CN111952968B - Configuration method, device and readable storage medium for incremental distributed power supply equipment - Google Patents
Configuration method, device and readable storage medium for incremental distributed power supply equipment Download PDFInfo
- Publication number
- CN111952968B CN111952968B CN202010818367.XA CN202010818367A CN111952968B CN 111952968 B CN111952968 B CN 111952968B CN 202010818367 A CN202010818367 A CN 202010818367A CN 111952968 B CN111952968 B CN 111952968B
- Authority
- CN
- China
- Prior art keywords
- node
- distributed power
- power
- time
- distribution network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/18—Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明提供一种增量分布式电源设备的配置方法、装置和可读存储介质,其中,该方法包括如下步骤:构建至少包括节点配网结构分布式电源增量配电网模型;构建增量配电网模型中分布式电源节点、增量配电网节点和电力节点各自对应的目标函数和函数约束,将目标函数乘以对应的权重,得到对应的权重函数,将分布式电源节点、增量配电网节点和电力节点对应的权重函数相加,得到整体规划函数;对增量配电网节点的函数约束进行二阶锥松弛处理,并基于处理后的函数约束和未处理的函数约束,通过求解器求解整体规划函数,得到待接入分布式电源设备节点的电源容量。本发明提高了增量配电网系统中各个节点的电源容量的合理性。
The present invention provides a configuration method, device and readable storage medium for incremental distributed power equipment, wherein the method includes the following steps: constructing a distributed power incremental distribution network model including at least a node distribution network structure; In the distribution network model, the corresponding objective functions and function constraints of distributed power nodes, incremental distribution network nodes and power nodes are multiplied by the corresponding weights to obtain the corresponding weight functions. The weight functions corresponding to the distribution network nodes and the power nodes are added to obtain the overall planning function; the function constraints of the incremental distribution network nodes are subjected to second-order cone relaxation processing, and based on the processed function constraints and the unprocessed function constraints , the overall planning function is solved by the solver, and the power capacity of the node to be connected to the distributed power equipment is obtained. The invention improves the rationality of the power supply capacity of each node in the incremental distribution network system.
Description
技术领域technical field
本发明涉及电力系统技术领域,具体涉及一种增量分布式电源设备的配置方法、装置和可读存储介质。The present invention relates to the technical field of power systems, and in particular, to a configuration method, apparatus and readable storage medium for incremental distributed power equipment.
背景技术Background technique
增量配电网原则上指110kV(千伏)及以下电压等级电网和220(330)kV及以下电压等级工业园区(经济开发区)等局域电网,不涉及220kV及以上输电网建设。增量配电网包括新建增量配电网、配电网增容扩建和电网企业存量外的存量配电网。随着我国城镇化进程的不断展开和经济社会的发展,增量配电网不可或缺,亟待转变传统配电网的规划及运营方式,增量配电网与最新的配电网运行技术结合,有利于实现降低成本、提质增效与节能减排的目标。另外,分布式电源(Distributed Generation,DG)设备并入增量配电网系统,潮流方向从单向变为双向,使得运行不确定性因素增多,为售电公司降低成本、增加收益的同时,也带来了一定的安全稳定挑战。因此,亟需在确保增量配电网系统运行安全稳定的前提下,提供增量配电网优化规划方法,以提高增量配电网系统中各个节点电源容量的合理性。In principle, incremental distribution network refers to power grids with voltage levels of 110kV (kilovolt) and below and local power grids such as industrial parks (economic development zones) with voltage levels of 220 (330)kV and below, and does not involve the construction of transmission grids of 220kV and above. Incremental distribution networks include new incremental distribution networks, capacity expansion and expansion of distribution networks, and existing distribution networks outside the stock of power grid companies. With the continuous development of urbanization and economic and social development in China, incremental distribution network is indispensable. It is urgent to change the planning and operation mode of traditional distribution network, and to combine incremental distribution network with the latest distribution network operation technology. , which is conducive to achieving the goals of reducing costs, improving quality and efficiency, and saving energy and reducing emissions. In addition, the distributed generation (DG) equipment is integrated into the incremental distribution network system, and the direction of the power flow changes from one-way to two-way, which increases the uncertainty of operation. It also brings certain security and stability challenges. Therefore, under the premise of ensuring the safe and stable operation of the incremental distribution network system, it is urgent to provide an incremental distribution network optimization planning method to improve the rationality of the power supply capacity of each node in the incremental distribution network system.
发明内容SUMMARY OF THE INVENTION
基于上述现状,亟需在确保增量配电网系统运行安全稳定的前提下,提供提高增量配电网系统中各个节点电源容量的合理性的方法,本发明主要目的在于提供一种增量分布式电源设备的配置方法、装置和可读存储介质,以提高增量配电网系统中各个节点电源容量的合理性。Based on the above status quo, it is urgent to provide a method for improving the rationality of the power supply capacity of each node in the incremental distribution network system on the premise of ensuring the safe and stable operation of the incremental distribution network system. The main purpose of the present invention is to provide an incremental The configuration method, device and readable storage medium of distributed power supply equipment are provided to improve the rationality of the power supply capacity of each node in the incremental distribution network system.
为实现上述目的,本发明采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:
一种增量分布式电源设备的配置方法,所述增量分布式电源设备的配置方法包括以下步骤:A configuration method for incremental distributed power equipment, the configuration method for incremental distributed power equipment includes the following steps:
S100,在增量配电网系统中构建分布式电源增量配电网模型,其中,所述增量配电网模型至少包括节点配网结构;S100. Build an incremental distribution network model of distributed power sources in an incremental distribution network system, wherein the incremental distribution network model includes at least a node distribution network structure;
S200,从所述增量配电网系统的预设数据库中获取所述增量配电网模型中与分布式电源节点相关的第一目标数据、与增量配电网节点相关的第二目标数据和与电力节点相关的第三目标数据,根据所述第一目标数据构建所述分布式电源节点对应的第一目标函数和约束所述第一目标函数的第一函数约束,根据所述第二目标数据构建所述增量配电网节点对应的第二目标函数和约束所述第二目标函数的第二函数约束,并根据所述第三目标数据构建所述电力节点对应的第三目标函数和约束所述第三目标函数的第三函数约束,其中,所述第一函数约束包括节点配网结构中预设节点接入分布式电源设备数量的约束、分布式电源设备渗透率上限约束和分布式电源设备总电源容量约束,所述第二函数约束包括所述增量配电网模型中各线路潮流约束、电压约束和功率约束,所述第三函数约束包括目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束;S200: Acquire, from a preset database of the incremental power distribution network system, first target data related to the distributed power supply node and second target data related to the incremental power distribution network node in the incremental power distribution network model data and third target data related to the power node, construct a first target function corresponding to the distributed power supply node and a first function constraint that constrains the first target function according to the first target data, according to the first target function The second objective function corresponding to the incremental distribution network node and the second function constraint constraining the second objective function are constructed with the two objective data, and the third objective corresponding to the power node is constructed according to the third objective data Functions and constraints on the third function constraint of the third objective function, wherein the first functional constraints include the constraints on the number of preset nodes connected to distributed power equipment in the node distribution network structure, and the upper limit constraints on the penetration rate of distributed power equipment and the total power supply capacity constraints of distributed power equipment, the second function constraints include line power flow constraints, voltage constraints and power constraints in the incremental distribution network model, and the third function constraints include the transfer out of the target time. The power load constraints and the power load constraints transferred out at the target time;
S300,将所述第一目标函数乘以所述第一目标函数对应的第一权重,得到第一权重函数,将所述第二目标函数乘以所述第二目标函数对应的第二权重,得到第二权重函数,将所述第三目标函数乘以所述第三目标函数对应的第三权重,得到第三权重函数;S300, multiply the first objective function by the first weight corresponding to the first objective function to obtain a first weight function, and multiply the second objective function by the second weight corresponding to the second objective function, Obtain the second weight function, multiply the third objective function by the third weight corresponding to the third objective function, and obtain the third weight function;
S400,将所述第一权重函数、第二权重函数和第三权重函数相加,得到整体规划函数;S400, adding the first weight function, the second weight function and the third weight function to obtain an overall planning function;
S500,对所述第二函数约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束,并基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量,并根据所述电源容量配置节点对应的分布式电源设备。S500. Perform second-order cone relaxation processing on the second functional constraint to obtain a relaxed second functional constraint, and based on the first functional constraint, the third functional constraint, and the relaxed second functional constraint, pass The solver solves the overall planning function, obtains the power supply capacity of the node to be connected to the distributed power supply device in the node distribution network structure, and configures the distributed power supply device corresponding to the node according to the power supply capacity.
优选地,在所述步骤S500中,在二阶锥松弛处理过程中,定义辅助变量Ui.t′=(Ui.t)2和Iij.t′=(Iij.t)2,根据所述辅助变量得到以下目标等式:Preferably, in the step S500, during the second-order cone relaxation process, auxiliary variables U it '=(U it ) 2 and I ij.t '=(I ij.t ) 2 are defined, and according to the auxiliary variables The variables get the following objective equation:
Iij.t表示节点配网结构中节点i和节点j之间的线路电流,Ui.t表示节点i在t时刻的电压幅值,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量;I ij.t represents the line current between node i and node j in the node distribution network structure, U it represents the voltage amplitude of node i at time t, P ij.t represents the active power transmitted by branch ij at time t, Q ij.t represents the reactive power transmitted by branch ij at time t;
对所述目标等式进行松弛处理,得到以下松弛不等式:The objective equation is relaxed to obtain the following relaxed inequality:
通过二阶锥重新构造松弛不等式,得到以下目标不等式:Reconstructing the relaxation inequalities with second-order cones yields the following objective inequalities:
根据所述目标不等式对所述第二函数约束中的各线路潮流约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束;Perform second-order cone relaxation processing on each line power flow constraint in the second functional constraint according to the target inequality, to obtain the second functional constraint after relaxation processing;
松弛处理后的第二函数约束中的各线路潮流约束的表达式为:The expression of each line power flow constraint in the second function constraint after relaxation is:
(Uj.t)2=Ui.t′-2(RijPij.t+XijQij.t)+[(Rij)2+(Xij)2]·Iij.t′;(U jt ) 2 =U it ′-2(R ij P ij.t +X ij Q ij.t )+[(R ij ) 2 +(X ij ) 2 ]·I ij.t ′;
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示节点j在t时刻的有功电量,Qj.t表示节点j在t时刻的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量。Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the reactive energy of node j at time t Electricity, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents node i and node j The reactance of the line between nodes, G ij represents the conductance of the line between node i and node j, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and The active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t.
优选地,在所述步骤S200中,Preferably, in the step S200,
预设节点接入分布式电源设备数量的约束表示为:Ni.min≤Ni≤Ni.max;The constraints on the number of nodes connected to the distributed power supply equipment are preset as: N i.min ≤N i ≤N i.max ;
其中,Ni.min表示在节点i接入分布式电源设备数量的最小值,Ni.max表示在预设节点i接入分布式电源设备数量的最大值,Ni表示第i个节点接入分布式电源设备的数量;Among them, N i.min represents the minimum value of the number of distributed power supply devices connected to node i, N i.max represents the maximum number of distributed power supply devices connected to the preset node i, and N i represents the ith node connected to the number of distributed power equipment;
分布式电源设备渗透率上限约束表示为: The upper limit constraint on the penetration rate of distributed power equipment is expressed as:
其中,β表示分布式电源设备接入节点后的渗透率,Pload表示分布式电源设备在预设节点的电力负荷量;ni表示一个变量,取值为0或者1,ni=0表示节点配网结构中第i个节点未接入分布式电源设备,ni=1表示第i个节点接入分布式电源设备;Psg.DG表示各台分布式电源设备的额定有功功率;Among them, β represents the penetration rate after the distributed power equipment is connected to the node, P load represents the power load of the distributed power equipment at the preset node; n i represents a variable, which takes a value of 0 or 1, and n i =0 means In the node distribution network structure, the ith node is not connected to the distributed power equipment, and n i =1 means that the ith node is connected to the distributed power equipment; P sg.DG represents the rated active power of each distributed power equipment;
分布式电源设备总电源容量约束表示为:Pmin.DG≤Pt.DG≤Pmax.DG;The total power capacity constraint of distributed power equipment is expressed as: P min.DG ≤P t.DG ≤P max.DG ;
其中,Pmin.DG表示分布式电源设备总电源容量的下限值,Pmax.DG表示分布式电源设备总电源容量的上限值;Pt.DG表示分布式电源设备在t时刻提供的有功功率。Among them, P min.DG represents the lower limit of the total power supply capacity of the distributed power equipment, P max.DG represents the upper limit of the total power supply capacity of the distributed power equipment; P t.DG represents the power supply provided by the distributed power equipment at time t Active power.
优选地,在所述步骤S200中,Preferably, in the step S200,
各线路潮流约束的表达式为:The expression of each line power flow constraint is:
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示是节点j在t时刻的有功电量,Qj.t表示是节点j在t时刻的无功电量,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量;Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the active energy of node j at time t Reactive power, P ij.t represents the active power transmitted by branch ij at time t, Q ij.t represents the reactive power transmitted by branch ij at time t, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents the reactance of the line between node i and node j, G ij represents the difference between node i and node j The conductance of the line between nodes, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and Active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t;
所述电压约束为:Ui.min≤Ui.t≤Ui.max,其中,Ui.min表示节点i电压幅值的最小值,Ui.max表示节点i电压幅值的最大值;The voltage constraint is: U i.min ≤U it ≤U i.max , wherein U i.min represents the minimum value of the voltage amplitude of node i, and U i.max represents the maximum value of the voltage amplitude of node i;
所述功率约束为:Pij.t≤Pij.max,其中,Pij.t表示在t时刻,在节点i和节点j间线路上流过的功率,Pij.max表示节点i和节点j间线路上流过的功率最大值。The power constraint is: P ij.t ≤P ij.max , where P ij.t represents the power flowing on the line between node i and node j at time t, and P ij.max represents node i and node j The maximum value of power flowing on the inter-line.
优选地,在所述步骤S200中,Preferably, in the step S200,
所述目标时刻为t时刻,所述目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束的表达式为:The target time is time t, and the expressions of the power load constraint transferred from the target time and the power load constraint transferred from the target time are:
其中,ρminPt.load表示t时刻负荷转移出功率系数的最小值,ρmaxPt.load表示t时刻负荷转移出功率系数的最大值;σminPt.load表示t时刻负荷转移进功率系数的最小值,σmaxPt.load表示t时刻负荷转移进功率系数的最大值;Pt.out表示t时刻转移出的电力负荷量;Pt.in表示t时刻转移进的电力负荷量。Among them, ρ min P t.load represents the minimum value of the load transfer out power coefficient at time t, ρ max P t.load represents the maximum value of the load transfer out power coefficient at time t; σ min P t.load represents the load transfer input at time t The minimum value of the power coefficient, σ max P t.load represents the maximum value of the power coefficient transferred in at time t; P t.out represents the amount of power load transferred at time t; P t.in represents the power load transferred in at time t quantity.
优选地,在步骤S500中,所述基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量的步骤包括:Preferably, in step S500, based on the first functional constraint, the third functional constraint and the relaxed second functional constraint, the overall planning function is solved by a solver to obtain the node distribution network structure in the The steps of the power supply capacity of the node to be connected to the distributed power supply equipment include:
基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过Cplex求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备节点对应分布式电源设备的设备数量;Based on the first function constraint, the third function constraint, and the relaxed second function constraint, the overall planning function is solved by the Cplex solver, and the corresponding nodes of the distributed power equipment to be connected in the node distribution network structure are obtained. The number of devices of distributed power equipment;
获取一台分布式电源设备的电源容量,将所述分布式电源设备的电源容量乘以所述设备数量,得到待接入分布式电源设备节点的电源容量,其中,每台分布式电源设备的电源容量相同。Obtain the power supply capacity of a distributed power supply device, multiply the power supply capacity of the distributed power supply device by the number of devices, and obtain the power supply capacity of the node to be connected to the distributed power supply device, wherein the power supply capacity of each distributed power supply device is The power supply capacity is the same.
本发明还提供一种增量分布式电源设备的配置装置,所述增量分布式电源设备的配置装置包括:The present invention also provides a configuration device for incremental distributed power equipment, and the configuration device for incremental distributed power equipment includes:
构建模块,用于在增量配电网系统中构建分布式电源增量配电网模型,其中,所述增量配电网模型至少包括节点配网结构;a building module for building an incremental distribution network model of distributed power sources in an incremental distribution network system, wherein the incremental distribution network model includes at least a node distribution network structure;
获取模块,用于从所述增量配电网系统的预设数据库中获取所述增量配电网模型中与分布式电源节点相关的第一目标数据、与增量配电网节点相关的第二目标数据和与电力节点相关的第三目标数据;The acquiring module is configured to acquire, from the preset database of the incremental distribution network system, the first target data related to the distributed power supply node in the incremental distribution network model, and the data related to the incremental distribution network node. second target data and third target data associated with the power node;
所述构建模块还用于根据所述第一目标数据构建所述分布式电源节点对应的第一目标函数和约束所述第一目标函数的第一函数约束,根据所述第二目标数据构建所述增量配电网节点对应的第二目标函数和约束所述第二目标函数的第二函数约束,并根据所述第三目标数据构建所述电力节点对应的第三目标函数和约束所述第三目标函数的第三函数约束,其中,所述第一函数约束包括节点配网结构中预设节点接入分布式电源设备数量的约束、分布式电源设备渗透率上限约束和分布式电源设备总电源容量约束,所述第二函数约束包括所述增量配电网模型中各线路潮流约束、电压约束和功率约束,所述第三函数约束包括目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束;The construction module is further configured to construct a first objective function corresponding to the distributed power supply node and a first function constraint that constrains the first objective function according to the first target data, and construct the first objective function according to the second target data. The second objective function corresponding to the incremental distribution network node and the second function constraint that constrains the second objective function, and the third objective function corresponding to the power node is constructed according to the third objective data and the constraint is described. The third function constraint of the third objective function, wherein the first function constraint includes a preset number of nodes connected to the distributed power equipment in the node distribution network structure, the upper limit of the penetration rate of the distributed power equipment, and the distributed power equipment. Total power supply capacity constraints, the second function constraints include power flow constraints, voltage constraints and power constraints of each line in the incremental distribution network model, and the third function constraints include power load constraints transferred at the target time and Constraints on the amount of power load transferred out at the target time;
计算模块,用于将所述第一目标函数乘以所述第一目标函数对应的第一权重,得到第一权重函数,将所述第二目标函数乘以所述第二目标函数对应的第二权重,得到第二权重函数,将所述第三目标函数乘以所述第三目标函数对应的第三权重,得到第三权重函数;将所述第一权重函数、第二权重函数和第三权重函数相加,得到整体规划函数;The calculation module is used for multiplying the first objective function by the first weight corresponding to the first objective function to obtain a first weight function, and multiplying the second objective function by the first weight corresponding to the second objective function. two weights to obtain a second weight function, multiply the third objective function by the third weight corresponding to the third objective function to obtain a third weight function; combine the first weight function, the second weight function and the third weight function The three weight functions are added to obtain the overall planning function;
松弛处理模块,用于对所述第二函数约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束;a relaxation processing module, configured to perform second-order cone relaxation processing on the second functional constraint to obtain a relaxed second functional constraint;
求解模块,用于基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量;A solving module is configured to solve the overall planning function through a solver based on the first function constraint, the third function constraint and the second function constraint after relaxation processing, and obtain the distributed distribution to be accessed in the node distribution network structure The power capacity of the node of the power supply device;
配置模块,用于根据所述电源容量配置节点对应的分布式电源设备。The configuration module is configured to configure the distributed power supply device corresponding to the node according to the power supply capacity.
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有检测程序,所述检测程序被处理器执行时实现如所述的增量分布式电源设备的配置方法的步骤。The present invention also provides a computer-readable storage medium, where a detection program is stored on the computer-readable storage medium, and when the detection program is executed by a processor, the steps of the configuration method for an incremental distributed power supply device as described above are implemented. .
通过本发明的技术方案,实现了各主体的相互协调,提高各自决策的可行性,使整体规划函数的值达到最优,使增量配电网系统中接入了分布式电源设备的各个节点的电源容量配置最优,提高了增量配电网系统中各个节点的电源容量的合理性,即提高了节点配网结构中节点对应分布式电源设备配置的合理性,保证了增量配电网系统的安全稳定运行。Through the technical scheme of the present invention, the mutual coordination of each subject is realized, the feasibility of each decision is improved, the value of the overall planning function is optimized, and each node of the distributed power equipment is connected to the incremental distribution network system. It improves the rationality of the power supply capacity of each node in the incremental distribution network system, that is, improves the rationality of the configuration of the distributed power equipment corresponding to the nodes in the node distribution network structure, and ensures the incremental power distribution. Safe and stable operation of the network system.
本发明的其他有益效果,将在具体实施方式中通过具体技术特征和技术方案的介绍来阐述,本领域技术人员通过这些技术特征和技术方案的介绍,应能理解所述技术特征和技术方案带来的有益技术效果。Other beneficial effects of the present invention will be illustrated in the specific embodiments through the introduction of specific technical features and technical solutions. Those skilled in the art should be able to understand the technical features and technical solutions through the introduction of these technical features and technical solutions. beneficial technical effects.
附图说明Description of drawings
以下将参照附图对根据本发明的优选实施方式进行描述。图中:Preferred embodiments according to the present invention will be described below with reference to the accompanying drawings. In the picture:
图1是本发明一实施例的增量分布式电源设备的配置方法流程框图。FIG. 1 is a block diagram of a configuration method of an incremental distributed power supply device according to an embodiment of the present invention.
图2是本发明实施例中IEEE33节点配网结构的一种示意图;2 is a schematic diagram of an IEEE33 node distribution network structure in an embodiment of the present invention;
图3是本发明增量分布式电源设备的配置装置的结构示意图。FIG. 3 is a schematic structural diagram of a configuration device for incremental distributed power equipment according to the present invention.
具体实施方式Detailed ways
现结合附图,对本发明的较佳实施例作详细说明。The preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
需要说明的是,本发明中采用步骤编号(字母或数字编号)来指代某些具体的方法步骤,仅仅是出于描述方便和简洁的目的,而绝不是用字母或数字来限制这些方法步骤的顺序。本领域的技术人员能够明了,相关方法步骤的顺序,应由技术本身决定,不应因步骤编号的存在而被不适当地限制。It should be noted that, in the present invention, step numbers (letters or numbers) are used to refer to some specific method steps, which are only for the purpose of convenience and brevity of description, and are not intended to limit these method steps with letters or numbers. Order. Those skilled in the art can understand that the sequence of related method steps should be determined by the technology itself, and should not be unduly limited due to the existence of step numbers.
如图1所示,是本发明一实施例的增量分布式电源设备的配置方法流程框图。As shown in FIG. 1 , it is a flowchart of a method for configuring an incremental distributed power supply device according to an embodiment of the present invention.
S100,在增量配电网系统中构建分布式电源增量配电网模型,其中,所述增量配电网模型至少包括节点配网结构。S100. Build an incremental distribution network model of distributed power sources in an incremental distribution network system, where the incremental distribution network model includes at least a node distribution network structure.
在增量配电网系统中构建分布式电源增量配电网模型,该增量配电网模型为并入DG增量配电网模型。其中,增量配电网系统是分布式系统,增量配电网模型至少包括节点配网结构,该节点配网结构可为IEEE(Institute of Electrical and ElectronicsEngineers,电气和电子工程师协会)33节点配网结构、IEEE14节点配网结构或者IEEE30节点配网结构等。具体地,参照图2,图2是本发明实施例中IEEE33节点配网结构的一种示意图。由图2可知,在节点配网结构中,节点5、节点8、节点14、节点16、节点18和节点31为分布式电源设备的接入节点。增量配电网模型还包括支路数据信息和节点数据信息。节点配网结构描述了增量配电网模型中各节点间的连接关系;支路数据信息具体指的是增量配电网模型中网络线路的阻抗;节点数据信息包括增量配电网各节点的负荷大小、每个节点接入的分布式电源设备的总电力容量和各个分布式电源设备所在的节点,可以理解的是,分布式电源设备所在的节点就是分布式电源设备的安装位置,分布式电源设备为电力设备,具体地,可为光伏发电设备。增量配电网系统中包括三种利益主体,分别为DG运营用户、配电网投资用户和电力用户,这三种利益主体都以节点的形式存在增量配电网系统中,即增量配电网系统中存在DG运营用户对应的分布式电源节点、配电网投资用户对应的增量配电网节点和电力用户对应的电力节点。为了便于描述,后续都采用分布式电源节点、增量配电网节点和电力节点描述各个利益主体。The incremental distribution network model of distributed power generation is constructed in the incremental distribution network system. Among them, the incremental distribution network system is a distributed system, and the incremental distribution network model includes at least a node distribution network structure, which can be IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) 33 node distribution network structure. network structure, IEEE14 node distribution network structure or IEEE30 node distribution network structure, etc. Specifically, referring to FIG. 2 , FIG. 2 is a schematic diagram of an IEEE33 node distribution network structure in an embodiment of the present invention. As can be seen from FIG. 2 , in the node distribution network structure, node 5 ,
S200,从所述增量配电网系统的预设数据库中获取所述增量配电网模型中与分布式电源节点相关的第一目标数据、与增量配电网节点相关的第二目标数据和与电力节点相关的第三目标数据,根据所述第一目标数据构建所述分布式电源节点对应的第一目标函数和约束所述第一目标函数的第一函数约束,根据所述第二目标数据构建所述增量配电网节点对应的第二目标函数和约束所述第二目标函数的第二函数约束,并根据所述第三目标数据构建所述电力节点对应的第三目标函数和约束所述第三目标函数的第三函数约束,其中,所述第一函数约束包括节点配网结构中预设节点接入分布式电源设备数量的约束、分布式电源设备渗透率上限约束和分布式电源设备总电源容量约束,所述第二函数约束包括所述增量配电网模型中各线路潮流约束、电压约束和功率约束,所述第三函数约束包括目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束。S200: Acquire, from a preset database of the incremental power distribution network system, first target data related to the distributed power supply node and second target data related to the incremental power distribution network node in the incremental power distribution network model data and third target data related to the power node, construct a first target function corresponding to the distributed power supply node and a first function constraint that constrains the first target function according to the first target data, according to the first target function The second objective function corresponding to the incremental distribution network node and the second function constraint constraining the second objective function are constructed with the two objective data, and the third objective corresponding to the power node is constructed according to the third objective data Functions and constraints on the third function constraint of the third objective function, wherein the first functional constraints include the constraints on the number of preset nodes connected to distributed power equipment in the node distribution network structure, and the upper limit constraints on the penetration rate of distributed power equipment and the total power supply capacity constraints of distributed power equipment, the second function constraints include line power flow constraints, voltage constraints and power constraints in the incremental distribution network model, and the third function constraints include the transfer out of the target time. The power load constraints and the power load constraints transferred out at the target time.
在增量配电网系统中,预先设置好了一个数据库,该数据库存储构建分布式电源节点、增量配电网节点和电力节点对应目标函数和函数约束的目标数据,在本实施例中,将与分布式电源节点相关的目标数据记为第一目标数据,将与增量配电网节点相关的目标数据记为第二目标数据,将与电力节点相关的目标数据记为第三目标数据。当需要构建对应的目标函数和函数约束时,从数据库中获取第一目标数据、第二目标数据和第三目标数据,并第一目标数据构建分布式电源节点对应的第一目标函数和约束第一目标函数的第一函数约束,根据第二目标数据构建增量配电网节点对应的第二目标函数和约束第二目标函数的第二函数约束,根据第三目标数据构建电力节点对应的第三目标函数和约束第三目标函数的第三函数约束。其中,第一函数约束包括节点配网结构中预设节点接入分布式电源设备数量的约束、分布式电源设备渗透率上限约束和分布式电源设备总电源容量约束,第二函数约束包括增量配电网模型中各线路潮流约束、电压约束和功率约束,第三函数约束包括目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束。需要说明的是,在构建目标函数和函数约束过程中,是从分布式电源节点、增量配电网节点和电力节点个体理性角度出发,由于分布式电源节点、增量配电网节点和电力节点参与增量配电网模型对应增量配电网系统网架规划决策时目标偏向不同,因此需要根据各个利益主体的投资和期望收益,分别建立分布式电源节点、增量配电网节点和电力节点对应的目标函数。In the incremental distribution network system, a database is preset, and the database stores the target data corresponding to the objective functions and function constraints of the distributed power supply nodes, the incremental distribution network nodes, and the power nodes. In this embodiment, The target data related to the distributed power supply node is recorded as the first target data, the target data related to the incremental distribution network node is recorded as the second target data, and the target data related to the power node is recorded as the third target data . When the corresponding objective function and function constraints need to be constructed, the first target data, the second target data and the third target data are obtained from the database, and the first target data is used to construct the first target function corresponding to the distributed power node and the constraint first target data. A first function constraint of an objective function, construct a second objective function corresponding to the incremental distribution network node and a second function constraint constraining the second objective function according to the second objective data, construct a first function corresponding to the power node according to the third objective data Three objective functions and a third function constraint that constrains the third objective function. Wherein, the first function constraint includes the preset number of nodes connected to the distributed power equipment in the node distribution network structure, the upper limit of the penetration rate of the distributed power equipment, and the total power capacity of the distributed power equipment, and the second function constraint includes the increment The power flow constraints, voltage constraints and power constraints of each line in the distribution network model, and the third function constraints include the power load constraints transferred at the target time and the power load constraints transferred at the target time. It should be noted that, in the process of constructing the objective function and function constraints, from the perspective of individual rationality of distributed power nodes, incremental distribution network nodes and power nodes, due to distributed power nodes, incremental distribution network nodes and power nodes. Nodes participating in the incremental distribution network model correspond to different goals in the planning and decision-making of the incremental distribution network system. Therefore, it is necessary to establish distributed power nodes, incremental distribution network nodes, and The objective function corresponding to the power node.
具体地,在所述步骤S200中,第一目标函数表达式为公式(1):Specifically, in the step S200, the first objective function expression is formula (1):
公式(1)maxWDG(ni,Ni)=WS.DG-WI.DG-WOM.DG;Formula (1) maxW DG (n i , N i )=W S.DG -W I.DG -W OM.DG ;
其中,公式(1)中的WS.DG的表达式为公式(2): Among them, the expression of W S.DG in formula (1) is formula (2):
公式(1)中的WI.DG的表达式为公式(3): The expression of W I.DG in formula (1) is formula (3):
公式(1)中的WOM.DG的表达式为公式(4): The expression of W OM.DG in formula (1) is formula (4):
ni表示一个变量,取值为0或者1,ni=0表示节点配网结构中第i个节点未接入分布式电源设备,ni=1表示第i个节点接入分布式电源设备;Ni表示第i个节点接入分布式电源设备的数量;WS.DG表示节点配网结构中所有分布式电源设备预设年限内的售电收入,WI.DG表示节点配网结构中所有分布式电源设备使用前的前期建设费用,WOM.DG表示所有分布式电源设备预设年限内运维费用,Ut表示一天内所有时刻集合,为24小时;qes表示分布式电源设备的单位售电价格,每个分布式电源设备的单位售电价格相同;Pt.DG表示分布式电源设备在t时刻提供的有功功率;qsg表示分布式电源设备建设费用,具体地,qsg表示单位电源容量对应分布式电源设备的建设投入;Ui表示节点配网结构中,预设待接入分布式电源设备的节点集合;Psg.DG表示各台分布式电源设备的额定有功功率,每台分布式电源设备的额定有功功率相同;Y表示各台分布式电源设备的寿命周期,每台分布式电源设备的寿命周期相同;a表示贴现率;qom表示分布式电源设备单位供电的运维费用。预设年限的大小可根据具体需要而设置为,如可设置为5年、10年或者12年等。分布式电源设备使用前的前期建设费用包括但不限于分布式电源设备设计费用、购买费用和安装费用。需要说明的是,第一目标函数为分布式电源节点的优化目标函数,通过第一目标函数减少分布式电源设备的前期建设投入费用和运维支出费用,以提高分布式电源节点的售电收入,以使分布式电源节点得净收入最大化。n i represents a variable, taking the value of 0 or 1, n i =0 indicates that the ith node in the node distribution network structure is not connected to the distributed power equipment, and n i =1 indicates that the ith node is connected to the distributed power equipment ; Ni represents the number of distributed power equipment connected to the i-th node; W S.DG represents the electricity sales revenue of all distributed power equipment in the node distribution network structure within the preset years, W I.DG represents the node distribution network structure W OM.DG represents the operation and maintenance cost of all distributed power equipment within the preset years, U t represents the collection at all times in a day, which is 24 hours; q es represents distributed power The unit selling price of the equipment, the unit selling price of each distributed power equipment is the same; P t.DG represents the active power provided by the distributed power equipment at time t; q sg represents the construction cost of the distributed power equipment, specifically, q sg represents the construction investment of the distributed power equipment corresponding to the unit power supply capacity; U i represents the set of nodes that are preset to be connected to the distributed power equipment in the node distribution network structure; P sg.DG represents the rated value of each distributed power equipment Active power, the rated active power of each distributed power equipment is the same; Y represents the life cycle of each distributed power equipment, and the life cycle of each distributed power equipment is the same; a represents the discount rate; q om represents the distributed power equipment The operation and maintenance cost of the unit power supply. The size of the preset years can be set according to specific needs, for example, it can be set as 5 years, 10 years, or 12 years. The preliminary construction costs before the use of distributed power equipment include but are not limited to design costs, purchase costs and installation costs of distributed power equipment. It should be noted that the first objective function is the optimization objective function of the distributed power node, and the first objective function is used to reduce the initial construction investment cost and operation and maintenance expenditure of the distributed power equipment, so as to increase the electricity sales revenue of the distributed power node. , in order to maximize the net income of distributed power nodes.
预设节点接入分布式电源设备数量的约束表示为公式(5):Ni.min≤Ni≤Ni.max。The constraint on the number of pre-set nodes accessing distributed power equipment is expressed as formula (5): N i.min ≤N i ≤N i.max .
其中,Ni.min表示在节点i接入分布式电源设备数量的最小值,Ni.max表示在预设IEEE33节点i接入分布式电源设备数量的最大值,Ni表示第i个节点接入分布式电源设备的数量。Among them, N i.min represents the minimum value of the number of distributed power supply devices connected to node i, N i.max represents the maximum number of distributed power supply devices connected to the preset IEEE33 node i, and N i represents the i-th node. The number of connected distributed power equipment.
分布式电源设备渗透率上限约束表示为公式(6): The upper limit constraint of the penetration rate of distributed power equipment is expressed as formula (6):
其中,β表示分布式电源设备接入节点后的渗透率,渗透率为分布式电源容量与配电网额定容量的比例。Pload表示分布式电源设备在预设节点的电力负荷量;ni表示一个变量,取值为0或者1,ni=0表示节点配网结构中第i个节点未接入分布式电源设备,ni=1表示第i个节点接入分布式电源设备;Psg.DG表示各台分布式电源设备的额定有功功率。Among them, β represents the penetration rate after the distributed power equipment is connected to the node, and the penetration rate is the ratio of the distributed power capacity to the rated capacity of the distribution network. P load represents the power load of the distributed power supply equipment at the preset node; n i represents a variable, which takes the value of 0 or 1, and n i =0 indicates that the ith node in the node distribution network structure is not connected to the distributed power supply equipment , n i =1 indicates that the ith node is connected to the distributed power equipment; P sg.DG indicates the rated active power of each distributed power equipment.
分布式电源设备总电源容量约束表示为公式(7):Pmin.DG≤Pt.DG≤Pmax.DG。The total power capacity constraint of distributed power equipment is expressed as formula (7): P min.DG ≤P t.DG ≤P max.DG .
其中,Pmin.DG表示分布式电源设备总电源容量的下限值,Pmax.DG表示分布式电源设备总电源容量的上限值;Pt.DG表示分布式电源设备在t时刻提供的有功功率。第一目标函数和第一函数约束表达式中各个数据就是第一目标数据,该第一目标数据可由增量配电网系统根据分布式电源节点的历史数据得到,并预先存储在预先设置好的数据库中,当需要的时候,从本地数据库中直接获取即可。Among them, P min.DG represents the lower limit of the total power supply capacity of the distributed power equipment, P max.DG represents the upper limit of the total power supply capacity of the distributed power equipment; P t.DG represents the power supply provided by the distributed power equipment at time t Active power. Each data in the first objective function and the first function constraint expression is the first objective data, and the first objective data can be obtained by the incremental distribution network system according to the historical data of the distributed power node, and stored in advance in the preset data. In the database, when needed, it can be obtained directly from the local database.
具体地,在所述步骤S200中,第二目标函数的表达式为公式(8):Specifically, in the step S200, the expression of the second objective function is formula (8):
公式(8)maxWDN(pi)=WS.DN-WL.DN-WE.DN-WB1.DN-WB2.DN-WB3.DG;Formula (8) maxW DN (pi )=W S.DN -W L.DN -W E.DN -W B1.DN -W B2.DN -W B3.DG ;
其中,公式(8)中的WS.DG的表达式为公式(9):Among them, the expression of W S.DG in formula (8) is formula (9):
公式(9): Formula (9):
公式(8)中的WL.DN的表达式为公式(10): The expression of W L.DN in formula (8) is formula (10):
公式(8)中的WE.DN的表达式为公式(11):The expression of W E.DN in formula (8) is formula (11):
公式(11) formula (11)
公式(8)中的WB1.DN的表达式为公式(12):The expression of W B1.DN in formula (8) is formula (12):
公式(12) formula (12)
公式(8)中的WB2.DN的表达式为公式(13): The expression of W B2.DN in formula (8) is formula (13):
公式(8)中的WB3.DG的表达式为公式(14): The expression of W B3.DG in Equation (8) is Equation (14):
其中,pi表示增量配电网节点的目标函数变量,WS.DN表示增量配电网节点在预设年限内的售电收入,WL.DN表示预设年限内的线损费用,WE.DN表示预设年限内的故障修复费用,WB1.DN表示预设年限内从上级购电费用,WB2.DN表示预设年限内从分布式电源节点中的购电费用,WB3.DG表示分布式电源设备出力波动带来的损失,Ut表示一天内所有时刻集合,fes表示对电力节点的单位售电价格;Pt.load表示t时刻的初始电力负荷量;Pt.out表示t时刻转移出的电力负荷量;Pt.in表示t时刻转移进的电力负荷量;Pt.is表示t时刻可中断的电力负荷量;Pt.loss表示t时刻的有功损耗;EENSt表示t时刻对电力节点少供电能的期望值;Ub表示所述增量配电网模型中电网所有线路的集合;λb表示第b条线路的发生故障的概率值;Un表示节点配网结构中,预设待接入分布式电源设备的节点集合;Pn.t.load表示t时刻节点n的初始电力负荷量;feb1表示从上级电网的单位购电价格;feb2表示从分布式电源节点的单位购电价格;Pp表示预设年限内因随机波动所需支付的惩罚性费用;ρs表示预设年限内因分布式电源设备出力波动而造成电力损失的概率;ΔQs表示分布式电源设备出力波动时的随机波动量。需要说明的是,第一目标函数和第二目标函数中的预设年限相同。建立增量配电网节点优化目标函数,即构建第二目标函数,期望降低传输线损、前期建设、向上级购电等费用,提高售电收入,尽可能使增量配电网节点利益最大化;且分布式电源设备接入节点的不确定性更多得会影响增量配电网系统运行的安全性,导致增量配电网节点优化规划方案经济性的降低,所以还期望降低分布式电源设备出力波动带来的损失。在本实施例中,分布式电源设备出力波动带来的损失可以用该损失对应的费用来表示。分布式电源设备出力波动带来的损失就是由于分布式电源设备供电不稳定带来的损失。Among them, pi represents the objective function variable of the incremental distribution network node, W S.DN represents the electricity sales revenue of the incremental distribution network node within the preset period, and W L.DN represents the line loss cost within the preset period , W E.DN represents the fault repair cost within the preset year, W B1.DN represents the electricity purchase cost from the superior within the preset year, W B2.DN represents the electricity purchase cost from the distributed power node within the preset year, W B3.DG represents the loss caused by the output fluctuation of distributed power equipment, U t represents the set of all times in a day, f es represents the unit electricity selling price to the power node; P t.load represents the initial power load at time t; P t.out represents the amount of power load transferred at time t; P t.in represents the amount of power load transferred at time t; P t.is represents the amount of power load that can be interrupted at time t; P t.loss represents the amount of power load transferred at time t Active power loss; EENS t represents the expected value of less energy supplied to the power node at time t; U b represents the set of all lines in the power grid in the incremental distribution network model; λ b represents the probability of failure of the bth line; U n represents the set of nodes that are preset to be connected to distributed power equipment in the node distribution network structure; P ntload represents the initial power load of node n at time t; f eb1 represents the unit power purchase price from the upper-level power grid; f eb2 represents from The unit power purchase price of the distributed power node; P p represents the punitive fee to be paid due to random fluctuations within the preset period; ρ s represents the probability of power loss due to the output fluctuation of the distributed power equipment within the preset period; ΔQ s represents Random fluctuation amount when the output of distributed power equipment fluctuates. It should be noted that the preset years in the first objective function and the second objective function are the same. Establish an incremental distribution network node optimization objective function, that is, build a second objective function, expect to reduce transmission line losses, early construction, and power purchases from superiors, increase electricity sales revenue, and maximize the benefits of incremental distribution network nodes as much as possible. ; and the uncertainty of the access nodes of distributed power equipment will affect the safety of the incremental distribution network system operation, resulting in a reduction in the economy of the optimal planning scheme of incremental distribution network nodes, so it is also expected to reduce the distribution of distributed power. Losses caused by fluctuations in the output of power equipment. In this embodiment, the loss caused by the output fluctuation of the distributed power supply equipment can be represented by the cost corresponding to the loss. The loss caused by the output fluctuation of the distributed power equipment is the loss caused by the unstable power supply of the distributed power equipment.
各线路潮流约束的表达式为公式(15)-公式(19):The expressions of the power flow constraints of each line are formula (15)-formula (19):
公式(15) formula (15)
公式(16) formula (16)
公式(17) formula (17)
公式(18) formula (18)
公式(19) formula (19)
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示是节点j在t时刻的有功电量,Qj.t表示是节点j在t时刻的无功电量,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量。Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the active energy of node j at time t Reactive power, P ij.t represents the active power transmitted by branch ij at time t, Q ij.t represents the reactive power transmitted by branch ij at time t, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents the reactance of the line between node i and node j, G ij represents the difference between node i and node j The conductance of the line between nodes, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and The active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t.
所述电压约束的表达式为公式(20):Ui.min≤Ui.t≤Ui.max。The expression of the voltage constraint is formula (20): U i.min ≤U it ≤U i.max .
其中,Ui.min表示节点i电压幅值的最小值,Ui.max表示节点i电压幅值的最大值。Among them, U i.min represents the minimum value of the voltage amplitude of node i, and U i.max represents the maximum value of the voltage amplitude of node i.
所述功率约束的表达式为公式(21):Pij.t≤Pij.max。The expression of the power constraint is formula (21): P ij.t ≤P ij.max .
其中,Pij.t表示在t时刻,在节点i和节点j间线路上流过的功率,Pij.max表示节点i和节点j间线路上流过的功率最大值。Among them, P ij.t represents the power flowing on the line between node i and node j at time t, and P ij.max represents the maximum value of power flowing on the line between node i and node j.
需要说明的是,本实施例考虑分布式电源设备接入节点中后,增量配电网系统中潮流变向、主动管理模式变动、不确定因素增多等问题,通过在增量配电网节点的第二目标函数中加入出力波动带来的损失,减少了分布式电源设备接入节点后,即进入增量配电网系统后产生不确定因素的不利影响,从而减少其对整体规划函数的干扰,提高了通过所得的整体规划模型的准确率。It should be noted that, in this embodiment, after the distributed power equipment is connected to the node, problems such as power flow direction change, active management mode change, and increase of uncertain factors in the incremental distribution network system are considered. The loss caused by output fluctuations is added to the second objective function of , which reduces the adverse effects of uncertain factors after the distributed power equipment is connected to the node, that is, after entering the incremental distribution network system, thereby reducing its impact on the overall planning function. interference, which improves the accuracy of the resulting overall planning model.
第二目标函数和第二函数约束表达式中各个数据就是第二目标数据,该第二目标数据可由增量配电网系统根据增量配电网节点的历史数据得到,并预先存储在预先设置好的数据库中,当需要的时候,从本地数据库中直接获取即可。Each data in the second objective function and the second function constraint expression is the second objective data, and the second objective data can be obtained by the incremental distribution network system according to the historical data of the incremental distribution network nodes, and stored in advance in the preset In a good database, when needed, it can be obtained directly from the local database.
具体地,在所述步骤S200中,第三目标函数的表达式为公式(22):Specifically, in the step S200, the expression of the third objective function is formula (22):
公式(22) formula (22)
其中,γeb表示电力节点向增量配电网节点购电的单位价格,Pt.out表示t时刻转移出的电力负荷量;Pt.in表示t时刻转移进的电力负荷量;Pt.is表示t时刻可中断的电力负荷量;Pt.loss表示t时刻的有功损耗,Ut表示一天内所有时刻集合。移转出的电力负荷量为电力节点相对于设定的基准电力负荷量,多用的电力负荷量;移转进的电力负荷量为电力节点相对于设定的基准电力负荷量,少用的电力负荷量;中断的电力负荷量是电力节点在电力中断时,没有用的电力负荷量。需要说明的是,建立电力节点目标函数,期望通过调整用电方案,减少电费支出,所考虑的需求侧响应方式为基于分时电价的价格型需求侧响应(demand side response,DSR),参与DSR的电力节点根据分时电价信息于电价高峰期间移出负荷,于电价低谷期间转进负荷。Among them, γ eb represents the unit price of electricity purchased by the power node from the incremental distribution network node, P t.out represents the power load transferred at time t; P t.in represents the power load transferred at time t; P t .is represents the power load that can be interrupted at time t; P t.loss represents the active power loss at time t, and U t represents the set of all moments in a day. The power load transferred out is the power load that is used more by the power node relative to the set reference power load; the power load transferred in is the power node that is used less relative to the set reference power load. Load; the power load of the interruption is the power load of the power node that is not useful when the power is interrupted. It should be noted that the objective function of the power node is established, and it is expected to reduce the electricity bill by adjusting the electricity consumption plan. The considered demand side response method is the price-based demand side response (DSR) based on the time-of-use electricity price. Participate in DSR According to the time-of-use electricity price information, the power nodes of the node remove the load during the peak period of the electricity price, and transfer the load during the trough period of the electricity price.
所述目标时刻为t时刻,所述目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束的表达式为公式(23):The target time is time t, and the expression of the power load amount constraint transferred from the target time and the power load amount constraint transferred from the target time is formula (23):
公式(23) formula (23)
其中,ρminPt.load表示t时刻负荷转移出功率系数的最小值,ρmaxPt.load表示t时刻负荷转移出功率系数的最大值;σminPt.load表示t时刻负荷转移进功率系数的最小值,σmaxPt.load表示t时刻负荷转移进功率系数的最大值;Pt.out表示t时刻转移出的电力负荷量;Pt.in表示t时刻转移进的电力负荷量。第三目标函数和第三函数约束表达式中各个数据就是第三目标数据,该第三目标数据可由增量配电网系统根据电力节点的历史数据得到,并预先存储在预先设置好的数据库中,当需要的时候,从本地数据库中直接获取即可。Among them, ρ min P t.load represents the minimum value of the load transfer out power coefficient at time t, ρ max P t.load represents the maximum value of the load transfer out power coefficient at time t; σ min P t.load represents the load transfer input at time t The minimum value of the power coefficient, σ max P t.load represents the maximum value of the power coefficient transferred in at time t; P t.out represents the amount of power load transferred at time t; P t.in represents the power load transferred in at time t quantity. Each data in the third objective function and the constraint expression of the third function is the third objective data. The third objective data can be obtained by the incremental distribution network system according to the historical data of the power nodes, and stored in the preset database in advance. , when needed, it can be obtained directly from the local database.
在本实施例中,第一目标函数、第二目标函数和第三目标函数中都有一个“max”,是为了保证最终通过第一目标函数、第二目标函数和第三目标函数所得的值都最大,即使分布式电源节点、增量配电网节点和电力节点得利益最大化。In this embodiment, each of the first objective function, the second objective function and the third objective function has a "max", in order to ensure the final value obtained by the first objective function, the second objective function and the third objective function are the largest, even if the benefits of distributed power nodes, incremental distribution network nodes and power nodes are maximized.
S300,将所述第一目标函数乘以所述第一目标函数对应的第一权重,得到第一权重函数,将所述第二目标函数乘以所述第二目标函数对应的第二权重,得到第二权重函数,将所述第三目标函数乘以所述第三目标函数对应的第三权重,得到第三权重函数。S300, multiply the first objective function by the first weight corresponding to the first objective function to obtain a first weight function, and multiply the second objective function by the second weight corresponding to the second objective function, A second weight function is obtained, and the third objective function is multiplied by a third weight corresponding to the third objective function to obtain a third weight function.
S400,将所述第一权重函数、第二权重函数和第三权重函数相加,得到整体规划函数。S400. Add the first weight function, the second weight function and the third weight function to obtain an overall planning function.
可以理解的是,分布式电源节点、增量配电网节点和电力节点这三个市场主体的利益诉求不同,其参与规划时目标偏向相异,都希望各自收益最大化。各主体个人利益最大化可能会导致整体利益远离最优的不利局面,因此,本实施例为每一目标函数都设置了一个权重,各个目标函数对应的权重大小根据分布式电源节点、增量配电网节点和电力节点在增量配电网系统中的体量比重和重要性确定,本实施例不限制各个权重的大小。为了便于描述,将第一权重记为r1,第二权重记为r2,第三权重记为r3,其中,r1+r2+r3=1,将整体规划函数记为W,则整体规划函数可表示为公式(24):It is understandable that the three market players, namely distributed power nodes, incremental distribution network nodes and power nodes, have different interest demands, and their goals in participating in planning are different, and they all hope to maximize their respective benefits. The maximization of the individual interests of each subject may lead to an unfavorable situation in which the overall interests are far from the optimum. Therefore, this embodiment sets a weight for each objective function. The weight proportion and importance of the power grid node and the power node in the incremental power distribution network system are determined, and this embodiment does not limit the size of each weight. For the convenience of description, the first weight is denoted as r 1 , the second weight is denoted as r 2 , and the third weight is denoted as r 3 , where r 1 +r 2 +r 3 =1, and the overall planning function is denoted as W, Then the overall planning function can be expressed as formula (24):
公式(24)W=γ1WDG+γ2WDN+γ3WUS。Formula (24) W=γ 1 W DG +γ 2 W DN +γ 3 W US .
需要说明的是,在第一目标函数、第二目标函数和第三目标函数中,都存在一个“max”,因此在公式(24)中的具体计算中,WDG、WDN和WUS也是最大值,只是在公式(24)中,为了便于描述,省略了第一目标函数、第二目标函数和第三目标函数前面的“max”。由公式(24)可知,r1WDG为第一权重函数,r2WDN为第二权重函数,r3WUS为第三权重函数。It should be noted that there is a "max" in the first objective function, the second objective function and the third objective function, so in the specific calculation in formula (24), W DG , W DN and W US are also The maximum value is only in the formula (24), for the convenience of description, the "max" in front of the first objective function, the second objective function and the third objective function is omitted. It can be known from formula (24) that r 1 W DG is the first weight function, r 2 W DN is the second weight function, and r 3 W US is the third weight function.
S500,对所述第二函数约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束,并基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量,并根据所述电源容容量配置节点对应的分布式电源设备。S500. Perform second-order cone relaxation processing on the second functional constraint to obtain a relaxed second functional constraint, and based on the first functional constraint, the third functional constraint, and the relaxed second functional constraint, pass The solver solves the overall planning function, obtains the power supply capacity of the node to be connected to the distributed power supply device in the node distribution network structure, and configures the distributed power supply device corresponding to the node according to the power supply capacity and capacity.
对第二函数约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束。具体地,是对第二函数约束中的各线路潮流约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束,然后在第一函数约束、第三函数约束和松弛处理后的第二函数约束的条件下,通过求解器求解整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量,在节点配网结构的各个节点中,每一节点位置可以接入至少一个分布式电源设备,但节点配网结构中并不是所有的节点都必须接入分布式电源设备。具体地,求解器为Cplex求解器。在本实施例中,为了提高求解整体规划函数的求解速度,并不是将节点配网结构中的所有节点都作为待接入分布式电源设备的节点,只是将其中的几个节点确定为待接入分布式电源设备的节点,而当待接入分布式电源设备节点的电源容量为0时,表明该待接入分布式电源设备节点不需要接入分布式电源设备,只有在该待接入分布式电源设备节点的电源容量不为0时,表才明该待接入分布式电源设备节点需要接入分布式电源设备。The second-order cone relaxation process is performed on the second function constraint to obtain the second function constraint after the relaxation process. Specifically, the second-order cone relaxation process is performed on each line flow constraint in the second function constraint to obtain the second function constraint after relaxation, and then the first function constraint, the third function constraint and the second relaxation process are Under the condition of function constraints, the overall planning function is solved by the solver, and the power supply capacity of the node to be connected to the distributed power equipment in the node distribution network structure is obtained. In each node of the node distribution network structure, the position of each node can be At least one distributed power supply device is connected, but not all nodes in the node distribution network structure must be connected to the distributed power supply device. Specifically, the solver is a Cplex solver. In this embodiment, in order to improve the solution speed of solving the overall planning function, not all nodes in the node distribution network structure are regarded as the nodes to be connected to the distributed power supply equipment, but only a few of them are determined as the nodes to be connected. When the power supply capacity of the node to be connected to the distributed power equipment is 0, it indicates that the node to be connected to the distributed power equipment does not need to be connected to the distributed power equipment. When the power supply capacity of the distributed power equipment node is not 0, it indicates that the node to be connected to the distributed power equipment needs to be connected to the distributed power equipment.
具体地,在所述步骤S500中,在二阶锥松弛处理过程中,定义辅助变量Ui.t′=(Ui.t)2和Iij.t′=(Iij.t)2,根据所述辅助变量得到以下目标等式,目标等式的表达式为公式(25):Specifically, in the step S500, during the second-order cone relaxation process, auxiliary variables U it '=(U it ) 2 and I ij.t '=(I ij.t ) 2 are defined, and according to the auxiliary variables The variable yields the following target equation, whose expression is Equation (25):
公式(25) formula (25)
其中,Iij.t表示节点配网结构中节点i和节点j之间的线路电流,Ui.t表示节点i在t时刻的电压幅值,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量;Among them, I ij.t represents the line current between node i and node j in the node distribution network structure, U it represents the voltage amplitude of node i at time t, and P ij.t represents the active power transmitted by branch ij at time t Electricity, Q ij.t represents the reactive energy transmitted by branch ij at time t;
对所述目标等式进行松弛处理,得到以下松弛不等式,松弛不等式的表达式为公式(26):The objective equation is relaxed, and the following relaxation inequality is obtained, and the expression of the relaxation inequality is formula (26):
公式(26) formula (26)
通过二阶锥重新构造松弛不等式,得到以下目标不等式,目标不等式的表达式为公式(27):The relaxation inequality is reconstructed by the second-order cone, and the following target inequality is obtained. The expression of the target inequality is formula (27):
公式(27) formula (27)
根据所述目标不等式对所述第二函数约束中的各线路潮流约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束;Perform second-order cone relaxation processing on each line power flow constraint in the second functional constraint according to the target inequality, to obtain the second functional constraint after relaxation processing;
松弛处理后的第二函数约束中的各线路潮流约束的表达式为公式(28)-公式(32):The expressions of each line power flow constraint in the second function constraint after relaxation processing are formula (28)-formula (32):
公式(28) formula (28)
公式(29) formula (29)
公式(30) formula(30)
公式(31) formula (31)
公式(32)(Uj.t)2=Ui.t′-2(RijPij.t+XijQij.t)+[(Rij)2+(Xij)2]·Iij.t′。Formula (32)(U jt ) 2 =U it ′-2(R ij P ij.t +X ij Q ij.t )+[(R ij ) 2 +(X ij ) 2 ]·I ij.t ′ .
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示节点j在t时刻的有功电量,Qj.t表示节点j在t时刻的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量。Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the reactive energy of node j at time t Electricity, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents node i and node j The reactance of the line between nodes, G ij represents the conductance of the line between node i and node j, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and The active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t.
松弛处理后的第二函数约束中,公式(28)是和公式(15)一样的,公式(29)是和公式(16)一样的,即在松弛处理过程中,并未对公式(15)和公式(16)进行处理。In the second function constraint after relaxation, formula (28) is the same as formula (15), and formula (29) is the same as formula (16), that is, during the relaxation process, formula (15) is not and Equation (16) for processing.
需要说明的是,在通过求解器求解整体规划函数时,是要求解得到整体规划函数的最大值,即maxW=r1WDG+r2WDN+r3WUS。通过求解器求解整体规划函数,得到节点配网结构中待接入分布式电源设备节点的电源容量的约束条件可表示为:It should be noted that when solving the overall planning function through the solver, it is required to obtain the maximum value of the overall planning function, that is, maxW=r 1 W DG +r 2 W DN +r 3 W US . By solving the overall planning function with the solver, the constraints on the power supply capacity of the nodes to be connected to the distributed power equipment in the node distribution network structure can be expressed as:
需要说明的是,当确定每个待接入分布式电源设备节点的电源容量后,获取各个分布式电源设备的电源容量,通过该待接入分布式电源设备节点的电源容量和各个分布式电源设备的电源容量即可确定该节点所接入分布式电源设备的数量,然后将对应分布式电源设备配置给该节点,即根据电源容量配置节点对应的分布式电源设备。在本实施例中,接入节点的分布式电源设备的电源容量之和等于或者大于该待接入分布式电源设备节点的电源容量。接入同一个节点的分布式电源设备的电源容量可以相同,也可以不相同。It should be noted that, after determining the power supply capacity of each distributed power supply device node to be connected, the power supply capacity of each distributed power supply device is obtained, and the power supply capacity of each distributed power supply device node to be connected and each distributed power supply The power supply capacity of the device can determine the number of distributed power supply devices connected to the node, and then configure the corresponding distributed power supply device to the node, that is, configure the distributed power supply device corresponding to the node according to the power supply capacity. In this embodiment, the sum of the power supply capacity of the distributed power supply equipment connected to the node is equal to or greater than the power supply capacity of the node to be connected to the distributed power supply equipment. The power capacity of the distributed power equipment connected to the same node can be the same or different.
为了便于理解,举例说明,如采用IEEE33节点配电网示例,此增量配电网系统所包含的支路数共33条,仿真年限为10年,即预设年限为10年,待接入分布式电源设备的节点分别为节点5、节点8、节点14、节点16、节点18和节点31。通过求解整体规划函数,即可确定分布式电源设备要接入到节点5、节点8、节点14、节点16、节点18和节点31中那些节点,在节点5、节点8、节点14、节点16、节点18和节点31中,并不一定是所有节点都会接入分布式电源设备,且每个节点接入分布式电源设备的数量可能相同,也可能不相同。In order to facilitate understanding, for example, if the IEEE33 node distribution network example is used, the number of branches included in this incremental distribution network system is 33, and the simulation period is 10 years, that is, the preset period is 10 years. The nodes of the distributed power supply equipment are node 5 ,
使用求解器计算得到仿真年限内的最高市场整体收益为106.615万元,即整体规划函数的最大值为106.615万元,整体规划函数等于最大值时分布式电源设备接入的节点位置及电源容量如下表所示:Using the solver to calculate the maximum overall market revenue within the simulation period is 1,066,150 yuan, that is, the maximum value of the overall planning function is 1,066,150 yuan. When the overall planning function is equal to the maximum value, the node locations and power supply capacity of distributed power equipment are as follows The table shows:
分布式电源节点、增量配电网节点和电力节点的值(各主体收益)与整体规划函数的最大值(整体效益)如下表所示:The values of distributed power nodes, incremental distribution network nodes and power nodes (revenue of each subject) and the maximum value of the overall planning function (overall benefit) are shown in the following table:
进一步地,为了提高整体规划函数最大值计算的准确率,以及电力节点收益的准确率,在计算整体规划函数最大值的过程中,要考虑不同时间段的单位用电价格,如在用电高峰期,每天8:00-11:00&18:00-23:00期间,购电价格为800(元/MW·h);在用电低谷期,每天的6:00-8:00&11:00-18:00期间,购电价格为400(元/MW·h);在用电平缓期,每天的23:00-6:00期间,购电价格为600(元/MW·h)。Further, in order to improve the accuracy of the calculation of the maximum value of the overall planning function and the accuracy of the power node revenue, in the process of calculating the maximum value of the overall planning function, the unit electricity price in different time periods should be considered, such as during peak electricity consumption. During the period of 8:00-11:00&18:00-23:00 every day, the electricity purchase price is 800 (yuan/MW·h); in the low electricity consumption period, every day 6:00-8:00&11:00-18 During the period from 23:00 to 6:00, the electricity purchase price is 400 (yuan/MW·h); during the period of 23:00-6:00 every day, the electricity purchase price is 600 (yuan/MW·h).
本实施例实现了各主体的相互协调,提高各自决策的可行性,使整体规划函数的值达到最优,使增量配电网系统中接入了分布式电源设备的各个节点的电源容量配置最优,提高了增量配电网系统中各个节点的电源容量的合理性,即提高了节点配网结构中节点对应分布式电源设备配置的合理性,保证了增量配电网系统的安全稳定运行。This embodiment realizes the mutual coordination of each subject, improves the feasibility of their respective decision-making, optimizes the value of the overall planning function, and enables the power supply capacity configuration of each node connected to the distributed power supply equipment in the incremental distribution network system Optimal, which improves the rationality of the power supply capacity of each node in the incremental distribution network system, that is, improves the rationality of the configuration of the distributed power equipment corresponding to the nodes in the node distribution network structure, and ensures the safety of the incremental distribution network system. Stable operation.
进一步地,提出本发明增量分布式电源设备的配置方法另一实施例。Further, another embodiment of the configuration method of the incremental distributed power equipment of the present invention is proposed.
所述增量分布式电源设备的配置方法另一实施例与上述增量分布式电源设备的配置方法的实施例的区别在于,在步骤S500中,所述基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量的步骤包括:The difference between another embodiment of the method for configuring an incremental distributed power supply device and the above embodiment of the method for configuring an incremental distributed power supply device is that in step S500, the third The step of obtaining the power supply capacity of the node to be connected to the distributed power supply equipment in the node distribution network structure includes:
步骤a,基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过Cplex求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备节点对应分布式电源设备的设备数量;Step a, based on the first function constraint, the third function constraint and the relaxed second function constraint, solve the overall planning function through the Cplex solver, and obtain the distributed power supply to be connected in the node distribution network structure The device number of the device node corresponding to the distributed power supply device;
步骤b,获取一台分布式电源设备的电源容量,将所述分布式电源设备的电源容量乘以所述设备数量,得到待接入分布式电源设备节点的电源容量,其中,每台分布式电源设备的电源容量相同。Step b: Obtain the power supply capacity of a distributed power supply device, multiply the power supply capacity of the distributed power supply device by the number of devices, and obtain the power supply capacity of the node to be connected to the distributed power supply device, wherein each distributed power supply device is The power supply capacity of the power supply unit is the same.
当得到松弛处理后的第二函数约束后,基于第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过Cplex求解器求解整体规划函数,得到所述节点配网结构中待接入分布式电源设备节点对应分布式电源设备的设备数量,然后获取一台分布式电源设备的电源容量,将分布式电源设备的电源容量乘以各个待接入分布式电源设备节点对应设备数量,得到待接入分布式电源设备节点的电源容量,其中,每台分布式电源设备的电源容量相同。When the second function constraint after relaxation processing is obtained, based on the first function constraint, the third function constraint and the second function constraint after relaxation processing, the overall planning function is solved by the Cplex solver, and the node distribution network structure to be The number of devices connected to the distributed power supply equipment node corresponds to the number of distributed power supply equipment, and then obtains the power supply capacity of a distributed power supply device, and multiplies the power supply capacity of the distributed power supply equipment by the number of devices corresponding to each distributed power supply equipment node to be connected. , to obtain the power supply capacity of the node to be connected to the distributed power supply equipment, wherein the power supply capacity of each distributed power supply equipment is the same.
进一步地,若各台分布式电源设备的电源容量不相同时,也可以获取各台分布式电源设备的电源容量,来根据待接入分布式电源设备节点的电源容量确定需要将那台分布式电源设备接入到那个待接入分布式电源设备的节点中。Further, if the power supply capacity of each distributed power supply device is different, the power supply capacity of each distributed power supply device can also be obtained to determine which distributed power supply device needs to be connected according to the power supply capacity of the node to be connected to the distributed power supply device. The power supply device is connected to the node to be connected to the distributed power supply device.
本实施例使每台分布式电源设备的电源容量相同,提高了得到节点配网结构中待接入分布式电源设备节点的电源容量的速度。In this embodiment, the power supply capacity of each distributed power supply device is the same, and the speed of obtaining the power supply capacity of the node to be connected to the distributed power supply device in the node distribution network structure is improved.
本发明还提供一种增量分布式电源设备的配置装置,参照图3,所述增量分布式电源设备的配置装置包括:The present invention also provides a configuration device for incremental distributed power equipment. Referring to FIG. 3 , the configuration device for incremental distributed power equipment includes:
构建模块10,用于在增量配电网系统中构建分布式电源增量配电网模型,其中,所述增量配电网模型至少包括节点配网结构;A
获取模块20,用于从所述增量配电网系统的预设数据库中获取所述增量配电网模型中与分布式电源节点相关的第一目标数据、与增量配电网节点相关的第二目标数据和与电力节点相关的第三目标数据;The obtaining
所述构建模块10还用于根据所述第一目标数据构建所述分布式电源节点对应的第一目标函数和约束所述第一目标函数的第一函数约束,根据所述第二目标数据构建所述增量配电网节点对应的第二目标函数和约束所述第二目标函数的第二函数约束,并根据所述第三目标数据构建所述电力节点对应的第三目标函数和约束所述第三目标函数的第三函数约束,其中,所述第一函数约束包括节点配网结构中预设节点接入分布式电源设备数量的约束、分布式电源设备渗透率上限约束和分布式电源设备总电源容量约束,所述第二函数约束包括所述增量配电网模型中各线路潮流约束、电压约束和功率约束,所述第三函数约束包括目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束;The
计算模块30,用于将所述第一目标函数乘以所述第一目标函数对应的第一权重,得到第一权重函数,将所述第二目标函数乘以所述第二目标函数对应的第二权重,得到第二权重函数,将所述第三目标函数乘以所述第三目标函数对应的第三权重,得到第三权重函数;将所述第一权重函数、第二权重函数和第三权重函数相加,得到整体规划函数;The
松弛处理模块40,用于对所述第二函数约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束;A
求解模块50,用于基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备的节点的电源容量;A solving
配置模块60,用于根据所述电源容量配置节点对应的分布式电源设备。The
进一步地,在二阶锥松弛处理过程中,定义辅助变量Ui.t′=(Ui.t)2和Iij.t′=(Iij.t)2,根据所述辅助变量得到以下目标等式:Further, in the second-order cone relaxation process, auxiliary variables U it ′=(U it ) 2 and I ij.t ′=(I ij.t ) 2 are defined, and the following objective equation is obtained according to the auxiliary variables:
Iij.t表示节点配网结构中节点i和节点j之间的线路电流,Ui.t表示节点i在t时刻的电压幅值,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量;I ij.t represents the line current between node i and node j in the node distribution network structure, U it represents the voltage amplitude of node i at time t, P ij.t represents the active power transmitted by branch ij at time t, Q ij.t represents the reactive power transmitted by branch ij at time t;
对所述目标等式进行松弛处理,得到以下松弛不等式:The objective equation is relaxed to obtain the following relaxed inequality:
通过二阶锥重新构造松弛不等式,得到以下目标不等式:Reconstructing the relaxation inequalities with second-order cones yields the following objective inequalities:
根据所述目标不等式对所述第二函数约束中的各线路潮流约束进行二阶锥松弛处理,得到松弛处理后的第二函数约束;Perform second-order cone relaxation processing on each line power flow constraint in the second functional constraint according to the target inequality, to obtain the second functional constraint after relaxation processing;
松弛处理后的第二函数约束中的各线路潮流约束的表达式为:The expression of each line power flow constraint in the second function constraint after relaxation is:
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示节点j在t时刻的有功电量,Qj.t表示节点j在t时刻的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量。Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the reactive energy of node j at time t Electricity, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents node i and node j The reactance of the line between nodes, G ij represents the conductance of the line between node i and node j, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and The active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t.
进一步地,预设节点接入分布式电源设备数量的约束表示为:Ni.min≤Ni≤Ni.max;Further, the preset constraints on the number of nodes accessing distributed power equipment are expressed as: N i.min ≤N i ≤N i.max ;
其中,Ni.min表示在节点i接入分布式电源设备数量的最小值,Ni.max表示在预设节点i接入分布式电源设备数量的最大值,Ni表示第i个节点接入分布式电源设备的数量;Among them, N i.min represents the minimum value of the number of distributed power supply devices connected to node i, N i.max represents the maximum number of distributed power supply devices connected to the preset node i, and N i represents the ith node connected to the number of distributed power equipment;
分布式电源设备渗透率上限约束表示为: The upper limit constraint on the penetration rate of distributed power equipment is expressed as:
其中,β表示分布式电源设备接入节点后的渗透率,Pload表示分布式电源设备在预设节点的电力负荷量;ni表示一个变量,取值为0或者1,ni=0表示节点配网结构中第i个节点未接入分布式电源设备,ni=1表示第i个节点接入分布式电源设备;Psg.DG表示各台分布式电源设备的额定有功功率;Among them, β represents the penetration rate after the distributed power equipment is connected to the node, P load represents the power load of the distributed power equipment at the preset node; n i represents a variable, which takes a value of 0 or 1, and n i =0 means In the node distribution network structure, the ith node is not connected to the distributed power equipment, and n i =1 means that the ith node is connected to the distributed power equipment; P sg.DG represents the rated active power of each distributed power equipment;
分布式电源设备总电源容量约束表示为:Pmin.DG≤Pt.DG≤Pmax.DG;The total power capacity constraint of distributed power equipment is expressed as: P min.DG ≤P t.DG ≤P max.DG ;
其中,Pmin.DG表示分布式电源设备总电源容量的下限值,Pmax.DG表示分布式电源设备总电源容量的上限值;Pt.DG表示分布式电源设备在t时刻提供的有功功率。Among them, P min.DG represents the lower limit of the total power supply capacity of the distributed power equipment, P max.DG represents the upper limit of the total power supply capacity of the distributed power equipment; P t.DG represents the power supply provided by the distributed power equipment at time t Active power.
进一步地,各线路潮流约束的表达式为:Further, the expression of each line power flow constraint is:
其中,Pi.t表示节点i在t时刻的有功电量,Qi.t表示节点i在t时刻的无功电量,Pj.t表示是节点j在t时刻的有功电量,Qj.t表示是节点j在t时刻的无功电量,Pij.t表示支路ij在t时刻传输的有功电量,Qij.t表示支路ij在t时刻传输的无功电量,Ui.t表示节点i在t时刻的电压幅值,Uj.t表示节点j在t时刻的电压幅值,Rij表示节点i和节点j之间线路的电阻,Xij表示节点i和节点j之间线路的电抗,Gij表示节点i和节点j之间线路的电导,Bij表示节点i和节点j之间线路的电纳;表示节点i与节点j之间的电压相角差;u(j)表示与节点j相连的上游节点集合,d(j)表示与节点j相连的下游节点集合,Pjl.t表示节点j与节点l间在t时刻的有功电量,Qjl.t表示节点j与节点l间在t时刻的无功电量;Among them, P it represents the active energy of node i at time t, Q it represents the reactive energy of node i at time t, P jt represents the active energy of node j at time t, Q jt represents the active energy of node j at time t Reactive power, P ij.t represents the active power transmitted by branch ij at time t, Q ij.t represents the reactive power transmitted by branch ij at time t, U it represents the voltage amplitude of node i at time t, U jt represents the voltage amplitude of node j at time t, R ij represents the resistance of the line between node i and node j, X ij represents the reactance of the line between node i and node j, G ij represents the difference between node i and node j The conductance of the line between nodes, B ij represents the susceptance of the line between node i and node j; Represents the voltage phase angle difference between node i and node j; u(j) represents the upstream node set connected to node j, d(j) represents the downstream node set connected to node j, and P jl.t represents node j and Active power between node l at time t, Q jl.t represents the reactive power between node j and node l at time t;
所述电压约束为:Ui.min≤Ui.t≤Ui.max,其中,Ui.min表示节点i电压幅值的最小值,Ui.max表示节点i电压幅值的最大值;The voltage constraint is: U i.min ≤U it ≤U i.max , wherein U i.min represents the minimum value of the voltage amplitude of node i, and U i.max represents the maximum value of the voltage amplitude of node i;
所述功率约束为:Pij.t≤Pij.max,其中,Pij.t表示在t时刻,在节点i和节点j间线路上流过的功率,Pij.max表示节点i和节点j间线路上流过的功率最大值。The power constraint is: P ij.t ≤P ij.max , where P ij.t represents the power flowing on the line between node i and node j at time t, and P ij.max represents node i and node j The maximum value of power flowing on the inter-line.
进一步地,所述目标时刻为t时刻,所述目标时刻移转出的电力负荷量约束和目标时刻移转出的电力负荷量约束的表达式为:Further, the target time is time t, and the expressions of the power load constraint transferred from the target time and the power load constraint transferred from the target time are:
其中,ρminPt.load表示t时刻负荷转移出功率系数的最小值,ρmaxPt.load表示t时刻负荷转移出功率系数的最大值;σminPt.load表示t时刻负荷转移进功率系数的最小值,σmaxPt.load表示t时刻负荷转移进功率系数的最大值;Pt.out表示t时刻转移出的电力负荷量;Pt.in表示t时刻转移进的电力负荷量。Among them, ρ min P t.load represents the minimum value of the load transfer out power coefficient at time t, ρ max P t.load represents the maximum value of the load transfer out power coefficient at time t; σ min P t.load represents the load transfer input at time t The minimum value of the power coefficient, σ max P t.load represents the maximum value of the power coefficient transferred in at time t; P t.out represents the amount of power load transferred at time t; P t.in represents the power load transferred in at time t quantity.
进一步地,所述求解模块50包括:Further, the solving
求解单元,用于基于所述第一函数约束、第三函数约束和松弛处理后的第二函数约束,通过Cplex求解器求解所述整体规划函数,得到所述节点配网结构中待接入分布式电源设备节点对应分布式电源设备的设备数量;A solving unit, configured to solve the overall planning function through the Cplex solver based on the first function constraint, the third function constraint and the second function constraint after relaxation processing, to obtain the distribution to be accessed in the node distribution network structure The number of distributed power equipment nodes corresponding to distributed power equipment;
获取单元,用于获取一台分布式电源设备的电源容量;The acquisition unit is used to acquire the power capacity of a distributed power supply device;
计算单元,用于将所述分布式电源设备的电源容量乘以所述设备数量,得到待接入分布式电源设备节点的电源容量,其中,每台分布式电源设备的电源容量相同。The computing unit is configured to multiply the power supply capacity of the distributed power supply device by the number of devices to obtain the power supply capacity of the node to be connected to the distributed power supply device, wherein the power supply capacity of each distributed power supply device is the same.
本发明增量分布式电源设备的配置装置的具体实施方式与上述增量分布式电源设备的配置方法各实施例基本相同,在此不再重复赘述。The specific implementations of the configuration apparatus for incremental distributed power equipment according to the present invention are basically the same as the above-mentioned embodiments of the configuration method for incremental distributed power equipment, and will not be repeated here.
本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有检测程序,所述检测程序被处理器执行时实现如上所述增量分布式电源设备的配置方法的步骤。The present invention also provides a computer-readable storage medium, where a detection program is stored on the computer-readable storage medium, and when the detection program is executed by a processor, the steps of the above-mentioned method for configuring an incremental distributed power supply device are implemented.
本发明计算机可读存储介质的具体实施方式与上述增量分布式电源设备的配置方法各实施例基本相同,在此不再重复赘述。The specific implementation manner of the computer-readable storage medium of the present invention is basically the same as the above-mentioned embodiments of the configuration method of the incremental distributed power supply device, and will not be repeated here.
本领域的技术人员能够理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。Those skilled in the art can understand that, under the premise of no conflict, the above preferred solutions can be freely combined and superimposed.
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本发明的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本发明的权利要求范围内。It should be understood that the above-mentioned embodiments are only exemplary rather than restrictive, and those skilled in the art can make various obvious or equivalent to the above-mentioned details without departing from the basic principles of the present invention. Modifications or substitutions will be included within the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010818367.XA CN111952968B (en) | 2020-08-14 | 2020-08-14 | Configuration method, device and readable storage medium for incremental distributed power supply equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010818367.XA CN111952968B (en) | 2020-08-14 | 2020-08-14 | Configuration method, device and readable storage medium for incremental distributed power supply equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111952968A CN111952968A (en) | 2020-11-17 |
CN111952968B true CN111952968B (en) | 2022-05-03 |
Family
ID=73343341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010818367.XA Active CN111952968B (en) | 2020-08-14 | 2020-08-14 | Configuration method, device and readable storage medium for incremental distributed power supply equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111952968B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051345A (en) * | 2021-03-09 | 2022-09-13 | 国电南瑞南京控制系统有限公司 | Power grid operation risk point screening method considering multi-section pre-scheduling |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401709B2 (en) * | 2009-11-03 | 2013-03-19 | Spirae, Inc. | Dynamic distributed power grid control system |
CN103094900B (en) * | 2012-12-20 | 2014-10-08 | 河海大学 | Distributed generation power distribution network three-phase load flow calculation method taking phase sequence mixing method into consideration |
-
2020
- 2020-08-14 CN CN202010818367.XA patent/CN111952968B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111952968A (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107301470B (en) | A two-layer optimization method for distribution network expansion planning and photovoltaic storage site selection and capacity determination | |
Zakeri et al. | Centralized vs. distributed energy storage–Benefits for residential users | |
CN110378729B (en) | A Comprehensive Demand Response Method Based on Dynamic Energy Pricing Strategy | |
CN113572163B (en) | Optimized scheduling method for distributed power supply active power distribution network based on improved affine algorithm | |
CN111612248B (en) | A distribution network side source-load coordination method and system | |
CN112149914A (en) | Method for optimizing and configuring power market resources under multi-constraint condition | |
CN111626594A (en) | Power distribution network expansion planning method with multiple demand side resource collaboration | |
CN108599235A (en) | A kind of constant volume method that distributed photovoltaic networks | |
Suthar et al. | Power loss reduction in peer-to-peer energy trading-enabled distribution network | |
CN116187509A (en) | Method and device for measuring and calculating production cost of power system | |
CN111952968B (en) | Configuration method, device and readable storage medium for incremental distributed power supply equipment | |
CN116307437A (en) | Virtual power plant optimal scheduling method and system based on carbon emission right exchange mechanism | |
CN115528670A (en) | Modeling method for investment decision-making of distributed power generation and supporting power grid based on multi-agent game | |
CN112215612B (en) | Photovoltaic absorption optimization method and system based on block chain | |
CN112270432B (en) | Energy management method of comprehensive energy system considering multi-subject benefit balance | |
Fan et al. | Optimization of power supply capacity of distribution network considering the participation of power sales companies in spot power trading | |
CN117455138A (en) | Method and system for assisting peak shaving by producers and consumers considering elastic resource optimization | |
Sha et al. | A strategy for prosumers’ energy storage utilization | |
Pranadi et al. | Cost benefit analysis for peer-to-peer mechanism in residential sector of a single buyer electricity market | |
CN117114242A (en) | Novel power distribution system-oriented source-network-load multi-main body coordination interactive planning method | |
CN117273849A (en) | Network source cooperation multi-target-based power transaction method, system, equipment and medium | |
CN116432807A (en) | Comprehensive demand response system and method considering coupling effect and uncertainty | |
Wu et al. | Multi-alliance market subject auxiliary peak shaving strategy for new energy consumption | |
CN112288216A (en) | Cooperative game-based capacity planning method and system for electric gas conversion device | |
CN110766207A (en) | Power distribution network power supply capacity acquisition method considering participation of power selling companies in transactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |