CN111960379A - A kind of preparation method of biomimetic controllable adsorption - Google Patents
A kind of preparation method of biomimetic controllable adsorption Download PDFInfo
- Publication number
- CN111960379A CN111960379A CN202010858431.7A CN202010858431A CN111960379A CN 111960379 A CN111960379 A CN 111960379A CN 202010858431 A CN202010858431 A CN 202010858431A CN 111960379 A CN111960379 A CN 111960379A
- Authority
- CN
- China
- Prior art keywords
- wedge
- shaped
- biomimetic
- preparation
- controllable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 98
- 230000003592 biomimetic effect Effects 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000011664 nicotinic acid Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 27
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000002444 silanisation Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 11
- 238000003491 array Methods 0.000 claims description 5
- 230000000750 progressive effect Effects 0.000 claims description 5
- 238000007872 degassing Methods 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract 1
- 229910003460 diamond Inorganic materials 0.000 description 20
- 239000010432 diamond Substances 0.000 description 20
- 238000005520 cutting process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00206—Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00214—Processes for the simultaneaous manufacturing of a network or an array of similar microstructural devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
一种仿生可控吸附的制备方法,属于微纳工程中仿生微结构制造技术领域,具体方案包括以下步骤:步骤一:金属主模具的制备;步骤二:主模具的硅烷化处理;步骤三:套设框架的组装;步骤四:聚合物的浇筑;步骤五:聚合物表面平整度控制;步骤六:仿生可控吸附的恒温固化与剥离。本发明工艺过程简单,不涉及复杂的化学反应,环保高效,相关工艺参数也可控,制备的主模具经久耐用,能多次重复使用,获得的仿生可控吸附具有明显的可控吸附和动态吸附特性;基于该制备方法,也能灵活改变楔形微结构的特征尺寸(如垂直高度、尖端角以及倾角),这些特征尺寸的修改或者优化对于改善仿生可控吸附的吸附性能是有益的。
A preparation method for biomimetic controllable adsorption belongs to the technical field of biomimetic microstructure manufacturing in micro-nano engineering. The specific scheme includes the following steps: step 1: preparation of a metal master mold; step 2: silanization of the master mold; step 3: Assembling the sleeve; Step 4: pouring the polymer; Step 5: Controlling the surface flatness of the polymer; Step 6: Constant temperature curing and peeling of bionic controllable adsorption. The process of the invention is simple, does not involve complex chemical reactions, is environmentally friendly and efficient, and the relevant process parameters are also controllable. The prepared main mold is durable and can be used repeatedly for many times. Adsorption characteristics: Based on this preparation method, the characteristic dimensions (such as vertical height, tip angle, and inclination angle) of the wedge-shaped microstructure can also be flexibly changed. The modification or optimization of these characteristic dimensions is beneficial for improving the adsorption performance of biomimetic controllable adsorption.
Description
技术领域technical field
本发明属于微纳工程中仿生微结构制造技术领域,具体涉及一种基于连续倾斜楔形The invention belongs to the technical field of bionic microstructure manufacturing in micro-nano engineering, and in particular relates to a continuous inclined wedge-shaped
微结构阵列的仿生可控吸附的制备方法。Preparation method of biomimetic controllable adsorption of microstructure array.
背景技术Background technique
壁虎脚掌可控吸附系统是当前自然界中已知的最通用、最有效的生物功能吸附系统,其独特的多尺度分层刚毛纤维基于范德华力交互不仅赋予了壁虎脚掌强大的吸附力,而且还赋予了其独特的吸附特性,进而拥有轻易在各种表面快速攀爬的能力。The controllable adsorption system of gecko feet is currently the most versatile and effective biological function adsorption system known in nature. Due to its unique adsorption characteristics, it has the ability to easily and quickly climb on various surfaces.
当前已有许多基于微结构的仿生功能吸附被开发出来,但在这些已有的研究中能有效复现壁虎脚掌可控吸附特性的仿生功能吸附并不多,而恰恰仿生功能吸附的可控性对于其有效应用于机器人攀爬、目标抓持等领域具有重要意义。At present, many biomimetic functional adsorption based on microstructure have been developed, but in these existing studies, there are not many biomimetic functional adsorption that can effectively reproduce the controllable adsorption characteristics of gecko feet, and it is precisely the controllability of bionic functional adsorption. It is of great significance for its effective application in robot climbing, target grasping and other fields.
倾斜的楔形微结构因为与壁虎的刚毛具有极大的相似性已被证明拥有突出的可控吸附特性,其因为可控性而拥有面向空间漂浮目标捕获的潜力也被证实。虽然当前已有少数加工工艺被开发出来用于制备楔形微结构阵列,但其均存在不同程度的问题:双边和双角度光刻工艺只能制备直立楔形微结构,而且其尚要求高精度的曝光对准,工艺耗时长、昂贵、成品率也相对低;两步倾斜曝光工艺虽能制备倾斜的楔形微结构,但其与双边和双角度光刻工艺一样,制备门槛高,工艺也相对复杂,对应的成本也高,而且二者创建的成型模具均不具备好的耐用性;基于传统机械压痕的微加工工艺虽然弥补了光刻工艺存在的工艺复杂,成本高等问题,但其仍面临着成型模具不具备好的耐用性的问题;超精密金刚石飞切方法虽然从一定程度上提高了成型模具的耐用性,但因为飞切工艺的固有特性,实际的楔形微腔体在模具表面是沿圆周径向分布的,因而基于该模具制备的楔形微结构阵列仅能以很小的尺寸去使用,这极大约束了楔形微结构阵列的应用潜力。据此,当前如何高效、保质、批量化地将具有楔形微结构的阵列加工出来仍是亟待解决的一个问题。The inclined wedge-shaped microstructure has been shown to possess outstanding controllable adsorption properties due to its great similarity to gecko bristles, and its potential for space-oriented floating target capture due to its controllability has also been confirmed. Although a few processing techniques have been developed to fabricate wedge-shaped microstructure arrays, they all suffer from varying degrees of problems: bilateral and dual-angle lithography processes can only produce upright wedge-shaped microstructures, and they still require high-precision exposure. Alignment, the process is time-consuming, expensive, and the yield is relatively low; although the two-step oblique exposure process can produce inclined wedge-shaped microstructures, it is the same as the bilateral and dual-angle lithography processes. The preparation threshold is high, and the process is relatively complex. The corresponding cost is also high, and the forming molds created by the two do not have good durability; although the micromachining process based on traditional mechanical indentation makes up for the complex process and high cost of the lithography process, it still faces the problem of high cost. The problem that the forming mold does not have good durability; although the ultra-precision diamond fly-cutting method improves the durability of the forming mold to a certain extent, due to the inherent characteristics of the fly-cutting process, the actual wedge-shaped micro-cavity is along the mold surface. The circumference is radially distributed, so the wedge-shaped microstructure array prepared based on the mold can only be used in a small size, which greatly restricts the application potential of the wedge-shaped microstructure array. Accordingly, how to process arrays with wedge-shaped microstructures efficiently, with high quality, and in batches is still an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决现有技术中存在的问题,提供了一种仿生可控吸附的制备方法。The purpose of the present invention is to provide a preparation method of bionic controllable adsorption in order to solve the problems existing in the prior art.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种仿生可控吸附的制备方法,包括以下步骤:A preparation method of bionic controllable adsorption, comprising the following steps:
步骤一:采用超精密多步分层刻划策略制备具有连续倾斜楔形腔阵列的主模具;Step 1: Using an ultra-precise multi-step layered scribing strategy to prepare a master mold with a continuous inclined wedge-shaped cavity array;
步骤二:将制备好的主模具进行硅烷化处理;Step 2: silanizing the prepared master mold;
步骤三:在主模具的外周边套设框架;Step 3: Set a frame on the outer periphery of the main mold;
步骤四:将搅拌均匀且脱气后的聚合物浇筑到套设框架后的主模具内并再次做脱气处理;Step 4: pour the polymer that is uniformly stirred and degassed into the main mold after the frame is set and degassed again;
步骤五:在聚合物上铺上一层薄膜,再盖上一块盖板并加上平衡荷载;Step 5: Lay a layer of film on the polymer, then cover with a cover plate and add a balance load;
步骤六:恒温固化聚合物后将其从主模具上剥离得到具备连续倾斜楔形微结构阵列的仿生可控吸附。Step 6: After the polymer is cured at a constant temperature, it is peeled off from the main mold to obtain a biomimetic controllable adsorption with a continuous inclined wedge-shaped microstructure array.
进一步的,步骤一中,所述超精密多步分层刻划策略包括以下步骤:Further, in
步骤1:将模具胚件和V形的刀具装夹在超精密机床上,并完成对刀;Step 1: Clamp the mold blank and the V-shaped tool on the ultra-precision machine tool, and complete the tool setting;
步骤2:所述刀具刻划模具胚件时,刀具与模具胚件的上表面根据楔形腔的期望倾斜角呈相应的倾斜角度,刻划方向与刀具的V形横截面垂直;Step 2: When the tool scribes the mold blank, the upper surface of the tool and the mold blank form a corresponding inclination angle according to the expected inclination angle of the wedge-shaped cavity, and the scribing direction is perpendicular to the V-shaped cross section of the tool;
步骤3:V形刀具的尖端层层刻划累加形成一个连续倾斜的楔形腔;Step 3: The tip of the V-shaped tool is scored layer by layer to form a continuous inclined wedge-shaped cavity;
步骤4:按照楔形腔的设计间距,模具胚件依次递进,从而加工下一个楔形腔,直至完成若干个楔形腔的刻划,得到具有若干个连续倾斜楔形腔阵列的主模具;其中模具胚件依次递进的方向与刀具刻划方向垂直。Step 4: According to the design spacing of the wedge-shaped cavity, the mold blanks are sequentially advanced, so as to process the next wedge-shaped cavity, until the scribing of several wedge-shaped cavities is completed, and a master mold with several continuous inclined wedge-shaped cavity arrays is obtained; The progressive direction of the pieces is perpendicular to the scribing direction of the tool.
进一步的,步骤2中,刀具的中心对称面相对模具胚件的上表面的倾角范围为22.5°-90°,刀具的尖端角度范围为15°-30°。Further, in
进一步的,步骤3中,所述刀具的尖端角与楔形腔的尖端角相同。Further, in
进一步的,步骤3中,所述楔形腔的垂直高度为50-150μm。Further, in
进一步的,步骤一中,所述连续倾斜楔形腔阵列包括多个并列设置的长条状的楔形腔,每个所述楔形腔均倾斜设置。Further, in
进一步的,步骤一中,所述主模具的形状为方形。Further, in
进一步的,步骤四中,所述聚合物为硅橡胶或聚氨酯。Further, in
进一步的,步骤六中,仿生可控吸附包括基底和设置在基底上的连续倾斜楔形微结构阵列,所述连续倾斜楔形微结构阵列包括多个并列设置的长条状的楔形微结构,每个所述楔形微结构均倾斜设置,所述楔形微结构与楔形腔的腔体形状一致。Further, in
进一步的,所述框架的高度为主模具的高度和仿生可控吸附的基底厚度之和。Further, the height of the frame is the sum of the height of the main mold and the thickness of the bionic controllable adsorption substrate.
相比于现有技术,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明基于提出的超精密多步分层刻划策略制备出具有连续倾斜楔形微腔体阵列的金属主模具,该主模具不仅能够实现多次重复使用,还能够复制出几厘米乃至几十厘米大小的连续倾斜楔形微结构阵列,连续倾斜的楔形微结构阵列使得仿生可控吸附具有明显的可控吸附、动态吸附等突出的壁虎脚掌吸附特性,可控吸附特性能够助力实现对目标表面的无损及无扰吸附抓持;而动态吸附特性能够助力实现在吸附界面滑动过程中对吸附状态的动态调整,从而避免突然性的吸附失效。此外,本发明涉及的整个工艺过程操作简单,不涉及任何复杂的化学反应,环保高效,相关工艺参数也可控,制备的主模具经久耐用,能多次重复使用,获得的仿生可控吸附具有明显的可控吸附和动态吸附特性;基于该制备方法,也能灵活改变楔形微结构的特征尺寸(如垂直高度、尖端角以及倾角),这些特征尺寸的修改或者优化对于改善仿生可控吸附的吸附性能是有益的。该仿生可控吸附有望应用于机器人攀爬、空间目标吸附抓持等领域。Based on the proposed ultra-precise multi-step layered scribing strategy, the present invention prepares a metal master mold with a continuous inclined wedge-shaped microcavity array. The master mold can not only be reused many times, but also replicate several centimeters or even tens of centimeters. The continuous inclined wedge-shaped microstructure array of large and small size, the continuously inclined wedge-shaped microstructure array enables the bionic controllable adsorption to have obvious controllable adsorption, dynamic adsorption and other outstanding adsorption characteristics of gecko feet, and the controllable adsorption characteristics can help achieve non-destructive to the target surface. and undisturbed adsorption and grip; and the dynamic adsorption feature can help realize the dynamic adjustment of the adsorption state during the sliding process of the adsorption interface, thereby avoiding sudden adsorption failure. In addition, the whole process involved in the present invention is simple to operate, does not involve any complex chemical reaction, is environmentally friendly and efficient, and the relevant process parameters are also controllable, the prepared main mold is durable and can be reused many times, and the obtained bionic controllable adsorption has Obvious controllable adsorption and dynamic adsorption characteristics; based on this preparation method, the characteristic dimensions (such as vertical height, tip angle and inclination angle) of the wedge-shaped microstructure can also be flexibly changed. Adsorption properties are beneficial. The bionic controllable adsorption is expected to be applied to fields such as robot climbing, space target adsorption and grasping.
附图说明Description of drawings
图1为基于连续倾斜楔形微结构阵列的仿生可控吸附的吸附原理示意图;其中,A为仿生可控吸附与交互界面间的初始接触状态,B为仿生可控吸附与交互界面间的紧密接触状态;其中,a为正向载荷,b为切向载荷;该仿生可控吸附在正向载荷a的辅助作用下主要通过切向载荷b来激活吸附功能;Figure 1 is a schematic diagram of the adsorption principle of biomimetic controllable adsorption based on a continuous inclined wedge-shaped microstructure array; in which, A is the initial contact state between the biomimetic controllable adsorption and the interactive interface, and B is the close contact between the biomimetic controllable adsorption and the interactive interface state; where a is the positive load, and b is the tangential load; the bionic controllable adsorption mainly activates the adsorption function through the tangential load b under the auxiliary action of the positive load a;
图2为视频捕获的仿生可控吸附的被动吸附过程,包括图1中仿生可控吸附与交互界面间的初始接触状态(c)、中间接触状态(d)和紧密接触状态(e);Figure 2 shows the passive adsorption process of the bionic controllable adsorption captured by the video, including the initial contact state (c), the intermediate contact state (d) and the close contact state (e) between the bionic controllable adsorption and the interactive interface in Figure 1;
图3为超精密机床的运动配置示意图;Figure 3 is a schematic diagram of the motion configuration of an ultra-precision machine tool;
图4为超精密多步分层刻划策略的示意图;图中,C为刀具刻划方向,D为退刀方向,E为刀具回初始位方向,F为刀具的进给方向,G为已刻划的区域,H为模具胚件递进方向;Figure 4 is a schematic diagram of the ultra-precision multi-step layered scribing strategy; in the figure, C is the cutting direction of the tool, D is the retracting direction, E is the direction of the tool returning to the initial position, F is the feeding direction of the tool, and G is the cutting direction. The scribed area, H is the progressive direction of the mold blank;
图5为刻划一个楔形腔时,刀具的进给方向和刻划次数示意图,图中,1~n为刀具刻划次数,I为每层刻划截面对应的刀印,J为刀具的进给方向;Figure 5 is a schematic diagram of the feeding direction and the number of times of the cutting tool when a wedge-shaped cavity is cut. In the figure, 1 to n are the cutting times of the tool, I is the cutting mark corresponding to the cut section of each layer, and J is the feed of the cutting tool. give direction;
图6为具有连续倾斜楔形微腔体阵列的主模具结构示意图;6 is a schematic structural diagram of a master mold having a continuous inclined wedge-shaped microcavity array;
图7为具有连续倾斜楔形微腔体阵列的主模具的扫描电镜图;7 is a scanning electron microscope image of a master mold with a continuous inclined wedge-shaped microcavity array;
图8为仿生可控吸附的浇筑成型工艺示意图;(I)主模具表面硅烷化处理;(Ⅱ)组装主模具、框架和玻璃底板;(Ⅲ)浇筑聚合物并铺上薄膜;(Ⅳ)恒温固化过程,(Ⅴ)剥离聚合物;(Ⅵ)制备的仿生可控吸附。Fig. 8 is a schematic diagram of the casting molding process of bionic controlled adsorption; (I) silanization of the surface of the main mold; (II) assembling the main mold, frame and glass bottom plate; (III) pouring polymer and laying a film; (IV) constant temperature Curing process, (V) exfoliation of the polymer; (VI) biomimetic controllable adsorption prepared.
图9为具有连续倾斜楔形微结构阵列的仿生可控吸附的扫描电镜图;Figure 9 is a scanning electron microscope image of biomimetic controllable adsorption with a continuous inclined wedge-shaped microstructure array;
图10为反应仿生可控吸附可控吸附特性的力空间散点图;K为最大正向吸附=4.048KPa,L为最大切向摩擦=64.39KPa。Fig. 10 is a force space scatter plot reflecting the controllable adsorption characteristics of bionic controllable adsorption; K is the maximum positive adsorption = 4.048KPa, L is the maximum tangential friction = 64.39KPa.
图11为反应仿生可控吸附动态吸附特性的力时间曲线;M为动态摩擦区域;N为切向摩擦;O为预加载;P为水平拖拽;Q为剥离;R为动态吸附区域;S为正向吸附;Fig. 11 is the force-time curve reflecting the dynamic adsorption characteristics of bionic controllable adsorption; M is the dynamic friction area; N is the tangential friction; O is the preload; P is the horizontal drag; Q is the peeling; R is the dynamic adsorption area; S is positive adsorption;
图中,1、主模具,2、框架,3、薄膜,4、盖板,5、平衡荷载,6、仿生可控吸附,7、玻璃基底,8、聚合物,11、楔形腔,01、模具胚件,02、刀具,03、超精密机床,61、基底,62、楔形微结构。In the figure, 1. Main mold, 2. Frame, 3. Film, 4. Cover plate, 5. Balanced load, 6. Bionic controllable adsorption, 7. Glass substrate, 8. Polymer, 11. Wedge-shaped cavity, 01, Mold blanks, 02, tools, 03, ultra-precision machine tools, 61, substrate, 62, wedge-shaped microstructure.
具体实施方式Detailed ways
下面结合附图1-11和具体实施方式对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换(如采用具有更小或更大尖端角的金刚石刀具、改变楔形微结构的垂直高度/倾斜角等),而不脱离本发明技术方案的范围,均应涵盖在本发明的保护范围中。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings 1-11 and the specific embodiments, but is not limited to this, any modification or equivalent replacement of the technical solution of the present invention (such as adopting a smaller or larger tip angle) diamond cutters, changing the vertical height/inclined angle of the wedge-shaped microstructure, etc.) without departing from the scope of the technical solution of the present invention, should all be included in the protection scope of the present invention.
具体实施方式一Specific implementation one
一种仿生可控吸附的制备方法,包括以下步骤:A preparation method of bionic controllable adsorption, comprising the following steps:
步骤一:采用超精密多步分层刻划策略制备具有连续倾斜楔形腔阵列的主模具1;所述连续倾斜楔形腔阵列包括多个并列设置的长条状的楔形腔11,每个所述楔形腔11均倾斜设置;所述主模具1的形状为方形,优选的材质为黄铜;Step 1: Using an ultra-precise multi-step layered scribing strategy to prepare a
步骤二:将制备好的主模具1置于充满氟硅烷蒸汽的环境中进行硅烷化处理;Step 2: place the
步骤三:在主模具1的外周边套设金属材质的框架2;优选的,所述框架2的材质为铝合金;Step 3: a
步骤四:将搅拌均匀且脱气后的聚合物8浇筑到套设框架2后的主模具1内并再次做脱气处理;优选的,所述聚合物8为硅橡胶或聚氨酯,但并不仅限于此,凡不与主模具材质反应且不与主模具表面产生强粘结的聚合物均适用于本发明;Step 4: The
步骤五:在聚合物8上铺上一层PET薄膜3,再盖上一块光滑平整的盖板4并加上平衡荷载5;Step 5: Spread a layer of
步骤六:恒温固化聚合物8后将其从主模具1上剥离得到具备连续倾斜楔形微结构阵列的仿生可控吸附6;仿生可控吸附6包括基底61和设置在基底61上的连续倾斜楔形微结构阵列,所述连续倾斜楔形微结构阵列包括多个并列设置的长条状的楔形微结构62,每个所述楔形微结构62均倾斜设置,所述楔形微结构62与楔形腔11的腔体形状一致;所述框架2的高度为主模具1的高度和仿生可控吸附6的基底61厚度之和。Step 6: After the
进一步的,步骤一中,所述超精密多步分层刻划策略包括以下步骤:Further, in
步骤1:将模具胚件01和V形的金刚石刀具02装夹在超精密机床03上,并完成对刀;Step 1: Clamp the
步骤2:所述金刚石刀具02刻划模具胚件01时,金刚石刀具02与模具胚件01的上表面根据楔形腔11的期望倾斜角呈相应的倾斜角度,刻划方向与金刚石刀具02的V形横截面垂直;具体沿超精密机床03坐标系的Y轴方向,所述金刚石刀具02的中心对称面与模具胚件01上表面之间的夹角范围为22.5°-90°,优选45-90°;金刚石刀具02的尖端角度范围为15°-30°,优选的,金刚石刀具02的中心对称面与模具胚件01上表面之间的夹角为60°,金刚石刀具02的尖端角度为20°。Step 2: When the
步骤3:V型金刚石刀具02的尖端层层刻划累加形成一个长条状的连续倾斜的楔形腔11;所述金刚石刀具02的尖端角与楔形腔11的尖端角相同;所述楔形腔11的垂直高度为50-150μm,优选的,所述楔形腔11的垂直高度为100μm;Step 3: The tip of the V-shaped
步骤4:按照楔形腔11的设计间距,模具胚件01依次递进,进一步加工下一个楔形腔11,直至完成若干个楔形腔11的刻划,得到具有若干个连续倾斜楔形腔阵列的主模具1;其中模具胚件01依次递进的方向与金刚石刀具02刻划的方向垂直,具体为沿超精密机床03坐标系的X轴方向。Step 4: According to the design spacing of the wedge-shaped
实施例1Example 1
一种仿生可控吸附的制备方法,包括以下两大步骤:A preparation method for biomimetic controllable adsorption comprises the following two major steps:
第一步,基于超精密多步分层刻划策略制备具有连续倾斜楔形腔阵列的金属主模具1。首先,基于铣削工艺获得模具的方形半成品件,即模具胚件01,模具胚件01的长×宽尺寸由超精密机床03的线性运动极限、所需仿生可控吸附6的宏观尺寸以及尖点V形金刚石刀具02的寿命共同折衷决定。然后,准备超精密机床03(至少具备如图3所示意的X、Y和Z三个线性运动轴),将模具胚件01和金刚石刀具02按期望位姿装夹,并完成对刀。最后,超精密多步分层刻划开始,如图4所示,刻划时,金刚石刀具02的V形截面与待成型的楔形腔11截面平行,而刻划方向与金刚石刀具02的V形截面垂直;一个成形的楔形腔11通过尖点V形金刚石刀具02层层刻划累加而成,层层刻划过程中金刚石刀具的实际进给轨迹沿楔形腔11的下表面,而每层刻划只有金刚石刀具02的部分截面参与刻划,如图5所示;当设计的楔形腔11深度达到了,即一个楔形腔11加工完成,模具胚件01便按楔形腔11的设计间距逐步递进一次,进而加工下一个楔形腔11,模具胚件01逐步递进的方向与金刚石刀具02刻划方向垂直。如此循环,最终成形的具有连续倾斜楔形腔阵列的金属主模具1示意图如图6所示,而实际成形的楔形腔11的正面和顶端扫描电镜图如图7所示。In the first step, a
第二步,基于浇筑成型工艺制备具有连续倾斜楔形微结构阵列的仿生可控吸附,如图8所示。首先,将制备好的金属主模具1至于充满氟硅烷蒸汽的环境中进行硅烷化处理,处理时间为16-24h即可。然后,将控制仿生可控吸附基底61厚度的金属框架2与金属主模具1组装,并用玻璃基底7进行封底;接着,将搅拌均匀且脱气后的聚合物8浇筑到组装后的金属主模具1内并再次做脱气处理,脱气处理时间一般为10-15min。其次,将事先准备好的PET薄膜3平铺于聚合物8之上,并随即盖上一块光滑平整的玻璃盖板4并加上平衡荷载5。再接着,将整个组件至于恒温箱内使聚合物8固化。最后,将固化后的聚合物8从金属主模具1内顺序剥离即可得到具有连续倾斜楔形微结构阵列的仿生可控吸附6。如图9所示为仿生可控吸附的扫描电镜图,图10和图11分别展现了本发明涉及的仿生可控吸附所具备的可控吸附特性和动态吸附特性。In the second step, biomimetic controllable adsorption with a continuous inclined wedge-shaped microstructure array was prepared based on the casting molding process, as shown in Figure 8. First, the prepared
如图1和图2所示,一种基于连续倾斜楔形微结构阵列的仿生可控吸附的吸附原理为:As shown in Figures 1 and 2, the adsorption principle of a biomimetic controllable adsorption based on a continuous inclined wedge-shaped microstructure array is as follows:
仿生可控吸附6的吸附过程实质为在外部正向及切向载荷作用下的被动吸附过程:当没有施加外部载荷时,仿生可控吸附6的连续倾斜楔形微结构保持自然状态,其仅在自身重力的作用下与待交互界面间形成尖端点接触,因为没有足够的接触面积来产生有效吸附,此时仿生可控吸附6处于无吸附状态;当施加正向和切向外部载荷时,仿生可控吸附6的连续倾斜楔形微结构顺应外部载荷作用而逐渐弯曲,从而最终与待交互界面间形成紧密的面接触,因为大的接触面积产生了有效的吸附力,此时仿生可控吸附6处于有效吸附状态。从初始的点接触到最终的面接触,楔形微结构的变形逐渐增大,最终形成紧密接触,实现强附着力;楔形微结构的变形越大,所形成的界面相互作用区域越大,所获得的粘结能力也越强。此外,在仿生可控吸附6能够实现的最大正向吸附力范围内,其正向吸附力能够通过外部切向载荷(切向力/切向位移)来调控,即外部切向载荷越大对应形成的正向吸附力也越大。The adsorption process of biomimetic
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010858431.7A CN111960379A (en) | 2020-08-24 | 2020-08-24 | A kind of preparation method of biomimetic controllable adsorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010858431.7A CN111960379A (en) | 2020-08-24 | 2020-08-24 | A kind of preparation method of biomimetic controllable adsorption |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111960379A true CN111960379A (en) | 2020-11-20 |
Family
ID=73391186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010858431.7A Pending CN111960379A (en) | 2020-08-24 | 2020-08-24 | A kind of preparation method of biomimetic controllable adsorption |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111960379A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115351951A (en) * | 2021-05-17 | 2022-11-18 | 香港科技大学 | Dry adhesive structure, its preparation method and biomimetic product |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030208888A1 (en) * | 2002-05-13 | 2003-11-13 | Fearing Ronald S. | Adhesive microstructure and method of forming same |
CN101101441A (en) * | 2007-08-07 | 2008-01-09 | 山东大学 | Preparation method of large-area periodic array three-dimensional microstructure |
CN103209812A (en) * | 2010-07-01 | 2013-07-17 | 因莫德生物系统公司 | Method and apparatus for producing a nanostructured or smooth polymer article |
US20160200946A1 (en) * | 2015-01-14 | 2016-07-14 | The Board Of Trustees Of The Leland Stanford Junior University | Controllable adhesive on conformable film for non-flat surfaces |
CN107405815A (en) * | 2014-12-10 | 2017-11-28 | 查尔斯斯塔克布料实验室公司 | The polymer and its manufacture method of small wedge |
CN108507891A (en) * | 2018-03-11 | 2018-09-07 | 宁波高新区天都科技有限公司 | Nanoindentation/cutting test device |
US20180264687A1 (en) * | 2014-12-10 | 2018-09-20 | David J. Carter | Metal molds for polymer microwedge fabrication |
CN108638403A (en) * | 2018-05-28 | 2018-10-12 | 北京航空航天大学 | A kind of dry based on Van der Waals force effect sticks pad and preparation method thereof |
-
2020
- 2020-08-24 CN CN202010858431.7A patent/CN111960379A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030208888A1 (en) * | 2002-05-13 | 2003-11-13 | Fearing Ronald S. | Adhesive microstructure and method of forming same |
CN101101441A (en) * | 2007-08-07 | 2008-01-09 | 山东大学 | Preparation method of large-area periodic array three-dimensional microstructure |
CN103209812A (en) * | 2010-07-01 | 2013-07-17 | 因莫德生物系统公司 | Method and apparatus for producing a nanostructured or smooth polymer article |
CN107405815A (en) * | 2014-12-10 | 2017-11-28 | 查尔斯斯塔克布料实验室公司 | The polymer and its manufacture method of small wedge |
US20180264687A1 (en) * | 2014-12-10 | 2018-09-20 | David J. Carter | Metal molds for polymer microwedge fabrication |
US20160200946A1 (en) * | 2015-01-14 | 2016-07-14 | The Board Of Trustees Of The Leland Stanford Junior University | Controllable adhesive on conformable film for non-flat surfaces |
CN108507891A (en) * | 2018-03-11 | 2018-09-07 | 宁波高新区天都科技有限公司 | Nanoindentation/cutting test device |
CN108638403A (en) * | 2018-05-28 | 2018-10-12 | 北京航空航天大学 | A kind of dry based on Van der Waals force effect sticks pad and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
(美)弗洛里安: "动载体姿态检测与控制技术", 哈尔滨工业大学出版社, pages: 291 - 292 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115351951A (en) * | 2021-05-17 | 2022-11-18 | 香港科技大学 | Dry adhesive structure, its preparation method and biomimetic product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110304816B (en) | A kind of glass lens manufacturing method of array forming and cutting one by one | |
US7106528B2 (en) | Method and apparatus for manufacturing large double-sided curved Fresnel lens | |
CN102009268B (en) | A laser indirect composite microplastic forming device and method | |
CN107532045B (en) | Composite Pillar Structure | |
CN1874863A (en) | Layered manufactured articles having small-width fluid conduction vents and methods of making same | |
CN103738913A (en) | Method for manufacturing quasi-three-dimensional micron-nanometer column array | |
Bechthold | Ceramic prototypes-design, computation, and digital fabrication | |
CN104401002A (en) | 3D printing-based curved microlens array manufacturing method | |
CN113997388B (en) | Self-adaptive mold design system and method | |
CN105607163B (en) | A kind of impression manufacture method on the surface with lenticule or microlens array structure | |
CN111960379A (en) | A kind of preparation method of biomimetic controllable adsorption | |
CN109455665A (en) | A kind of meso-scale structural mechanics assembled formation method of non-lithographic | |
JPH068062A (en) | Method for processing partially fabricated plastic item with small recess on one side | |
CN103600028B (en) | A kind of sand mold combined shaping method | |
CN102151827A (en) | Quick forming and manufacturing method for high-precision micro-metal dies | |
CN116079074A (en) | A Method for Additive Manufacturing of Selected Areas with Variable Angle Conformal Laser | |
CN104609363B (en) | The preparation method of the strong hydrophobic fexible film of a kind of big area | |
CN102502483A (en) | Method for processing polymer micro-nano composite structure based on two separated moulds | |
CN105117528B (en) | Method for manufacturing three-dimension object and support construction generation method | |
CN114905793A (en) | Method for high temperature compression molding of silicon mold | |
JPH10180882A (en) | Method for manufacturing highly elastic body by stereolithography and highly elastic body by stereolithography | |
CN102269829B (en) | Manufacturing method of micro lens mould roller | |
CN104711507B (en) | A kind of micro- coated molded system and method for metal | |
CN102736410A (en) | Method for machining large-area nanoimprint silicon die under multi-point contact mode | |
JP2009107128A (en) | Method for producing mold for molding well plate, mold for molding well plate, method for molding well plate using this mold, and well plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |