嵌入式的软体气动人工肌肉。The purpose of the present invention is to provide a soft pneumatic artificial muscle embedded with an optical sensor.
本发明一种光学传感器嵌入式的人工肌肉,包括光学压力检测端盖、人工肌肉基体和光学长度检测端盖。人工肌肉基体的两端分别为压力检测端和长度检测端。光学压力检测端盖、光学长度检测端盖分别安装在人工肌肉基体的压力检测端、长度检测端。人工肌肉基体包括弹性筒身、光长度检测膜片和光压力检测膜片。光压力检测膜片、光长度检测膜片分别固定在弹性筒身内腔的压力检测端、长度检测端。光压力检测膜片的两侧不连通。光长度检测膜片的两侧通过通气孔连通。弹性筒身的内侧面吸光。光压力检测膜片及光长度检测膜片的外侧面反光。光学压力检测端盖的内侧安装有光学压力检测传感器。光学长度检测端盖的内侧安装有光学长度检测传感器。光学压力检测传感器和光学长度检测传感器均能够发射光线,且能够检测接收到的光强度。The invention relates to an optical sensor-embedded artificial muscle, comprising an optical pressure detection end cap, an artificial muscle base and an optical length detection end cap. Two ends of the artificial muscle base are respectively a pressure detection end and a length detection end. The optical pressure detection end cap and the optical length detection end cap are respectively installed on the pressure detection end and the length detection end of the artificial muscle base. The artificial muscle base includes an elastic cylinder, an optical length detection diaphragm and an optical pressure detection diaphragm. The optical pressure detection diaphragm and the optical length detection diaphragm are respectively fixed on the pressure detection end and the length detection end of the inner cavity of the elastic cylinder body. The two sides of the optical pressure detection diaphragm are not connected. The two sides of the optical length detection film are communicated through the ventilation holes. The inner side of the elastic barrel absorbs light. The outer sides of the light pressure detection film and the light length detection film reflect light. An optical pressure detection sensor is installed on the inner side of the optical pressure detection end cap. An optical length detection sensor is installed on the inner side of the optical length detection end cap. Both the optical pressure detection sensor and the optical length detection sensor are capable of emitting light and capable of detecting the received light intensity.
作为优选,所述的人工肌肉基体还包括限位圈和加固纤维网。加固纤维网镶嵌在弹性筒身的侧壁内部,将弹性筒身分隔为外筒身和内筒身。依次排列的多个限位圈均镶嵌在弹性筒身压力检测端的侧壁内部,限制弹性筒身的压力检测端的变形。光压力检测膜片位于弹性筒身被限位圈限制的部分的边缘处。Preferably, the artificial muscle matrix further includes a limiting ring and a reinforcing fiber mesh. The reinforced fiber mesh is inlaid inside the side wall of the elastic cylinder, and the elastic cylinder is divided into an outer cylinder and an inner cylinder. A plurality of limit rings arranged in sequence are embedded in the side wall of the pressure detection end of the elastic cylinder to limit the deformation of the pressure detection end of the elastic cylinder. The light pressure detection diaphragm is located at the edge of the part of the elastic barrel limited by the limit ring.
作为优选,所述的加固纤维网和限位圈均凯夫拉尔纤维线缠绕形成。加固纤维网由旋向相反的两组螺旋线交织形成。Preferably, the reinforced fiber mesh and the limiting ring are formed by winding Kevlar fibers. The reinforcing fiber web is formed by interlacing two sets of helical threads with opposite directions of rotation.
作为优选,所述的吸光材料为铂金固化硅胶与黑色有机硅酮颜料的混合物;反光材料铂金固化硅胶与白色有机硅酮颜料的混合物。Preferably, the light-absorbing material is a mixture of platinum-cured silica gel and black organic silicone pigment; the light-reflecting material is a mixture of platinum-cured silica gel and white organic silicone pigment.
作为优选,所述的光学压力检测端盖和光学长度检测端盖均包括结构相同的基础端盖组件。基础端盖组件包括末端连接器、盖体和屏蔽铝板。末端连接器主体呈圆筒状,内端边缘处设置有多个穿线块。各穿线块上均设置有穿线孔。加固纤维网两端的纤维线分别穿过两个末端连接器上的各个穿线孔。盖体固定在末端连接器内。屏蔽铝板固定在盖体的内侧。光学压力检测传感器和光学长度检测传感器结构相同,均包括发光二极管和光电二极管。发光二极管、光电二极管分别安装在对应的屏蔽铝板的两侧。Preferably, the optical pressure detection end cap and the optical length detection end cap both include basic end cap assemblies with the same structure. The basic end cap assembly includes an end connector, a cap and a shielded aluminum plate. The main body of the end connector is cylindrical, and a plurality of threading blocks are arranged at the edge of the inner end. Each threading block is provided with threading holes. The fiber threads at both ends of the reinforced fiber web are respectively passed through the respective thread holes on the two end connectors. The cover is secured in the end connector. The shielding aluminum plate is fixed on the inner side of the cover body. The optical pressure detection sensor and the optical length detection sensor have the same structure, and both include light-emitting diodes and photodiodes. Light-emitting diodes and photodiodes are respectively installed on both sides of the corresponding shielding aluminum plate.
作为优选,所述光长度检测膜片朝外的侧面边缘处均设置有吸光环;Preferably, a light absorption ring is provided at the outer edge of the light length detection film;
作为优选,所述光学长度检测端盖的内侧还安装有两根导光件。两根导光件与光学长度检测传感器的发光位置、收光位置。所述的光学压力检测端盖或光学长度检测端盖上设置有气管;气管的两端分别与人工肌肉基体的内腔、气源连接。Preferably, two light guides are installed on the inner side of the optical length detection end cap. The light-emitting position and the light-receiving position of the two light guides and the optical length detection sensor. The optical pressure detection end cap or the optical length detection end cap is provided with a trachea; the two ends of the trachea are respectively connected with the inner cavity and the gas source of the artificial muscle base.
该光学传感器嵌入式的人工肌肉的使用方法如下:The method of using the artificial muscle embedded in the optical sensor is as follows:
步骤一、对光学压力检测传感器和光学长度检测传感器进行校准。Step 1: Calibrate the optical pressure detection sensor and the optical length detection sensor.
步骤二、在持续检测中使用软体气动人工肌肉进行驱动。Step 2: Use soft pneumatic artificial muscles to drive in continuous detection.
2-1.将软体气动人工肌肉装入机械系统中作为动力源;2-1. Put the soft pneumatic artificial muscle into the mechanical system as the power source;
2-2.光学压力传感器及光学长度传感器中的发光二极管持续呈发散状发出光线,两组光线各自经光压力检测膜片、光长度检测膜片反射,进入光学压力传感器及光学长度传感器中的光电二极管。2-2. The light-emitting diodes in the optical pressure sensor and the optical length sensor continue to emit light in a divergent shape. Photodiode.
2-3通过对软体气动人工肌肉的充放气来驱动软体气动人工肌肉的伸缩。当软体气动人工肌肉缩短时,光长度检测膜片到光学长度传感器的距离减少,进而使得光学长度传感器内的光电二极管检测到的光强度升高,根据光学长度传感器检测到的光强度数值推导出软体气动人工肌肉的当前长度。2-3 Drive the expansion and contraction of the soft pneumatic artificial muscle by inflating and deflating the soft pneumatic artificial muscle. When the soft pneumatic artificial muscle is shortened, the distance between the optical length detection diaphragm and the optical length sensor decreases, which in turn increases the light intensity detected by the photodiode in the optical length sensor, which is derived from the light intensity value detected by the optical length sensor. The current length of the soft body pneumatic artificial muscle.
当软体气动人工肌肉内的压力升高时,光压力检测膜片向光学压力传感器凸出的幅度增大,进而使得光学压力传感器内的光电二极管检测到的光强度降低,根据光学压力传感器检测到的光强度数值推导出软体气动人工肌肉的当前内部压力。When the pressure in the soft pneumatic artificial muscle increases, the protruding range of the optical pressure detection diaphragm to the optical pressure sensor increases, which in turn reduces the light intensity detected by the photodiode in the optical pressure sensor. The current internal pressure of the soft-bodied pneumatic artificial muscle is derived from the light intensity value of .
作为优选,该光学传感器嵌入式的人工肌肉的使用方法的步骤一具体过程如下:Preferably, a specific process of step one of the method for using the artificial muscle embedded in the optical sensor is as follows:
1-1.通过比例阀和电磁阀组合对肌肉内部充入气压递变的气体,气压大小通过气压传感器采集;在整个测试过程中,持续记录该软体气动人工肌肉的长度、内部压力、光学压力检测传感器、光学长度检测传感器内光电二极管检测到的光强度。1-1. Fill the muscle with gas with gradual pressure through the combination of proportional valve and solenoid valve, and the pressure is collected by the pressure sensor; during the whole test process, the length, internal pressure and optical pressure of the software pneumatic artificial muscle are continuously recorded The light intensity detected by the photodiode in the detection sensor, optical length detection sensor.
1-2.通过离散点拟合,得到光学压力检测传感器检测到的光强度与软体气动人工肌肉内部压力之间的光-压力关系曲线,以及光学长度检测传感器检测到的光强度与软体气动人工肌肉的长度之间的光-长度关系曲线。1-2. Through discrete point fitting, the light-pressure relationship curve between the light intensity detected by the optical pressure detection sensor and the internal pressure of the soft pneumatic artificial muscle, and the light intensity detected by the optical length detection sensor and the soft pneumatic artificial muscle are obtained. Light-length relationship curve between the lengths of the muscles.
该光学传感器嵌入式的人工肌肉的制备方法如下:The preparation method of the optical sensor-embedded artificial muscle is as follows:
步骤一、用竖直设置的圆柱状的内模和筒状的第一外模配合形成用于浇筑内筒身的模腔;第一外模的内侧面设置有网格状突起,内侧面一端端部设置有多圈突起。使用吸光材料浇筑到内模和第一外模之间,形成内筒身;内筒身的外侧面具有网格状沟槽,一端具有多圈环形沟槽。网格状沟槽由多根左旋螺旋线和多根右旋螺旋线交织而成。内筒身外侧面的两端端部均有多个左旋螺旋线与右旋螺旋线的交点。
步骤二、将两个末端连接器套上内模的两端并通过定位销固定,使得末端连接器上的多个穿线孔抵住内筒身端部的多个螺旋线交点。用一根纤维线沿着内筒身上的网格状沟槽缠绕,使得凯夫拉尔纤维线经过网格状沟槽的所有位置,并穿过两个末端连接器的所有穿线孔。再用纤维线绕置出多个限位圈。Step 2: Put the two end connectors on both ends of the inner mold and fix them with positioning pins, so that the multiple threading holes on the end connectors are against the multiple intersections of the spiral lines at the end of the inner barrel. Wrap a fiber thread along the grid grooves on the inner barrel so that the Kevlar fiber thread passes through all locations of the grid grooves and through all the threading holes of the two end connectors. A plurality of limit rings are then wound around the fiber line.
步骤三、撤去第一外模,并安装上内径大于第一外模的第二外模;使用吸光材料浇筑到内筒身和第二外模之间,形成外筒身;外筒身完全覆盖纤维线。内筒身和外筒身共同形成弹性筒身;将内模从弹性筒身中取出。此时,弹性筒身内的长度检测端朝下设置。Step 3: Remove the first outer mold, and install a second outer mold with an inner diameter larger than the first outer mold; use light-absorbing material to pour between the inner barrel and the second outer mold to form an outer barrel; the outer barrel is completely covered fiber line. The inner cylinder body and the outer cylinder body together form an elastic cylinder body; the inner mold is taken out from the elastic cylinder body. At this time, the length detection end in the elastic cylinder body is set downward.
步骤四、铸造光长度检测膜片:在弹性筒身下方的长度检测端放入带有排气销的第一膜片模具;第一膜片模具的端部边缘处设置有环形凸起;之后在第一膜片模具处通过注射器浇筑反光材料,形成光长度检测膜片;光长度检测膜片固化后,翻转弹性筒身,使得光长度检测膜片外侧面的环形凹槽朝上设置,卸下第一膜片模具,并在光长度检测膜片外侧面的环形凹槽浇筑吸光材料形成吸光环。Step 4. Casting the optical length detection diaphragm: put the first diaphragm mold with the exhaust pin at the length detection end under the elastic cylinder body; the edge of the end of the first diaphragm mold is provided with an annular protrusion; then A reflective material is poured at the first diaphragm mold to form an optical length detection diaphragm; after the optical length detection diaphragm is cured, the elastic cylinder is turned over so that the annular groove on the outer side of the optical length detection diaphragm is set upward, and the removal Lower the first diaphragm mold, and pour light-absorbing material into the annular groove on the outer side of the light-length detecting diaphragm to form a light-absorbing ring.
步骤五、铸造光压力检测膜片:在弹性筒身下方的压力检测端插入端面平整的第二膜片模具;之后在第二膜片模具处通过注射器浇筑反光材料,形成光压力检测膜片。
步骤六、将光学压力检测端盖、光学长度检测端盖完整安装到弹性筒身的两端。Step 6: Completely install the optical pressure detection end cap and the optical length detection end cap to both ends of the elastic barrel.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
1、本发明提供了一种光学传感器嵌入式的软体气动人工肌肉,通过设计光学传感器来反馈人工肌肉的收缩长度和收缩力,与现有的通过外部传感硬件反馈信息的人工肌肉相比,具有重量轻、顺应性好等方面的优势,特别是应用在可穿戴设备的情况下,极大减小了佩戴者的体积和负重,更加轻便。1. The present invention provides an optical sensor-embedded soft pneumatic artificial muscle. By designing an optical sensor, the contraction length and contraction force of the artificial muscle can be fed back. Compared with the existing artificial muscle that feeds back information through external sensing hardware, It has the advantages of light weight and good compliance, especially in the case of wearable devices, which greatly reduces the size and load of the wearer, making it lighter.
2、本发明将人工肌肉的内部压力转化为光压力检测膜片的弯曲变形程度,并通过光压力检测膜片反射到光学压力检测传感器的光强度来判断光压力检测膜片的弯曲变形程度,实现人工肌肉的内部压力的检测。2. The present invention converts the internal pressure of the artificial muscle into the bending deformation degree of the optical pressure detection diaphragm, and judges the bending deformation degree of the optical pressure detection diaphragm by reflecting the light intensity of the optical pressure detection diaphragm to the optical pressure detection sensor, The detection of the internal pressure of the artificial muscle is realized.
3、本发明将人工肌肉的长度转化为光长度检测膜片到端部的距离,并通过光压力检测膜片反射到光学压力检测传感器的光强度来判断光长度检测膜片到端部的距离,实现人工肌肉的长度检测。3. The present invention converts the length of the artificial muscle into the distance from the optical length detection diaphragm to the end, and judges the distance from the optical length detection diaphragm to the end by the light intensity reflected from the optical pressure detection diaphragm to the optical pressure detection sensor. , to realize the length detection of artificial muscles.
4、本发明的人工肌肉的光学电子元件可以很容易地进出肌肉,可进行拆卸和更换,反复利用性高,极大地降低了成本。并且光学传感器不存在导电液体传感器常见的氧化或泄漏问题,安全性高。4. The optical electronic components of the artificial muscle of the present invention can easily enter and exit the muscle, can be disassembled and replaced, and have high reusability, which greatly reduces the cost. In addition, the optical sensor does not have the common oxidation or leakage problems of conductive liquid sensors, and has high safety.
5、本发明的人工肌肉应用面广,克服了软体材料的非线性特性,可适用于机械臂、软体机器人、医疗康复设备等领域。5. The artificial muscle of the present invention has a wide range of applications, overcomes the nonlinear characteristics of soft materials, and can be applied to fields such as mechanical arms, soft robots, and medical rehabilitation equipment.
附图说明Description of drawings
图1为本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2为本发明膨胀后的侧面示意图;Fig. 2 is the side schematic diagram after expansion of the present invention;
图3为本发明的爆炸示意图;Fig. 3 is the explosion schematic diagram of the present invention;
图4a为本发明中人工肌肉基体的内部结构示意图;4a is a schematic diagram of the internal structure of the artificial muscle matrix in the present invention;
图4b为本发明中光长度检测膜片的结构示意图;4b is a schematic structural diagram of an optical length detection film in the present invention;
图5为本发明中光长度传感器端盖的爆炸图;5 is an exploded view of the end cover of the optical length sensor in the present invention;
图6为本发明中光压力传感器端盖的爆炸图;6 is an exploded view of the end cover of the optical pressure sensor in the present invention;
图7为本发明从初始状态到膨胀状态的原理图;7 is a schematic diagram of the present invention from an initial state to an expanded state;
图8为本发明制备方法的流程示意图。FIG. 8 is a schematic flow chart of the preparation method of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings.
如图1和2所示,一种光学传感器嵌入式的软体气动人工肌肉,包括光学压力检测端盖1、人工肌肉基体2和光学长度检测端盖3。人工肌肉基体2呈圆筒状,充入气体后将沿着径向膨胀且长度缩短。人工肌肉基体2的两端分别为压力检测端和长度检测端。光学压力检测端盖1、光学长度检测端盖3分别安装在人工肌肉基体2的压力检测端、长度检测端,分别用于检测人工肌肉基体2内部的压力、总体长度。As shown in Figures 1 and 2, an optical sensor-embedded soft pneumatic artificial muscle includes an optical pressure
如图3和4a所示,人工肌肉基体2包括弹性筒身4、限位圈5、加固纤维网6、光长度检测膜片8和光压力检测膜片7。加固纤维网6镶嵌在弹性筒身4的侧壁内部,将弹性筒身4分隔为外筒身4-1和内筒身4-2。外筒身4-1与内筒身4-2通过两次浇筑形成,紧密固定在一起。加固纤维网6能够增大人工肌肉基体2的强度,并避免人工肌肉基体2的局部大幅度变形。依次排列的四个限位圈5均镶嵌在弹性筒身4压力检测端的侧壁内部,限制弹性筒身4的变形,使得弹性筒身4的压力检测端在充气前后的形状保持不变。加固纤维网6和限位圈5均凯夫拉尔纤维线缠绕形成。加固纤维网6由旋向相反的两组八线螺旋线交织形成,且由一根纤维线缠绕形成。As shown in FIGS. 3 and 4 a , the
如图4a和4b所示,光压力检测膜片7、光长度检测膜片8分别固定在弹性筒身4内腔的压力检测端、长度检测端,且均与端部有距离,为光线的传播和反射留出空间。光压力检测膜片7位于弹性筒身4被限位圈5限制的部分的边缘处,不会随着弹性筒身4膨胀而被撑开;光压力检测膜片7将弹性筒身4分隔为两个独立的腔室,该两个腔室内的压力可以不同,故光压力检测膜片7会随着弹性筒身4内部压力的变化而发生凹凸变形。As shown in Figures 4a and 4b, the optical
光长度检测膜片8的边缘处开设有通气孔13,使得光长度检测膜片8两侧的压力保持一致,故光长度检测膜片8会随着弹性筒身4膨胀而被撑开,不会随着弹性筒身4内部压力的变化而发生凹凸变形。光长度检测膜片8朝外的侧面边缘处均设置有吸光环12;弹性筒身4及吸光环12均采用吸光材料。光压力检测膜片7及光长度检测膜片8均采用反光材料。由于气腔膨胀时光长度检测膜片8与弹性筒身4内壁接触的部分会产生不可控变形,故吸光环12能够减少不可控变形处反射给光电二极管14-215的反射光量,从而改善传感器的响应效果;The edge of the optical
吸光材料为铂金固化硅胶(Smooth-On Dragon skin)与黑色有机硅酮颜料(SilcPig)的混合物,能够在极大程度上吸收光线(红外光),减少光学反射率,并阻止环境红外光影响光学传感器光信号;反光材料铂金固化硅胶与白色有机硅酮颜料的混合物,能够最大限度地提高膜片的光学反射率。吸光材料及反光材料中的硅酮颜料的质量分数均为3%The light absorbing material is a mixture of platinum cured silica gel (Smooth-On Dragon skin) and black silicone pigment (SilcPig), which can absorb light (infrared light) to a great extent, reduce optical reflectance, and prevent ambient infrared light from affecting optics Sensor light signal; a mixture of reflective material platinum-cured silicone and white silicone pigment to maximize the optical reflectivity of the diaphragm. The mass fraction of the silicone pigment in the light-absorbing material and the light-reflecting material is both 3%
如图5和6所示,光学压力检测端盖1和光学长度检测端盖3均包括结构相同的基础端盖组件。基础端盖组件包括末端连接器9、盖体10和屏蔽铝板11。末端连接器9主体呈圆筒状,内端边缘处设置有八个穿线块。八个穿线块上均设置有穿线孔。加固纤维网6两端的纤维线分别穿过两个末端连接器9上的各个穿线孔,实现光学压力检测端盖1及光学长度检测端盖3与人工肌肉基体2的固定。盖体10固定在末端连接器9内,用于封闭人工肌肉基体2的端部。屏蔽铝板11固定在盖体10的内侧,将盖体10的内侧分隔出互不干扰的发光区和收光区。末端连接器9的侧壁开设有用于人工肌肉铸造时模具的定位的定位孔16。盖体10的外侧面设置有封闭板17。As shown in FIGS. 5 and 6 , both the optical pressure
光学压力检测端盖1、光学长度检测端盖3内分别安装有光学压力检测传感器14、光学长度检测传感器15。光学压力检测传感器14和光学长度检测传感器15结构相同,均包括发光二极管14-1和光电二极管14-2。发光二极管14-1、光电二极管14-2分别安装在对应的屏蔽铝板11的两侧。屏蔽铝板能够阻止在发光二极管14-1侧面发射的光直接进入光电二极管14-2。发光二极管14-1用于发出光线;光电二极管14-2用于接收和检测光压力检测膜片7或光长度检测膜片8的反射的光线的强度,并根据接收到的光强度判断人工肌肉的内部压力和长度。An optical
光学长度检测端盖3的内侧还安装有两根导光件18。导光件18采用光导纤维。两根导光件18与光学长度检测传感器15内的发光二极管14-1、光电二极管14-2分别对齐,以延长光学长度检测传感器15的光源发散点,从而避免气腔膨胀时端盖附近肌肉拉伸不均匀,而导致光线传播受阻。Two
光学压力检测端盖1或光学长度检测端盖3上设置有气管19;气管19的两端分别与人工肌肉基体2的内腔、气源连接,实现人工肌肉基体2的充放气,从而实现人工肌肉的驱动。The optical pressure
如图7所示,本发明的检测原理如下:As shown in Figure 7, the detection principle of the present invention is as follows:
当人工肌肉基体2因充入气体或外部负载变化的原因导致整体长度发生缩短时,人工肌肉基体2除被限位圈5限制的位置以外的部分等比例缩短,此时,光长度检测膜片8到光学长度传感器的距离减少;由于光电二极管14-2发出的光线呈发散状射出,故光线传播的距离越远,则光线覆盖的范围越大,单位面积的光强度越小,故当光长度检测膜片8到光学长度传感器的距离减少时,光线的传播距离减小,光电二极管14-2检测到光强度增大(即光学长度传感器接收到的光强度与人工肌肉基体2的长度之间是单调递减函数的关系);依据该关系能够计算出人工肌肉基体2的长度。When the overall length of the
当人工肌肉基体2因充入气体或外部负载变化的原因导致内部气压发生增大时,光压力检测膜片7两侧的压力差增大,光压力检测膜片7凸向光学压力传感器的幅度增大,即光压力检测膜片7外凸面的曲率增大;光学压力传感器射出的光线在光压力检测膜片7反射时更加趋于分散,使得,光电二极管14-2检测到光强度减小(即光学压力传感器接收到的光强度与人工肌肉基体2的内部压力之间是单调递增函数的关系);依据该关系能够计算出人工肌肉基体2的内部压力。When the internal air pressure of the
该光学传感器嵌入式的软体气动人工肌肉的使用方法如下:The method of using the software pneumatic artificial muscle embedded in the optical sensor is as follows:
步骤一、对光学压力检测传感器14和光学长度检测传感器15进行校准。Step 1: Calibrate the optical
1-1.对该软体气动人工肌肉进行多组空载测试,以表征光学长度传感器和压力传感器的响应,以及肌肉收缩范围。将光学压力检测端盖1悬吊,使得人工肌肉基体2竖直设置,光学长度检测传感器15固定在肌肉自由端。1-1. Perform multiple sets of no-load tests on the soft pneumatic artificial muscle to characterize the response of the optical length sensor and the pressure sensor, as well as the muscle contraction range. The optical pressure
1-2.通过比例阀和电磁阀组合对肌肉内部充入气压递变的气体(并在加压前预加载到1个标准大气压,以消除测试设置中的任何松弛),气压大小通过气压传感器采集;在整个测试过程中,持续记录该软体气动人工肌肉的长度、内部压力、光学压力检测传感器14、光学长度检测传感器15内光电二极管14-2检测到的光强度。1-2. The inside of the muscle is inflated with gas with a gradual pressure gradient through a combination of proportional valve and solenoid valve (and preloaded to 1 standard atmosphere before pressurization to eliminate any slack in the test setup), the air pressure is passed through the air pressure sensor Acquisition: During the whole testing process, the length of the software pneumatic artificial muscle, the internal pressure, the optical
1-3.通过离散点拟合,得到光学压力检测传感器14检测到的光强度与软体气动人工肌肉内部压力之间的光-压力关系曲线,以及光学长度检测传感器15检测到的光强度与软体气动人工肌肉的长度之间的光-长度关系曲线。后续检测过程中将光学压力检测传感器14、光学长度检测传感器15检测到的光强度,分别在光-压力关系曲线、光-长度关系曲线上取点,即可得到对应的软体气动人工肌肉的长度、内部压力。1-3. Through discrete point fitting, the light-pressure relationship curve between the light intensity detected by the optical
1-4.对该软体气动人工肌肉进行了阻塞力测试,以表征肌肉收缩力与长度的关系。为了测量力,肌肉连接到一个机械测试系统中,光学长度检测端盖3固定在测试台底座,光学压力检测端盖1连接机械推杆,之间接有压力传感器测试采集推杆力,也就相当于肌肉收缩力;在每次测试中,机械推杆以一定的速度推压肌肉,肌肉内气压一定,记录肌肉收缩力和长度的关系;依次改变气压,重复实验后成功标定校准。1-4. The occlusion force test was performed on the soft pneumatic artificial muscle to characterize the relationship between muscle contraction force and length. In order to measure the force, the muscle is connected to a mechanical test system, the optical length
步骤二、在持续检测中使用软体气动人工肌肉进行驱动。Step 2: Use soft pneumatic artificial muscles to drive in continuous detection.
2-1.将软体气动人工肌肉装入机械系统中作为动力源;2-1. Put the soft pneumatic artificial muscle into the mechanical system as the power source;
2-2.光学压力传感器及光学长度传感器中的发光二极管14-1持续呈发散状发出光线,两组光线各自经光压力检测膜片7、光长度检测膜片8反射,进入光学压力传感器及光学长度传感器中的光电二极管14-2。2-2. The light-emitting diodes 14-1 in the optical pressure sensor and the optical length sensor continue to emit light in a divergent shape. Photodiode 14-2 in the optical length sensor.
2-3通过气源的对软体气动人工肌肉的充放气来驱动软体气动人工肌肉的伸缩。当软体气动人工肌肉缩短时,光长度检测膜片8到光学长度传感器的距离减少,进而使得光学长度传感器内的光电二极管14-2检测到的光强度升高,根据光学长度传感器检测到的光强度数值和步骤一所得的光-压力关系曲线得到软体气动人工肌肉的当前长度。2-3 Drive the expansion and contraction of the soft pneumatic artificial muscle by inflating and deflating the soft pneumatic artificial muscle through the air source. When the soft pneumatic artificial muscle is shortened, the distance between the optical
当软体气动人工肌肉内的压力升高时,光压力检测膜片7向光学压力传感器凸出的幅度增大,进而使得光学压力传感器内的光电二极管14-2检测到的光强度降低,根据光学压力传感器检测到的光强度数值和步骤一所得的光-长度关系曲线得到软体气动人工肌肉的当前内部压力。When the pressure in the soft pneumatic artificial muscle increases, the protruding extent of the optical
如图8所示,该光学传感器嵌入式的软体气动人工肌肉的制备方法如下:As shown in Figure 8, the preparation method of the optical sensor-embedded soft pneumatic artificial muscle is as follows:
步骤一、用竖直设置的圆柱状的内模20和筒状的第一外模21配合形成用于浇筑内筒身4-2的模腔;第一外模21的内侧面设置有网格状突起,内侧面一端端部设置有四圈突起。使用吸光材料浇筑到内模20和第一外模21之间,形成内筒身4-2;内筒身4-2的外侧面具有网格状沟槽,一端具有四圈环形沟槽。网格状沟槽由八根左旋螺旋线和八根右旋螺旋线交织而成。内筒身4-2外侧面的两端端部均有八个左旋螺旋线与右旋螺旋线的交点。
步骤二、将两个末端连接器9套上内模20的两端并通过定位销固定,使得末端连接器9上的八个穿线孔抵住内筒身4-2端部的八个螺旋线交点。用一根凯夫拉尔纤维线沿着内筒身上的网格状沟槽缠绕,使得凯夫拉尔纤维线经过网格状沟槽的所有位置,并穿过两个末端连接器9的所有穿线孔。再用凯夫拉尔纤维线绕置出四个限位圈5。Step 2: Put the two
步骤三、撤去第一外模21,并安装上内径大于第一外模21的第二外模22;使用吸光材料浇筑到内筒身4-2和第二外模22之间,形成外筒身4-1;外筒身4-1完全覆盖凯夫拉尔纤维线。内筒身4-2和外筒身4-1共同形成弹性筒身4,硅胶固化后,拔出定位销,将内模20从弹性筒身4中取出。此时,弹性筒身4内的长度检测端朝下设置。Step 3: Remove the first
步骤四、铸造光长度检测膜片8:在弹性筒身4下方的长度检测端放入带有排气销23的第一膜片模具24;第一膜片模具24的端部边缘处设置有环形凸起;之后在第一膜片模具24处通过注射器浇筑反光材料,形成光长度检测膜片8;光长度检测膜片8固化后,翻转弹性筒身4,使得光长度检测膜片8外侧面的环形凹槽朝上设置,卸下第一膜片模具24,并在光长度检测膜片8外侧面的环形凹槽浇筑吸光材料形成吸光环12。最后,取出排气销23。Step 4. Casting the optical length detection diaphragm 8: put the
步骤五、铸造光压力检测膜片7:在弹性筒身4下方的压力检测端插入端面平整的第二膜片模具25;之后在第二膜片模具25处通过注射器浇筑反光材料,形成光压力检测膜片7;固化后卸下第二膜片模具25。
步骤六、修补注射浇筑时在弹性筒身4上留下的孔洞;将光学压力检测端盖1、光学长度检测端盖3完整安装到弹性筒身4的两端;并通过吸光材料对弹性筒身4与光学压力检测端盖1、光学长度检测端盖3的连接处进行密封。Step 6: Repair the holes left on the elastic cylinder body 4 during injection and pouring; install the optical pressure
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010738865.3A CN111975759B (en) | 2020-07-28 | 2020-07-28 | An optical sensor-embedded artificial muscle and its use and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010738865.3A CN111975759B (en) | 2020-07-28 | 2020-07-28 | An optical sensor-embedded artificial muscle and its use and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111975759A true CN111975759A (en) | 2020-11-24 |
CN111975759B CN111975759B (en) | 2021-08-17 |
Family
ID=73444734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010738865.3A Expired - Fee Related CN111975759B (en) | 2020-07-28 | 2020-07-28 | An optical sensor-embedded artificial muscle and its use and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111975759B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118721168A (en) * | 2024-09-04 | 2024-10-01 | 清华大学 | Self-sensing artificial muscle and method for manufacturing self-sensing artificial muscle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105509940A (en) * | 2016-01-19 | 2016-04-20 | 莆田学院 | Optical fiber sensing probe and preparation method |
CN105666484A (en) * | 2016-04-11 | 2016-06-15 | 中国计量学院 | Double-tube sleeved type pneumatic artificial muscle |
US9506481B1 (en) * | 2013-01-31 | 2016-11-29 | Daniel Theobald | High force hydraulic actuator |
CN106885590A (en) * | 2015-12-15 | 2017-06-23 | 陈艺征 | A kind of sensor of intracavity optical fiber Fabry Perot measurement sliding |
CN109431765A (en) * | 2018-11-26 | 2019-03-08 | 山东大学 | A kind of adaptive massaging hand of flexibility of FBG sensing |
CN110193825A (en) * | 2019-04-19 | 2019-09-03 | 华中科技大学 | A kind of software actuator based on optical fibre bending sensor |
KR20200075224A (en) * | 2018-12-18 | 2020-06-26 | 한양대학교 에리카산학협력단 | Detection sensor for artificial muscle length and testing method thereof |
-
2020
- 2020-07-28 CN CN202010738865.3A patent/CN111975759B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9506481B1 (en) * | 2013-01-31 | 2016-11-29 | Daniel Theobald | High force hydraulic actuator |
CN106885590A (en) * | 2015-12-15 | 2017-06-23 | 陈艺征 | A kind of sensor of intracavity optical fiber Fabry Perot measurement sliding |
CN105509940A (en) * | 2016-01-19 | 2016-04-20 | 莆田学院 | Optical fiber sensing probe and preparation method |
CN105666484A (en) * | 2016-04-11 | 2016-06-15 | 中国计量学院 | Double-tube sleeved type pneumatic artificial muscle |
CN109431765A (en) * | 2018-11-26 | 2019-03-08 | 山东大学 | A kind of adaptive massaging hand of flexibility of FBG sensing |
KR20200075224A (en) * | 2018-12-18 | 2020-06-26 | 한양대학교 에리카산학협력단 | Detection sensor for artificial muscle length and testing method thereof |
CN110193825A (en) * | 2019-04-19 | 2019-09-03 | 华中科技大学 | A kind of software actuator based on optical fibre bending sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118721168A (en) * | 2024-09-04 | 2024-10-01 | 清华大学 | Self-sensing artificial muscle and method for manufacturing self-sensing artificial muscle |
Also Published As
Publication number | Publication date |
---|---|
CN111975759B (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Daerden et al. | The concept and design of pleated pneumatic artificial muscles | |
CN110193825A (en) | A kind of software actuator based on optical fibre bending sensor | |
US4721030A (en) | Hyperboloid of revolution fluid-driven tension actuators and method of making | |
CN111975759A (en) | An optical sensor-embedded artificial muscle and its use and preparation method | |
CN1395680A (en) | Flexible fiber optic microbend device, sensors and method of use | |
EP2189266A2 (en) | Valve for a ball and method of manufacture of a valve for a ball | |
CN1789989A (en) | Modular sensor for damage detection, manufacturing method and structural composite material | |
Wang et al. | A bimorph pneumatic bending actuator by control of fiber braiding angle | |
CN114161393B (en) | Soft crawling robot based on positive and negative poisson ratio structure deformation driving | |
Xu et al. | Fiber-reinforced flexible joint actuator for soft arthropod robots | |
GB2614512A (en) | Bidirectional linear fast-response spiral winding type pneumatic artificial muscle based on braided tube | |
CN107655674B (en) | A skeletal muscle-like actuator with integrated drive and transmission and its performance testing device | |
CN103822927A (en) | Actuatable visual inspection device | |
CN106225815B (en) | Fiber Bragg grating sensor and optical fiber Bragg grating sensing device | |
US20230122515A1 (en) | Pneumatic soft robotic spiral gripper with fiber optic sensor | |
Wan et al. | Design and applications of soft actuators based on Digital Light Processing (DLP) 3D printing | |
Yu et al. | Hyperelastic analysis of pneumatic artificial muscle with filament-wound sleeve and coated outer layer | |
CN206891393U (en) | A kind of anti-buckling fiber Bragg grating strain sensor | |
CN116990914A (en) | Preparation method of optical soft sensor | |
CN200979519Y (en) | A pneumatic dynamic tension performance test device | |
CN115371874A (en) | A photoelectric sensor based on elastic reflective surface and multi-dimensional force detection method | |
CN115042204A (en) | An Efficiently Driven Self-Sensing Soft Body Actuator | |
CN208385018U (en) | A kind of cladding tubes fulcrum shaping mechanism | |
Sun et al. | Design and Mathematical Model for Bending Pneumatic Soft Actuators with Asymmetric Cavity | |
CN108354588B (en) | A mechanical structure of a microrobot for exploring the mechanical properties of human skin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210817 |