CN111949110A - Processing method and device for minimizing energy consumption in mobile edge calculation - Google Patents
Processing method and device for minimizing energy consumption in mobile edge calculation Download PDFInfo
- Publication number
- CN111949110A CN111949110A CN202010686852.6A CN202010686852A CN111949110A CN 111949110 A CN111949110 A CN 111949110A CN 202010686852 A CN202010686852 A CN 202010686852A CN 111949110 A CN111949110 A CN 111949110A
- Authority
- CN
- China
- Prior art keywords
- compression ratio
- energy consumption
- original data
- target
- client
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005265 energy consumption Methods 0.000 title claims abstract description 186
- 238000003672 processing method Methods 0.000 title claims abstract description 14
- 238000007906 compression Methods 0.000 claims abstract description 436
- 230000006835 compression Effects 0.000 claims abstract description 436
- 238000012545 processing Methods 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims description 44
- 238000004891 communication Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 description 22
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013144 data compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/329—Power saving characterised by the action undertaken by task scheduling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明实施例提供了一种移动边缘计算中能耗最小化的处理方法及装置,可以获取总能耗与压缩比的第一函数关系,总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送目标数据的能耗的和值;确定第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;基于第一压缩比和第一压缩比区间,确定目标压缩比,第一压缩比区间包含对原始数据进行压缩支持的所有压缩比;按照目标压缩比对原始数据进行压缩,得到目标数据。基于上述处理,由于第一压缩比为最小的总能耗对应的压缩比,基于第一压缩比和第一压缩比区间,能够确定出总能耗较小的目标压缩比,进而,基于目标压缩比对原始数据进行压缩,可以降低客户端的总能耗。
Embodiments of the present invention provide a processing method and device for minimizing energy consumption in mobile edge computing, which can obtain a first functional relationship between total energy consumption and compression ratio, where total energy consumption represents the ability to compress original data to obtain target data energy consumption, and the energy consumption of sending the target data to the edge server; determine the compression ratio corresponding to the minimum total energy consumption in the first functional relationship as the first compression ratio; based on the first compression ratio and the first compression ratio interval, A target compression ratio is determined, and the first compression ratio interval includes all compression ratios supported by the compression of the original data; the original data is compressed according to the target compression ratio to obtain the target data. Based on the above processing, since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, based on the first compression ratio and the first compression ratio interval, a target compression ratio with a smaller total energy consumption can be determined, and further, based on the target compression ratio Compressing the original data can reduce the total energy consumption of the client.
Description
技术领域technical field
本发明涉及计算机技术领域,特别是涉及一种移动边缘计算中能耗最小化的处理方法及装置。The present invention relates to the field of computer technology, and in particular, to a processing method and device for minimizing energy consumption in mobile edge computing.
背景技术Background technique
随着计算机技术的发展,客户端向用户提供的功能日益丰富。例如,客户端可以向用户推荐电影。客户端可以获取用户已观看的电影的相关数据(可以称为原始数据),并对原始数据进行处理,确定用户感兴趣的电影,进而,客户端可以向用户推荐确定出的电影。With the development of computer technology, the functions provided by the client to users are increasingly rich. For example, the client can recommend movies to the user. The client can obtain relevant data (which may be referred to as raw data) of the movies that the user has watched, and process the raw data to determine the movie that the user is interested in, and then the client can recommend the determined movie to the user.
然而,由于硬件配置的限制,当原始数据较多时,客户端可能无法完成对原始数据的处理,因此,客户端可以基于预设压缩比对原始数据进行压缩,得到目标数据,并向边缘服务器发送目标数据。相应的,边缘服务器可以对目标数据进行解压,得到原始数据,并对原始数据进行处理,然后,边缘服务器可以向客户端发送处理结果。客户端对原始数据进行压缩和向边缘服务器发送目标数据,均需要消耗客户端的能量(例如、电能)。However, due to the limitation of hardware configuration, when there is a lot of raw data, the client may not be able to complete the processing of the raw data. Therefore, the client can compress the raw data based on the preset compression ratio to obtain the target data and send it to the edge server. target data. Correspondingly, the edge server can decompress the target data, obtain the original data, and process the original data, and then the edge server can send the processing result to the client. The client compresses the original data and sends the target data to the edge server, which consumes the client's energy (for example, electricity).
现有技术中,客户端可以从预设的多个压缩比中选择一个压缩比(可以称为目标压缩比),并按照目标压缩比对原始数据进行压缩,得到目标数据,并向边缘服务器发送目标数据。然而,采用不同的压缩比对原始数据进行压缩所消耗的能量不同,且向边缘服务器发送基于不同压缩比得到的目标数据所消耗的能量也不同,现有技术中,通常是从预设多个压缩比中随机选择一个压缩比,并根据该压缩比对原始数据进行压缩,可能会导致对原始数据进行压缩的能耗较高。In the prior art, the client can select a compression ratio (which may be referred to as a target compression ratio) from a plurality of preset compression ratios, and compress the original data according to the target compression ratio to obtain the target data and send it to the edge server. target data. However, the energy consumed to compress the original data with different compression ratios is different, and the energy consumed to send the target data obtained based on the different compression ratios to the edge server is also different. Randomly selecting a compression ratio among the compression ratios and compressing the original data according to the compression ratio may result in high energy consumption for compressing the original data.
发明内容SUMMARY OF THE INVENTION
本发明实施例的目的在于提供一种移动边缘计算中能耗最小化的处理方法及装置,可以降低客户端的总能耗。具体技术方案如下:The purpose of the embodiments of the present invention is to provide a processing method and apparatus for minimizing energy consumption in mobile edge computing, which can reduce the total energy consumption of the client. The specific technical solutions are as follows:
第一方面,为了达到上述目的,本发明实施例提供了一种移动边缘计算中能耗最小化的处理方法,所述方法包括:In the first aspect, in order to achieve the above object, an embodiment of the present invention provides a processing method for minimizing energy consumption in mobile edge computing, and the method includes:
获取总能耗与压缩比的第一函数关系,其中,所述总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送所述目标数据的能耗的和值,所述压缩比表示所述目标数据的大小与所述原始数据的大小的比值;Obtain the first functional relationship between the total energy consumption and the compression ratio, wherein the total energy consumption represents the energy consumption of compressing the original data to obtain the target data, and the sum of the energy consumption of sending the target data to the edge server, so The compression ratio represents the ratio of the size of the target data to the size of the original data;
确定所述第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;determining the compression ratio corresponding to the smallest total energy consumption in the first functional relationship as the first compression ratio;
基于所述第一压缩比和第一压缩比区间,确定目标压缩比,其中,所述第一压缩比区间包含对所述原始数据进行压缩支持的所有压缩比;determining a target compression ratio based on the first compression ratio and a first compression ratio interval, wherein the first compression ratio interval includes all compression ratios supported by compression of the original data;
按照所述目标压缩比对所述原始数据进行压缩,得到所述目标数据。The original data is compressed according to the target compression ratio to obtain the target data.
可选的,在所述确定所述第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比之后,所述方法还包括:Optionally, after determining the compression ratio corresponding to the minimum total energy consumption in the first functional relationship as the first compression ratio, the method further includes:
获取总处理时长与压缩比的第二函数关系,其中,所述总处理时长表示从对所述原始数据进行压缩,至所述边缘服务器对所述原始数据处理完成的总时长;obtaining a second functional relationship between the total processing duration and the compression ratio, wherein the total processing duration represents the total duration from compressing the original data to the completion of processing the original data by the edge server;
基于所述第二函数关系,确定对应的总处理时长不大于预设时长阈值的各压缩比,得到第二压缩比区间;Based on the second functional relationship, each compression ratio whose corresponding total processing duration is not greater than a preset duration threshold is determined to obtain a second compression ratio interval;
所述基于所述第一压缩比和第一压缩比区间,确定目标压缩比,包括:The determining a target compression ratio based on the first compression ratio and the first compression ratio interval includes:
确定所述第一压缩比区间与所述第二压缩比区间的交集,作为第三压缩比区间;determining the intersection of the first compression ratio interval and the second compression ratio interval as a third compression ratio interval;
判断所述第一压缩比是否属于所述第三压缩比区间;determining whether the first compression ratio belongs to the third compression ratio interval;
如果所述第一压缩比属于所述第三压缩比区间,则将所述第一压缩比确定为目标压缩比;If the first compression ratio belongs to the third compression ratio interval, determining the first compression ratio as a target compression ratio;
如果所述第一压缩比不属于所述第三压缩比区间,则从所述第三压缩比区间包含的最大压缩比和最小压缩比中,确定对应的能耗较小的压缩比,作为目标压缩比。If the first compression ratio does not belong to the third compression ratio interval, from the maximum compression ratio and the minimum compression ratio included in the third compression ratio interval, determine the corresponding compression ratio with lower energy consumption as the target compression ratio.
可选的,所述第二函数关系表示为:Optionally, the second functional relationship is expressed as:
t表示所述总处理时长,δ表示对所述原始数据进行压缩的压缩比,D表示所述原始数据的大小,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,P1表示所述客户端的发射功率,β1表示第一预设系数,F1表示所述客户端的中央处理器CPU的频率,F2表示所述边缘服务器的CPU的频率,β2表示第二预设系数。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, and B represents the target channel used by the client to send the target data to the edge server. Maximum bandwidth, σ 2 represents the noise power of the target channel, P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the central processing unit CPU of the client, F 2 represents The frequency of the CPU of the edge server, β 2 represents the second preset coefficient.
可选的,所述第一函数关系表示为:Optionally, the first functional relationship is expressed as:
E表示所述总能耗,δ表示对所述原始数据进行压缩的压缩比,P1表示所述客户端的发射功率,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,D表示所述原始数据的大小,P2表示对所述原始数据进行压缩时所述客户端的CPU运行一个周期的能耗,β1表示第一预设系数。E represents the total energy consumption, δ represents the compression ratio for compressing the original data, P 1 represents the transmit power of the client, and B represents the target channel used by the client to send the target data to the edge server The maximum bandwidth of , σ 2 represents the noise power of the target channel, D represents the size of the original data, P 2 represents the energy consumption of the client CPU running one cycle when the original data is compressed, β 1 represents the first preset coefficient.
可选的,所述基于所述第一压缩比和第一压缩比区间,确定目标压缩比,包括:Optionally, determining the target compression ratio based on the first compression ratio and the first compression ratio interval includes:
判断所述第一压缩比是否属于所述第一压缩比区间;determining whether the first compression ratio belongs to the first compression ratio interval;
如果所述第一压缩比属于所述第一压缩比区间,则将所述第一压缩比确定为目标压缩比。If the first compression ratio belongs to the first compression ratio interval, the first compression ratio is determined as a target compression ratio.
第二方面,为了达到上述目的,本发明实施例提供了一种移动边缘计算中能耗最小化的处理装置,所述装置包括:In a second aspect, in order to achieve the above object, an embodiment of the present invention provides a processing device for minimizing energy consumption in mobile edge computing, the device comprising:
获取模块,用于获取总能耗与压缩比的第一函数关系,其中,所述总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送所述目标数据的能耗的和值,所述压缩比表示所述目标数据的大小与所述原始数据的大小的比值;an obtaining module, configured to obtain the first functional relationship between the total energy consumption and the compression ratio, wherein the total energy consumption represents the energy consumption of compressing the original data to obtain the target data, and the energy consumption of sending the target data to the edge server and the compression ratio represents the ratio of the size of the target data to the size of the original data;
第一确定模块,用于确定所述第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;a first determining module, configured to determine a compression ratio corresponding to the smallest total energy consumption in the first functional relationship, as a first compression ratio;
第二确定模块,用于基于所述第一压缩比和第一压缩比区间,确定目标压缩比,其中,所述第一压缩比区间包含对所述原始数据进行压缩支持的所有压缩比;a second determining module, configured to determine a target compression ratio based on the first compression ratio and a first compression ratio interval, wherein the first compression ratio interval includes all compression ratios supported by compression of the original data;
压缩模块,用于按照所述目标压缩比对所述原始数据进行压缩,得到所述目标数据。A compression module, configured to compress the original data according to the target compression ratio to obtain the target data.
可选的,所述装置还包括:Optionally, the device further includes:
处理模块,用于获取总处理时长与压缩比的第二函数关系,其中,所述总处理时长表示从对所述原始数据进行压缩,至所述边缘服务器对所述原始数据处理完成的总时长;A processing module, configured to obtain a second functional relationship between the total processing duration and the compression ratio, where the total processing duration represents the total duration from compressing the original data to the completion of processing the original data by the edge server ;
基于所述第二函数关系,确定对应的总处理时长不大于预设时长阈值的各压缩比,得到第二压缩比区间;Based on the second functional relationship, each compression ratio whose corresponding total processing duration is not greater than a preset duration threshold is determined to obtain a second compression ratio interval;
所述第二确定模块,具体用于确定所述第一压缩比区间与所述第二压缩比区间的交集,作为第三压缩比区间;The second determination module is specifically configured to determine the intersection of the first compression ratio interval and the second compression ratio interval as a third compression ratio interval;
判断所述第一压缩比是否属于所述第三压缩比区间;determining whether the first compression ratio belongs to the third compression ratio interval;
如果所述第一压缩比属于所述第三压缩比区间,则将所述第一压缩比确定为目标压缩比;If the first compression ratio belongs to the third compression ratio interval, determining the first compression ratio as a target compression ratio;
如果所述第一压缩比不属于所述第三压缩比区间,则从所述第三压缩比区间包含的最大压缩比和最小压缩比中,确定对应的能耗较小的压缩比,作为目标压缩比。If the first compression ratio does not belong to the third compression ratio interval, from the maximum compression ratio and the minimum compression ratio included in the third compression ratio interval, determine the corresponding compression ratio with lower energy consumption as the target compression ratio.
可选的,所述第二函数关系表示为:Optionally, the second functional relationship is expressed as:
t表示所述总处理时长,δ表示对所述原始数据进行压缩的压缩比,D表示所述原始数据的大小,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,P1表示所述客户端的发射功率,β1表示第一预设系数,F1表示所述客户端的中央处理器CPU的频率,F2表示所述边缘服务器的CPU的频率,β2表示第二预设系数。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, and B represents the target channel used by the client to send the target data to the edge server. Maximum bandwidth, σ 2 represents the noise power of the target channel, P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the central processing unit CPU of the client, F 2 represents The frequency of the CPU of the edge server, β 2 represents the second preset coefficient.
可选的,所述第一函数关系表示为:Optionally, the first functional relationship is expressed as:
E表示所述总能耗,δ表示对所述原始数据进行压缩的压缩比,P1表示所述客户端的发射功率,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,D表示所述原始数据的大小,P2表示对所述原始数据进行压缩时所述客户端的CPU运行一个周期的能耗,β1表示第一预设系数。E represents the total energy consumption, δ represents the compression ratio for compressing the original data, P 1 represents the transmit power of the client, and B represents the target channel used by the client to send the target data to the edge server The maximum bandwidth of , σ 2 represents the noise power of the target channel, D represents the size of the original data, P 2 represents the energy consumption of the client CPU running one cycle when the original data is compressed, β 1 represents the first preset coefficient.
可选的,第二确定模块,具体用于判断所述第一压缩比是否属于所述第一压缩比区间;Optionally, a second determination module, specifically configured to determine whether the first compression ratio belongs to the first compression ratio interval;
如果所述第一压缩比属于所述第一压缩比区间,则将所述第一压缩比确定为目标压缩比。If the first compression ratio belongs to the first compression ratio interval, the first compression ratio is determined as a target compression ratio.
本发明实施例还提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;An embodiment of the present invention further provides an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus;
存储器,用于存放计算机程序;memory for storing computer programs;
处理器,用于执行存储器上所存放的程序时,实现上述任一所述的移动边缘计算中能耗最小化的处理方法的步骤。The processor is configured to implement the steps of any of the foregoing processing methods for minimizing energy consumption in mobile edge computing when executing the program stored in the memory.
本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一所述的移动边缘计算中能耗最小化的处理方法。Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the energy consumption in any of the above-mentioned mobile edge computing is minimized. processing method.
本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一所述的移动边缘计算中能耗最小化的处理方法。Embodiments of the present invention also provide a computer program product including instructions, which, when running on a computer, enables the computer to execute any of the above-described processing methods for minimizing energy consumption in mobile edge computing.
本发明实施例提供的一种移动边缘计算中能耗最小化的处理方法,可以获取总能耗与压缩比的第一函数关系,总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送目标数据的能耗的和值;确定第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;基于第一压缩比和第一压缩比区间,确定目标压缩比,第一压缩比区间包含对原始数据进行压缩支持的所有压缩比;按照目标压缩比对原始数据进行压缩,得到目标数据。The embodiment of the present invention provides a processing method for minimizing energy consumption in mobile edge computing, which can obtain a first functional relationship between total energy consumption and a compression ratio, where the total energy consumption represents the energy consumption of compressing original data to obtain target data, The sum value of the energy consumption of sending the target data to the edge server; the compression ratio corresponding to the minimum total energy consumption in the first functional relationship is determined as the first compression ratio; the target is determined based on the first compression ratio and the first compression ratio interval Compression ratio, the first compression ratio interval includes all compression ratios supported by the compression of the original data; the original data is compressed according to the target compression ratio to obtain the target data.
基于上述处理,由于第一压缩比为最小的总能耗对应的压缩比,基于第一压缩比和第一压缩比区间,能够确定出总能耗较小的目标压缩比,进而,基于目标压缩比对原始数据进行压缩,可以降低客户端的总能耗。Based on the above processing, since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, based on the first compression ratio and the first compression ratio interval, a target compression ratio with a smaller total energy consumption can be determined, and further, based on the target compression ratio Compressing the original data can reduce the total energy consumption of the client.
当然,实施本发明的任一产品或方法并不一定需要同时达到以上所述的所有优点。Of course, it is not necessary for any product or method of the present invention to achieve all of the advantages described above at the same time.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other embodiments can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的一种移动边缘计算中能耗最小化的处理方法的流程图;1 is a flowchart of a processing method for minimizing energy consumption in mobile edge computing provided by an embodiment of the present invention;
图2为本发明实施例提供的一种移动边缘计算中能耗最小化的处理方法的流程图;2 is a flowchart of a processing method for minimizing energy consumption in mobile edge computing provided by an embodiment of the present invention;
图3为本发明实施例提供的一种总能耗与压缩比的函数关系的曲线图:3 is a graph of a functional relationship between total energy consumption and compression ratio according to an embodiment of the present invention:
图4为本发明实施例提供的一种目标压缩比与原始数据的大小的函数关系的曲线图;4 is a graph showing a functional relationship between a target compression ratio and the size of original data according to an embodiment of the present invention;
图5为本发明实施例提供的一种总能耗与原始数据的大小的函数关系的曲线图;5 is a graph of a functional relationship between total energy consumption and the size of original data according to an embodiment of the present invention;
图6为本发明实施例提供的一种目标压缩比与原始数据的大小的函数关系的曲线图;6 is a graph of a functional relationship between a target compression ratio and the size of original data according to an embodiment of the present invention;
图7为本发明实施例提供的一种总能耗与原始数据的大小的函数关系的曲线图;7 is a graph of a functional relationship between total energy consumption and the size of original data according to an embodiment of the present invention;
图8为本发明实施例提供的一种移动边缘计算系统的结构图;FIG. 8 is a structural diagram of a mobile edge computing system according to an embodiment of the present invention;
图9为本发明实施例提供的一种移动边缘计算中能耗最小化的处理装置的结构图;9 is a structural diagram of a processing device for minimizing energy consumption in mobile edge computing according to an embodiment of the present invention;
图10为本发明实施例提供的一种电子设备的结构图。FIG. 10 is a structural diagram of an electronic device according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
参见图1,图1为本发明实施例提供的一种移动边缘计算中能耗最小化的处理方法的流程图,该方法可以应用于MEC(Mobile Edge Computing,移动边缘计算)系统中的客户端。Referring to FIG. 1, FIG. 1 is a flowchart of a processing method for minimizing energy consumption in mobile edge computing provided by an embodiment of the present invention, and the method can be applied to a client in an MEC (Mobile Edge Computing, mobile edge computing) system .
该方法可以包括以下步骤:The method may include the following steps:
S101:获取总能耗与压缩比的第一函数关系。S101: Obtain a first functional relationship between the total energy consumption and the compression ratio.
其中,总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送目标数据的能耗的和值,压缩比表示目标数据的大小与原始数据的大小的比值。Among them, the total energy consumption represents the energy consumption of compressing the original data to obtain the target data, and the energy consumption of sending the target data to the edge server, and the compression ratio represents the ratio of the size of the target data to the size of the original data.
S102:确定第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比。S102: Determine the compression ratio corresponding to the smallest total energy consumption in the first functional relationship as the first compression ratio.
S103:基于第一压缩比和第一压缩比区间,确定目标压缩比。S103: Determine a target compression ratio based on the first compression ratio and the first compression ratio interval.
其中,第一压缩比区间包含对原始数据进行压缩支持的所有压缩比,目标压缩比为第一压缩比区间对应的能耗中,最小的能耗对应的压缩比。The first compression ratio interval includes all compression ratios supported by compression of the original data, and the target compression ratio is the compression ratio corresponding to the smallest energy consumption among the energy consumptions corresponding to the first compression ratio interval.
S104:按照目标压缩比对原始数据进行压缩,得到目标数据。S104: Compress the original data according to the target compression ratio to obtain target data.
基于本发明实施例提供的移动边缘计算中能耗最小化的处理方法,由于第一压缩比为最小的总能耗对应的压缩比,基于第一压缩比和第一压缩比区间,能够确定出总能耗较小的目标压缩比,进而,基于目标压缩比对原始数据进行压缩,可以降低客户端的总能耗。Based on the processing method for minimizing energy consumption in mobile edge computing provided by the embodiment of the present invention, since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, it can be determined based on the first compression ratio and the first compression ratio interval. A target compression ratio with a smaller total energy consumption, and further, compressing the original data based on the target compression ratio can reduce the total energy consumption of the client.
在步骤S101中,客户端的总能耗可以包括对原始数据进行压缩的能耗、向边缘服务器发送目标数据的能耗,以及接收针对原始数据的处理结果的能耗。由于针对原始数据的处理结果的数据量较小,因此,客户端接收针对原始数据的处理结果的能耗也较小,可以忽略不计。In step S101, the total energy consumption of the client may include the energy consumption of compressing the original data, the energy consumption of sending the target data to the edge server, and the energy consumption of receiving the processing result for the original data. Since the data volume of the processing result for the original data is small, the energy consumption of the client to receive the processing result for the original data is also small and can be ignored.
例如,客户端向用户推荐电影时,客户端可以对用户已观看的电影的相关数据(即原始数据)进行压缩,得到目标数据。然后,客户端可以向边缘服务器发送目标数据。边缘服务器可以对目标数据解压,得到原始数据,并对原始数据进行处理,确定用户感兴趣的电影,进而,边缘服务器可以向客户端发送确定出的电影的标识(即针对原始数据的处理结果)。电影的标识可以为电影的名称(例如,电影A),客户端接收确定出的电影的标识的能耗较小。For example, when the client recommends a movie to the user, the client can compress the relevant data (ie, original data) of the movie that the user has watched to obtain the target data. The client can then send the target data to the edge server. The edge server can decompress the target data to obtain the original data, and process the original data to determine the movie that the user is interested in, and then the edge server can send the identified movie identifier to the client (that is, the processing result for the original data) . The identification of the movie may be the name of the movie (for example, Movie A), and the client consumes less energy to receive the determined identification of the movie.
在本发明的一个实施例中,可以确定对原始数据进行压缩的能耗E1,与对原始数据进行压缩的压缩比的函数关系,以及向边缘服务器发送目标数据的能耗E2,与对原始数据进行压缩的压缩比的函数关系。进而,计算E1和E2的和值,可以得到总能耗与压缩比的第一函数关系。In an embodiment of the present invention, the functional relationship between the energy consumption E 1 for compressing the original data and the compression ratio for compressing the original data, and the energy consumption E 2 for sending the target data to the edge server can be determined, which is related to the compression ratio of the original data. A function of the compression ratio with which the original data is compressed. Furthermore, by calculating the sum of E 1 and E 2 , the first functional relationship between the total energy consumption and the compression ratio can be obtained.
一种实现方式中,可以根据如下算式(1)和算式(2),确定对原始数据进行压缩时的能耗E1,与对原始数据进行压缩的压缩比的函数关系。In an implementation manner, the functional relationship between the energy consumption E 1 when compressing the original data and the compression ratio for compressing the original data can be determined according to the following formulas (1) and (2).
E1=P2C1 (2)E 1 =P 2 C 1 (2)
C1表示对原始数据进行压缩所需的客户端的CPU(Central Processing Unit,中央处理器)周期的数目,β1表示第一预设系数,D表示原始数据的大小,δ表示对原始数据进行压缩的压缩比。δ属于(0,1]。第一预设系数可以由技术人员根据经验设置,例如,第一预设系数可以为80,或者,第一预设系数也可以为75,但并不限于此。C 1 represents the number of CPU (Central Processing Unit, central processing unit) cycles of the client required to compress the original data, β 1 represents the first preset coefficient, D represents the size of the original data, and δ represents the compression of the original data compression ratio. δ belongs to (0, 1]. The first preset coefficient can be set by a technician according to experience, for example, the first preset coefficient can be 80, or the first preset coefficient can also be 75, but not limited thereto.
E1表示对原始数据进行压缩时的能耗,P2表示对原始数据进行压缩时客户端的CPU运行一个周期的能耗。E 1 represents the energy consumption when compressing the original data, and P 2 represents the energy consumption of the client's CPU running one cycle when compressing the original data.
然后,可以根据如下算式(3)、算式(4)和算式(5),确定客户端向边缘服务器发送目标数据的能耗E2,与对原始数据进行压缩的压缩比的函数关系。Then, according to the following equations (3), (4), and (5), the functional relationship between the energy consumption E 2 of the client sending the target data to the edge server and the compression ratio for compressing the original data can be determined.
E2=P1t1 (5)E 2 =P 1 t 1 (5)
R表示客户端通过目标信道向边缘服务器发送数据的传输速率,ω表示客户端向边缘服务器发送目标数据所使用的目标信道的带宽,且ω属于[0,B],其中B表示目标信道的最大带宽,P1表示客户端的发射功率,h表示目标信道的信道增益,σ2表示目标信道的噪声功率,t1表示目标数据从客户端传输至边缘服务器所需的时长,δ表示对原始数据进行压缩的压缩比,D表示原始数据的大小,E2表示客户端向边缘服务器发送目标数据的能耗。R represents the transmission rate of data sent by the client to the edge server through the target channel, ω represents the bandwidth of the target channel used by the client to send the target data to the edge server, and ω belongs to [0, B], where B represents the maximum value of the target channel Bandwidth, P 1 represents the transmit power of the client, h represents the channel gain of the target channel, σ 2 represents the noise power of the target channel, t 1 represents the time required for the target data to be transmitted from the client to the edge server, and δ represents the processing of the original data. The compression ratio of compression, D represents the size of the original data, and E 2 represents the energy consumption of the client to send the target data to the edge server.
进而,可以根据如下算式(6),计算对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送目标数据的能耗的和值(即总能耗)。Furthermore, the energy consumption of compressing the original data to obtain the target data and the energy consumption of sending the target data to the edge server can be calculated according to the following formula (6) (ie, the total energy consumption).
E=E1+E2 (6)E=E 1 +E 2 (6)
E表示总能耗,E1表示客户端对原始数据进行压缩得到目标数据的能耗,E2表示向边缘服务器发送目标数据的能耗。E represents the total energy consumption, E 1 represents the energy consumption of the client compressing the original data to obtain the target data, and E 2 represents the energy consumption of sending the target data to the edge server.
一种实现方式中,可以将上述算式(3)中的目标信道的信道增益h设置为“1”。进而,根据上述算式(1)、算式(2)、算式(3)、算式(4)、算式(5)和算式(6),得到总能耗可以表示为:In an implementation manner, the channel gain h of the target channel in the above formula (3) may be set to "1". Furthermore, according to the above formula (1), formula (2), formula (3), formula (4), formula (5) and formula (6), the total energy consumption can be expressed as:
E表示总能耗,δ表示对原始数据进行压缩的压缩比,P1表示客户端的发射功率,ω表示客户端向边缘服务器发送目标数据所使用的目标信道的带宽,σ2表示目标信道的噪声功率,D表示原始数据的大小,P2表示对原始数据进行压缩时客户端的CPU运行一个周期的能耗,β1表示第一预设系数。E represents the total energy consumption, δ represents the compression ratio for compressing the original data, P 1 represents the transmit power of the client, ω represents the bandwidth of the target channel used by the client to send the target data to the edge server, and σ 2 represents the noise of the target channel Power, D represents the size of the original data, P 2 represents the energy consumption of the client CPU running for one cycle when compressing the original data, and β 1 represents the first preset coefficient.
上述算式(7)中E关于ω的偏导函数可以表示为:The partial derivative function of E with respect to ω in the above formula (7) can be expressed as:
上述参数δ、D、P1均为正数,且即因此,可以确定算式(7)中E关于ω单调递减,即ω取值越大,对应的E越小。可见,当目标信道的带宽为最大带宽时,可以使得对应的能耗较小,因此,ω可以取目标信道的最大带宽B。The above parameters δ, D, P 1 are all positive numbers, and which is therefore, It can be determined that E in equation (7) decreases monotonically with respect to ω, that is, the larger the value of ω is, the smaller the corresponding E is. It can be seen that when the bandwidth of the target channel is the maximum bandwidth, the corresponding energy consumption can be made smaller. Therefore, ω can take the maximum bandwidth B of the target channel.
进而,可以得到总能耗与压缩比的第一函数关系为:Furthermore, the first functional relationship between the total energy consumption and the compression ratio can be obtained as:
E表示总能耗,δ表示对原始数据进行压缩的压缩比,P1表示客户端的发射功率,B表示客户端向边缘服务器发送目标数据所使用的目标信道的最大带宽,σ2表示目标信道的噪声功率,D表示原始数据的大小,P2表示对原始数据进行压缩时客户端的CPU运行一个周期的能耗,β1表示第一预设系数。E represents the total energy consumption, δ represents the compression ratio for compressing the original data, P 1 represents the transmit power of the client, B represents the maximum bandwidth of the target channel used by the client to send the target data to the edge server, σ 2 represents the Noise power, D represents the size of the original data, P 2 represents the energy consumption of the client's CPU running for one cycle when compressing the original data, and β 1 represents the first preset coefficient.
在步骤S102中,可以确定第一函数关系中最小的总能耗对应的压缩比(即第一压缩比)。In step S102, the compression ratio (ie, the first compression ratio) corresponding to the smallest total energy consumption in the first functional relationship may be determined.
一种实现方式中,上述算式(9)中E关于δ的偏导函数可以表示为:In an implementation manner, the partial derivative function of E with respect to δ in the above formula (9) can be expressed as:
当时,可以得到δ0即为总能耗与压缩比的第一函数关系中最小的总能耗对应的第一压缩比。when , you can get δ 0 is the first compression ratio corresponding to the smallest total energy consumption in the first functional relationship between the total energy consumption and the compression ratio.
在步骤S103中,在确定第一压缩比之后,可以基于第一压缩比和第一压缩比区间,确定目标压缩比。In step S103, after the first compression ratio is determined, a target compression ratio may be determined based on the first compression ratio and the first compression ratio interval.
在本发明的一个实施例中,步骤S103可以包括以下步骤:In an embodiment of the present invention, step S103 may include the following steps:
步骤一,判断第一压缩比是否属于第一压缩比区间,如果是,执行步骤二。Step 1, determine whether the first compression ratio belongs to the first compression ratio interval, and if so, execute Step 2.
步骤二,将第一压缩比确定为目标压缩比。Step 2, determining the first compression ratio as the target compression ratio.
第一压缩比区间包含对原始数据进行压缩支持的所有压缩比,因此,第一压缩比区间可以为(0,1]。当压缩比为1时,表示不对原始数据进行压缩,压缩比的取值越小,对原始数据进行压缩的压缩程度越大。The first compression ratio interval includes all compression ratios supported by the compression of the original data. Therefore, the first compression ratio interval can be (0, 1]. When the compression ratio is 1, it means that the original data will not be compressed, and the compression ratio takes The smaller the value, the more compression the original data is compressed.
进而,可以判断第一压缩比是否属于第一压缩比区间,如果第一压缩比属于第一压缩比区间,可以直接确定第一压缩比为目标压缩比。由于第一压缩比为最小的总能耗对应的压缩比,后续,基于第一压缩比对原始数据进行压缩,可以降低客户端的总能耗。Furthermore, it can be determined whether the first compression ratio belongs to the first compression ratio interval, and if the first compression ratio belongs to the first compression ratio interval, the first compression ratio can be directly determined as the target compression ratio. Since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, the subsequent compression of the original data based on the first compression ratio can reduce the total energy consumption of the client.
在步骤S104中,在确定目标压缩比之后,可以按照目标压缩比对原始数据进行压缩,可以得到目标数据。另外,还可以向边缘服务器发送得到的目标数据。In step S104, after the target compression ratio is determined, the original data may be compressed according to the target compression ratio, and the target data may be obtained. In addition, the obtained target data can also be sent to the edge server.
在本发明的一个实施例中,参见图2,在步骤S102之后,在该方法还可以包括以下步骤:In an embodiment of the present invention, referring to FIG. 2, after step S102, the method may further include the following steps:
S105:获取总处理时长与压缩比的第二函数关系。S105: Obtain a second functional relationship between the total processing time and the compression ratio.
其中,总处理时长表示从对原始数据进行压缩,至边缘服务器对原始数据处理完成的总时长。The total processing time represents the total time from compressing the original data to the completion of processing the original data by the edge server.
S106:基于第二函数关系,确定对应的总处理时长不大于预设时长阈值的各压缩比,得到第二压缩比区间。S106: Based on the second functional relationship, determine each compression ratio whose corresponding total processing duration is not greater than a preset duration threshold, and obtain a second compression ratio interval.
相应的,步骤S103,可以包括以下步骤:Correspondingly, step S103 may include the following steps:
S1031:确定第一压缩比区间与第二压缩比区间的交集,作为第三压缩比区间。S1031: Determine the intersection of the first compression ratio interval and the second compression ratio interval as the third compression ratio interval.
S1032:判断第一压缩比是否属于第三压缩比区间,如果是,执行步骤S1033,如果否,执行步骤S1034。S1032: Determine whether the first compression ratio belongs to the third compression ratio interval, and if so, execute step S1033, and if not, execute step S1034.
S1033:将第一压缩比确定为目标压缩比。S1033: Determine the first compression ratio as the target compression ratio.
S1034:从第三压缩比区间包含的最大压缩比和最小压缩比中,确定对应的能耗较小的压缩比,作为目标压缩比。S1034: From the maximum compression ratio and the minimum compression ratio included in the third compression ratio interval, determine a corresponding compression ratio with lower energy consumption as a target compression ratio.
在步骤S105中,总处理时长可以包括客户端对原始数据进行压缩所需的时长、目标数据从客户端传输至边缘服务器所需的时长、边缘服务器对目标数据进行解压所需的时长、边缘服务器处理原始数据所需的时长,以及针对原始数据的处理结果从边缘服务器传输至客户端所需的时长。由于针对原始数据的处理结果的数据量较小,因此,针对原始数据的处理结果从边缘服务器传输至客户端所需的时长较短,可以忽略不计。In step S105, the total processing time may include the time required for the client to compress the original data, the time required for the target data to be transmitted from the client to the edge server, the time required for the edge server to decompress the target data, and the time required for the edge server to decompress the target data. How long it takes to process the raw data, and how long it takes for the results of the processing on the raw data to travel from the edge server to the client. Since the data volume of the processing result for the original data is small, the time required for the processing result of the original data to be transmitted from the edge server to the client is short and can be ignored.
在本发明的一个实施例中,可以确定对原始数据进行压缩所需的时长t2,与对原始数据进行压缩的压缩比的函数关系。目标数据从客户端传输至边缘服务器所需的时长t1,与对原始数据进行压缩的压缩比的函数关系。边缘服务器对目标数据进行解压所需的时长t3,与对原始数据进行压缩的压缩比的函数关系。边缘服务器处理原始数据所需的时长t4,与对原始数据进行压缩的压缩比的函数关系。进而,计算t1、t2、t3和t4的和值,可以得到总处理时长与压缩比的第二函数关系。In an embodiment of the present invention, a functional relationship between the time duration t 2 required for compressing the original data and the compression ratio for compressing the original data can be determined. The time duration t 1 required for the target data to be transmitted from the client to the edge server is a function of the compression ratio for compressing the original data. The time duration t 3 required for the edge server to decompress the target data is a function of the compression ratio for compressing the original data. The time duration t 4 required by the edge server to process the original data is a function of the compression ratio for compressing the original data. Furthermore, by calculating the sum of t 1 , t 2 , t 3 and t 4 , the second functional relationship between the total processing time and the compression ratio can be obtained.
一种实现方式中,可以根据上述算式(3)和上述算式(4),确定目标数据从客户端传输至边缘服务器所需的时长t1,与对原始数据进行压缩的压缩比的函数关系。In an implementation manner, according to the above formula (3) and the above formula (4), the functional relationship between the time length t 1 required for the target data to be transmitted from the client to the edge server and the compression ratio for compressing the original data can be determined.
根据如下算式(11),确定对原始数据进行压缩所需的时长t2,与对原始数据进行压缩的压缩比的函数关系。According to the following formula (11), the functional relationship between the time duration t 2 required for compressing the original data and the compression ratio for compressing the original data is determined.
t2表示对原始数据进行压缩所需的时长,C1表示对原始数据进行压缩所需的客户端的CPU周期的数目,F1表示客户端的CPU的频率。t 2 represents the time required to compress the original data, C 1 represents the number of CPU cycles of the client required to compress the original data, and F 1 represents the frequency of the client's CPU.
根据如下算式(12),确定边缘服务器对目标数据进行解压所需的时长t3,与对原始数据进行压缩的压缩比的函数关系。According to the following formula (12), determine the functional relationship between the time length t 3 required for the edge server to decompress the target data and the compression ratio for compressing the original data.
t3表示边缘服务器对目标数据进行解压所需的时长,C2表示对原始数据进行解压所需的边缘服务器的CPU周期的数目,F2表示边缘服务器的CPU的频率。客户端的CPU周期与边缘服务器的CPU周期相同,进而,边缘服务器对目标数据进行解压得到原始数据,与客户端对原始数据进行压缩得到目标数据所需的CPU周期的数目相同,因此,算式(12)中的C2可以与对原始数据进行压缩所需的客户端的CPU周期的数目C1相等。t 3 represents the time required for the edge server to decompress the target data, C 2 represents the number of CPU cycles of the edge server required to decompress the original data, and F 2 represents the frequency of the CPU of the edge server. The CPU cycle of the client is the same as the CPU cycle of the edge server. Furthermore, the edge server decompresses the target data to obtain the original data, and the number of CPU cycles required for the client to compress the original data to obtain the target data is the same. Therefore, the formula (12 ) in C 2 may be equal to the number C 1 of the client's CPU cycles required to compress the original data.
还可以根据如下算式(13)和算式(14),确定边缘服务器处理原始数据所需的时长t4,与对原始数据进行压缩的压缩比的函数关系。The functional relationship between the time duration t 4 required by the edge server to process the original data and the compression ratio for compressing the original data can also be determined according to the following equations (13) and (14).
H=β2D (13)H=β 2 D (13)
H表示边缘服务器处理原始数据所需的边缘服务器的CPU周期的数目,β2表示第二预设系数,D表示原始数据的大小。t4表示边缘服务器处理原始数据所需的时长,F2表示边缘服务器的CPU的频率。H represents the number of CPU cycles of the edge server required by the edge server to process the raw data, β 2 represents the second preset coefficient, and D represents the size of the raw data. t 4 represents the time required for the edge server to process the raw data, and F 2 represents the frequency of the edge server's CPU.
第二预设系数可以由技术人员根据经验设置,一种实现方式中,可以根据边缘服务器处理原始数据时所使用的算法的复杂度,确定第二预设系数,当边缘服务器处理原始数据时所使用的算法的复杂度较高时,第二预设系数可以设置为较大的数值。当边缘服务器处理原始数据时所使用的算法的复杂度较低时,第二预设系数可以设置为较小的数值。The second preset coefficient can be set by technicians based on experience. In one implementation, the second preset coefficient can be determined according to the complexity of the algorithm used by the edge server to process the original data, and the second preset coefficient can be determined when the edge server processes the original data. When the complexity of the algorithm used is relatively high, the second preset coefficient may be set to a relatively large value. When the complexity of the algorithm used by the edge server to process the raw data is low, the second preset coefficient may be set to a small value.
例如,当边缘服务器处理原始数据时所使用的算法属于第一预设算法时,第二预设系数可以为1000,当边缘服务器处理原始数据时所使用的算法属于第二预设算法时,第二预设系数可以为500,第一预设算法的复杂度高于第二预设算法的复杂度,但并不限于此。For example, when the algorithm used by the edge server to process the original data belongs to the first preset algorithm, the second preset coefficient may be 1000, and when the algorithm used by the edge server to process the original data belongs to the second preset algorithm, the second preset coefficient The second preset coefficient may be 500, and the complexity of the first preset algorithm is higher than that of the second preset algorithm, but is not limited thereto.
进而,可以根据如下算式(15),确定对原始数据进行压缩所需的时长、目标数据从客户端传输至边缘服务器所需的时长、边缘服务器对目标数据进行解压所需的时长、边缘服务器处理原始数据所需的时长的和值(即总处理时长)。Furthermore, according to the following formula (15), the time required to compress the original data, the time required to transmit the target data from the client to the edge server, the time required for the edge server to decompress the target data, and the processing time of the edge server can be determined. The sum of the durations required for the raw data (i.e. the total processing duration).
t=t1+t2+t3+t4 (15)t=t 1 +t 2 +t 3 +t 4 (15)
t表示总处理时长,t1表示目标数据从客户端传输至边缘服务器所需的时长,t2表示对原始数据进行压缩所需的时长,t3表示边缘服务器对目标数据进行解压所需的时长,t4表示边缘服务器处理原始数据所需的时长。t represents the total processing time, t 1 represents the time required for the target data to be transmitted from the client to the edge server, t 2 represents the time required to compress the original data, and t 3 represents the time required for the edge server to decompress the target data , t 4 represents the time required for the edge server to process the raw data.
一种实现方式中,可以将上述算式(3)中的目标信道的信道增益h设置为“1”。根据上述算式(3)、算式(4)、算式(11)、算式(12)、算式(13)、算式(14)和算式(15),得到总处理时长可以表示为:In an implementation manner, the channel gain h of the target channel in the above formula (3) may be set to "1". According to the above formula (3), formula (4), formula (11), formula (12), formula (13), formula (14) and formula (15), the total processing time can be expressed as:
t表示总处理时长,δ表示对原始数据进行压缩的压缩比,D表示原始数据的大小,ω表示客户端向边缘服务器发送目标数据所使用的目标信道的带宽,σ2表示目标信道的噪声功率,P1表示客户端的发射功率,β1表示第一预设系数,F1表示客户端的CPU的频率,F2表示边缘服务器的CPU的频率,β2表示第二预设系数。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, ω represents the bandwidth of the target channel used by the client to send the target data to the edge server, and σ 2 represents the noise power of the target channel , P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the CPU of the client, F 2 represents the frequency of the CPU of the edge server, and β 2 represents the second preset coefficient.
上述算式(16)中t关于ω的偏导函数可以表示为:The partial derivative function of t with respect to ω in the above formula (16) can be expressed as:
上述参数δ、D、P1均为正数,且即因此,可以确定算式(17)中t关于ω单调递减,即ω取值越大,对应的t越小。可见,当目标信道的带宽为最大带宽时,可以使得对应的总处理时长较小,因此,ω可以取目标信道的最大带宽B。The above parameters δ, D, P 1 are all positive numbers, and which is therefore, It can be determined that t in equation (17) decreases monotonically with respect to ω, that is, the larger the value of ω, the smaller the corresponding t. It can be seen that when the bandwidth of the target channel is the maximum bandwidth, the corresponding total processing time can be made smaller. Therefore, ω can take the maximum bandwidth B of the target channel.
进而,可以得到总处理时长与压缩比的第二函数关系为:Furthermore, the second functional relationship between the total processing time and the compression ratio can be obtained as:
t表示总处理时长,δ表示对原始数据进行压缩的压缩比,D表示原始数据的大小,B表示客户端向边缘服务器发送目标数据所使用的目标信道的最大带宽,σ2表示目标信道的噪声功率,P1表示客户端的发射功率,β1表示第一预设系数,F1表示客户端的CPU的频率,F2表示边缘服务器的CPU的频率,β2表示第二预设系数。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, B represents the maximum bandwidth of the target channel used by the client to send the target data to the edge server, and σ 2 represents the noise of the target channel power, P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the CPU of the client, F 2 represents the frequency of the CPU of the edge server, and β 2 represents the second preset coefficient.
在步骤S106中,在获取总处理时长与压缩比的第二函数关系之后,可以确定对应的总处理时长不大于预设时长阈值的各压缩比,得到第二压缩比区间。In step S106, after obtaining the second functional relationship between the total processing duration and the compression ratio, each compression ratio whose corresponding total processing duration is not greater than the preset duration threshold may be determined to obtain a second compression ratio interval.
其中,预设时长阈值可以根据客户端的业务需求设置,当客户端需要实时获取针对原始数据的处理结果时,预设时长阈值可以设置为较小的数值,当客户端不需要实时获取针对原始数据的处理结果时,预设时长阈值可以设置为较大的数值。Among them, the preset duration threshold can be set according to the business requirements of the client. When the client needs to obtain the processing results for the raw data in real time, the preset duration threshold can be set to a smaller value. When the client does not need to obtain the raw data in real time When the processing result of , the preset duration threshold can be set to a larger value.
例如,当客户端需要实时获取针对原始数据的处理结果时,预设时长阈值可以为1秒;当客户端不需要实时获取针对原始数据的处理结果时,预设时长阈值可以为30秒,但并不限于此。For example, when the client needs to obtain the processing results of raw data in real time, the preset duration threshold can be 1 second; when the client does not need to obtain the processing results of raw data in real time, the preset duration threshold can be 30 seconds, but It is not limited to this.
一种实现方式中,第二函数关系为上述算式(18),当总处理时长不大于预设时长阈值时,可以得到如下算式(19)。In an implementation manner, the second functional relationship is the above formula (18). When the total processing duration is not greater than the preset duration threshold, the following formula (19) can be obtained.
t表示总处理时长,δ表示对原始数据进行压缩的压缩比,D表示原始数据的大小,B表示客户端向边缘服务器发送目标数据所使用的目标信道的最大带宽,σ2表示目标信道的噪声功率,P1表示客户端的发射功率,β1表示第一预设系数,F1表示客户端的CPU的频率,F2表示边缘服务器的CPU的频率,β2表示第二预设系数,T表示预设时长阈值。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, B represents the maximum bandwidth of the target channel used by the client to send the target data to the edge server, and σ 2 represents the noise of the target channel Power, P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the CPU of the client, F 2 represents the frequency of the CPU of the edge server, β 2 represents the second preset coefficient, and T represents the preset coefficient. Set the duration threshold.
上述算式(19)可以表示为如下算式(20)。The above equation (19) can be expressed as the following equation (20).
aδ2+bδ+c≤0 (20)aδ 2 +bδ+c≤0 (20)
其中,a=DF1F2,b=β2DRF1-TRF1F2,c=β1DR(F1+F2), where, a=DF 1 F 2 , b=β 2 DRF 1 -TRF 1 F 2 , c=β 1 DR(F 1 +F 2 ),
然后,针对上述算式(20),当aδ2+bδ+c=0时,可以计算得到:进而,可以得到对应的总处理时长不大于预设时长阈值的第二压缩比区间为:[δ1,δ2]。Then, for the above formula (20), when aδ 2 +bδ+c=0, it can be calculated as: Furthermore, it can be obtained that the corresponding second compression ratio interval in which the total processing duration is not greater than the preset duration threshold is: [δ 1 , δ 2 ].
由于c=β1DR(F1+F2),参数β1、D、R、F1、F2均不等于0,F1+F2≠0,因此,c≠0,进而,δ1≠0,且δ2≠0。Since c=β 1 DR(F 1 +F 2 ), the parameters β 1 , D, R, F 1 , and F 2 are not equal to 0, and F 1 +F 2 ≠0, therefore, c≠0, and further, δ 1 ≠0, and δ 2 ≠0.
相应的,在步骤S1031中,可以确定第一压缩比区间与第二压缩比区间的交集,可以得到第三压缩比区间,第三压缩比区间可以表示为:[δ3,δ4]。Correspondingly, in step S1031, the intersection of the first compression ratio interval and the second compression ratio interval may be determined, and a third compression ratio interval may be obtained, and the third compression ratio interval may be expressed as: [δ 3 , δ 4 ].
第三压缩比区间包含的压缩比对应的总能耗较小,且对应的总处理时长也较小。也就是说,后续,按照第三压缩比区间包含的压缩比,对原始数据进行压缩时,可以使得总能耗较小,且同时使得总处理时长较小,也就是说,能够降低客户端的总能耗,且能够缩短客户端获取到针对原始数据的处理结果的时长。The total energy consumption corresponding to the compression ratio included in the third compression ratio interval is small, and the corresponding total processing time is also small. That is to say, in the future, according to the compression ratio included in the third compression ratio interval, when compressing the original data, the total energy consumption can be reduced, and the total processing time can be reduced at the same time, that is, the total amount of the client can be reduced. Energy consumption, and can shorten the time for the client to obtain the processing result for the original data.
针对步骤S1032和步骤S1033,可以判断第一压缩比是否属于第三压缩比区间,如果第一压缩比属于第三压缩比区间,表明第一压缩比对应的总能耗,为第三压缩比区间对应的总能耗中最小的总能耗,即第一压缩比对应的总能耗较小,且第一压缩比对应的总处理时长也较小,进而,可以确定第一压缩比为目标压缩比。For steps S1032 and S1033, it can be determined whether the first compression ratio belongs to the third compression ratio interval, and if the first compression ratio belongs to the third compression ratio interval, it indicates that the total energy consumption corresponding to the first compression ratio is the third compression ratio interval The minimum total energy consumption among the corresponding total energy consumption, that is, the total energy consumption corresponding to the first compression ratio is small, and the total processing time corresponding to the first compression ratio is also small, and further, the first compression ratio can be determined as the target compression ratio. Compare.
在步骤S1034中,如果第一压缩比不属于第三压缩比区间,表明第一压缩比对应的总处理时长大于预设时长阈值,进而,为了保证总能耗和总处理时长均较小,可以计算第三压缩比区间包含的最大压缩比对应的总能耗,以及最小压缩比对应的总能耗,进而,可以从第三压缩比区间包含的最大压缩比和最小压缩比中,确定对应的总能耗较小的压缩比,作为目标压缩比,目标压缩比对应的总能耗较小,且目标压缩比对应的总处理时长也较小。In step S1034, if the first compression ratio does not belong to the third compression ratio interval, it indicates that the total processing duration corresponding to the first compression ratio is greater than the preset duration threshold, and further, in order to ensure that the total energy consumption and the total processing duration are both small, the Calculate the total energy consumption corresponding to the maximum compression ratio and the total energy consumption corresponding to the minimum compression ratio included in the third compression ratio interval, and then, from the maximum compression ratio and the minimum compression ratio included in the third compression ratio interval, determine the corresponding The compression ratio with smaller total energy consumption is regarded as the target compression ratio, the total energy consumption corresponding to the target compression ratio is smaller, and the total processing time corresponding to the target compression ratio is also smaller.
示例性的,如果第一压缩比不属于第三压缩比区间,第三压缩比区间为:[δ3,δ4]。然后,可以基于上述算式(9)计算δ3对应的总能耗E(δ3),以及δ4对应的总能耗E(δ4)。进而,当E(δ3)小于E(δ4)时,可以确定δ3为目标压缩比,当E(δ3)大于E(δ4)时,可以确定δ4为目标压缩比。Exemplarily, if the first compression ratio does not belong to the third compression ratio interval, the third compression ratio interval is: [δ 3 , δ 4 ]. Then, the total energy consumption E(δ 3 ) corresponding to δ 3 and the total energy consumption E(δ 4 ) corresponding to δ 4 can be calculated based on the above formula (9). Furthermore, when E(δ 3 ) is less than E(δ 4 ), δ 3 can be determined as the target compression ratio, and when E(δ 3 ) is greater than E(δ 4 ), δ 4 can be determined as the target compression ratio.
在本发明的一个实施例中,参见图3,图3为本发明实施例提供的一种总能耗与压缩比的函数关系的曲线图。图3中横坐标表示对原始数据进行压缩的压缩比,纵坐标表示基于压缩比对原始数据进行压缩的总能耗,总能耗的单位为J。In an embodiment of the present invention, referring to FIG. 3 , FIG. 3 is a graph of a functional relationship between total energy consumption and compression ratio according to an embodiment of the present invention. In Fig. 3, the abscissa represents the compression ratio for compressing the original data, the ordinate represents the total energy consumption for compressing the original data based on the compression ratio, and the unit of the total energy consumption is J.
图3表示原始数据的大小为0.5Mb、目标信道的最大带宽为1MHz、客户端的发射功率为40dBm、目标信道的噪声功率为-70dBm、对原始数据进行压缩时客户端的CPU运行一个周期的能耗为1×10-27J/cycle、客户端的CPU的频率为600M cycles/s、边缘服务器的CPU频率为1500M cycles/s、第一预设系数为80、第二预设系数为1000时,总能耗与压缩比的函数关系。Figure 3 shows the energy consumption of the client CPU running one cycle when the original data size is 0.5Mb, the maximum bandwidth of the target channel is 1MHz, the transmit power of the client is 40dBm, the noise power of the target channel is -70dBm, and the original data is compressed. When it is 1×10 -27 J/cycle, the CPU frequency of the client is 600M cycles/s, the CPU frequency of the edge server is 1500M cycles/s, the first preset coefficient is 80, and the second preset coefficient is 1000, the total Energy consumption as a function of compression ratio.
图3中的实线表示总能耗与压缩比的函数关系。可见,随着压缩比的增加,总能耗先减少再增加,并且最小的总能耗对应的压缩比属于[0.5×10-9,0.75×10-9]。The solid line in Figure 3 represents the total energy consumption as a function of the compression ratio. It can be seen that as the compression ratio increases, the total energy consumption first decreases and then increases, and the compression ratio corresponding to the smallest total energy consumption belongs to [0.5×10 -9 , 0.75×10 -9 ].
参见图4,图4为本发明实施例提供的一种目标压缩比与原始数据的大小的函数关系的曲线图。图4中横坐标表示原始数据的大小,原始数据的大小的单位为Mb,纵坐标表示目标压缩比。Referring to FIG. 4 , FIG. 4 is a graph showing a functional relationship between a target compression ratio and the size of original data according to an embodiment of the present invention. In FIG. 4 , the abscissa represents the size of the original data, the unit of the size of the original data is Mb, and the ordinate represents the target compression ratio.
图4表示预设时长阈值为0.5秒、目标信道的最大带宽为1MHz、客户端的发射功率为40dBm、目标信道的噪声功率为-70dBm、对原始数据进行压缩时客户端的CPU运行一个周期的能耗为1×10-27J/cycle、客户端的CPU的频率为600M cycles/s、边缘服务器的CPU频率为1500M cycles/s、第一预设系数为80、第二预设系数为1000、原始数据的大小为[0.5Mb,1.0Mb]时,目标压缩比与原始数据的大小的函数关系。Figure 4 shows the energy consumption of the client CPU running one cycle when the preset duration threshold is 0.5 seconds, the maximum bandwidth of the target channel is 1MHz, the transmit power of the client is 40dBm, the noise power of the target channel is -70dBm, and the original data is compressed. It is 1×10 -27 J/cycle, the frequency of the client's CPU is 600M cycles/s, the CPU frequency of the edge server is 1500M cycles/s, the first preset coefficient is 80, the second preset coefficient is 1000, the original data When the size is [0.5Mb, 1.0Mb], the target compression ratio is a function of the size of the original data.
图4中的实线表示在预设时长阈值为0.5秒的情况下,目标压缩比与原始数据的大小的函数关系。可见,目标压缩比与原始数据的大小成正相关,当原始数据的数据量越大时,目标压缩比越大。The solid line in FIG. 4 represents the functional relationship between the target compression ratio and the size of the original data when the preset duration threshold is 0.5 seconds. It can be seen that the target compression ratio is positively related to the size of the original data. When the data volume of the original data is larger, the target compression ratio is larger.
参见图5,图5为本发明实施例提供的一种总能耗与原始数据的大小的函数关系的曲线图。图5中横坐标表示原始数据的大小,原始数据的大小的单位为Mb,纵坐标表示总能耗,总能耗的单位为J。Referring to FIG. 5, FIG. 5 is a graph of a functional relationship between total energy consumption and the size of original data according to an embodiment of the present invention. In Fig. 5, the abscissa represents the size of the original data, the unit of the size of the original data is Mb, the ordinate represents the total energy consumption, and the unit of the total energy consumption is J.
图5表示预设时长阈值为0.5秒、目标信道的最大带宽为1MHz、客户端的发射功率为40dBm、目标信道的噪声功率为-70dBm、对原始数据进行压缩时客户端的CPU运行一个周期的能耗为1×10-27J/cycle、客户端的CPU的频率为600M cycles/s、边缘服务器的CPU频率为1500M cycles/s、第一预设系数为80、第二预设系数为1000、原始数据的大小为[0.5Mb,1.0Mb]时,总能耗与原始数据的大小的函数关系。Figure 5 shows the energy consumption of the client CPU running one cycle when the preset duration threshold is 0.5 seconds, the maximum bandwidth of the target channel is 1MHz, the transmit power of the client is 40dBm, the noise power of the target channel is -70dBm, and the original data is compressed. It is 1×10 -27 J/cycle, the frequency of the client's CPU is 600M cycles/s, the CPU frequency of the edge server is 1500M cycles/s, the first preset coefficient is 80, the second preset coefficient is 1000, the original data When the size is [0.5Mb, 1.0Mb], the total energy consumption is a function of the size of the original data.
图5中带圆形的实线表示在预设时长阈值为0.5秒的情况下,按照目标压缩比对原始数据进行压缩时,总能耗与原始数据的大小的函数关系。带正方形的实线表示在预设时长阈值为0.5秒的情况下,不对原始数据进行压缩时,总能耗与原始数据的大小的函数关系。可见,当原始数据的大小相同的时候,按照目标压缩比对原始数据进行压缩的总能耗小于不对原始数据进行压缩的总能耗。The solid line with a circle in FIG. 5 represents the functional relationship between the total energy consumption and the size of the original data when the original data is compressed according to the target compression ratio when the preset duration threshold is 0.5 seconds. The solid line with squares represents the functional relationship between the total energy consumption and the size of the original data when the preset duration threshold is 0.5 seconds and the original data is not compressed. It can be seen that when the size of the original data is the same, the total energy consumption of compressing the original data according to the target compression ratio is less than the total energy consumption of not compressing the original data.
参见图6,图6为本发明实施例提供的一种目标压缩比与原始数据的大小函数关系的曲线图。图6中横坐标表示原始数据的大小,原始数据的大小的单位为Mb,纵坐标表示目标压缩比。Referring to FIG. 6 , FIG. 6 is a graph showing a function relationship between a target compression ratio and a size of original data according to an embodiment of the present invention. In FIG. 6 , the abscissa represents the size of the original data, the unit of the size of the original data is Mb, and the ordinate represents the target compression ratio.
图6表示目标信道的最大带宽为1MHz、客户端的发射功率为40dBm、目标信道的噪声功率为-70dBm、对原始数据进行压缩时客户端的CPU运行一个周期的能耗为1×10-27J/cycle、客户端的CPU的频率为600M cycles/s、边缘服务器的CPU频率为1500M cycles/s、第一预设系数为80、第二预设系数为1000时,目标压缩比与原始数据的大小函数关系。Figure 6 shows that the maximum bandwidth of the target channel is 1MHz, the transmit power of the client is 40dBm, the noise power of the target channel is -70dBm, and the energy consumption of the client's CPU running one cycle when compressing the original data is 1×10 -27 J/ When the cycle, the frequency of the client's CPU is 600M cycles/s, the CPU frequency of the edge server is 1500M cycles/s, the first preset coefficient is 80, and the second preset coefficient is 1000, the target compression ratio is a function of the size of the original data relation.
针对不同大小的原始数据,可以设置不同的预设时长阈值,当原始数据的数据量较大时,可以设置较大的预设时长阈值,当原始数据的数据量较小时,可以设置较小的预设时长阈值。进而,根据原始数据的大小和预设时长阈值,确定对应的目标压缩比。Different preset duration thresholds can be set for original data of different sizes. When the amount of original data is large, a larger preset duration threshold can be set. When the amount of original data is small, a smaller preset duration threshold can be set. Preset duration threshold. Further, according to the size of the original data and the preset duration threshold, the corresponding target compression ratio is determined.
例如,当原始数据的大小为1.5Mb时,预设时长阈值可以为0.5秒,可以根据原始数据的大小(即1.5Mb)和预设时长阈值(即0.5秒),计算原始数据的大小为1.5Mb时对应的目标压缩比。当原始数据的大小为2.0Mb时,预设时长阈值可以为0.8秒。可以根据原始数据的大小(即2.0Mb)和预设时长阈值(即0.8秒),计算原始数据的大小为1.5Mb时对应的目标压缩比,以此类推。For example, when the size of the original data is 1.5Mb, the preset duration threshold can be 0.5 seconds. According to the size of the original data (ie 1.5Mb) and the preset duration threshold (ie 0.5 seconds), the size of the original data can be calculated as 1.5 The corresponding target compression ratio in Mb. When the size of the original data is 2.0Mb, the preset duration threshold may be 0.8 seconds. According to the size of the original data (ie 2.0Mb) and the preset duration threshold (ie 0.8 seconds), the corresponding target compression ratio when the size of the original data is 1.5Mb can be calculated, and so on.
进而,可以得到图6所示的目标压缩比与原始数据的大小的函数关系的曲线图。图6中的实线表示目标压缩比与原始数据的大小的函数关系。可见,随着原始数据的数据量的增加,目标压缩比逐渐趋于平稳状态。Furthermore, the graph of the functional relationship between the target compression ratio and the size of the original data shown in FIG. 6 can be obtained. The solid line in Figure 6 represents the target compression ratio as a function of the size of the original data. It can be seen that with the increase of the data volume of the original data, the target compression ratio gradually tends to a stable state.
参见图7,图7为本发明实施例提供的一种总能耗与原始数据的大小的函数关系的曲线图。图7中横坐标表示原始数据的大小,原始数据的大小的单位为Mb,纵坐标表示总能耗,总能耗的单位为J。Referring to FIG. 7 , FIG. 7 is a graph showing a functional relationship between total energy consumption and the size of original data according to an embodiment of the present invention. In FIG. 7 , the abscissa represents the size of the original data, the unit of the size of the original data is Mb, the ordinate represents the total energy consumption, and the unit of the total energy consumption is J.
图7表示目标信道的最大带宽为1MHz、客户端的发射功率为40dBm、目标信道的噪声功率为-70dBm、对原始数据进行压缩时客户端的CPU运行一个周期的能耗为1×10-27J/cycle、客户端的CPU的频率为600M cycles/s、边缘服务器的CPU频率为1500M cycles/s、第一预设系数为80、第二预设系数为1000时,总能耗与原始数据的大小的函数关系。Figure 7 shows that the maximum bandwidth of the target channel is 1MHz, the transmit power of the client is 40dBm, the noise power of the target channel is -70dBm, and the energy consumption of the client's CPU running one cycle when compressing the original data is 1×10 -27 J/ cycle, the frequency of the client's CPU is 600M cycles/s, the CPU frequency of the edge server is 1500M cycles/s, the first preset coefficient is 80, and the second preset coefficient is 1000, the total energy consumption and the size of the original data Functional relationship.
针对不同大小的原始数据,可以设置不同的预设时长阈值,当原始数据的数据量较大时,可以设置较大的预设时长阈值,当原始数据的数据量较小时,可以设置较小的预设时长阈值。进而,根据原始数据的大小和预设时长阈值,确定对应的目标压缩比,并根据目标压缩比,计算总能耗。Different preset duration thresholds can be set for original data of different sizes. When the amount of original data is large, a larger preset duration threshold can be set. When the amount of original data is small, a smaller preset duration threshold can be set. Preset duration threshold. Further, a corresponding target compression ratio is determined according to the size of the original data and a preset duration threshold, and the total energy consumption is calculated according to the target compression ratio.
例如,当原始数据的大小为1.5Mb时,预设时长阈值可以为0.5秒,可以根据原始数据的大小(即1.5Mb)和预设时长阈值(即0.5秒),计算原始数据的大小为1.5Mb时对应的目标压缩比,进而,根据该目标压缩比计算对应的总能耗。当原始数据的大小为2.0Mb时,预设时长阈值可以为0.8秒。可以根据原始数据的大小(即2.0Mb)和预设时长阈值(即0.8秒),计算原始数据的大小为1.5Mb时对应的目标压缩比,进而,根据该目标压缩比计算对应的总能耗,以此类推。For example, when the size of the original data is 1.5Mb, the preset duration threshold can be 0.5 seconds. According to the size of the original data (ie 1.5Mb) and the preset duration threshold (ie 0.5 seconds), the size of the original data can be calculated as 1.5 When the target compression ratio is Mb, the corresponding total energy consumption is calculated according to the target compression ratio. When the size of the original data is 2.0Mb, the preset duration threshold may be 0.8 seconds. According to the size of the original data (ie 2.0Mb) and the preset duration threshold (ie 0.8 seconds), the corresponding target compression ratio when the size of the original data is 1.5Mb can be calculated, and then the corresponding total energy consumption can be calculated according to the target compression ratio , and so on.
进而,可以得到图7所示的总能耗与原始数据的大小的函数关系的曲线图,图7中带正方形的实线表示按照目标压缩比对原始数据进行压缩时,总能耗与原始数据的大小的函数关系。带圆形的实线表示不对原始数据进行压缩时,总能耗与原始数据的大小的函数关系。Furthermore, the graph of the functional relationship between the total energy consumption and the size of the original data shown in FIG. 7 can be obtained. The solid line with squares in FIG. 7 indicates that when the original data is compressed according to the target compression ratio, the total energy consumption and the original data function of the size. The solid line with circles represents the total energy consumption as a function of the size of the original data when the original data is not compressed.
可见,当原始数据的大小相同时,按照目标压缩比对原始数据进行压缩的总能耗,小于不对原始数据进行压缩的总能耗。并且原始数据的数据量越大,不对原始数据进行压缩的总能耗与对原始数据进行压缩的总能耗的差值越大。It can be seen that when the size of the original data is the same, the total energy consumption of compressing the original data according to the target compression ratio is less than the total energy consumption of not compressing the original data. And the larger the data volume of the original data, the larger the difference between the total energy consumption of not compressing the original data and the total energy consumption of compressing the original data.
参见图8,图8为本发明实施例提供的一种移动边缘计算系统的结构图,该移动边缘计算系统可以包括:中心服务器、边缘服务器和客户端。Referring to FIG. 8 , FIG. 8 is a structural diagram of a mobile edge computing system according to an embodiment of the present invention. The mobile edge computing system may include: a central server, an edge server, and a client.
客户端可以基于本申请实施例提供的方法,确定使得总能耗和总处理时长均较小的目标压缩比,然后,按照目标压缩比对原始数据进行压缩,得到目标数据,并向边缘服务器发送目标数据。Based on the method provided by the embodiment of the present application, the client can determine a target compression ratio that makes both the total energy consumption and the total processing time smaller, and then compress the original data according to the target compression ratio to obtain the target data, and send it to the edge server. target data.
相应的,边缘服务器接收到目标数据之后,可以对目标数据进行解压,得到原始数据,然后,边缘服务器可以对原始数据进行处理,得到针对原始数据的处理结果,进而,边缘服务器可以向客户端发送针对原始数据的处理结果。Correspondingly, after receiving the target data, the edge server can decompress the target data to obtain the original data. Then, the edge server can process the original data to obtain the processing result for the original data, and then the edge server can send the data to the client. The result of processing the raw data.
中心服务器可以监控边缘服务器的工作状态(例如,边缘服务器当前是否在处理原始数据)、边缘服务器处理原始数据时的计算压力,以及边缘服务器处理原始数据所使用的算法的有效性。The central server can monitor the working status of the edge server (for example, whether the edge server is currently processing raw data), the computing pressure when the edge server processes the raw data, and the effectiveness of the algorithm used by the edge server to process the raw data.
在移动边缘计算系统中,客户端将原始数据发送至边缘服务器进行处理,由于边缘服务器与客户端的物理距离较小,相对于云计算中,客户端直接将原始数据发送至中心服务器进行处理,由于中心服务器与客户端的物理距离较大,导致客户端获取针对原始数据的处理结果的时长较大,移动边缘计算可以缩短客户端获取针对原始数据的处理结果所需的时长。In the mobile edge computing system, the client sends the raw data to the edge server for processing. Due to the small physical distance between the edge server and the client, compared with cloud computing, the client directly sends the raw data to the central server for processing. The large physical distance between the central server and the client leads to a longer time for the client to obtain the processing result for the original data. Mobile edge computing can shorten the time required for the client to obtain the processing result for the original data.
与图1的方法实施例相对应,参见图9,图9为本发明实施例提供的一种移动边缘计算中能耗最小化的处理装置的结构图,所述装置包括:Corresponding to the method embodiment of FIG. 1 , see FIG. 9 . FIG. 9 is a structural diagram of a processing device for minimizing energy consumption in mobile edge computing according to an embodiment of the present invention, where the device includes:
获取模块901,用于获取总能耗与压缩比的第一函数关系,其中,所述总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送所述目标数据的能耗的和值,所述压缩比表示所述目标数据的大小与所述原始数据的大小的比值;The obtaining
第一确定模块902,用于确定所述第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;a first determining
第二确定模块903,用于基于所述第一压缩比和第一压缩比区间,确定目标压缩比,其中,所述第一压缩比区间包含对所述原始数据进行压缩支持的所有压缩比;A second determining
压缩模块904,用于按照所述目标压缩比对所述原始数据进行压缩,得到所述目标数据。The
可选的,所述装置还包括:Optionally, the device further includes:
处理模块,用于获取总处理时长与压缩比的第二函数关系,其中,所述总处理时长表示从对所述原始数据进行压缩,至所述边缘服务器对所述原始数据处理完成的总时长;A processing module, configured to obtain a second functional relationship between the total processing duration and the compression ratio, where the total processing duration represents the total duration from compressing the original data to the completion of processing the original data by the edge server ;
基于所述第二函数关系,确定对应的总处理时长不大于预设时长阈值的各压缩比,得到第二压缩比区间;Based on the second functional relationship, each compression ratio whose corresponding total processing duration is not greater than a preset duration threshold is determined to obtain a second compression ratio interval;
所述第二确定模块903,具体用于确定所述第一压缩比区间与所述第二压缩比区间的交集,作为第三压缩比区间;The
判断所述第一压缩比是否属于所述第三压缩比区间;determining whether the first compression ratio belongs to the third compression ratio interval;
如果所述第一压缩比属于所述第三压缩比区间,则将所述第一压缩比确定为目标压缩比;If the first compression ratio belongs to the third compression ratio interval, determining the first compression ratio as a target compression ratio;
如果所述第一压缩比不属于所述第三压缩比区间,则从所述第三压缩比区间包含的最大压缩比和最小压缩比中,确定对应的能耗较小的压缩比,作为目标压缩比。If the first compression ratio does not belong to the third compression ratio interval, from the maximum compression ratio and the minimum compression ratio included in the third compression ratio interval, determine the corresponding compression ratio with lower energy consumption as the target compression ratio.
可选的,所述第二函数关系表示为:Optionally, the second functional relationship is expressed as:
t表示所述总处理时长,δ表示对所述原始数据进行压缩的压缩比,D表示所述原始数据的大小,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,P1表示所述客户端的发射功率,β1表示第一预设系数,F1表示所述客户端的中央处理器CPU的频率,F2表示所述边缘服务器的CPU的频率,β2表示第二预设系数。t represents the total processing time, δ represents the compression ratio for compressing the original data, D represents the size of the original data, and B represents the target channel used by the client to send the target data to the edge server. Maximum bandwidth, σ 2 represents the noise power of the target channel, P 1 represents the transmit power of the client, β 1 represents the first preset coefficient, F 1 represents the frequency of the central processing unit CPU of the client, F 2 represents The frequency of the CPU of the edge server, β 2 represents the second preset coefficient.
可选的,所述第一函数关系表示为:Optionally, the first functional relationship is expressed as:
E表示所述总能耗,δ表示对所述原始数据进行压缩的压缩比,P1表示所述客户端的发射功率,B表示客户端向所述边缘服务器发送所述目标数据所使用的目标信道的最大带宽,σ2表示所述目标信道的噪声功率,D表示所述原始数据的大小,P2表示对所述原始数据进行压缩时所述客户端的CPU运行一个周期的能耗,β1表示第一预设系数。E represents the total energy consumption, δ represents the compression ratio for compressing the original data, P 1 represents the transmit power of the client, and B represents the target channel used by the client to send the target data to the edge server The maximum bandwidth of , σ 2 represents the noise power of the target channel, D represents the size of the original data, P 2 represents the energy consumption of the client CPU running one cycle when the original data is compressed, β 1 represents the first preset coefficient.
可选的,第二确定模块903,具体用于判断所述第一压缩比是否属于所述第一压缩比区间;Optionally, the
如果所述第一压缩比属于所述第一压缩比区间,则将所述第一压缩比确定为目标压缩比。If the first compression ratio belongs to the first compression ratio interval, the first compression ratio is determined as a target compression ratio.
基于本发明实施例提供的移动边缘计算中能耗最小化的处理装置,由于第一压缩比为最小的总能耗对应的压缩比,基于第一压缩比和第一压缩比区间,能够确定出总能耗较小的目标压缩比,进而,基于目标压缩比对原始数据进行压缩,可以降低客户端的总能耗。Based on the processing device for minimizing energy consumption in mobile edge computing provided by the embodiment of the present invention, since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, based on the first compression ratio and the first compression ratio interval, it is possible to determine A target compression ratio with a smaller total energy consumption, and further, compressing the original data based on the target compression ratio can reduce the total energy consumption of the client.
本发明实施例还提供了一种电子设备,如图10所示,包括处理器1001、通信接口1002、存储器1003和通信总线1004,其中,处理器1001,通信接口1002,存储器1003通过通信总线1004完成相互间的通信,An embodiment of the present invention further provides an electronic device, as shown in FIG. 10 , including a
存储器1003,用于存放计算机程序;a
处理器1001,用于执行存储器1003上所存放的程序时,实现如下步骤:When the
获取总能耗与压缩比的第一函数关系,其中,所述总能耗表示对原始数据进行压缩得到目标数据的能耗,与向边缘服务器发送所述目标数据的能耗的和值,所述压缩比表示所述目标数据的大小与所述原始数据的大小的比值;Obtain the first functional relationship between the total energy consumption and the compression ratio, wherein the total energy consumption represents the energy consumption of compressing the original data to obtain the target data, and the sum of the energy consumption of sending the target data to the edge server, so The compression ratio represents the ratio of the size of the target data to the size of the original data;
确定所述第一函数关系中最小的总能耗对应的压缩比,作为第一压缩比;determining the compression ratio corresponding to the smallest total energy consumption in the first functional relationship as the first compression ratio;
基于所述第一压缩比和第一压缩比区间,确定目标压缩比,其中,所述第一压缩比区间包含对所述原始数据进行压缩支持的所有压缩比;determining a target compression ratio based on the first compression ratio and a first compression ratio interval, wherein the first compression ratio interval includes all compression ratios supported by compression of the original data;
按照所述目标压缩比对所述原始数据进行压缩,得到所述目标数据。The original data is compressed according to the target compression ratio to obtain the target data.
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus mentioned in the above electronic device may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like. The communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
通信接口用于上述电子设备与其他设备之间的通信。The communication interface is used for communication between the above electronic device and other devices.
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located away from the aforementioned processor.
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital SignalProcessing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; may also be a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
基于本发明实施例提供的电子设备,由于第一压缩比为最小的总能耗对应的压缩比,基于第一压缩比和第一压缩比区间,能够确定出总能耗较小的目标压缩比,进而,基于目标压缩比对原始数据进行压缩,可以降低客户端的总能耗。Based on the electronic device provided by the embodiment of the present invention, since the first compression ratio is the compression ratio corresponding to the minimum total energy consumption, based on the first compression ratio and the first compression ratio interval, a target compression ratio with a smaller total energy consumption can be determined , and further, compressing the original data based on the target compression ratio can reduce the total energy consumption of the client.
在本发明提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一移动边缘计算中能耗最小化的处理方法的步骤。In yet another embodiment provided by the present invention, a computer-readable storage medium is also provided, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any of the above mobile edge computing is implemented The steps of the treatment method to minimize energy consumption in the medium.
在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一移动边缘计算中能耗最小化的处理方法。In yet another embodiment provided by the present invention, there is also provided a computer program product containing instructions, when running on a computer, the computer enables the computer to perform the process of minimizing energy consumption in mobile edge computing in any of the above embodiments method.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、电子设备、计算机可读存储介质、计算机程序产品实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. Especially, for the apparatus, electronic device, computer-readable storage medium, and computer program product embodiments, since they are basically similar to the method embodiments, the description is relatively simple.
以上所述仅为本发明的较佳实施例,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010686852.6A CN111949110B (en) | 2020-07-16 | 2020-07-16 | Processing method and device for minimizing energy consumption in mobile edge calculation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010686852.6A CN111949110B (en) | 2020-07-16 | 2020-07-16 | Processing method and device for minimizing energy consumption in mobile edge calculation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111949110A true CN111949110A (en) | 2020-11-17 |
CN111949110B CN111949110B (en) | 2022-10-25 |
Family
ID=73340961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010686852.6A Active CN111949110B (en) | 2020-07-16 | 2020-07-16 | Processing method and device for minimizing energy consumption in mobile edge calculation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111949110B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114302435A (en) * | 2021-12-31 | 2022-04-08 | 杭州电子科技大学 | Optimization method for power consumption and time delay in mobile edge computing transmission system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107888428A (en) * | 2017-12-04 | 2018-04-06 | 郑州云海信息技术有限公司 | A kind of bandwidth adjusting method, device, equipment and readable storage medium storing program for executing |
CN109729543A (en) * | 2018-12-29 | 2019-05-07 | 南京邮电大学 | An energy-efficient computing task offloading method based on data compression |
US20190319642A1 (en) * | 2018-04-05 | 2019-10-17 | Qatar Foundation For Education, Science And Community Development | Device and method for compressing a data stream |
CN110365526A (en) * | 2019-07-09 | 2019-10-22 | 国网江苏省电力有限公司南京供电分公司 | A VNF deployment method and system for energy saving and QoS guarantee |
CN110769000A (en) * | 2019-10-31 | 2020-02-07 | 重庆大学 | Dynamic compression prediction control method of continuous monitoring data in unstable network transmission |
CN111124666A (en) * | 2019-11-25 | 2020-05-08 | 哈尔滨工业大学 | An efficient and secure multi-user and multi-task offloading method in mobile Internet of Things |
CN111132230A (en) * | 2019-12-25 | 2020-05-08 | 东南大学 | Bandwidth allocation and data compression joint optimization method for data acquisition |
-
2020
- 2020-07-16 CN CN202010686852.6A patent/CN111949110B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107888428A (en) * | 2017-12-04 | 2018-04-06 | 郑州云海信息技术有限公司 | A kind of bandwidth adjusting method, device, equipment and readable storage medium storing program for executing |
US20190319642A1 (en) * | 2018-04-05 | 2019-10-17 | Qatar Foundation For Education, Science And Community Development | Device and method for compressing a data stream |
CN109729543A (en) * | 2018-12-29 | 2019-05-07 | 南京邮电大学 | An energy-efficient computing task offloading method based on data compression |
CN110365526A (en) * | 2019-07-09 | 2019-10-22 | 国网江苏省电力有限公司南京供电分公司 | A VNF deployment method and system for energy saving and QoS guarantee |
CN110769000A (en) * | 2019-10-31 | 2020-02-07 | 重庆大学 | Dynamic compression prediction control method of continuous monitoring data in unstable network transmission |
CN111124666A (en) * | 2019-11-25 | 2020-05-08 | 哈尔滨工业大学 | An efficient and secure multi-user and multi-task offloading method in mobile Internet of Things |
CN111132230A (en) * | 2019-12-25 | 2020-05-08 | 东南大学 | Bandwidth allocation and data compression joint optimization method for data acquisition |
Non-Patent Citations (2)
Title |
---|
彭海英等: "带有卸载压缩激励的云增强FiWi网络节能机制", 《电子与信息学报》 * |
胡锦天等: "移动边缘计算中具有能耗优化的任务迁移策略", 《计算机科学》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114302435A (en) * | 2021-12-31 | 2022-04-08 | 杭州电子科技大学 | Optimization method for power consumption and time delay in mobile edge computing transmission system |
CN114302435B (en) * | 2021-12-31 | 2023-10-03 | 杭州电子科技大学 | An optimization method for power consumption and delay in mobile edge computing transmission system |
Also Published As
Publication number | Publication date |
---|---|
CN111949110B (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110399728B (en) | An edge computing node trust evaluation method, device, equipment and storage medium | |
CN106911697B (en) | Access authority setting method, device, server and storage medium | |
US8438275B1 (en) | Formatting data for efficient communication over a network | |
TW201710993A (en) | Method, apparatus and system for detecting fraudulent software promotion | |
CN111277847A (en) | Method, device, server and system for displaying chat messages in live broadcast | |
CN113158550B (en) | Method and device for federated learning, electronic equipment and storage medium | |
CN111367672A (en) | Data caching method and device, electronic equipment and computer storage medium | |
CN109309735B (en) | Connection processing method, server, system and storage medium | |
CN109492024A (en) | Data processing method, device, computer equipment and storage medium | |
US12242447B2 (en) | Monitoring operation of a data pipeline to obtain representations of operation quality | |
CN111949110B (en) | Processing method and device for minimizing energy consumption in mobile edge calculation | |
CN111177513B (en) | Determination method and device of abnormal access address, electronic equipment and storage medium | |
CN110347900B (en) | Keyword importance calculation method, device, server and medium | |
CN108600780A (en) | Method for pushed information | |
CN116049109A (en) | File verification method, system, equipment and medium based on filter | |
CN114840565A (en) | Sampling query method, device, electronic device and computer-readable storage medium | |
CN113590447B (en) | Buried point processing method and device | |
CN114520830A (en) | A message push method, device and system | |
CN109788326B (en) | Video resource pre-pushing method, device and system | |
CN110738509B (en) | Method and device for quantifying association degree between users | |
CN115604282A (en) | Resource data processing method and device, electronic equipment, storage medium | |
CN110716867A (en) | Method, device and equipment for detecting multi-page jump pressure | |
CN110516144A (en) | A method and device for preventing message sending by mistake, computer equipment and storage medium | |
CN112866179B (en) | Current limiting method and current limiting device | |
CN112232853B (en) | Conversion rate calculation method and device, storage medium, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |