[go: up one dir, main page]

CN111953549A - An online optimized resource management method for maritime edge nodes - Google Patents

An online optimized resource management method for maritime edge nodes Download PDF

Info

Publication number
CN111953549A
CN111953549A CN202010851305.9A CN202010851305A CN111953549A CN 111953549 A CN111953549 A CN 111953549A CN 202010851305 A CN202010851305 A CN 202010851305A CN 111953549 A CN111953549 A CN 111953549A
Authority
CN
China
Prior art keywords
time slot
delay
application
data
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010851305.9A
Other languages
Chinese (zh)
Inventor
徐艳丽
唐浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN202010851305.9A priority Critical patent/CN111953549A/en
Publication of CN111953549A publication Critical patent/CN111953549A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/83Admission control; Resource allocation based on usage prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/803Application aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种用于海事边缘节点的在线优化资源管理办法,属于通信网络技术领域。本发明提供一种以保证不同应用的服务质量,提高通信资源效率的在线优化资源管理算法。该算法在资源调度节点上既不需要资源成本函数也不需要服务质量约束函数。此外,也不需要学习策略中通常需要的梯度信息。该算法仅基于最后一个时隙的观察来执行每个时隙中计算资源和通信资源的资源管理。通过逐时隙分配资源,可以达到通信成本最小化,同时可以满足长期的延迟约束以适合海事场景。

Figure 202010851305

The invention relates to an online optimization resource management method for maritime edge nodes, belonging to the technical field of communication networks. The invention provides an online optimization resource management algorithm for ensuring the service quality of different applications and improving the efficiency of communication resources. The algorithm requires neither resource cost function nor service quality constraint function on resource scheduling nodes. Furthermore, the gradient information usually required in learning policies is also not required. The algorithm performs resource management of computing resources and communication resources in each time slot based only on the observations of the last time slot. By allocating resources on a slot-by-slot basis, communication costs can be minimized while long-term delay constraints can be satisfied to suit maritime scenarios.

Figure 202010851305

Description

一种用于海事边缘节点的在线优化资源管理办法An online optimized resource management method for maritime edge nodes

技术领域technical field

本发明涉及通信网络技术领域,尤其是涉及一种用于海事边缘节点的在线优化资源管理办法。The invention relates to the technical field of communication networks, in particular to an online optimization resource management method for maritime edge nodes.

背景技术Background technique

随着海洋经济的快速发展,越来越多关于海事方面的应用涌现出来,导致产生更多的传感器部署和数据生成。当前的海上互联网受限于有限的通信资源和恶劣的传输环境,只能提供较低的传输速率,传统的资源管理办法已无法应对如今海事应用中产生的大量检测数据反馈。为了更加有效利用现有资源并保证应用程序的服务质量QoS(QualityofService),急需一种以保证不同应用的服务质量,提高通信资源效率的在线优化资源管理算法。With the rapid development of the marine economy, more and more maritime applications are emerging, resulting in more sensor deployment and data generation. The current maritime Internet is limited by limited communication resources and poor transmission environment, and can only provide a low transmission rate. Traditional resource management methods have been unable to cope with the large amount of detection data feedback generated in today's maritime applications. In order to utilize the existing resources more effectively and ensure the QoS (Quality of Service) of the application program, an online optimization resource management algorithm is urgently needed to ensure the service quality of different applications and improve the efficiency of communication resources.

发明内容SUMMARY OF THE INVENTION

本发明的目的就是为了克服现有技术存在的缺陷而提供一种以保证不同应用的服务质量,提高通信资源效率的在线优化资源管理算法。该算法在资源调度节点上既不需要资源成本函数也不需要QoS约束函数。此外,也不需要学习策略中通常需要的梯度信息。取而代之的是,该算法仅基于最后一个时隙的观察来执行每个时隙中计算资源和通信资源的资源管理。通过逐时隙分配资源,可以达到通信成本最小化,同时可以满足长期的延迟约束以适合海事场景。The purpose of the present invention is to provide an online optimization resource management algorithm which can ensure the service quality of different applications and improve the efficiency of communication resources in order to overcome the defects of the prior art. The algorithm requires neither resource cost function nor QoS constraint function on resource scheduling nodes. Furthermore, the gradient information usually required in learning policies is also not required. Instead, the algorithm performs resource management of computational and communication resources in each slot only based on the observations of the last slot. By allocating resources on a slot-by-slot basis, communication costs can be minimized while long-term delay constraints can be satisfied to suit maritime scenarios.

本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:

一种用于海事边缘节点的在线优化资源管理办法,包括以下步骤:An online optimization resource management method for maritime edge nodes, comprising the following steps:

S1、构造海上通信网络模型,海上通信网络中,水下层部署了水下检测仪,水下机器人,水下无人航潜器等用于监视,检测以及其他功能的水下设备。边缘层部署了船舶,浮标这些边缘节点会从其附近的水下设备收集数据,位于地面接入层的数据中心,雷达,基站等再对这些边缘节点发送来的数据进行处理。关注于这些边缘节点收集数据的反馈。水下设备会在观察周期T内产生不同应用程序的流(流是为其提供QoS的实体,它是从发射机到接收机的一系列数据包序列)。传输时段是有时隙的,使用泊松模型描述由不同应用程序产生的数据分布,即应用程序i的数据到达速率γi遵循泊松分布,且不同的应用程序具有不同的QoS要求;S1. Construct a marine communication network model. In the marine communication network, underwater detectors, underwater robots, underwater unmanned vehicles and other underwater equipment for monitoring, detection and other functions are deployed in the underwater layer. Ships are deployed at the edge layer, and edge nodes such as buoys will collect data from nearby underwater equipment. Data centers, radars, and base stations located at the ground access layer process the data sent by these edge nodes. Focus on the feedback of data collected by these edge nodes. The underwater device produces streams of different applications during the observation period T (a stream is the entity that provides it with QoS, it is a sequence of packets from the transmitter to the receiver). The transmission period is time-slotted, and the Poisson model is used to describe the data distribution generated by different applications, that is, the data arrival rate γ i of application i follows Poisson distribution, and different applications have different QoS requirements;

S2、边缘节点上的可用资源包括分配给不同应用程序i对收集到的信息数据进行通信处理的通信资源和分配给不同应用程序i对收集到的信息数据进行计算处理的计算资源。对于数据传输,边缘节点可以将总带宽B(t)针对t时隙的不同应用程序i分配不同的频率带宽。在数据传输前,边缘节点还可以针对不同的应用程序i分配不同的计算资源。对于不同的应用程序i,通过给定的传输数据量li和分配的带宽Bi,由于通信速率和计算速率是恒定的,可以确定在t时隙数据的传输时间和计算时间。同时,可以根据在t时刻获得的数据信息无需等待传输和计算完成在t+1时隙做出决策。S2. The available resources on the edge node include communication resources allocated to different application programs i to perform communication processing on the collected information data and computing resources allocated to different application programs i to perform computing processing on the collected information data. For data transmission, edge nodes can allocate the total bandwidth B(t) to different frequency bandwidths for different applications i of t slots. Before data transmission, edge nodes can also allocate different computing resources for different applications i. For different applications i, by given the amount of transmitted data li and the allocated bandwidth B i , since the communication rate and calculation rate are constant, the transmission time and calculation time of data in time slot t can be determined. At the same time, a decision can be made at time slot t+1 without waiting for the completion of transmission and calculation according to the data information obtained at time t.

在t时隙应用程序i的总延迟为:The total delay of application i in time slot t is:

Figure BDA0002644825990000021
Figure BDA0002644825990000021

在t时隙不同应用程序i的延迟di(t)包括通信延迟

Figure BDA0002644825990000022
和计算延迟
Figure BDA0002644825990000023
通信延迟
Figure BDA0002644825990000024
表示在t时隙应用程序i对收集到的信息数据进行通信处理的延迟,是关于传输数据量li(t)和分配的带宽Bi(t)的函数,计算延迟
Figure BDA0002644825990000025
表示在t时隙应用程序i对收集到的信息数据进行计算处理的延迟,是关于Pi(t)的函数,其中,Li(t)表示在t时隙应用程序i在压缩前新到达的数据量,Pi(t)表示在t时隙应用程序i分配的计算资源,每个时隙中完成的数据流可以是分数,从而不需要将延迟的计算限制在每个时隙中,Bi(t)表示在t时隙分配给应用程序i的带宽,h0(Bi(t))表示带宽Bi的传输速率,对于K个应用程序在t时隙分别分配的带宽为{B1(t),B2(t)···,BK(t)};The delay d i (t) for different application i in time slot t includes the communication delay
Figure BDA0002644825990000022
and computational delay
Figure BDA0002644825990000023
communication delay
Figure BDA0002644825990000024
Represents the delay in communication processing of the collected information data by application i at time slot t, and is a function of the amount of transmitted data l i (t) and the allocated bandwidth B i (t), calculate the delay
Figure BDA0002644825990000025
represents the delay in the computational processing of the collected information data by application i in time slot t, and is a function of P i (t), where Li (t) represents the new arrival of application i in time slot t before compression The amount of data, P i (t) represents the computational resources allocated by application i in time slot t, the data flow completed in each time slot can be fractional, so that there is no need to limit the calculation of the delay to each time slot, B i (t) represents the bandwidth allocated to application i in time slot t, h 0 (B i (t)) represents the transmission rate of bandwidth B i , and the bandwidth allocated to K applications in time slot t is { B 1 (t),B 2 (t)...,B K (t)};

S3、对原始迭代y11,参数δ和β,步长α和u进行初始化;S3. Initialize the original iteration y 1 , λ 1 , parameters δ and β, step size α and u;

S4、边缘节点确定资源分配操作集xt基于迭代值yt通过yt=xt+δut得到,其中,u表示随机单位向量,时隙t是从1开始,从步骤S4到步骤S7循环进行,每循环一次时隙t加1;S4. The edge node determines that the resource allocation operation set x t is obtained based on the iteration value y t through y t =x t +δu t , where u represents a random unit vector, time slot t starts from 1, and loops from step S4 to step S7 Carry out, the time slot t is incremented by 1 every cycle;

S5、边缘节点在查询点处收集成本值ft(xt)和约束值gt(xt);S5. The edge node collects the cost value f t (x t ) and the constraint value g t (x t ) at the query point;

S6、边缘节点更新对偶变量λtS6, the edge node updates the dual variable λ t ;

S7、边缘节点更新在时隙t处的通信资源分配集Bt,更新在时隙t处的计算资源分配集PtS7, the edge node updates the communication resource allocation set B t at the time slot t, and updates the computing resource allocation set P t at the time slot t ;

其中,使用拟合度量FitT评估约束满足的程度,FitT越小,约束违反越小。Among them, the fit metric Fit T is used to evaluate the degree of constraint satisfaction, and the smaller the Fit T , the smaller the constraint violation.

本发明的有益效果是:使资源管理的实施更加容易,更适合于海洋场景。对信息反馈问题进行适当建模。安排时间以便在每个时隙轻松处理决策;应用流可以不受时隙限制地处理和传输;针对优化问题的在线解决方案共同调度计算和通信资源,同时保证延迟约束;借助于梯度的估计,可以在没有显式的成本和约束条件的情况下分配资源,这适合于现有的海上通信网络。The beneficial effects of the present invention are that the implementation of resource management is easier and more suitable for marine scenarios. Model the information feedback problem appropriately. Scheduling time so that decisions are easily processed at each time slot; application flows can be processed and transmitted without time slot constraints; online solutions to optimization problems co-schedule computing and communication resources while guaranteeing delay constraints; with the help of gradient estimation, Resources can be allocated without explicit costs and constraints, which is suitable for existing maritime communication networks.

附图说明Description of drawings

图1为本发明海事边缘节点的在线优化资源管理办法的海上通信场景示意图;1 is a schematic diagram of a maritime communication scenario of an online optimized resource management method for a maritime edge node of the present invention;

图2为本发明海事边缘节点的在线优化资源管理办法两个应用程序计算资源分配示意图;2 is a schematic diagram of computing resource allocation of two application programs of the online optimization resource management method of the maritime edge node of the present invention;

图3为本发明海事边缘节点的在线优化资源管理办法两个应用程序频率和时隙资源分配示意图;3 is a schematic diagram of the allocation of two application program frequencies and time slot resources of the online optimization resource management method of the maritime edge node of the present invention;

图4为本发明海事边缘节点的在线优化资源管理办法不同资源管理方案的平均成本比较;Fig. 4 is the average cost comparison of different resource management schemes of the online optimization resource management method of the maritime edge node of the present invention;

图5为本发明海事边缘节点的在线优化资源管理办法不同资源管理方案的服务质量保证率比较。FIG. 5 is a comparison of the service quality assurance ratios of different resource management schemes of the online optimization resource management method of the maritime edge node of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.

本发明提供一种用于海事边缘节点的在线优化资源管理办法,包括以下步骤:The present invention provides an online optimized resource management method for maritime edge nodes, comprising the following steps:

S1、如图1所示,给出了海上通信场景示意图。海上通信网络中,水下层1部署了水下检测仪2,水下机器人3,水下无人航潜器4等用于监视,检测以及其他功能的水下设备。边缘层5部署了船舶6,浮标7这些边缘节点会从其附近的水下设备收集数据,位于地面接入层8的数据中心9,雷达10,基站11等再对这些边缘节点发送来的数据进行处理。关注于这些边缘节点收集数据的反馈。传输时段是有时隙的,水下设备会在观察周期T内产生不同应用程序的一系列数据包序列。使用泊松模型描述由不同应用程序产生的数据分布,即应用程序i的数据到达速率γi遵循泊松分布,且不同的应用程序具有不同的QoS要求;S1. As shown in Figure 1, a schematic diagram of a maritime communication scenario is given. In the maritime communication network, the underwater layer 1 is equipped with underwater detectors 2, underwater robots 3, underwater unmanned vehicles 4 and other underwater equipment for monitoring, detection and other functions. The edge layer 5 deploys ships 6, buoys 7 and these edge nodes collect data from the underwater equipment near them, and the data center 9, radar 10, base station 11, etc. located in the ground access layer 8, and then send data to these edge nodes. to be processed. Focus on the feedback of data collected by these edge nodes. The transmission period is slotted, and the underwater equipment will generate a series of data packet sequences for different applications within the observation period T. Use the Poisson model to describe the data distribution generated by different applications, that is, the data arrival rate γ i of application i follows the Poisson distribution, and different applications have different QoS requirements;

S2、如图2所示,给出了两个应用程序计算资源分配示意图。应用程序乙被分配两个计算队列进行计算处理数据,而应用程序甲被分配一个计算队列进行计算处理数据。如图3所示,给出了两个应用程序频率和时隙资源分配示意图。应用程序甲比应用程序乙被分配更多的频率带宽。应用程序甲使用2个时隙进行计算处理,应用程序乙使用1个时隙进行计算处理,应用程序甲使用1个时隙进行传输,应用程序乙使用2个时隙进行传输。不将数据处理和传输限制在一个时隙,则时隙t到达的数据处理和传输也可以在时隙t以后的时隙进行处理和传输,并仍然可以逐个时隙作出决定。在t时隙不同应用程序i的总延迟为:S2. As shown in FIG. 2, a schematic diagram of computing resource allocation of two application programs is given. Application B is allocated two computing queues for computing and processing data, while application A is allocated one computing queue for computing and processing data. As shown in Figure 3, a schematic diagram of frequency and time slot resource allocation for two applications is given. Application A is allocated more frequency bandwidth than application B. Application A uses 2 time slots for calculation processing, application B uses 1 time slot for calculation processing, application A uses 1 time slot for transmission, and application B uses 2 time slots for transmission. Without limiting data processing and transmission to one time slot, data processing and transmission arriving at time slot t can also be processed and transmitted in time slots after time slot t, and decisions can still be made on a slot-by-slot basis. The total delay of different application i in time slot t is:

Figure BDA0002644825990000031
Figure BDA0002644825990000031

在t时隙不同应用程序i的延迟di(t)包括通信延迟

Figure BDA0002644825990000032
和计算延迟
Figure BDA0002644825990000033
通信延迟
Figure BDA0002644825990000034
表示在t时隙应用程序i对收集到的信息数据进行通信处理的延迟,是关于传输数据量li(t)和分配的带宽Bi(t)的函数,计算延迟
Figure BDA0002644825990000035
表示在t时隙应用程序i对收集到的信息数据进行计算处理的延迟,是关于Pi(t)的函数,其中,Li(t)表示在t时隙应用程序i在压缩前新到达的数据量,Pi(t)表示在t时隙应用程序i分配的计算资源,每个时隙中完成的数据流可以是分数,从而不需要将延迟的计算限制在每个时隙中,Bi(t)表示在t时隙分配给应用程序i的带宽,h0(Bi(t))表示带宽Bi的传输速率,对于K个应用程序在t时隙分别分配的带宽为{B1(t),B2(t)···,BK(t)};The delay d i (t) for different application i in time slot t includes the communication delay
Figure BDA0002644825990000032
and computational delay
Figure BDA0002644825990000033
communication delay
Figure BDA0002644825990000034
Represents the delay in communication processing of the collected information data by application i at time slot t, and is a function of the amount of transmitted data l i (t) and the allocated bandwidth B i (t), calculate the delay
Figure BDA0002644825990000035
represents the delay in the computational processing of the collected information data by application i in time slot t, and is a function of P i (t), where Li (t) represents the new arrival of application i in time slot t before compression The amount of data, P i (t) represents the computational resources allocated by application i in time slot t, the data flow completed in each time slot can be fractional, so that there is no need to limit the calculation of the delay to each time slot, B i (t) represents the bandwidth allocated to application i in time slot t, h 0 (B i (t)) represents the transmission rate of bandwidth B i , and the bandwidth allocated to K applications in time slot t is { B 1 (t),B 2 (t)...,B K (t)};

S3、对原始迭代

Figure BDA0002644825990000041
λ1,参数δ和β,步长α和u进行初始化,其中,β∈[0,1)是取决于δ的预选常数;S3. Iterate over the original
Figure BDA0002644825990000041
λ 1 , parameters δ and β, steps α and u are initialized, where β∈[0,1) is a preselected constant that depends on δ;

S4、边缘节点确定资源分配操作集

Figure BDA0002644825990000042
基于迭代值yt通过yt=xt+δut得到,其中,u表示随机单位向量,时隙t是从1开始,从步骤S4到步骤S7循环进行,每循环一次时隙t加1;S4. The edge node determines the resource allocation operation set
Figure BDA0002644825990000042
Based on the iterative value y t , it is obtained by y t =x t +δu t , where u represents a random unit vector, the time slot t starts from 1, and the cycle proceeds from step S4 to step S7, and the time slot t increases by 1 every cycle;

S5、边缘节点在查询点处收集成本值ft(xt)和约束值gt(xt);S5. The edge node collects the cost value f t (x t ) and the constraint value g t (x t ) at the query point;

S6、边缘节点通过公式

Figure BDA0002644825990000043
更新对偶变量λt,其中,μ表示正步长,d表示维度,u表示随机单位向量,[x]+=max{x,0};S6. The edge node passes the formula
Figure BDA0002644825990000043
Update the dual variable λ t , where μ represents the positive step size, d represents the dimension, u represents the random unit vector, [x] + =max{x,0};

S7、边缘节点通过

Figure BDA0002644825990000044
更新在时隙t处的通信资源分配集Bt,通过
Figure BDA0002644825990000045
更新在时隙t处的计算资源分配集Pt;S7, the edge node passes
Figure BDA0002644825990000044
Update the communication resource allocation set B t at time slot t by
Figure BDA0002644825990000045
update the computational resource allocation set P t at time slot t ;

其中,ΦβX(y)=argminx∈βX||x-y||2表示为投影算子,而βX是X的一个子集,使用拟合度量

Figure BDA0002644825990000046
评估约束满足的程度,FitT越小,约束违反越小。where Φ βX (y)= argmin x∈βX ||xy|| 2 is expressed as a projection operator, and βX is a subset of X, using the fit metric
Figure BDA0002644825990000046
Evaluate the degree of constraint satisfaction, the smaller the Fit T , the smaller the constraint violation.

以下通过相应的实验数据进一步证明本发明的有益效果:The following further proves the beneficial effects of the present invention through corresponding experimental data:

通过仿真实验,使用5个具有不同延迟约束的应用程序,这些应用程序将由边缘节点处理和中继,延迟约束因不同的应用程序而不同。除非另有说明,否则这里的延迟约束条件是从[0.5,500]ms中随机选择的。此处的时隙(资源分配周期)单位为10毫秒,包括10帧(实际中一帧通常持续1毫秒)。观察时间为1000毫秒,即100个资源分配周期。若未指定,则应用程序i到达的数据遵循泊松过程,其中γi=1000*i。边缘节点的可用资源为B=10000和P=8000,每单位资源的传输数据和已处理数据分别为1和10。观测时间T=1000毫秒,步长μ=α=0.05/T。在实验中,边缘节点的观测时间,资源和能力(通信和计算)仅是示例,所有上述可以根据不同情况进行调整。Through simulation experiments, 5 applications with different delay constraints are used, which will be processed and relayed by edge nodes, and the delay constraints are different for different applications. Unless otherwise stated, the delay constraints here are randomly chosen from [0.5,500]ms. The time slot (resource allocation period) unit here is 10 milliseconds, including 10 frames (in practice, one frame usually lasts for 1 millisecond). The observation time is 1000 milliseconds, or 100 resource allocation cycles. If not specified, data arriving by application i follows a Poisson process, where γ i =1000*i. The available resources of the edge node are B=10000 and P=8000, and the transmitted data and processed data per unit resource are 1 and 10, respectively. Observation time T=1000 ms, step size μ=α=0.05/T. In the experiments, the observation time, resources and capabilities (communication and computation) of edge nodes are just examples, all the above can be adjusted according to different situations.

如图4所示为不同资源管理方案的平均成本比较。将资源分别平均分配给每个应用程序流的统一方案、随机方案和拟议方案。可以看到,拟议方案与其他两种方案相比,大大降低了平均成本。在某些突发点,拟议方案仍可以保持较低的成本。Figure 4 shows a comparison of the average cost of different resource management schemes. Uniform, random, and proposed scenarios that allocate resources equally to each application flow, respectively. It can be seen that the proposed scheme significantly reduces the average cost compared to the other two schemes. At certain burst points, the proposed scheme can still keep costs low.

如图5所示为不同资源管理方案的服务质量保证率比较。将资源分别平均分配给每个应用程序流的统一方案、随机方案和拟议方案。可以看到,拟议方案与其他两种方案相比,拟议方案的服务质量保证保证概率接近于1,更能满足每个应用程序的服务质量要求。Figure 5 shows the comparison of service quality assurance ratios of different resource management schemes. Uniform, random, and proposed scenarios that allocate resources equally to each application flow, respectively. It can be seen that compared with the other two schemes, the proposed scheme has a guarantee probability of QoS close to 1, which can better meet the QoS requirements of each application.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不仅局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person familiar with the technical field can easily think of various equivalents within the technical scope disclosed by the present invention. Modifications or substitutions should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.

Claims (1)

1.一种用于海事边缘节点的在线优化资源管理办法,包括以下步骤:1. An online optimized resource management method for maritime edge nodes, comprising the following steps: S1、使用泊松模型描述由不同应用程序产生的数据分布,即不同应用程序i的数据到达速率γi遵循泊松分布,且不同的应用程序具有不同的QoS要求;S1. Use the Poisson model to describe the data distribution generated by different applications, that is, the data arrival rate γ i of different application i follows Poisson distribution, and different applications have different QoS requirements; S2、计算在t时隙应用程序i的总延迟,在t时隙不同应用程序i的总延迟为:S2. Calculate the total delay of application i in time slot t, and the total delay of different application i in time slot t is:
Figure FDA0002644825980000011
Figure FDA0002644825980000011
在t时隙不同应用程序i的延迟di(t)包括通信延迟
Figure FDA0002644825980000012
和计算延迟
Figure FDA0002644825980000013
通信延迟
Figure FDA0002644825980000014
表示在t时隙应用程序i对收集到的信息数据进行通信处理的延迟,是关于传输数据量li(t)和分配的带宽Bi(t)的函数,计算延迟
Figure FDA0002644825980000015
表示在t时隙应用程序i对收集到的信息数据进行计算处理的延迟,是关于Pi(t)的函数,其中,Li(t)表示在t时隙应用程序i在压缩前新到达的数据量,Pi(t)表示在t时隙应用程序i分配的计算资源,每个时隙中完成的数据流可以是分数,从而不需要将延迟的计算限制在每个时隙中,Bi(t)表示在t时隙分配给应用程序i的带宽,h0(Bi(t))表示带宽Bi的传输速率,对于K个应用程序在t时隙分别分配的带宽为{B1(t),B2(t)···,BK(t)};
The delay d i (t) for different application i in time slot t includes the communication delay
Figure FDA0002644825980000012
and computational delay
Figure FDA0002644825980000013
communication delay
Figure FDA0002644825980000014
Represents the delay in communication processing of the collected information data by application i at time slot t, and is a function of the amount of transmitted data l i (t) and the allocated bandwidth B i (t), calculate the delay
Figure FDA0002644825980000015
represents the delay in the computational processing of the collected information data by application i in time slot t, and is a function of P i (t), where Li (t) represents the new arrival of application i in time slot t before compression The amount of data, P i (t) represents the computational resources allocated by application i in time slot t, the data flow completed in each time slot can be fractional, so that there is no need to limit the calculation of the delay to each time slot, B i (t) represents the bandwidth allocated to application i in time slot t, h 0 (B i (t)) represents the transmission rate of bandwidth B i , and the bandwidth allocated to K applications in time slot t is { B 1 (t),B 2 (t)...,B K (t)};
S3、对原始迭代
Figure FDA0002644825980000016
λ1,参数δ和β,步长α和u进行初始化,其中,β∈[0,1)是取决于δ的预选常数;
S3. Iterate over the original
Figure FDA0002644825980000016
λ 1 , parameters δ and β, steps α and u are initialized, where β∈[0,1) is a preselected constant that depends on δ;
S4、边缘节点确定资源分配操作集
Figure FDA0002644825980000017
基于迭代值yt通过yt=xt+δut得到,其中,u表示随机单位向量,时隙t是从1开始,从步骤S4到步骤S7循环进行,每循环一次时隙t加1;
S4. The edge node determines the resource allocation operation set
Figure FDA0002644825980000017
Based on the iterative value y t , it is obtained by y t =x t +δu t , where u represents a random unit vector, the time slot t starts from 1, and the cycle proceeds from step S4 to step S7, and the time slot t increases by 1 every cycle;
S5、边缘节点在查询点处收集成本值ft(xt)和约束值gt(xt);S5. The edge node collects the cost value f t (x t ) and the constraint value g t (x t ) at the query point; S6、边缘节点通过公式
Figure FDA0002644825980000018
更新对偶变量λt,其中,μ表示正步长,d表示维度,[x]+=max{x,0};
S6. The edge node passes the formula
Figure FDA0002644825980000018
Update the dual variable λ t , where μ represents the positive step size, d represents the dimension, [x] + =max{x,0};
S7、边缘节点通过
Figure FDA0002644825980000019
更新在时隙t处的通信资源分配集Bt,通过
Figure FDA00026448259800000110
更新在时隙t处的计算资源分配集Pt
S7, the edge node passes
Figure FDA0002644825980000019
Update the communication resource allocation set B t at time slot t by
Figure FDA00026448259800000110
update the computational resource allocation set P t at time slot t ;
其中,ΦβX(y)=arg minx∈βX||x-y||2表示为投影算子,而βX是X的一个子集,使用拟合度量
Figure FDA0002644825980000021
评估约束满足的程度,FitT越小,约束违反越小。
where Φ βX (y)=arg min x∈βX ||xy|| 2 is expressed as a projection operator, and βX is a subset of X, using the fit metric
Figure FDA0002644825980000021
Evaluate the degree of constraint satisfaction, the smaller the Fit T , the smaller the constraint violation.
CN202010851305.9A 2020-08-21 2020-08-21 An online optimized resource management method for maritime edge nodes Withdrawn CN111953549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010851305.9A CN111953549A (en) 2020-08-21 2020-08-21 An online optimized resource management method for maritime edge nodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010851305.9A CN111953549A (en) 2020-08-21 2020-08-21 An online optimized resource management method for maritime edge nodes

Publications (1)

Publication Number Publication Date
CN111953549A true CN111953549A (en) 2020-11-17

Family

ID=73360289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010851305.9A Withdrawn CN111953549A (en) 2020-08-21 2020-08-21 An online optimized resource management method for maritime edge nodes

Country Status (1)

Country Link
CN (1) CN111953549A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887174A (en) * 1996-06-18 1999-03-23 International Business Machines Corporation System, method, and program product for instruction scheduling in the presence of hardware lookahead accomplished by the rescheduling of idle slots
CN101122872A (en) * 2006-08-07 2008-02-13 国际商业机器公司 Method for managing application programme workload and data processing system
CN107517467A (en) * 2017-07-10 2017-12-26 清华大学 A process-oriented optimization method for collaborative resource allocation of multi-antenna sea area information ports
CN108834214A (en) * 2018-04-19 2018-11-16 北京邮电大学 A time slot resource allocation method and device based on uplink and downlink queue equalization
CN110365753A (en) * 2019-06-27 2019-10-22 北京邮电大学 IoT service low-latency load distribution method and device based on edge computing
WO2019214657A1 (en) * 2018-05-11 2019-11-14 中兴通讯股份有限公司 Time-domain resource allocation and determination method and apparatus, base station, terminal, and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887174A (en) * 1996-06-18 1999-03-23 International Business Machines Corporation System, method, and program product for instruction scheduling in the presence of hardware lookahead accomplished by the rescheduling of idle slots
CN101122872A (en) * 2006-08-07 2008-02-13 国际商业机器公司 Method for managing application programme workload and data processing system
CN107517467A (en) * 2017-07-10 2017-12-26 清华大学 A process-oriented optimization method for collaborative resource allocation of multi-antenna sea area information ports
CN108834214A (en) * 2018-04-19 2018-11-16 北京邮电大学 A time slot resource allocation method and device based on uplink and downlink queue equalization
WO2019214657A1 (en) * 2018-05-11 2019-11-14 中兴通讯股份有限公司 Time-domain resource allocation and determination method and apparatus, base station, terminal, and storage medium
CN110365753A (en) * 2019-06-27 2019-10-22 北京邮电大学 IoT service low-latency load distribution method and device based on edge computing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU-WEI CHANG;CHING-WEN HSUE;JIUN-YU WEN;YU-TING YEH: "Dispersive Delay Line With Large Group Delay Using Deformed Open Stub and its Complementary Slot Line", 《IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS》 *
王睿: "基于智能优化算法的海事异构通信网络资源分配研究", 《中国优秀硕士学位论文全文数据库》 *

Similar Documents

Publication Publication Date Title
Liang et al. Deep-learning-based wireless resource allocation with application to vehicular networks
Akbari et al. Age of information aware VNF scheduling in industrial IoT using deep reinforcement learning
Yu et al. Computation offloading for mobile edge computing: A deep learning approach
Wu et al. An efficient offloading algorithm based on support vector machine for mobile edge computing in vehicular networks
Zhang et al. Optimization of image transmission in cooperative semantic communication networks
CN105814845B (en) Traffic Engineering Framework in Software Defined Networking
Kopras et al. Task allocation for energy optimization in fog computing networks with latency constraints
Messaoudi et al. On using edge computing for computation offloading in mobile network
CN114138373A (en) Edge calculation task unloading method based on reinforcement learning
Salh et al. Refiner GAN algorithmically enabled deep-RL for guaranteed traffic packets in real-time URLLC B5G communication systems
CN107846371B (en) QoE resource allocation method for multimedia service
Tam et al. Intelligent massive traffic handling scheme in 5G bottleneck backhaul networks
Mai et al. End-to-end quality-of-service assurance with autonomous systems: 5G/6G case study
Qin et al. MADRL-based URLLC-aware task offloading for air-ground vehicular cooperative computing network
Mahmoudi et al. Cost-efficient distributed optimization in machine learning over wireless networks
Qin et al. Joint transmission and resource optimization in NOMA-assisted IoVT with mobile edge computing
CN116848828A (en) Machine learning model distribution
CN106936644A (en) A kind of power distribution network method for processing business and system
Akyıldız et al. Hierarchical reinforcement learning based resource allocation for RAN slicing
Mei et al. Semi-Decentralized network slicing for reliable V2V service provisioning: A model-free deep reinforcement learning approach
Doanis et al. Scalable end-to-end slice embedding and reconfiguration based on independent DQN agents
CN111953549A (en) An online optimized resource management method for maritime edge nodes
Meng et al. Intelligent routing orchestration for ultra-low latency transport networks
Ganjalizadeh et al. Device selection for the coexistence of URLLC and distributed learning services
WO2015069761A1 (en) System and method for delay management for traffic engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20201117