[go: up one dir, main page]

CN111939247B - A protein mixed vaccine for preventing human and animal toxoplasmosis - Google Patents

A protein mixed vaccine for preventing human and animal toxoplasmosis Download PDF

Info

Publication number
CN111939247B
CN111939247B CN202010835868.9A CN202010835868A CN111939247B CN 111939247 B CN111939247 B CN 111939247B CN 202010835868 A CN202010835868 A CN 202010835868A CN 111939247 B CN111939247 B CN 111939247B
Authority
CN
China
Prior art keywords
recombinant protein
toxoplasma
sequence
recombinant
toxoplasma gondii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010835868.9A
Other languages
Chinese (zh)
Other versions
CN111939247A (en
Inventor
都建
安然
陈滢
温红阳
吴敏敏
闫奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Medical University
Original Assignee
Anhui Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Medical University filed Critical Anhui Medical University
Priority to CN202010835868.9A priority Critical patent/CN111939247B/en
Publication of CN111939247A publication Critical patent/CN111939247A/en
Application granted granted Critical
Publication of CN111939247B publication Critical patent/CN111939247B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/002Protozoa antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses a mixed protein vaccine for preventing toxoplasmosis of human and animals. One technical scheme to be protected by the invention is an immunogenic composition, and the active ingredients of the composition are a recombinant protein mixture consisting of Toxoplasma gondii recombinant protein 14-3-3, MIF and CDPK 3. In the embodiment of the invention, the BALB/c mouse is immunized by the recombinant protein mixture obtained by mixing the toxoplasma recombinant protein 14-3-3, MIF and CDPK3, and the result shows that the humoral immunity and the cellular immune response can be effectively enhanced by using the recombinant protein for immunization, the survival time of the mouse infected by the toxoplasma RH strain is obviously prolonged, the encysted number of the toxoplasma PRU chronic infection midbrain is obviously reduced, and a good immune effect is obtained. The vaccine prepared by the recombinant protein can be used as an effective candidate vaccine for preventing acute and chronic toxoplasma infection.

Description

一种预防人和动物弓形虫病的蛋白混合疫苗A protein mixed vaccine for preventing human and animal toxoplasmosis

技术领域technical field

本发明涉及医学生物技术领域,具体涉及一种预防人和动物弓形虫病的蛋白混合疫苗。The invention relates to the field of medical biotechnology, in particular to a protein mixed vaccine for preventing human and animal toxoplasmosis.

背景技术Background technique

弓形虫病(Toxoplasmosis)是由弓形虫引起的一种人兽共患寄生虫病。弓形虫在正常人体多为隐性感染,不会有明显的症状,而在免疫力低下或免疫缺陷的人群,如长期化疗的癌症患者、AIDS患者和器官移植者,会引起严重的并发症,严重危害人类健康。怀孕早期感染弓形虫会导致胎儿感染,可导致流产、早产、胎儿畸形和死胎等,影响优生优育。Toxoplasmosis is a zoonotic parasitic disease caused by Toxoplasma gondii. Toxoplasma gondii is mostly a recessive infection in normal human body and will not have obvious symptoms, but it can cause serious complications in people with low immunity or immunodeficiency, such as cancer patients, AIDS patients and organ transplant recipients who have undergone long-term chemotherapy. Serious harm to human health. Infection of Toxoplasma gondii in early pregnancy can lead to fetal infection, which can lead to miscarriage, premature birth, fetal malformation and stillbirth, etc., affecting prenatal and postnatal care.

14-3-3蛋白是广泛存在于酵母、植物、蠕虫、原虫、昆虫和人类的一组高度保守的蛋白质家族。研究表明,14-3-3蛋白参与细胞信号转导、细胞分化和凋亡等体内多种重要的细胞生命活动的调节过程。弓形虫14-3-3(Tg14-3-3)是胞浆信号转导蛋白,因为在不同毒力株的有性生殖阶段和无性生殖阶段均可自cDNA文库中筛选出Toxo14-3-3编码基因,推测其存在于弓形虫的各个不同发育阶段。此外,Tg14-3-3还可由虫体分泌并定位于弓形虫纳虫泡中,是弓形虫分泌抗原的一员。14-3-3 proteins are a group of highly conserved protein families widely found in yeast, plants, worms, protozoa, insects and humans. Studies have shown that 14-3-3 protein is involved in the regulation of a variety of important cellular life activities in vivo, such as cell signal transduction, cell differentiation and apoptosis. Toxoplasma gondii 14-3-3 (Tg14-3-3) is a cytoplasmic signal transduction protein, because Toxo14-3-3 can be screened from the cDNA library in the sexual and asexual stages of different virulent strains Coding genes, which are presumed to exist in different developmental stages of Toxoplasma gondii. In addition, Tg14-3-3 can also be secreted by the parasite and localized in the Toxoplasma gondii vesicle, which is a member of the Toxoplasma gondii secreted antigen.

巨噬细胞移动抑制因子(Macrophage migration inhibitory factor,MIF)是哺乳动物体内一种具有互变异构酶和氧化还原酶活性的促炎因子。在很多的寄生虫中均有MIF的同系物的表达,并且参与了宿主免疫应答。通过序列比对,发现弓形虫来源的MIF蛋白(TgMIF)和哺乳动物MIF仅有26%的同源性[1]。Macrophage migration inhibitory factor (MIF) is a pro-inflammatory factor with tautomerase and oxidoreductase activities in mammals. Homologs of MIF are expressed in many parasites and are involved in host immune responses. Through sequence alignment, it was found that the Toxoplasma-derived MIF protein (TgMIF) has only 26% homology with mammalian MIF [1].

钙离子作为一种重要的第二信使,可引起细胞内多种特异性应答。在顶复门原虫中,Ca2+浓度的变化调控着下游的效应分子,影响着寄生虫入侵、逸出宿主细胞、在宿主体内移行等多个过程。钙依赖蛋白激酶(Calcium-dependent protein kinases,CDPKs)是一类接收并传导胞外Ca2+信号的效应分子,是一种丝氨酸/苏氨酸类蛋白激酶。研究发现,CDPKs主要参与寄生虫对宿主细胞的粘附、入侵、逸出以及蛋白的分泌等多个过程。As an important second messenger, calcium ion can cause a variety of specific responses in cells. In apicomplexan, the change of Ca 2+ concentration regulates downstream effector molecules, affecting multiple processes such as parasite invasion, escape from host cells, and migration in the host. Calcium-dependent protein kinases (CDPKs) are a class of effector molecules that receive and transmit extracellular Ca 2+ signals, and are serine/threonine protein kinases. Studies have found that CDPKs are mainly involved in multiple processes such as parasite adhesion to host cells, invasion, escape, and protein secretion.

在弓形虫急性感染期,可用化学药物(乙胺嘧啶、磺胺嘧啶等)控制,但无法消除弓形虫慢性感染,接种疫苗被认为可以有效的预防和控制寄生虫感染。目前,已经开发出灭活和减毒的疫苗、亚单位疫苗、核酸疫苗以及重组蛋白疫苗等用来预防弓形虫感染。目前唯一用于商业上的减毒活疫苗

Figure BDA0002639651860000021
是来自弓形虫S48菌株的减毒速殖子,仅被用于预防绵羊流产的发生[2]。此外,基因修饰的弓形虫,如尿嘧啶营养缺陷型突变体,已被实验证明具有疫苗的作用[3-6]。然而,这些基因突变弓形虫疫苗有一定几率恢复为新型的致病虫株,不适合人类使用,因而研制有效的弓形虫疫苗刻不容缓。In the acute infection stage of Toxoplasma gondii, chemical drugs (pyrimethamine, sulfadiazine, etc.) can be used to control, but the chronic infection of Toxoplasma gondii cannot be eliminated. Vaccination is considered to be effective in preventing and controlling parasitic infection. At present, inactivated and attenuated vaccines, subunit vaccines, nucleic acid vaccines and recombinant protein vaccines have been developed to prevent Toxoplasma gondii infection. The only commercially available live attenuated vaccine
Figure BDA0002639651860000021
is an attenuated tachyzoite from the S48 strain of Toxoplasma gondii, which has only been used to prevent abortion in sheep [2]. In addition, genetically modified Toxoplasma gondii, such as uracil auxotrophic mutants, have been experimentally demonstrated to have vaccine effects [3-6]. However, these gene-mutated Toxoplasma gondii vaccines have a certain chance of reverting to new pathogenic strains, which are not suitable for human use. Therefore, it is urgent to develop effective Toxoplasma gondii vaccines.

参考文献references

1.Sommerville C,Richardson JM,Williams RA,Mottram JC,Roberts CW,Alexander J,Henriquez FL(2013)Biochemical and immunological characterizationof Toxoplasma gondii macrophage migration inhibitory factor.The Journal ofbiological chemistry 288(18):12733-12741.doi:10.1074/jbc.M112.419911.1. Sommerville C, Richardson JM, Williams RA, Mottram JC, Roberts CW, Alexander J, Henriquez FL (2013) Biochemical and immunological characterization of Toxoplasma gondii macrophage migration inhibitory factor. The Journal ofbiological chemistry 288(18):12733-12741.doi :10.1074/jbc.M112.419911.

2.Buxton D,Innes EA(1995)A commercial vaccine for ovinetoxoplasmosis.Parasitology 110Suppl:S11-16.doi:10.1017/s003118200000144x.2. Buxton D, Innes EA (1995) A commercial vaccine for ovinetoxoplasmosis. Parasitology 110Suppl:S11-16.doi:10.1017/s003118200000144x.

3.Fox BA,Bzik DJ(2002)De novo pyrimidine biosynthesis is required forvirulence of Toxoplasma gondii.Nature 415(6874):926-929.doi:10.1038/415926a.3. Fox BA, Bzik DJ (2002) De novo pyrimidine biosynthesis is required forvirulence of Toxoplasma gondii. Nature 415(6874):926-929.doi:10.1038/415926a.

4.Fox BA,Bzik DJ(2010)Avirulent uracil auxotrophs based on disruptionof orotidine-5'-monophosphate decarboxylase elicit protective immunity toToxoplasma gondii.Infection and immunity 78(9):3744-3752.doi:10.1128/IAI.00287-10.4. Fox BA, Bzik DJ (2010) Avirulent uracil auxotrophs based on disruption of orotidine-5'-monophosphate decarboxylase elicit protective immunity to Toxoplasma gondii. Infection and immunity 78(9):3744-3752.doi:10.1128/IAI.00287-10 .

5.Fox BA,Bzik DJ(2015)Nonreplicating,cyst-defective type IIToxoplasma gondii vaccine strains stimulate protective immunity against acuteand chronic infection.Infection and immunity 83(5):2148-2155.doi:10.1128/IAI.02756-14.5. Fox BA, Bzik DJ (2015) Nonreplicating, cyst-defective type IIToxoplasma gondii vaccine strains stimulate protective immunity against acute and chronic infection. Infection and immunity 83(5):2148-2155.doi:10.1128/IAI.02756-14.

6.Xia N,Zhou T,Liang X,Ye S,Zhao P,Yang J,Zhou Y,Zhao J,Shen B(2018)ALactate Fermentation Mutant of Toxoplasma Stimulates Protective ImmunityAgainst Acute and Chronic Toxoplasmosis.Frontiers in immunology 9:1814.doi:10.3389/fimmu.2018.01814.6. Xia N, Zhou T, Liang X, Ye S, Zhao P, Yang J, Zhou Y, Zhao J, Shen B (2018) ALactate Fermentation Mutant of Toxoplasma Stimulates Protective Immunity Against Acute and Chronic Toxoplasmosis. Frontiers in immunology 9:1814 .doi:10.3389/fimmu.2018.01814.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是如何预防弓形虫病或如何制备稳定有效的预防人和动物感染弓形虫病的疫苗。The technical problem to be solved by the present invention is how to prevent toxoplasmosis or how to prepare a stable and effective vaccine for preventing human and animals from being infected with toxoplasmosis.

为了解决上述技术问题,本发明首先提供了一种免疫原性组合物,所述免疫原性组合物为免疫原性组合物A或免疫原性组合物B。In order to solve the above technical problems, the present invention first provides an immunogenic composition, which is immunogenic composition A or immunogenic composition B.

本发明所提供的免疫原性组合物A的活性成分为由弓形虫的重组蛋白14-3-3、弓形虫的重组蛋白MIF和弓形虫的重组蛋白CDPK3组成;免疫原性组合物B的活性成分为由所述弓形虫的重组蛋白14-3-3和所述弓形虫的重组蛋白CDPK3组成。The active components of the immunogenic composition A provided by the present invention are composed of the recombinant protein 14-3-3 of Toxoplasma gondii, the recombinant protein MIF of Toxoplasma gondii and the recombinant protein CDPK3 of Toxoplasma gondii; the activity of the immunogenic composition B The components are composed of the recombinant protein 14-3-3 of the Toxoplasma gondii and the recombinant protein CDPK3 of the Toxoplasma gondii.

所述弓形虫的重组蛋白14-3-3是如下A1)、A2)、A3)或A4)的蛋白质:The recombinant protein 14-3-3 of Toxoplasma gondii is the following A1), A2), A3) or A4) protein:

A1)氨基酸序列是序列表中序列1的蛋白质,A1) the amino acid sequence is the protein of sequence 1 in the sequence listing,

A2)氨基酸序列是序列表中序列1的第37-302位的蛋白质,A2) the amino acid sequence is the protein at positions 37-302 of sequence 1 in the sequence listing,

A3)在A1)或A2)所示的蛋白质的羧基端或/和氨基端融合蛋白标签得到的融合蛋白,A3) a fusion protein obtained by fusing a protein tag at the carboxy terminus or/and the amino terminus of the protein shown in A1) or A2),

A4)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的且具有相同功能的由A1)或A2)衍生的或与A1)或A2)所示的蛋白质具有80%以上的同一性的蛋白质;A4) The amino acid sequence shown in Sequence 1 in the sequence listing is obtained by substitution and/or deletion and/or addition of one or several amino acid residues and has the same function as derived from A1) or A2) or with A1) Or the protein shown in A2) has more than 80% identity;

所述弓形虫重组蛋白MIF蛋白是如下B1)、B2)、B3)或B4)的蛋白质:The Toxoplasma gondii recombinant protein MIF protein is the protein of the following B1), B2), B3) or B4):

B1)氨基酸序列是序列表中序列3的蛋白质,B1) the amino acid sequence is the protein of sequence 3 in the sequence listing,

B2)氨基酸序列是序列表中序列3的第35-150位的蛋白质,B2) the amino acid sequence is the protein at positions 35-150 of sequence 3 in the sequence listing,

B3)在B1)或B2)的N末端或/和C末端连接蛋白标签得到的融合蛋白质,B3) a fusion protein obtained by linking a protein tag to the N-terminus or/and C-terminus of B1) or B2),

B4)将序列表中序列3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的且具有相同功能的由B1)或B2)衍生的或与B1)或B2)所示的蛋白质具有80%以上的同一性的蛋白质;B4) The amino acid sequence shown in Sequence 3 in the Sequence Listing is obtained by substitution and/or deletion and/or addition of one or several amino acid residues and has the same function derived from B1) or B2) or with B1) Or the protein shown in B2) has more than 80% identity;

所述TgCDPK3蛋白是如下C1)、C2)、C3)或C4)的蛋白质:Said TgCDPK3 protein is the following C1), C2), C3) or C4) protein:

C1)氨基酸序列是序列表中序列5的蛋白质,C1) the amino acid sequence is the protein of sequence 5 in the sequence listing,

C2)氨基酸序列是序列表中序列5的第35-571位的蛋白质,C2) the amino acid sequence is the protein at positions 35-571 of sequence 5 in the sequence listing,

C3)在C1)或C2)的N末端或/和C末端连接蛋白标签得到的融合蛋白质,C3) a fusion protein obtained by linking a protein tag to the N-terminus or/and C-terminus of C1) or C2),

C4)将序列表中序列5所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的且具有相同功能的由C1)或C2)衍生的或与C1)或C2)所示的蛋白质具有80%以上的同一性的蛋白质。C4) The amino acid sequence shown in Sequence 5 in the sequence listing is obtained by substitution and/or deletion and/or addition of one or several amino acid residues and has the same function, derived from C1) or C2) or with C1) or the protein shown in C2) having more than 80% identity.

上述A2)的蛋白质的名称为Tg14-3-3,为来自于弓形虫的蛋白质,上述A1)的蛋白质名称为his-Tg14-3-3,是在A2)的蛋白质的氨基末端融合pET-28a(+)上Nco I和EcoR I识别位点间的序列编码的36个氨基酸残基得到的融合蛋白。The name of the protein of the above A2) is Tg14-3-3, which is a protein from Toxoplasma gondii, and the name of the protein of the above A1) is his-Tg14-3-3, which is fused to the amino terminus of the protein of A2) pET-28a (+) A fusion protein of 36 amino acid residues encoded by the sequence between the recognition sites of Nco I and EcoR I.

上述B2)的蛋白质的名称为TgMIF,为来自于弓形虫的蛋白质,上述B1)的蛋白质名称为his-TgMIF,是在B2)的蛋白质的氨基末端融合pET-28a(+)上Nco I和BamH I识别位点间的序列编码的34个氨基酸残基得到的融合蛋白。The name of the protein of the above-mentioned B2) is TgMIF, which is a protein from Toxoplasma gondii, and the name of the protein of the above-mentioned B1) is his-TgMIF, which is a fusion of Nco I and BamH on pET-28a(+) at the amino terminus of the protein of B2). I recognize the fusion protein of 34 amino acid residues encoded by the sequence between the recognition sites.

上述C2)的蛋白质的名称为TgCDPK3,为来自于弓形虫的蛋白质,上述C1)的蛋白质名称为his-TgCDPK3,是在C2)的蛋白质的氨基末端融合pET-28a(+)上Nco I和BamHI识别位点间的序列编码的34个氨基酸残基得到的融合蛋白。The name of the protein of the above-mentioned C2) is TgCDPK3, which is a protein from Toxoplasma gondii, and the name of the protein of the above-mentioned C1) is his-TgCDPK3, which is a fusion of Nco I and BamHI on pET-28a(+) at the amino terminus of the protein of C2). A fusion protein of 34 amino acid residues encoded by sequences between recognition sites.

上述弓形虫Tg14-3-3蛋白来自于弓形虫RH株,由266个氨基酸残基组成,预测蛋白分子量约30kD,等电点为4.61;上述弓形虫TgMIF蛋白来自于弓形虫ME49株,由116个氨基酸残基组成,预测蛋白分子量约13kD,等电点为8.91。上述弓形虫TgCDPK3蛋白来自于弓形虫ME49株,由537个氨基酸残基组成,预测蛋白分子量约59kD,等电点为5.98。The above Toxoplasma gondii Tg14-3-3 protein comes from the Toxoplasma gondii RH strain and consists of 266 amino acid residues. The predicted protein molecular weight is about 30kD and the isoelectric point is 4.61; the above Toxoplasma gondii TgMIF protein comes from the Toxoplasma gondii ME49 strain, which consists of 116 It is composed of amino acid residues, the predicted protein molecular weight is about 13kD, and the isoelectric point is 8.91. The above Toxoplasma gondii TgCDPK3 protein comes from Toxoplasma gondii ME49 strain and consists of 537 amino acid residues. The predicted protein molecular weight is about 59kD and the isoelectric point is 5.98.

上述蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The above proteins can be artificially synthesized or obtained by first synthesizing their coding genes and then carrying out biological expression.

上述蛋白质中,所述蛋白标签(protein-tag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和/或纯化。所述蛋白标签可为Flag标签、His标签、MBP标签、HA标签、myc标签、GST标签和/或SUMO标签等。Among the above proteins, the protein-tag refers to a polypeptide or protein that is fused and expressed with the target protein using DNA in vitro recombination technology, so as to facilitate the expression, detection, tracking and/or purification of the target protein. The protein tag can be a Flag tag, His tag, MBP tag, HA tag, myc tag, GST tag and/or SUMO tag and the like.

上述蛋白质中,同一性是指氨基酸序列的同一性。可使用国际互联网上的同源性检索站点测定氨基酸序列的同一性,如NCBI主页网站的BLAST网页。例如,可在高级BLAST2.1中,通过使用blastp作为程序,将Expect值设置为10,将所有Filter设置为OFF,使用BLOSUM62作为Matrix,将Gap existence cost,Per residue gap cost和Lambda ratio分别设置为11,1和0.85(缺省值)并进行检索一对氨基酸序列的同一性进行计算,然后即可获得同一性的值(%)。In the above-mentioned proteins, the identity refers to the identity of the amino acid sequence. Amino acid sequence identity can be determined using homology search sites on the Internet, such as the BLAST page of the NCBI homepage website. For example, in advanced BLAST2.1, by using blastp as the program, set the Expect value to 10, set all Filters to OFF, use BLOSUM62 as the Matrix, and set the Gap existence cost, Per residue gap cost and Lambda ratio to be respectively 11, 1 and 0.85 (default value) and search for the identity of a pair of amino acid sequences to calculate the identity value (%).

上述蛋白质中,所述80%以上的同一性可为至少81%、82%、85%、86%、88%、90%、91%、92%、95%、96%、98%、99%或100%的同一性。In the above proteins, the identity of more than 80% may be at least 81%, 82%, 85%, 86%, 88%, 90%, 91%, 92%, 95%, 96%, 98%, 99% or 100% identity.

上述免疫原性组合物A中,所述弓形虫的重组蛋白14-3-3、弓形虫的重组蛋白MIF和弓形虫的重组蛋白CDPK3的质量比为1:1:1(每只老鼠每种蛋白4μg-8μg,总共12-24μg/每只老鼠);上述免疫原性组合物B中,所述弓形虫的重组蛋白14-3-3和弓形虫的重组蛋白CDPK3的质量比为1:1(每只老鼠每种蛋白4μg-8μg,总共12-24μg/每只老鼠)。In the above immunogenic composition A, the mass ratio of the recombinant protein 14-3-3 of Toxoplasma gondii, the recombinant protein MIF of Toxoplasma gondii and the recombinant protein CDPK3 of Toxoplasma gondii is 1:1:1 (each mouse protein 4μg-8μg, total 12-24μg/per mouse); in the above immunogenic composition B, the mass ratio of the recombinant protein 14-3-3 of Toxoplasma gondii and the recombinant protein CDPK3 of Toxoplasma gondii is 1:1 (4 μg-8 μg of each protein per mouse, total 12-24 μg/mouse).

上述免疫原性组合物可为下述任一种产品:The above-mentioned immunogenic composition may be any of the following products:

F1、治疗和/或预防和/或辅助治疗弓形虫感染的产品;F1. Products for the treatment and/or prevention and/or adjunctive treatment of Toxoplasma gondii infection;

F2、提高弓形虫感染后宿主免疫应答能力的产品;F2. Products that improve the immune response of hosts after Toxoplasma infection;

F3、降低弓形虫感染引起的宿主致死率的产品;F3. Products that reduce the host lethality caused by Toxoplasma gondii infection;

F4、减少弓形虫感染导致的宿主脑包囊产生的产品。F4. Products that reduce the production of host brain cysts caused by Toxoplasma gondii infection.

上述产品可为药物或疫苗。The above product can be a drug or a vaccine.

上述提高弓形虫感染后宿主免疫应答能力可为提高弓形虫感染后宿主脾淋巴细胞的细胞因子分泌能力和/或提高弓形虫感染后宿主的脾淋巴细胞的增殖和/或提高机体的抗体产生能力;所述细胞因子可为INF-γ、IL-2、IL-4和/或IL-10。The above-mentioned improvement of the host's immune response ability after Toxoplasma infection can be to improve the cytokine secretion ability of the host's spleen lymphocytes after Toxoplasma infection and/or improve the proliferation of the host's spleen lymphocytes after Toxoplasma infection and/or improve the body's ability to produce antibodies ; The cytokine may be INF-γ, IL-2, IL-4 and/or IL-10.

上述治疗和/或预防和/或辅助治疗弓形虫感染的产品可为用于弓形虫感染预防的疫苗,所述用于弓形虫感染预防的疫苗含有佐剂。The above-mentioned product for the treatment and/or prevention and/or adjuvant treatment of Toxoplasma gondii infection may be a vaccine for the prevention of Toxoplasma gondii infection, and the vaccine for the prevention of Toxoplasma gondii infection contains an adjuvant.

上述佐剂包含弗氏(Freund's adjuvant,FA)完全佐剂和弗氏不完全佐剂。The above adjuvants include Freund's adjuvant (FA) complete adjuvant and Freund's incomplete adjuvant.

上述疫苗中重组蛋白混合物与佐剂的体积比可为1:1。The volume ratio of the recombinant protein mixture to the adjuvant in the vaccine can be 1:1.

上述疫苗可为液体,所述重组蛋白混合物在液体中的蛋白浓度可为0.12mg/mL。The vaccine can be a liquid, and the protein concentration of the recombinant protein mixture in the liquid can be 0.12 mg/mL.

在实际应用中,可以将本发明免疫原组合物或免疫疫苗作为药物直接给予病人或动物、或者与适宜的载体或赋形剂混合后给予病人或动物,以达到预防弓形虫感染的目的。这里的载体材料包括但不限于水溶性载体材料(如聚乙二醇、聚乙烯吡咯烷酮、有机酸等)、难溶性载体材料(如乙基纤维素、胆固醇硬脂酸酯等)、肠溶性载体材料(如醋酸纤维素酞酸酯和羧甲乙纤维素等)。其中优选的是水溶性载体材料。使用这些材料可以制成多种剂型,包括但不限于片剂、胶囊、滴丸、气雾剂、丸剂、粉剂、溶液剂、混悬剂、乳剂、颗粒剂、脂质体、透皮剂、口含片、栓剂、冻干粉针剂等。可以是普通制剂、缓释制剂、控释制剂及各种微粒给药系统。为了将单位给药剂型制成片剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如淀粉、糊精、硫酸钙、乳糖、甘露醇、蔗糖、氯化钠、葡萄糖、尿素、碳酸钙、白陶土、微晶纤维素、硅酸铝等;湿润剂与粘合剂,如水、甘油、聚乙二醇、乙醇、丙醇、淀粉浆、糊精、糖浆、蜂蜜、葡萄糖溶液、阿拉伯胶浆、明胶浆、羧甲基纤维素钠、紫胶、甲基纤维素、磷酸钾、聚乙烯吡咯烷酮等;崩解剂,例如干燥淀粉、海藻酸盐、琼脂粉、褐藻淀粉、碳酸氢钠与枸橼酸、碳酸钙、聚氧乙烯、山梨糖醇脂肪酸酯、十二烷基磺酸钠、甲基纤维素、乙基纤维素等;崩解抑制剂,例如蔗糖、三硬脂酸甘油酯、可可脂、氢化油等;吸收促进剂,例如季铵盐、十二烷基硫酸钠等;润滑剂,例如滑石粉、二氧化硅、玉米淀粉、硬脂酸盐、硼酸、液体石蜡、聚乙二醇等。还可以将片剂进一步制成包衣片,例如糖包衣片、薄膜包衣片、肠溶包衣片,或双层片和多层片。为了将单位给药剂型制成丸剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如葡萄糖、乳糖、淀粉、可可脂、氢化植物油、聚乙烯吡咯烷酮、Gelucire、高岭土、滑石粉等;粘合剂如阿拉伯胶、黄蓍胶、明胶、乙醇、蜂蜜、液糖、米糊或面糊等;崩解剂,如琼脂粉、干燥淀粉、海藻酸盐、十二烷基磺酸钠、甲基纤维素、乙基纤维素等。为了将单位给药剂型制成栓剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如聚乙二醇、卵磷脂、可可脂、高级醇、高级醇的酯、明胶、半合成甘油酯等。为了将单位给药剂型制成注射用制剂,如溶液剂、乳剂、冻干粉针剂和混悬剂,可以使用本领域常用的所有稀释剂,例如,水、乙醇、聚乙二醇、1,3-丙二醇、乙氧基化的异硬脂醇、多氧化的异硬脂醇、聚氧乙烯山梨醇脂肪酸酯等。另外,为了制备等渗注射液,可以向注射用制剂中添加适量的氯化钠、葡萄糖或甘油,此外,还可以添加常规的助溶剂、缓冲剂、pH调节剂等。此外,如需要,也可以向药物制剂中添加着色剂、防腐剂、香料、矫味剂、甜味剂或其它材料。使用上述剂型可以经注射给药,包括皮下注射、静脉注射、肌肉注射和腔内注射等;腔道给药,如经直肠和阴道;呼吸道给药,如经鼻腔;粘膜给药。上述给药途径优选的是注射给药。In practical applications, the immunogen composition or immune vaccine of the present invention can be directly administered to patients or animals as medicines, or mixed with suitable carriers or excipients and administered to patients or animals to prevent Toxoplasma gondii infection. The carrier materials here include, but are not limited to, water-soluble carrier materials (such as polyethylene glycol, polyvinylpyrrolidone, organic acids, etc.), poorly soluble carrier materials (such as ethyl cellulose, cholesterol stearate, etc.), enteric carriers, etc. Materials (such as cellulose acetate phthalate and carboxymethyl ethyl cellulose, etc.). Of these, water-soluble carrier materials are preferred. A variety of dosage forms can be prepared using these materials, including but not limited to tablets, capsules, dropping pills, aerosols, pills, powders, solutions, suspensions, emulsions, granules, liposomes, transdermal agents, Buccal tablets, suppositories, freeze-dried powder injections, etc. It can be general formulation, sustained-release formulation, controlled-release formulation and various microparticle delivery systems. For tableting the unit administration dosage form, a wide variety of carriers well known in the art can be used. Examples of carriers are, for example, diluents and absorbents such as starch, dextrin, calcium sulfate, lactose, mannitol, sucrose, sodium chloride, glucose, urea, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid Aluminum, etc.; wetting agents and binders, such as water, glycerin, polyethylene glycol, ethanol, propanol, starch syrup, dextrin, syrup, honey, glucose solution, acacia mucilage, gelatin pulp, sodium carboxymethylcellulose , shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone, etc.; disintegrating agents, such as dry starch, alginate, agar powder, alginate, sodium bicarbonate and citric acid, calcium carbonate, polyoxyethylene, Sorbitol fatty acid esters, sodium lauryl sulfonate, methyl cellulose, ethyl cellulose, etc.; disintegration inhibitors, such as sucrose, glyceryl tristearate, cocoa butter, hydrogenated oils, etc.; absorption promotion agents, such as quaternary ammonium salts, sodium lauryl sulfate, etc.; lubricants, such as talc, silicon dioxide, corn starch, stearate, boric acid, liquid paraffin, polyethylene glycol, and the like. The tablets can also be further prepared as coated tablets, such as sugar-coated, film-coated, enteric-coated, or bilayer and multi-layer tablets. For formulating the unit administration form into a pill, a wide variety of carriers well known in the art can be used. Examples of carriers are, for example, diluents and absorbents such as glucose, lactose, starch, cocoa butter, hydrogenated vegetable oils, polyvinylpyrrolidone, Gelucire, kaolin, talc, etc.; binders such as acacia, tragacanth, gelatin, etc. , ethanol, honey, liquid sugar, rice paste or batter, etc.; disintegrating agents, such as agar powder, dry starch, alginate, sodium dodecyl sulfonate, methyl cellulose, ethyl cellulose, etc. For formulating the unit administration dosage form as a suppository, a wide variety of carriers well known in the art can be used. Examples of carriers are, for example, polyethylene glycol, lecithin, cocoa butter, higher alcohols, esters of higher alcohols, gelatin, semi-synthetic glycerides and the like. In order to make unit dosage forms into injection preparations, such as solutions, emulsions, lyophilized powders and suspensions, all diluents commonly used in the art can be used, for example, water, ethanol, polyethylene glycol, 1, 3-Propanediol, ethoxylated isostearyl alcohol, polyoxygenated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, and the like. In addition, in order to prepare an isotonic injection, an appropriate amount of sodium chloride, glucose or glycerol can be added to the injection preparation, and in addition, conventional cosolvents, buffers, pH adjusters and the like can be added. In addition, colorants, preservatives, flavors, flavors, sweeteners, or other materials can also be added to the pharmaceutical preparations, if desired. The above-mentioned dosage forms can be administered by injection, including subcutaneous injection, intravenous injection, intramuscular injection and intracavitary injection, etc.; cavity administration, such as rectal and vaginal; respiratory tract administration, such as nasal cavity; mucosal administration. The above-mentioned route of administration is preferably injection administration.

为了解决上述技术问题,本发明还提供了上述免疫原性组合物的制备方法,包含如下步骤:制备所述弓形虫的重组蛋白14-3-3、所述弓形虫的重组蛋白MIF和所述弓形虫的重组蛋白CDPK3,将所述弓形虫的重组蛋白14-3-3、所述弓形虫的重组蛋白MIF和所述弓形虫的重组蛋白CDPK3混合作为所述免疫原性组合物的活性成分,得到所述的免疫原性组合物;In order to solve the above technical problems, the present invention also provides a method for preparing the above immunogenic composition, comprising the following steps: preparing the recombinant protein 14-3-3 of the Toxoplasma gondii, the recombinant protein MIF of the Toxoplasma gondii and the The recombinant protein CDPK3 of Toxoplasma gondii, the recombinant protein 14-3-3 of Toxoplasma gondii, the recombinant protein MIF of Toxoplasma gondii and the recombinant protein CDPK3 of Toxoplasma gondii are mixed as the active ingredients of the immunogenic composition , to obtain the immunogenic composition;

所述弓形虫的重组蛋白14-3-3按照包括如下步骤的方法制备:使所述弓形虫的重组蛋白14-3-3的编码基因在原核微生物中进行表达得到所述弓形虫的重组蛋白14-3-3;The recombinant protein 14-3-3 of Toxoplasma gondii is prepared according to a method comprising the following steps: expressing the gene encoding the recombinant protein 14-3-3 of Toxoplasma gondii in a prokaryotic microorganism to obtain the recombinant protein of Toxoplasma gondii 14-3-3;

所述弓形虫的重组蛋白MIF按照包括如下步骤的方法制备:使所述弓形虫的重组蛋白MIF的编码基因在原核微生物中进行表达得到所述弓形虫的重组蛋白MIF;The recombinant protein MIF of Toxoplasma gondii is prepared according to a method comprising the following steps: expressing the encoding gene of the recombinant protein MIF of Toxoplasma in a prokaryotic microorganism to obtain the recombinant protein MIF of Toxoplasma gondii;

所述弓形虫的重组蛋白CDPK3按照包括如下步骤的方法制备:使所述弓形虫的重组蛋白CDPK3的编码基因在原核微生物中进行表达得到所述弓形虫的重组蛋白CDPK3。The recombinant protein CDPK3 of Toxoplasma gondii is prepared according to a method comprising the following steps: expressing the gene encoding the recombinant protein CDPK3 of Toxoplasma gondii in a prokaryotic microorganism to obtain the recombinant protein CDPK3 of Toxoplasma gondii.

上文中所述佐剂还可含有其它组分,所述其它组分本领域技术人员可根据对疫苗对疾病的预防效果确定。The adjuvant described above may also contain other components, which can be determined by those skilled in the art according to the preventive effect of the vaccine on the disease.

上文中,所述宿主可为人或动物。In the above, the host may be human or animal.

上文中,所述弓形虫感染可为急性弓形虫感染,如弓形虫RH株的感染;也可为慢性弓形虫感染,如弓形虫Pru株的感染。In the above, the Toxoplasma gondii infection can be acute Toxoplasma gondii infection, such as Toxoplasma gondii RH strain infection; it can also be chronic Toxoplasma gondii infection, such as Toxoplasma gondii Pru strain infection.

上述弓形虫的重组蛋白14-3-3的编码基因为如下a1)、a2)或a3)所示的基因:The encoding gene of the recombinant protein 14-3-3 of the above-mentioned Toxoplasma gondii is the gene shown in the following a1), a2) or a3):

a1)编码链的编码序列是序列2所示的DNA分子;a1) The coding sequence of the coding strand is the DNA molecule shown in sequence 2;

a2)编码链的编码序列是序列2的第109-909位所示的DNA分子;a2) The coding sequence of the coding strand is the DNA molecule shown at positions 109-909 of sequence 2;

a3)与a1)或a2)限定的DNA分子具有80%以上的同一性且编码所述弓形虫的重组蛋白14-3-3。a3) has more than 80% identity with the DNA molecule defined in a1) or a2) and encodes the recombinant protein 14-3-3 of the Toxoplasma gondii.

上述弓形虫的重组蛋白MIF的编码基因为如下b1)、b2)或b3)所示的基因:The encoding gene of the recombinant protein MIF of the above-mentioned Toxoplasma gondii is the gene shown in the following b1), b2) or b3):

b1)编码链的编码序列是序列4所示的DNA分子;b1) The coding sequence of the coding strand is the DNA molecule shown in sequence 4;

b2)编码链的编码序列是序列4的第103-453位所示的DNA分子;b2) the coding sequence of the coding strand is the DNA molecule shown at positions 103-453 of sequence 4;

b3)与b1)或b2)限定的DNA分子具有80%以上的同一性且编码所述弓形虫的重组蛋白MIF。b3) has more than 80% identity with the DNA molecule defined by b1) or b2) and encodes the recombinant protein MIF of said Toxoplasma gondii.

上述弓形虫的重组蛋白14-3-3的编码基因为如下c1)、c2)或c3)所示的基因:The encoding gene of the recombinant protein 14-3-3 of the above-mentioned Toxoplasma gondii is the gene shown in the following c1), c2) or c3):

c1)编码链的编码序列是序列6所示的DNA分子;c1) The coding sequence of the coding strand is the DNA molecule shown in sequence 6;

c2)编码链的编码序列是序列6的第103-1716位所示的DNA分子;c2) the coding sequence of the coding strand is the DNA molecule shown at positions 103-1716 of sequence 6;

c3)与c1)或c2)限定的DNA分子具有80%以上的同一性且编码所述弓形虫的重组蛋白CDPK3。c3) has more than 80% identity with the DNA molecule defined by c1) or c2) and encodes the recombinant protein CDPK3 of the Toxoplasma gondii.

上文使所述弓形虫的重组蛋白14-3-3的编码基因在原核微生物中进行表达包括将所述弓形虫的重组蛋白14-3-3的编码基因导入受体大肠杆菌,得到表达所述弓形虫的重组蛋白14-3-3的重组大肠杆菌,培养所述重组大肠杆菌,表达得到所述弓形虫的重组蛋白14-3-3。The above-mentioned expression of the encoding gene of the recombinant protein 14-3-3 of Toxoplasma gondii in a prokaryotic microorganism includes introducing the encoding gene of the recombinant protein 14-3-3 of Toxoplasma gondii into the recipient Escherichia coli to obtain the expression The recombinant Escherichia coli of the Toxoplasma gondii recombinant protein 14-3-3 is cultured, and the recombinant Toxoplasma gondii protein 14-3-3 is obtained by expressing the recombinant Escherichia coli.

使所述弓形虫的重组蛋白MIF的编码基因在原核微生物中进行表达包括将所述弓形虫的重组蛋白MIF的编码基因导入受体大肠杆菌,得到表达所述弓形虫的重组蛋白MIF的重组大肠杆菌,培养所述重组大肠杆菌,表达得到所述弓形虫的重组蛋白MIF。Expressing the gene encoding the recombinant protein MIF of Toxoplasma gondii in a prokaryotic microorganism comprises introducing the gene encoding the recombinant protein MIF of Toxoplasma into a recipient Escherichia coli to obtain a recombinant large intestine expressing the recombinant protein MIF of Toxoplasma gondii Bacillus, culture the recombinant Escherichia coli, and express the recombinant protein MIF of the Toxoplasma gondii.

使所述弓形虫的重组蛋白CDPK3的编码基因在原核微生物中进行表达包括将所述弓形虫的重组蛋白CDPK3的编码基因导入受体大肠杆菌,得到表达所述弓形虫的重组蛋白CDPK3的重组大肠杆菌,培养所述重组大肠杆菌,表达得到所述弓形虫的重组蛋白CDPK3。Expressing the gene encoding the recombinant protein CDPK3 of the Toxoplasma gondii in a prokaryotic microorganism comprises introducing the gene encoding the recombinant protein CDPK3 of the Toxoplasma gondii into a recipient Escherichia coli to obtain a recombinant large intestine expressing the recombinant protein CDPK3 of the Toxoplasma gondii Bacillus, culturing the recombinant Escherichia coli, and expressing the recombinant protein CDPK3 of the Toxoplasma gondii.

上文表达所述弓形虫的重组蛋白14-3-3的重组大肠杆菌为将pET-28a-Tg14-3-3导入大肠杆菌BL21(DE3)得到的表达氨基酸序列是序列1的所述弓形虫的重组蛋白14-3-3的重组微生物,所述重组微生物命名为BL21(DE3)/pET-28a-Tg14-3-3,所述pET-28a-Tg14-3-3为将载体pET-28a(+)的EcoR I和Xho I识别位点间的小片段替换为序列2第109-909位所示的DNA片段得到的重组载体;The recombinant Escherichia coli expressing the recombinant protein 14-3-3 of the Toxoplasma gondii described above is the Toxoplasma gondii whose expressed amino acid sequence obtained by introducing pET-28a-Tg14-3-3 into Escherichia coli BL21 (DE3) is the sequence 1 The recombinant microorganism of the recombinant protein 14-3-3, the recombinant microorganism is named BL21(DE3)/pET-28a-Tg14-3-3, and the pET-28a-Tg14-3-3 is the vector pET-28a (+) A recombinant vector obtained by replacing the small fragment between the EcoR I and Xho I recognition sites with the DNA fragment shown at positions 109-909 of sequence 2;

表达所述弓形虫的重组蛋白MIF的重组大肠杆菌为将pET-28a-TgMIF导入大肠杆菌BL21(DE3)得到的表达氨基酸序列是序列3的所述弓形虫的重组蛋白MIF的重组微生物,所述重组微生物命名为BL21(DE3)/pET-28a-TgMIF,所述pET-28a-TgMIF为将载体pET-28a(+)的BamHI和Xho I识别位点间的小片段替换为序列4第103-453位所示的DNA片段得到的重组载体;The recombinant Escherichia coli expressing the recombinant protein MIF of Toxoplasma gondii is a recombinant microorganism obtained by introducing pET-28a-TgMIF into Escherichia coli BL21 (DE3) and expressing the recombinant protein MIF of the Toxoplasma gondii whose amino acid sequence is sequence 3, the The recombinant microorganism was named BL21(DE3)/pET-28a-TgMIF, and the pET-28a-TgMIF was a small fragment between the BamHI and Xho I recognition sites of the vector pET-28a(+) was replaced with sequence 4, the 103rd- The recombinant vector obtained from the DNA fragment shown at position 453;

表达所述弓形虫的重组蛋白CDPK3的重组大肠杆菌为将pET-28a-TgCDPK3导入大肠杆菌BL21(DE3)得到的表达氨基酸序列是序列5的所述弓形虫的重组蛋白CDPK3的重组微生物,所述重组微生物命名为BL21(DE3)/pET-28a-TgCDPK3,所述pET-28a-TgCDPK3为将载体pET-28a(+)的BamH I和Xho I识别位点间的小片段替换为序列6第103-1716位所示的DNA片段得到的重组载体。The recombinant Escherichia coli expressing the recombinant protein CDPK3 of Toxoplasma gondii is a recombinant microorganism whose amino acid sequence obtained by introducing pET-28a-TgCDPK3 into Escherichia coli BL21 (DE3) is the recombinant protein CDPK3 of the Toxoplasma gondii in sequence 5, and the The recombinant microorganism was named BL21(DE3)/pET-28a-TgCDPK3, and the pET-28a-TgCDPK3 was a small fragment between the BamH I and Xho I recognition sites of the vector pET-28a(+) was replaced with sequence 6, the 103rd - A recombinant vector obtained from the DNA fragment shown at position 1716.

为了解决上述技术问题,本发明还提供了上述免疫原性组合物中弓形虫蛋白相关的生物材料。所述生物材料为下述任一种:In order to solve the above technical problem, the present invention also provides the biological material related to Toxoplasma gondii protein in the above immunogenic composition. The biological material is any of the following:

H1)编码权利要求1中所述弓形虫重组蛋白14-3-3、MIF和/或CDPK3的核酸分子;H1) a nucleic acid molecule encoding the Toxoplasma gondii recombinant protein 14-3-3, MIF and/or CDPK3 described in claim 1;

H2)含有H1)所述核酸分子的表达盒;H2) an expression cassette containing the nucleic acid molecule described in H1);

H3)含有H1)所述核酸分子的重组载体、或含有H2)所述表达盒的重组载体;H3) a recombinant vector containing the nucleic acid molecule described in H1) or a recombinant vector containing the expression cassette described in H2);

H4)含有H1)所述核酸分子的重组微生物、或含有H2)所述表达盒的重组微生物、或含有H3)所述重组载体的重组微生物;H4) a recombinant microorganism containing the nucleic acid molecule described in H1), or a recombinant microorganism containing the expression cassette described in H2), or a recombinant microorganism containing the recombinant vector described in H3);

H5)含有H1)所述核酸分子的重组细胞系、或含有H2)所述表达盒的重组细胞系;H5) a recombinant cell line containing the nucleic acid molecule of H1), or a recombinant cell line containing the expression cassette of H2);

H6)含有H1)所述核酸分子的转基因动物组织、或含有H2)所述表达盒的转基因动物组织;H6) a transgenic animal tissue containing the nucleic acid molecule described in H1), or a transgenic animal tissue containing the expression cassette described in H2);

H7)含有H1)所述核酸分子的宿主细胞、或含有H2)所述表达盒的宿主细胞。H7) a host cell containing the nucleic acid molecule of H1), or a host cell containing the expression cassette of H2).

上述生物材料中,H1)所述核酸分子具体可为如下b1)b2)和/或b3)所示的所述弓形虫重组蛋白14-3-3、MIF和/或CDPK3的编码基因:In the above-mentioned biological material, the nucleic acid molecule of H1) may specifically be the encoding gene of the Toxoplasma recombinant protein 14-3-3, MIF and/or CDPK3 shown in the following b1) b2) and/or b3):

b1)编码链的编码序列(ORF)是序列表中序列2的第1-909位核苷酸的DNA分子;或编码链的核苷酸序列是序列表中序列2的DNA分子;或在严格条件下与2)限定的DNA分子杂交且编码具有相同功能的蛋白质的DNA分子;b1) The coding sequence (ORF) of the coding strand is the DNA molecule of nucleotides 1-909 of sequence 2 in the sequence listing; or the nucleotide sequence of the coding strand is the DNA molecule of sequence 2 in the sequence listing; or A DNA molecule that hybridizes with the DNA molecule defined in 2) under conditions and encodes a protein with the same function;

b2)编码链的编码序列(ORF)是序列表中序列4的第1-453位核苷酸的DNA分子;或编码链的核苷酸序列是序列表中序列4的DNA分子;或在严格条件下与2)限定的DNA分子杂交且编码具有相同功能的蛋白质的DNA分子;b2) The coding sequence (ORF) of the coding strand is the DNA molecule of nucleotides 1-453 of sequence 4 in the sequence listing; or the nucleotide sequence of the coding strand is the DNA molecule of sequence 4 in the sequence listing; or A DNA molecule that hybridizes with the DNA molecule defined in 2) under conditions and encodes a protein with the same function;

b3)编码链的编码序列(ORF)是序列表中序列6的第1-1716位核苷酸的DNA分子;或编码链的核苷酸序列是序列表中序列6的DNA分子;或在严格条件下与2)限定的DNA分子杂交且编码具有相同功能的蛋白质的DNA分子。b3) The coding sequence (ORF) of the coding strand is the DNA molecule of nucleotides 1-1716 of sequence 6 in the sequence listing; or the nucleotide sequence of the coding strand is the DNA molecule of sequence 6 in the sequence listing; or A DNA molecule that hybridizes to the DNA molecule defined in 2) under the conditions and encodes a protein with the same function.

上述严格条件是在2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;或,0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。The above stringent conditions were hybridized in a solution of 2 × SSC, 0.1% SDS at 68 °C and washed twice for 5 min, and then in a solution of 0.5 × SSC, 0.1% SDS at 68 °C. Wash the membrane twice for 15 min each; or, hybridize and wash the membrane in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS at 65°C.

上述生物材料中,H2)所述的含有核酸分子的表达盒,是指能够在宿主细胞中表达上文所述蛋白质的DNA。所述表达盒还可包括表达上述任意一种蛋白的核酸分子所必需的所有调控序列的单链或双链核酸分子。所述调控序列在其相容条件下能指导编码序列在合适的宿主细胞中表达上述任一种蛋白质。所述调控序列包括,但不限于,前导序列、多聚腺苷酸化序列、前肽序列、启动子、信号序列和转录终止子。最低限度,调控序列要包括启动子以及转录和翻译的终止信号。为了导入载体的特定限制性酶位点以便将调控序列与编码蛋白质的核酸序列的编码区进行连接,可以提供带接头的调控序列。调控序列可以是合适的启动子序列,即可被表达核酸序列的宿主细胞识别的核酸序列。启动子序列含有介导蛋白质表达的转录调控序列。启动子可以是在所选宿主细胞中有转录活性的任何核酸序列,包括突变的、截短的和杂合的启动子,可以得自编码与宿主细胞同源或异源的胞外或胞内蛋白质的基因。调控序列还可以是合适的转录终止序列,即能被宿主细胞识别从而终止转录的一段序列。终止序列可操作连接在编码蛋白质的核酸序列的3’末端。在所选宿主细胞中可发挥功能的任何终止子都可以用于本发明。调控序列还可以是合适的前导序列,即对宿主细胞的翻译十分重要的mRNA非翻译区。前导序列可操作连接于编码蛋白质的核酸序列的5’末端。在所选宿主细胞中可发挥功能的任何前导序列均可用于本发明。调控序列还可以是信号肽编码区,该区编码一段连在蛋白质氨基端的氨基酸序列,能引导编码蛋白质进入细胞分泌途径。能引导表达后的蛋白质进入所用宿主细胞的分泌途径的信号肽编码区都可以用于本发明。添加能根据宿主细胞的生长情况来调节蛋白质表达的调控序列可能也是需要的。调控系统的例子是那些能对化学或物理刺激物(包括在有调控化合物的情况下)作出反应,从而开放或关闭基因表达的系统。调控序列的其他例子是那些能使基因扩增的调控序列。在这些例子中,应将编码蛋白质的核酸序列与调控序列可操作连接在一起。In the above-mentioned biological materials, the expression cassette containing nucleic acid molecules described in H2) refers to DNA capable of expressing the above-mentioned proteins in host cells. The expression cassette may also include a single- or double-stranded nucleic acid molecule of all regulatory sequences necessary for the nucleic acid molecule to express any of the above proteins. The regulatory sequences are capable of directing the coding sequence to express any of the proteins described above in a suitable host cell under compatible conditions. Such regulatory sequences include, but are not limited to, leader sequences, polyadenylation sequences, propeptide sequences, promoters, signal sequences, and transcription terminators. At a minimum, the regulatory sequences include a promoter and transcriptional and translational termination signals. The regulatory sequences with linkers can be provided for the purpose of introducing specific restriction enzyme sites of the vector for ligation of the regulatory sequences with the coding region of the protein-encoding nucleic acid sequence. The regulatory sequence may be a suitable promoter sequence, ie, a nucleic acid sequence that is recognized by the host cell in which the nucleic acid sequence is expressed. Promoter sequences contain transcriptional regulatory sequences that mediate protein expression. The promoter can be any nucleic acid sequence that is transcriptionally active in the host cell of choice, including mutated, truncated and hybrid promoters, and can be derived from extracellular or intracellular encoding homologous or heterologous to the host cell protein genes. The regulatory sequence may also be a suitable transcription termination sequence, ie, a sequence recognized by the host cell to terminate transcription. Termination sequences are operably linked to the 3' terminus of the protein-encoding nucleic acid sequence. Any terminator that is functional in the host cell of choice can be used in the present invention. The regulatory sequence may also be a suitable leader sequence, an untranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5' terminus of the protein-encoding nucleic acid sequence. Any leader sequence that is functional in the host cell of choice can be used in the present invention. The control sequence can also be a signal peptide coding region, which encodes an amino acid sequence linked to the amino terminus of the protein, which can guide the encoded protein into the cell secretion pathway. Any signal peptide coding region capable of directing the expressed protein into the secretory pathway of the host cell used can be used in the present invention. It may also be desirable to add regulatory sequences that regulate protein expression depending on the growth conditions of the host cell. Examples of regulatory systems are those that turn gene expression on or off in response to chemical or physical stimuli, including in the presence of regulatory compounds. Other examples of regulatory sequences are those that enable gene amplification. In these instances, the nucleic acid sequence encoding the protein is operably linked to the regulatory sequences.

本发明还涉及包含本发明编码上述任一种蛋白质的核酸分子、启动子和转录及翻译终止信号的重组表达载体。制备表达载体时,可使编码上述任一种蛋白的核酸分子位于载体中以便与适当的表达调控序列可操作连接。重组表达载体可以是任何便于进行重组DNA操作并表达核酸序列的载体(例如质粒或病毒)。载体的选择通常取决于载体与它将要导入的宿主细胞的相容性。载体可以是线性或闭环质粒。载体可以是自主复制型载体(即存在于染色体外的完整结构,可独立于染色体进行复制),例如质粒、染色体外元件、微小染色体或人工染色体。载体可包含保证自我复制的任何机制。或者,载体是一个当导入宿主细胞时,将整合到基因组中并与所整合到的染色体一起复制的载体。此外,可应用单个载体或质粒,或总体包含将导入宿主细胞基因组的全部DNA的两个或多个载体或质粒,或转座子。所述载体含有1或多个便于选择转化细胞的选择标记。选择标记是这样一个基因,其产物赋予对杀生物剂或病毒的抗性、对重金属的抗性,或赋予营养缺陷体原养型等。细菌选择标记的例子如枯草芽孢杆菌或地衣芽孢杆菌的dal基因,或者抗生素如氨苄青霉素、卡那霉素、氯霉素或四环素的抗性标记。载体包含能使载体稳定整合到宿主细胞基因组中,或保证载体在细胞中独立于细胞基因组而进行自主复制的元件。就进行自主复制的情况而言,载体还可以包含复制起点,使载体能在目标宿主细胞中自主地复制。复制起点可以带有使其在宿主细胞中成为温度敏感型的突变(参见例如,fEhrlich,1978,美国国家科学院学报75:1433)。可以向宿主细胞插入1个以上拷贝的本发明编码上述任一种蛋白质的核酸分子以提高该基因产物的产量。该核酸分子的拷贝数增加可以通过将该核酸分子的至少1个附加拷贝插入宿主细胞基因组中,或者与该核酸分子一起插入一个可扩增的选择标记,通过在有合适选择试剂存在下培养细胞,挑选出含有扩增拷贝的选择性标记基因、从而含有附加拷贝核酸分子的细胞。用于连接上述各元件来构建本发明所述重组表达载体的操作是本领域技术人员所熟知的(参见例如Sambrook等,分子克隆实验室手册,第二版,冷泉港实验室出版社,冷泉港,纽约,1989)。The present invention also relates to a recombinant expression vector comprising a nucleic acid molecule of the present invention encoding any of the above proteins, a promoter and transcriptional and translational stop signals. When an expression vector is prepared, a nucleic acid molecule encoding any of the above proteins can be located in the vector so as to be operably linked to the appropriate expression control sequences. A recombinant expression vector can be any vector (eg, plasmid or virus) that facilitates recombinant DNA manipulation and expression of nucleic acid sequences. The choice of vector will generally depend on the compatibility of the vector with the host cell into which it is to be introduced. Vectors can be linear or closed circular plasmids. The vector may be an autonomously replicating vector (ie, a complete structure that exists extrachromosomally and can replicate independently of the chromosome), such as a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any mechanism to ensure self-replication. Alternatively, the vector is one that, when introduced into a host cell, will integrate into the genome and replicate with the chromosome into which it is integrated. In addition, a single vector or plasmid, or two or more vectors or plasmids that collectively contain the entire DNA to be introduced into the genome of the host cell, or transposons, can be used. The vector contains one or more selectable markers that facilitate selection of transformed cells. A selectable marker is a gene whose product confers resistance to biocides or viruses, resistance to heavy metals, or prototrophy to auxotrophs, and the like. Examples of bacterial selectable markers are the dal genes of Bacillus subtilis or Bacillus licheniformis, or resistance markers to antibiotics such as ampicillin, kanamycin, chloramphenicol or tetracycline. The vector contains elements that enable stable integration of the vector into the host cell genome, or ensure that the vector replicates autonomously in the cell independently of the cell genome. In the case of autonomous replication, the vector may also contain an origin of replication that enables the vector to replicate autonomously in the target host cell. The origin of replication may carry mutations that render it temperature sensitive in the host cell (see eg, fEhrlich, 1978, Proceedings of the National Academy of Sciences 75:1433). One or more copies of a nucleic acid molecule of the invention encoding any of the above proteins can be inserted into a host cell to increase the yield of the gene product. The copy number of the nucleic acid molecule can be increased by inserting at least 1 additional copy of the nucleic acid molecule into the genome of the host cell, or by inserting an amplifiable selectable marker together with the nucleic acid molecule, by culturing the cell in the presence of a suitable selection reagent , cells are selected that contain amplified copies of the selectable marker gene and thus contain additional copies of the nucleic acid molecule. Procedures for ligating the above elements to construct recombinant expression vectors of the present invention are well known to those skilled in the art (see, e.g., Sambrook et al., Molecular Cloning Laboratory Handbook, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor. , New York, 1989).

术语“可操作连接”在文中定义为这样一种构象,其中调控序列位于相对DNA序列之编码序列的适当位置,以使调控序列指导蛋白质的表达。The term "operably linked" is defined herein as a conformation in which the regulatory sequence is positioned in place relative to the coding sequence of the DNA sequence such that the regulatory sequence directs the expression of the protein.

本发明的还涉及一种含有编码上述任一种蛋白质的核酸分子的重组细胞。重组细胞可以是原核细胞或者真核细胞,例如细菌(如大肠杆菌细胞)或酵母细胞。The present invention also relates to a recombinant cell containing a nucleic acid molecule encoding any of the above proteins. Recombinant cells can be prokaryotic or eukaryotic cells, such as bacteria (eg, E. coli cells) or yeast cells.

本发明的实施例中使用弓形虫14-3-3+MIF+CDPK3混合重组蛋白免疫小鼠可以诱导小鼠产生有效的体液和细胞免疫应答,有效地提高弓形虫RH株急性感染小鼠的生存率,明显延长小鼠存活时间,显著减少慢性感染Pru株弓形虫小鼠脑组织中的包囊数量。该混合重组蛋白制备的疫苗可以作为控制弓形虫急性或慢性感染的有效候选疫苗,用于人和动物弓形虫病的预防。In the examples of the present invention, immunizing mice with Toxoplasma 14-3-3+MIF+CDPK3 mixed recombinant protein can induce mice to produce effective humoral and cellular immune responses, and effectively improve the survival of mice acutely infected with Toxoplasma RH strain rate, significantly prolong the survival time of mice, and significantly reduce the number of cysts in the brain tissue of mice chronically infected with Pru strains of Toxoplasma gondii. The vaccine prepared by the mixed recombinant protein can be used as an effective candidate vaccine for controlling acute or chronic infection of Toxoplasma gondii for the prevention of toxoplasmosis in humans and animals.

附图说明Description of drawings

图1为免疫鼠血清特异性IgG水平图。每次免疫前一天取血,即0d、14d、28d、42d,分离血清,使用ELISA测定的小鼠血清IgG的含量。“***”代表差异极显著,p<0.001。Figure 1 is a graph showing the level of specific IgG in serum of immunized mice. Blood was collected one day before each immunization, namely 0d, 14d, 28d, and 42d, the serum was separated, and the content of IgG in mouse serum was determined by ELISA. "***" represents a very significant difference, p<0.001.

图2为小鼠脾淋巴细胞增殖图。纵坐标为平均刺激指数;不同字母代表多重比较结果显示差异显著,p<0.01。Figure 2 is a graph showing the proliferation of mouse spleen lymphocytes. The ordinate is the average stimulation index; different letters represent the multiple comparison results showing significant difference, p<0.01.

图3为小鼠脾淋巴细胞细胞因子检测图。不同字母代表多重比较结果显示差异显著,p<0.01。Figure 3 is a graph showing the detection of cytokines in mouse spleen lymphocytes. Different letters represent multiple comparison results showing significant difference, p<0.01.

图4为为RH株速殖子感染后小鼠存活率曲线(A)和Pru株感染后各组小鼠脑包囊数图(B)。“***”代表差异极显著,p<0.001。不同字母代表多重比较结果显示差异显著,p<0.01。Figure 4 is a graph showing the survival rate of mice infected with RH strain tachyzoites (A) and the number of brain cysts in each group of mice infected with Pru strain (B). "***" represents a very significant difference, p<0.001. Different letters represent multiple comparison results showing significant difference, p<0.01.

图5为原核表达载体pET-28a(+)质粒图。Figure 5 is the plasmid map of the prokaryotic expression vector pET-28a(+).

图6为重组载体pET-28a-Tg14-3-3质粒图,酶切位点为Ecol I和Xho I。Figure 6 is the plasmid map of the recombinant vector pET-28a-Tg14-3-3, the restriction sites are Ecol I and Xho I.

图7为重组载体pET-28a-TgMIF质粒图,酶切位点为BamH I和Xho I。Figure 7 is the plasmid map of the recombinant vector pET-28a-TgMIF, the restriction sites are BamH I and Xho I.

图8为重组载体pET-28a-TgCDPK3质粒图,酶切位点为BamH I和Xho I。Figure 8 is the plasmid map of the recombinant vector pET-28a-TgCDPK3, the restriction sites are BamH I and Xho I.

具体实施方式Detailed ways

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be further described in detail below with reference to the specific embodiments, and the given examples are only for illustrating the present invention, rather than for limiting the scope of the present invention. The examples provided below can serve as a guide for those of ordinary skill in the art to make further improvements, and are not intended to limit the present invention in any way.

下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods in the following examples, unless otherwise specified, are conventional methods, and are performed according to the techniques or conditions described in the literature in the field or according to the product specification. The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.

下述实施例中的弓形虫RH株和ME49株(本实验室保存,参考本实验室已发表论文Encephalitis is mediated by ROP18 of Toxoplasma gondii,a severe pathogen inAIDS patients.和Vaccination with recombinant Toxoplasma gondii CDPK3inducesprotective immunity against experimental toxoplasmosis.)Toxoplasma gondii RH strain and ME49 strain in the following examples (preserved in our laboratory, refer to the papers published in our laboratory Encephalitis is mediated by ROP18 of Toxoplasma gondii, a severe pathogen in AIDS patients. and Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis.)

试验所得数据用Excel软件处理,并用SPSS软件中的单因素方差分析程序对数据进行方差分析和多重比较。The data obtained from the test were processed by Excel software, and the data were analyzed by one-way ANOVA program in SPSS software for analysis of variance and multiple comparisons.

实施例1混合蛋白疫苗的制备及其免疫效果评估Example 1 Preparation of mixed protein vaccine and evaluation of its immune effect

(一)构建原核表达质粒pET-28a-Tg14-3-3、pET28a-TgMIF和pET-28a-TgCDPK3(1) Construction of prokaryotic expression plasmids pET-28a-Tg14-3-3, pET28a-TgMIF and pET-28a-TgCDPK3

1、弓形虫总RNA的提取:从液氮中取出弓形虫RH株和ME49株,37℃迅速解冻后加入HFF细胞中培养,连续传代三次后,收集弓形虫RH株和ME49株,室温4000rpm离心10min,沉淀用于总RNA提取,加入Trizol,根据常规RNA提取方法进行。1. Extraction of total RNA of Toxoplasma gondii: Take out Toxoplasma gondii RH strain and ME49 strain from liquid nitrogen, quickly thaw at 37°C and add to HFF cells for culture. After three consecutive passages, collect Toxoplasma gondii RH strain and ME49 strain, and centrifuge at 4000 rpm at room temperature After 10 min, precipitation was used for total RNA extraction, Trizol was added, and it was carried out according to conventional RNA extraction methods.

2、Tg14-3-3、TgMIF和TgCDPK3基因的特异性扩增:以弓形虫RH株总RNA为模板,参照PrimeScriptTMRT Master Mix(Perfect Real Time)试剂盒(TaKaRa)使用说明,特异性扩增Tg14-3-3目的基因;以弓形虫ME49株总RNA为模板,使用相同的试剂盒特异性扩增TgMIF和TgCDPK3目的基因。反应体系为:5×PrimeScript RT Master Mix(Perfect Real Time)2μl,总RNA模板3μl,补加RNase Free dH2O至10μl,逆转录反应条件为:37℃反应15min,85℃失活5s。2. Specific amplification of Tg14-3-3, TgMIF and TgCDPK3 genes: using the total RNA of Toxoplasma gondii RH strain as a template, and referring to the instruction manual of PrimeScript TM RT Master Mix (Perfect Real Time) kit (TaKaRa), specific amplification Increase the target gene of Tg14-3-3; take the total RNA of Toxoplasma gondii ME49 strain as the template, and use the same kit to specifically amplify the target gene of TgMIF and TgCDPK3. The reaction system was: 2 μl of 5×PrimeScript RT Master Mix (Perfect Real Time), 3 μl of total RNA template, supplemented with RNase Free dH 2 O to 10 μl, and the reverse transcription reaction conditions were: 37 °C for 15 min, and 85 °C for inactivation for 5 s.

Tg14-3-3基因的特异性扩增反应条件为:95℃预变性5min;95℃变性20s,57℃退火20s,72℃延伸30s,共进行35个循环,最后72℃延伸10min。上游引物:GCAGAATTCATGGCGGAGGAAATCA,下游引物:GCACTCGAGTTACTGATCAGCTTG。单划线标注处分别代表酶切位点EcoR I和XhoI。The specific amplification reaction conditions of Tg14-3-3 gene were: pre-denaturation at 95°C for 5 min; denaturation at 95°C for 20s, annealing at 57°C for 20s, extension at 72°C for 30s, a total of 35 cycles, and a final extension at 72°C for 10 min. Upstream primer: GCA GAATTC ATGGCGGAGGAAATCA, downstream primer: GCA CTCGAG TTACTGATCAGCTTG. The single-line marks represent the restriction sites EcoR I and XhoI, respectively.

TgMIF基因的特异性扩增反应条件为:95℃预变性5min;95℃变性20s,60℃退火20s,72℃延伸30s,共进行35个循环,最后72℃延伸10min。上游引物:GGATCCATGCCCAAGTGCATGA,下游引物:CTCGAGTCAGCCGAAAGTTCGGT。单划线标注处分别代表酶切位点BamH I和Xho I。The specific amplification reaction conditions of TgMIF gene were as follows: pre-denaturation at 95°C for 5 min; denaturation at 95°C for 20s, annealing at 60°C for 20s, extension at 72°C for 30s, a total of 35 cycles, and a final extension at 72°C for 10 min. Upstream primer: GGATCC ATGCCCAAGTGCATGA, downstream primer: CTCGAG TCAGCCGAAAGTTCGGT. The single-line marks represent the enzyme cleavage sites BamH I and Xho I, respectively.

TgCDPK3基因的特异性扩增反应条件为:95℃预变性5min;95℃变性20s,58℃退火20s,72℃延伸30s,共进行35个循环,最后72℃延伸10min。上游引物:GGATCCATGGGGTGCGTCCAC,下游引物:CTCGAGTCAGTGCTTCACTTTGACGTCG。单划线标注处分别代表酶切位点BamH I和Xho I。The specific amplification reaction conditions of TgCDPK3 gene were as follows: pre-denaturation at 95°C for 5 min; denaturation at 95°C for 20s, annealing at 58°C for 20s, extension at 72°C for 30s, a total of 35 cycles, and a final extension at 72°C for 10 min. Upstream primer: GGATCC ATGGGGTGCGTCCAC, downstream primer: CTCGAG TCAGTGCTTCACTTTGACGTCG. The single-line marks represent the enzyme cleavage sites BamH I and Xho I, respectively.

3、目的基因的连接、转化与测序:Tg14-3-3基因的RT-PCR产物经回收纯化后与pET-28a(+)(简称pET-28a)经EcoR I和Xho I双酶切后,16℃条件下连接过夜,将连接产物转入TOP10感受态细胞。阳性克隆送上海生工生物工程有限公司进行测序。3. The connection, transformation and sequencing of the target gene: The RT-PCR product of the Tg14-3-3 gene is recovered and purified with pET-28a(+) (referred to as pET-28a) after double digestion with EcoR I and Xho I, The ligation was performed overnight at 16°C, and the ligation product was transferred into TOP10 competent cells. Positive clones were sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing.

TgMIF基因的RT-PCR产物经回收纯化后与pET-28a(+)经BamH I和Xho I双酶切后,16℃条件下连接过夜,将连接产物转入TOP10感受态细胞。阳性克隆送上海生工生物工程有限公司进行测序。The RT-PCR product of TgMIF gene was recovered and purified, double digested with BamH I and Xho I with pET-28a(+), and then ligated overnight at 16°C, and the ligated product was transferred into TOP10 competent cells. Positive clones were sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing.

TgCDPK3基因的RT-PCR产物经回收纯化后与pET-28a(+)经BamH I和Xho I双酶切后,16℃条件下连接过夜,将连接产物转入TOP10感受态细胞。阳性克隆送上海生工生物工程有限公司进行测序。After recovery and purification, the RT-PCR product of TgCDPK3 gene was double digested with BamH I and Xho I with pET-28a(+), and then ligated overnight at 16°C, and the ligated product was transferred into TOP10 competent cells. Positive clones were sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing.

测序结果表明Tg14-3-3基因与载体pET-28a(+)的连接产物是用序列表中序列2的第109-909位所示的Tg14-3-3基因替换pET-28a(+)的EcoR I和Xho I识别位点间的片段(小片段),保持pET-28a(+)的其它序列不变得到的重组表达载体,命名为pET-28a-Tg14-3-3。pET-28a-Tg14-3-3是含有His标签的his-Tg14-3-3基因,his-Tg14-3-3基因的核苷酸序列是序列2,编码序列1所示的蛋白质his-Tg14-3-3。BL21(DE3)/pET-28a-Tg14-3-3导入大肠杆菌命名为BL21(DE3)能表达序列1所示的蛋白质his-Tg14-3-3。The sequencing results showed that the ligation product of the Tg14-3-3 gene and the vector pET-28a(+) was the replacement of pET-28a(+) with the Tg14-3-3 gene shown in positions 109-909 of sequence 2 in the sequence listing. The fragment (small fragment) between the recognition sites of EcoR I and Xho I, and the recombinant expression vector obtained by keeping other sequences of pET-28a(+) unchanged, was named pET-28a-Tg14-3-3. pET-28a-Tg14-3-3 is the his-Tg14-3-3 gene containing a His tag, the nucleotide sequence of the his-Tg14-3-3 gene is sequence 2, and encodes the protein his-Tg14 shown in sequence 1 -3-3. BL21(DE3)/pET-28a-Tg14-3-3 was introduced into Escherichia coli and named BL21(DE3) to express the protein his-Tg14-3-3 shown in SEQ ID NO: 1.

TgMIF基因与载体pET-28a(+)的连接产物是用序列表中序列4的第103-453位所示的TgMIF基因替换pET-28a(+)的BamH I和Xho I识别位点间的片段(小片段),保持pET-28a(+)的其它序列不变得到的重组表达载体,命名为pET-28a-TgMIF。pET-28a-TgMIF是含有His标签的his-TgMIF基因,his-TgMIF基因的核苷酸序列是序列4,编码序列3所示的蛋白质his-TgMIF。BL21(DE3)/pET-28a-TgMIF导入大肠杆菌命名为BL21(DE3)能表达序列3所示的蛋白质his-TgMIF。The ligation product of the TgMIF gene and the vector pET-28a(+) is to replace the fragment between the BamH I and Xho I recognition sites of pET-28a(+) with the TgMIF gene shown at positions 103-453 of SEQ ID NO: 4 in the sequence listing (Small fragment), the recombinant expression vector obtained by keeping other sequences of pET-28a(+) unchanged, named pET-28a-TgMIF. pET-28a-TgMIF is a his-TgMIF gene containing a His tag, and the nucleotide sequence of the his-TgMIF gene is SEQ ID NO: 4, which encodes the protein his-TgMIF shown in SEQ ID NO: 3. BL21(DE3)/pET-28a-TgMIF was introduced into Escherichia coli and named as BL21(DE3) to express the protein his-TgMIF shown in SEQ ID NO:3.

TgCDPK3基因与载体pET-28a(+)的连接产物是用序列表中序列6的第103-1716位所示的TgCDPK3基因替换pET-28a(+)的BamH I和Xho I识别位点间的片段(小片段),保持pET-28a(+)的其它序列不变得到的重组表达载体,命名为pET-28a-TgCDPK3。pET-28a-TgCDPK3是含有His标签的his-TgCDPK3基因,his-TgCDPK3基因的核苷酸序列是序列6,编码序列5所示的蛋白质his-TgCDPK3。BL21(DE3)/pET-28a-TgCDPK3导入大肠杆菌命名为BL21(DE3)能表达序列5所示的蛋白质his-TgCDPK3。The ligation product of the TgCDPK3 gene and the vector pET-28a(+) is to replace the fragment between the BamH I and Xho I recognition sites of pET-28a(+) with the TgCDPK3 gene shown at positions 103-1716 of SEQ ID NO: 6 in the sequence listing (Small fragment), the recombinant expression vector obtained by keeping other sequences of pET-28a(+) unchanged, named pET-28a-TgCDPK3. pET-28a-TgCDPK3 is a his-TgCDPK3 gene containing a His tag, and the nucleotide sequence of the his-TgCDPK3 gene is sequence 6, which encodes the protein his-TgCDPK3 shown in sequence 5. BL21(DE3)/pET-28a-TgCDPK3 was introduced into Escherichia coli and named as BL21(DE3) to express the protein his-TgCDPK3 shown in SEQ ID NO:5.

4、小量提取质粒:参照杭州AXYGEN质粒小提使用说明进行。4. Minimal extraction of plasmid: refer to the instructions for use of Hangzhou AXYGEN plasmid mini-extract.

(二)Tg14-3-3、TgMIF和TgCDPK3原核表达蛋白的纯化与定量(2) Purification and quantification of prokaryotic expression proteins of Tg14-3-3, TgMIF and TgCDPK3

1、原核表达Tg14-3-3、TgMIF和TgCDPK3蛋白:将原核表达质粒pET-28a-Tg14-3-3、pET-28a-TgMIF和pET-28a-TgCDPK3分别单独转入大肠杆菌BL21(DE3)(康为世纪)的感受态细胞中,将含有pET-28a-Tg14-3-3的重组大肠杆菌命名为BL21(DE3)/pET-28a-Tg14-3-3,BL21(DE3)/pET-28a-Tg14-3-3能表达序列1所示的蛋白质his-Tg14-3-3。将含有pET-28a-TgMIF的重组大肠杆菌命名为BL21(DE3)/pET-28a-TgMIF,BL21(DE3)/pET-28a-TgMIF能表达序列3所示的蛋白质his-TgMIF。将含有pET-28a-TgCDPK3的重组大肠杆菌命名为BL21(DE3)/pET-28a-TgCDPK3,BL21(DE3)/pET-28a-TgCDPK3F能表达序列5所示的蛋白质his-TgCDPK3。1. Prokaryotic expression of Tg14-3-3, TgMIF and TgCDPK3 proteins: The prokaryotic expression plasmids pET-28a-Tg14-3-3, pET-28a-TgMIF and pET-28a-TgCDPK3 were individually transferred into E. coli BL21 (DE3) (Kang Wei Century), the recombinant E. coli containing pET-28a-Tg14-3-3 was named BL21(DE3)/pET-28a-Tg14-3-3, BL21(DE3)/pET- 28a-Tg14-3-3 can express the protein his-Tg14-3-3 shown in SEQ ID NO: 1. The recombinant E. coli containing pET-28a-TgMIF was named BL21(DE3)/pET-28a-TgMIF, and BL21(DE3)/pET-28a-TgMIF can express the protein his-TgMIF shown in sequence 3. The recombinant E. coli containing pET-28a-TgCDPK3 was named BL21(DE3)/pET-28a-TgCDPK3, and BL21(DE3)/pET-28a-TgCDPK3F could express the protein his-TgCDPK3 shown in sequence 5.

将BL21(DE3)/pET-28a-Tg14-3-3、BL21(DE3)/pET-28a-TgMIF和BL21(DE3)/pET-28a-TgCDPK3这3个菌株分别单独接种于含50μg/ml卡那霉素的LB液体培养基(在LB液体培养基中加入卡那霉素至卡那霉素的浓度为50μg/ml得到的培养基)中,37℃,220rpm振荡培养至0D600值(以含50μg/ml卡那霉素的LB液体培养基为空白对照)达到0.6时,加入异丙基硫代-β-D-半乳糖苷(IPTG)进行诱导表达,分别得到BL21(DE3)/pET-28a-Tg14-3-3诱导表达的菌液、BL21(DE3)/pET-28a-TgMIF诱导表达的菌液和BL21(DE3)/pET-28a-TgCDPK3诱导表达的菌液。上述3株菌的诱导表达均是用1mM的IPTG在30℃诱导5小时。The three strains of BL21(DE3)/pET-28a-Tg14-3-3, BL21(DE3)/pET-28a-TgMIF and BL21(DE3)/pET-28a-TgCDPK3 were individually inoculated on cards containing 50 μg/ml. In the LB liquid medium of kanamycin (the medium obtained by adding kanamycin to the LB liquid medium to a concentration of 50 μg/ml of kanamycin), 37° C., 220 rpm shaking culture to OD 600 value (with When the LB liquid medium containing 50 μg/ml kanamycin was a blank control), when it reached 0.6, isopropylthio-β-D-galactoside (IPTG) was added to induce expression, and BL21(DE3)/pET were obtained respectively. -28a-Tg14-3-3-induced expression of bacteria, BL21 (DE3)/pET-28a-TgMIF-induced expression of bacteria and BL21 (DE3)/pET-28a-TgCDPK3-induced expression of bacteria. The induced expression of the above three strains was induced with 1 mM IPTG at 30°C for 5 hours.

2、Tg14-3-3、TgMIF和TgCDPK3蛋白的超声及纯化:将上述诱导表达的菌液于4℃,4000rpm离心10min,收集菌体,向菌体中加入10ml预冷的裂解缓冲液(含1%Triton X-100,200μl PMSF),重悬菌体,随后进行超声破碎(超声5s,间隔5s,总超声时间10min,功率300W),超声结束后,4℃,12000rpm离心20min,收集上清液,结果从BL21(DE3)/pET-28a-Tg14-3-3诱导表达的菌液中得到含蛋白质his-Tg14-3-3的上清液,从BL21(DE3)/pET-28a-TgMIF诱导表达的菌液中得到含蛋白质his-TgMIF的上清液,从BL21(DE3)/pET-28a-TgCDPK3诱导表达的菌液中得到含蛋白质his-TgCDPK3的上清液,这三种上清液均为含目的蛋白质的上清液。取1ml Ni-beads到柱子中,然后用预冷的PBS洗三遍,再用裂解缓冲液洗三遍,加入上述含目的蛋白质的上清液,4℃旋转孵育1h,将结合目的蛋白质的Ni-beads用Wash buffer 1(溶质及其浓度如下:50mM NaH2PO4、300mM Nacl、20mM咪唑,溶剂是水,pH8.0的溶液)洗2次,5ml/次,用离心管收集Wash buffer 1洗液,Wash buffer 2(溶质及其浓度如下:50mM NaH2PO4、300mM Nacl、40mM咪唑,溶剂是水,pH8.0的溶液)洗2次,10ml/次,收集Wash buffer 2洗液。随后用Elution buffer(溶质及其浓度如下:50mM NaH2PO4、300mMNacl、300mM咪唑,溶剂是水,pH8.0的溶液)洗脱目的蛋白3次,0.5ml/次,收集三次洗脱出的液体,得到含目的蛋白质的液体(含his-Tg14-3-3的液体、含his-TgMIF的液体和含his-TgCDPK3的液体)。取少量目的蛋白质的液体加入蛋白裂解液煮样,进行SDS-PAGE凝胶电泳,然后用考马斯亮蓝染色检测蛋白纯化效果。结果表明得到了大小为30kD的目的蛋白his-Tg14-3-3、大小为13kD的目的蛋白his-TgMIF和大小为59kD的目的蛋白his-TgCDPK3。2. Ultrasound and purification of Tg14-3-3, TgMIF and TgCDPK3 proteins: Centrifuge the above-mentioned inducible bacterial solution at 4°C and 4000 rpm for 10 min, collect the bacterial cells, and add 10 ml of pre-cooled lysis buffer (containing 1% Triton X-100, 200 μl PMSF), resuspend the cells, and then sonicate (ultrasonic 5s, interval 5s, total sonication time 10min, power 300W). As a result, the supernatant containing the protein his-Tg14-3-3 was obtained from the bacterial solution induced by BL21(DE3)/pET-28a-Tg14-3-3, and the supernatant containing the protein his-Tg14-3-3 was obtained from BL21(DE3)/pET-28a-TgMIF. The supernatant containing the protein his-TgMIF was obtained from the inducible bacterial solution, and the supernatant containing the protein his-TgCDPK3 was obtained from the bacterial solution induced by BL21(DE3)/pET-28a-TgCDPK3. All liquids were supernatants containing the target protein. Take 1 ml of Ni-beads into the column, then wash three times with pre-cooled PBS, and then wash three times with lysis buffer, add the above-mentioned supernatant containing the target protein, and incubate at 4°C for 1 h. - Wash the beads twice with Wash buffer 1 (solute and its concentration are as follows: 50mM NaH 2 PO 4 , 300mM NaCl, 20mM imidazole, the solvent is water, pH 8.0 solution) 2 times, 5ml/time, collect Wash buffer 1 with a centrifuge tube Washing solution, Wash buffer 2 (the solute and its concentration are as follows: 50 mM NaH 2 PO 4 , 300 mM NaCl, 40 mM imidazole, the solvent is water, pH 8.0 solution) washed twice, 10 ml/time, and the Wash buffer 2 washing solution was collected. Then use Elution buffer (solute and its concentration are as follows: 50mM NaH 2 PO 4 , 300mM NaCl, 300mM imidazole, the solvent is water, pH 8.0 solution) to elute the target protein 3 times, 0.5ml/time, collect the eluted protein three times The liquid was obtained to obtain the liquid containing the target protein (the liquid containing his-Tg14-3-3, the liquid containing his-TgMIF, and the liquid containing his-TgCDPK3). A small amount of the target protein liquid was added to the protein lysis buffer to cook the sample, and then subjected to SDS-PAGE gel electrophoresis, and then stained with Coomassie brilliant blue to detect the protein purification effect. The results showed that the target protein his-Tg14-3-3 with a size of 30kD, his-TgMIF with a size of 13kD and his-TgCDPK3 with a size of 59kD were obtained.

3、Tg14-3-3、TgMIF和TgCDPK3蛋白的定量:根据碧云天公司BCA蛋白浓度测定试剂盒(货号:P0012)步骤检测蛋白浓度,其中含his-Tg14-3-3的液体中his-Tg14-3-3的浓度为8mg/ml,含his-TgMIF的液体中his-TgMIF的浓度为5mg/ml,含his-TgCDPK3的液体中his-TgCDPK3的浓度为7mg/ml。3. Quantification of Tg14-3-3, TgMIF and TgCDPK3 proteins: Detect the protein concentration according to the steps of Biyuntian BCA protein concentration assay kit (Item No.: P0012), in which his-Tg14 in the liquid containing his-Tg14-3-3 The concentration of -3-3 was 8 mg/ml, the concentration of his-TgMIF in the liquid containing his-TgMIF was 5 mg/ml, and the concentration of his-TgCDPK3 in the liquid containing his-TgCDPK3 was 7 mg/ml.

(三)免疫效果的评估(3) Evaluation of the immune effect

1、BALB/c实验鼠的分组:240只6-8周SPF级雌性BALB/c小鼠,体重50±10g(购自安徽省动物实验中心),随机分为六组(空白组(control)、PBS组、MIF+CDPK3组、14-3-3+MIF组、14-3-3+CDPK3组、14-3-3+MIF+CDPK3组),每组40只。1. Grouping of BALB/c mice: 240 6-8 week SPF female BALB/c mice, weighing 50±10g (purchased from Anhui Animal Experiment Center), were randomly divided into six groups (control group) , PBS group, MIF+CDPK3 group, 14-3-3+MIF group, 14-3-3+CDPK3 group, 14-3-3+MIF+CDPK3 group), 40 mice in each group.

2、免疫方案:2. Immunization program:

空白组:不作任何处理,为空白对照组;Blank group: without any treatment, it is blank control group;

PBS组:无菌PBS与佐剂等体积混合,冰上完全乳化(注射器吹打1h,下同)后,腿部肌肉注射(下同)免疫BALB/c小鼠,每只小鼠每次注射0.1ml;PBS group: sterile PBS and adjuvant were mixed in equal volume, completely emulsified on ice (blowing with a syringe for 1 h, the same below), and BALB/c mice were immunized by intramuscular injection (the same below) in the legs, each injection of 0.1 per mouse per mouse ml;

MIF+CDPK3组:将步骤(二)得到的含his-TgMIF的液体和含his-TgCDPK3的液体混匀后,与佐剂等体积混合,完全乳化后,免疫BALB/c小鼠,每只小鼠每次注射0.1ml,每只小鼠的每次的免疫剂量均为6μg his-TgMIF和6μg his-TgCDPK3;MIF+CDPK3 group: mix the liquid containing his-TgMIF and the liquid containing his-TgCDPK3 obtained in step (2), and mix them with an equal volume of adjuvant. After complete emulsification, immunize BALB/c mice. The mice were injected with 0.1ml each time, and the immunization dose of each mouse was 6μg his-TgMIF and 6μg his-TgCDPK3;

14-3-3+MIF组:将步骤(二)得到的含his-Tg14-3-3和his-TgMI的液体混匀后,佐剂等体积混合,完全乳化后,免疫BALB/c小鼠,每只小鼠每次注射0.1ml,每只小鼠的每次的免疫剂量均为6μg his-Tg14-3-3和6μg his-TgMIF;14-3-3+MIF group: After mixing the liquid containing his-Tg14-3-3 and his-TgMI obtained in step (2), the adjuvant was mixed with equal volume, and after complete emulsification, BALB/c mice were immunized. , each injection of 0.1ml per mouse, the immunization dose of each mouse is 6μg his-Tg14-3-3 and 6μg his-TgMIF;

14-3-3+CDPK3组:将步骤(二)得到的含his-Tg14-3-3和含his-TgCDPK3的液体混匀后,与佐剂等体积混合,完全乳化后,免疫BALB/c小鼠,每只小鼠每次注射0.1ml,每只小鼠的每次的免疫剂量均为6μg his-Tg14-3-3和6μg his-TgCDPK3;14-3-3+CDPK3 group: after mixing the liquid containing his-Tg14-3-3 and his-TgCDPK3 obtained in step (2), it was mixed with an equal volume of adjuvant, and after complete emulsification, immune BALB/c Mice, each injection of 0.1ml per mouse, the immunization dose of each mouse is 6μg his-Tg14-3-3 and 6μg his-TgCDPK3;

14-3-3+MIF+CDPK3组:将步骤(二)得到的含his-Tg14-3-3的液体、含his-TgMIF的液体和含his-TgCDPK3的液体混匀后,与佐剂等体积混合,完全乳化后,免疫BALB/c小鼠,每只小鼠每次注射0.1ml,每只小鼠的每次的免疫剂量均为4μg his-Tg14-3-3、4μg his-TgMIF和4μg his-TgCDPK3;14-3-3+MIF+CDPK3 group: after mixing the liquid containing his-Tg14-3-3, the liquid containing his-TgMIF and the liquid containing his-TgCDPK3 obtained in step (2), with adjuvant etc. After the volume was mixed and completely emulsified, BALB/c mice were immunized with 0.1 ml per injection per mouse, and the immunization dose of each mouse was 4 μg his-Tg14-3-3, 4 μg his-TgMIF and 4 μg his-TgCDPK3;

免疫时间为第1天、第15天、第29天,共三次,操作方法一致。第一次乳化蛋白用弗氏完全佐剂,之后两次使用弗氏不完全佐剂。每只BALB/c鼠每次每部位免疫总体积100μL。The immunization time was the first day, the 15th day and the 29th day, a total of three times, and the operation method was the same. Freund's complete adjuvant was used for the first emulsified protein, followed by incomplete Freund's adjuvant twice. Each BALB/c mouse was immunized with a total volume of 100 μL per site.

3、ELISA检测血清IgG:每次免疫前一天取血,即0d、14d、28d、42d,每组每次随机抽取三只,采用小鼠尾静脉取血法。在空的ELISA板中加入100μl的包被液,根据分组,包被相应的蛋白,每种蛋白浓度为10μg/ml,进行常规ELISA实验,检测小鼠血清IgG的含量。结果显示免疫2周后免疫组中14-3-3+MIF+CDPK3组(对应图1中MIF+1433+CDPK3)疫苗免疫效果最佳,其IgG抗体水平显著高于空白组(对应图1中control)与PBS组(p<0.01);免疫4周后免疫组的IgG抗体水多数显著高于空白组(对应图1中control)与PBS组(p<0.05)。具体结果见图1。3. Serum IgG was detected by ELISA: blood was collected one day before each immunization, namely 0d, 14d, 28d, and 42d. Three mice were randomly selected from each group each time, and blood was collected from the tail vein of mice. Add 100 μl of coating solution to the empty ELISA plate, and coat the corresponding proteins according to the grouping, and the concentration of each protein is 10 μg/ml. A conventional ELISA experiment is performed to detect the content of mouse serum IgG. The results showed that the 14-3-3+MIF+CDPK3 group (corresponding to MIF+1433+CDPK3 in Figure 1) in the immunization group had the best immunization effect after 2 weeks of immunization, and its IgG antibody level was significantly higher than that of the blank group (corresponding to Figure 1). control) and PBS groups (p<0.01); after 4 weeks of immunization, most of the IgG antibody levels in the immunized group were significantly higher than those in the blank group (corresponding to the control in Figure 1) and the PBS group (p<0.05). The specific results are shown in Figure 1.

4、小鼠脾淋巴细胞增殖水平检测:所有实验组最后一次免疫后两周,各组随机选取3只小鼠取脾细胞培养,根据分组,直接将相应纯化后的蛋白加入细胞中(每种蛋白浓度为10μg/ml)进行刺激(纯化方法见“(二)2”)。随后通过CCK-8试验检测脾淋巴细胞刺激增殖情况。具体实验方法参照碧云天公司Cell Counting Kit-8(CCK-8试剂盒)(货号:C0038)步骤。刺激指数=受刺激细胞的OD450/未受刺激细胞的OD450。结果显示,与对照组(对应图2中control和PBS)相比,14-3-3+MIF+CDPK3组(对应图2中MIF+1433+CDPK3)在his-Tg14-3-3、his-TgMIF和his-TgCDPK3这三种蛋白质的刺激下平均刺激指数显著增加,表现出更加显著的脾淋巴细胞增殖应答(p<0.001),表明his-Tg14-3-3、his-TgMIF和his-TgCDPK3这三种蛋白质混合重组蛋白免疫BALB/c小鼠能够诱导抗原特异性脾淋巴细胞增殖。具体结果见图2。4. Detection of the proliferation level of spleen lymphocytes in mice: Two weeks after the last immunization of all experimental groups, 3 mice were randomly selected from each group to obtain spleen cells for culture. The protein concentration was 10 μg/ml) for stimulation (see “(II) 2” for purification method). Subsequently, the proliferation of spleen lymphocytes was detected by CCK-8 assay. For the specific experimental method, refer to the steps of Cell Counting Kit-8 (CCK-8 kit) (Item No.: C0038) of Biyuntian Company. Stimulation index = OD450 of stimulated cells/ OD450 of unstimulated cells. The results showed that compared with the control group (corresponding to control and PBS in Figure 2), the 14-3-3+MIF+CDPK3 group (corresponding to MIF+1433+CDPK3 in Figure 2) had higher levels of his-Tg14-3-3, his-Tg14-3-3, his- The mean stimulation index of the three proteins, TgMIF and his-TgCDPK3, increased significantly, showing a more significant spleen lymphocyte proliferation response (p<0.001), indicating that his-Tg14-3-3, his-TgMIF and his-TgCDPK3 The three proteins mixed recombinant protein immunization of BALB/c mice can induce antigen-specific splenic lymphocyte proliferation. The specific results are shown in Figure 2.

5、小鼠脾淋巴细胞细胞因子检测:所有实验组最后一次免疫后两周,各组随机选取三只小鼠,取脾细胞培养,根据分组,直接将纯化后的蛋白加入细胞中(每种蛋白质的浓度均为10μg/ml)进行刺激(纯化方法见“(二)2”)。收集细胞上清,ELISA试剂盒(北京四正柏生物)检测细胞因子INF-γ(产品编号:CME0003)、IL-2(产品编号:CME0001)、IL-4(产品编号:CME0005)和IL-10(产品编号:CME0016)。结果显示,免疫组在蛋白刺激后产生的INF-γ、IL-2、IL-4和IL-10的水平显著高于对照组(对应图3中control和PBS),特别是14-3-3+MIF+CDPK3组(对应图3中MIF+1433+CDPK3),INF-γ(p<0.001)、IL-2(p<0.001)、IL-4(p<0.001)和IL-10(p<0.05)的水平显著高于对照组和其他免疫组,更有效地引起细胞介导的免疫应答,且以Th1型免疫应答为主。此外,14-3-3+CDPK3组(对应图3中1433+CDPK3)的细胞因子INF-γ(p<0.01)和IL-2(p<0.001)的水平也显著高于对照组。具体结果见图3。5. Cytokine detection of mouse spleen lymphocytes: Two weeks after the last immunization of all experimental groups, three mice were randomly selected from each group, and spleen cells were cultured. The protein concentration was 10 μg/ml) for stimulation (see “(II) 2” for purification method). Cell supernatants were collected, and ELISA kits (Beijing Sizhengbai Biotechnology) were used to detect cytokines INF-γ (product number: CME0003), IL-2 (product number: CME0001), IL-4 (product number: CME0005) and IL- 10 (Product Number: CME0016). The results showed that the levels of INF-γ, IL-2, IL-4 and IL-10 in the immunized group after protein stimulation were significantly higher than those in the control group (corresponding to control and PBS in Figure 3), especially 14-3-3 +MIF+CDPK3 group (corresponding to MIF+1433+CDPK3 in Figure 3), INF-γ (p<0.001), IL-2 (p<0.001), IL-4 (p<0.001) and IL-10 (p<0.001) The level of 0.05) was significantly higher than that of the control group and other immunization groups, which more effectively caused cell-mediated immune responses, mainly Th1-type immune responses. In addition, the levels of cytokines INF-γ (p<0.01) and IL-2 (p<0.001) in the 14-3-3+CDPK3 group (corresponding to 1433+CDPK3 in Figure 3) were also significantly higher than those in the control group. The specific results are shown in Figure 3.

6、弓形虫RH株的攻击感染:6. Attack infection of Toxoplasma gondii RH strain:

腹腔注射弓形虫RH株:Intraperitoneal injection of Toxoplasma gondii RH strain:

所有实验组最后一次免疫后两周,各组随机选取15只小鼠腹腔注射弓形虫RH株,具体方法如下:将新鲜收集的弓形虫RH株速殖子稀释为104个/ml后,按照每只100μl的注射剂量,腹腔注射感染所有实验组BALB/c小鼠(每组15只),观察并记录实验鼠存活时间。结果显示,与对照组(图4中A的control和PBS所示)相比,免疫组小鼠存活时间延长,特别是本发明的弓形虫14-3-3+MIF+CDPK3混合重组蛋白免疫组(图4中A的MIF+1433+CDPK3所示),90%的小鼠存活期大于30天,有效地延长弓形虫RH株急性感染BALB/c鼠的存活时间(p<0.001)。此外,14-3-3+CDPK3免疫组(对应图4中A的1433+CDPK3)中有大于75%的小鼠存活期大于30天,也有效地延长弓形虫RH株急性感染BALB/c鼠的存活时间(p<0.001)。具体结果见图4中A所示。Two weeks after the last immunization of all experimental groups, 15 mice from each group were randomly selected for intraperitoneal injection of Toxoplasma gondii RH strain. BALB/c mice of all experimental groups (15 mice in each group) were infected by intraperitoneal injection with an injection dose of 100 μl per mouse, and the survival time of the experimental mice was observed and recorded. The results showed that compared with the control group (shown in control and PBS in Figure 4), the survival time of the mice in the immunized group was prolonged, especially the Toxoplasma 14-3-3+MIF+CDPK3 mixed recombinant protein immunization group of the present invention. (MIF+1433+CDPK3 in A in Figure 4), 90% of the mice survived for more than 30 days, effectively prolonging the survival time of BALB/c mice acutely infected with Toxoplasma RH strain (p<0.001). In addition, more than 75% of the mice in the 14-3-3+CDPK3 immunized group (corresponding to 1433+CDPK3 in A in Figure 4) survived for more than 30 days, which also effectively prolonged the acute infection of BALB/c mice by the RH strain of Toxoplasma gondii survival time (p<0.001). The specific results are shown in A in Figure 4.

灌胃感染弓形虫Pru株:所有实验组最后一次免疫后两周,各组随机选取15只小鼠腹腔注射弓形虫RH株,具体方法如下:将新鲜收集的弓形虫Pru株包囊稀释为200个/ml后,按照每只100μl的灌胃剂量,灌胃感染所有实验组BALB/c小鼠(每组3只),观察并记录实验鼠存活时间。感染1个月后,将各组存活的小鼠处死,分离小鼠大脑进行物理碾磨,制备脑组织匀浆液。将脑组织匀浆液混匀后,取10μl于显微镜下计数三次取平均值,小鼠脑包囊数为10倍的平均值。结果显示,与对照组(图4中B的control和PBS所示)相比,免疫组小鼠弓形虫Pru株慢性感染后脑包囊数降低,特别是本发明的弓形虫14-3-3+MIF+CDPK3混合重组蛋白免疫组(图4中B的MIF+1433+cdpk3所示),大幅降低弓形虫Pru株慢性感染中脑包囊数(p<0.001);14-3-3+CDPK3免疫组(图4中B的的1433+CDPK3所示)中弓形虫Pru株慢性感染中脑包囊数也显著降低(p<0.01)。具体结果见4中B所示。Infection of Toxoplasma gondii Pru strain by gavage: Two weeks after the last immunization of all experimental groups, 15 mice from each group were randomly selected for intraperitoneal injection of Toxoplasma gondii RH strain. BALB/c mice in all experimental groups (3 mice in each group) were intragastrically infected according to the oral dose of 100 μl per mouse, and the survival time of the experimental mice was observed and recorded. One month after infection, the surviving mice in each group were sacrificed, and the mouse brains were isolated and physically ground to prepare brain tissue homogenate. After mixing the brain tissue homogenate, take 10 μl and count it three times under the microscope to take the average value. The number of mouse brain cysts is 10 times the average value. The results showed that, compared with the control group (shown as control and PBS in B in Figure 4), the number of brain cysts in the immunized group mice decreased after chronic infection with the Toxoplasma gondii Pru strain, especially the Toxoplasma gondii 14-3-3+ of the present invention. In the MIF+CDPK3 mixed recombinant protein immunization group (shown by MIF+1433+cdpk3 in Figure 4 B), the number of midbrain cysts in the chronic infection of Toxoplasma gondii Pru strain was significantly reduced (p<0.001); 14-3-3+CDPK3 immunization The number of midbrain cysts in the group (indicated by 1433+CDPK3 in B in Figure 4) was also significantly decreased (p<0.01) in the chronic infection of Toxoplasma gondii Pru strain. The specific results are shown in B in 4.

综上所述,使用弓形虫14-3-3+MIF+CDPK3混合重组蛋白免疫可以诱导小鼠产生有效的体液和细胞免疫应答,该免疫应答可以有效提高急性弓形虫感染小鼠生存率,明显延长小鼠存活时间,显著减少慢性感染小鼠脑组织中的包囊数量。该混合重组蛋白制备的疫苗可以作为控制弓形虫急性或慢性感染的有效候选疫苗,用于人和动物弓形虫病的预防。此外,使用弓形虫14-3-3+CDPK3混合重组蛋白免疫也可以诱导小鼠产生一定的有效体液和细胞免疫应答,有效提高急性弓形虫感染小鼠生存率,明显延长小鼠存活时间,显著减少慢性感染小鼠脑组织中的包囊数量,使用该混合重组蛋白制备的疫苗也可以作为控制弓形虫急性或慢性感染的有效候选疫苗,用于人和动物弓形虫病的预防。To sum up, using Toxoplasma gondii 14-3-3+MIF+CDPK3 mixed recombinant protein immunization can induce mice to produce effective humoral and cellular immune responses, which can effectively improve the survival rate of mice with acute Toxoplasma gondii infection. Prolonged mouse survival and significantly reduced the number of cysts in the brain tissue of chronically infected mice. The vaccine prepared by the mixed recombinant protein can be used as an effective candidate vaccine for controlling acute or chronic infection of Toxoplasma gondii for the prevention of toxoplasmosis in humans and animals. In addition, using Toxoplasma 14-3-3+CDPK3 mixed recombinant protein immunization can also induce mice to produce a certain effective humoral and cellular immune response, effectively improve the survival rate of acute Toxoplasma infection in mice, significantly prolong the survival time of mice, significantly The number of cysts in the brain tissue of chronically infected mice is reduced, and the vaccine prepared using the mixed recombinant protein can also be used as an effective candidate vaccine for the control of acute or chronic infection of Toxoplasma gondii for the prevention of toxoplasmosis in humans and animals.

序列表 sequence listing

<110> 安徽医科大学<110> Anhui Medical University

<120> 一种预防人和动物弓形虫病的蛋白混合疫苗<120> A protein mixed vaccine for preventing human and animal toxoplasmosis

<160> 6<160> 6

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 302<211> 302

<212> PRT<212> PRT

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val ProMet Gly Ser Ser His His His His His His Ser Ser Ser Gly Leu Val Pro

1 5 10 151 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly ArgArg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg

20 25 30 20 25 30

Gly Ser Glu Phe Met Ala Glu Glu Ile Lys Asn Leu Arg Asp Glu TyrGly Ser Glu Phe Met Ala Glu Glu Ile Lys Asn Leu Arg Asp Glu Tyr

35 40 45 35 40 45

Val Tyr Lys Ala Lys Leu Ala Glu Gln Ala Glu Arg Tyr Asp Glu MetVal Tyr Lys Ala Lys Leu Ala Glu Gln Ala Glu Arg Tyr Asp Glu Met

50 55 60 50 55 60

Ala Glu Ala Met Lys Asn Leu Val Glu Asn Cys Leu Asp Glu Gln GlnAla Glu Ala Met Lys Asn Leu Val Glu Asn Cys Leu Asp Glu Gln Gln

65 70 75 8065 70 75 80

Pro Lys Asp Glu Leu Ser Val Glu Glu Arg Asn Leu Leu Ser Val AlaPro Lys Asp Glu Leu Ser Val Glu Glu Arg Asn Leu Leu Ser Val Ala

85 90 95 85 90 95

Tyr Lys Asn Ala Val Gly Ala Arg Arg Ala Ser Trp Arg Ile Ile SerTyr Lys Asn Ala Val Gly Ala Arg Arg Ala Ser Trp Arg Ile Ile Ser

100 105 110 100 105 110

Ser Val Glu Gln Lys Glu Leu Ser Lys Gln His Met Gln Asn Lys AlaSer Val Glu Gln Lys Glu Leu Ser Lys Gln His Met Gln Asn Lys Ala

115 120 125 115 120 125

Leu Ala Ala Glu Tyr Arg Gln Lys Val Glu Glu Glu Leu Asn Lys IleLeu Ala Ala Glu Tyr Arg Gln Lys Val Glu Glu Glu Leu Asn Lys Ile

130 135 140 130 135 140

Cys His Asp Ile Leu Gln Leu Leu Thr Asp Lys Leu Ile Pro Lys ThrCys His Asp Ile Leu Gln Leu Leu Thr Asp Lys Leu Ile Pro Lys Thr

145 150 155 160145 150 155 160

Ser Asp Ser Glu Ser Lys Val Phe Tyr Tyr Lys Met Lys Gly Asp TyrSer Asp Ser Glu Ser Lys Val Phe Tyr Tyr Lys Met Lys Gly Asp Tyr

165 170 175 165 170 175

Tyr Arg Tyr Ile Ser Glu Phe Ser Gly Glu Glu Gly Lys Lys Gln AlaTyr Arg Tyr Ile Ser Glu Phe Ser Gly Glu Glu Gly Lys Lys Gln Ala

180 185 190 180 185 190

Ala Asp Gln Ala Gln Glu Ser Tyr Gln Lys Ala Thr Glu Thr Ala GluAla Asp Gln Ala Gln Glu Ser Tyr Gln Lys Ala Thr Glu Thr Ala Glu

195 200 205 195 200 205

Ala Glu Leu Pro Ser Thr His Pro Ile Arg Leu Gly Leu Ala Leu AsnAla Glu Leu Pro Ser Thr His Pro Ile Arg Leu Gly Leu Ala Leu Asn

210 215 220 210 215 220

Tyr Ser Val Phe Phe Tyr Glu Ile Leu Asn Leu Pro Gln Gln Ala CysTyr Ser Val Phe Phe Tyr Glu Ile Leu Asn Leu Pro Gln Gln Ala Cys

225 230 235 240225 230 235 240

Glu Met Ala Lys Arg Ala Phe Asp Asp Ala Ile Thr Glu Phe Asp AsnGlu Met Ala Lys Arg Ala Phe Asp Asp Ala Ile Thr Glu Phe Asp Asn

245 250 255 245 250 255

Val Ser Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu LeuVal Ser Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu

260 265 270 260 265 270

Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Leu Gln Ala Asp Gln GlnArg Asp Asn Leu Thr Leu Trp Thr Ser Asp Leu Gln Ala Asp Gln Gln

275 280 285 275 280 285

Gln Gln Glu Gly Gly Glu Lys Pro Ala Glu Gln Ala Asp GlnGln Gln Glu Gly Gly Glu Lys Pro Ala Glu Gln Ala Asp Gln

290 295 300 290 295 300

<210> 2<210> 2

<211> 909<211> 909

<212> DNA<212> DNA

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60

atggctagca tgactggtgg acagcaaatg ggtcgcggat ccgaattcat ggcggaggaa 120atggctagca tgactggtgg acagcaaatg ggtcgcggat ccgaattcat ggcggaggaa 120

atcaagaatc tgcgcgatga atacgtttac aaggcgaagc ttgcggagca agcggagcgc 180atcaagaatc tgcgcgatga atacgtttac aaggcgaagc ttgcggagca agcggagcgc 180

tatgacgaga tggccgaggc catgaagaac ttggtggaga actgcctcga tgagcagcag 240tatgacgaga tggccgaggc catgaagaac ttggtggaga actgcctcga tgagcagcag 240

cccaaggacg agctgtctgt cgaggaacgt aacctccttt ccgttgctta caagaatgcg 300cccaaggacg agctgtctgt cgaggaacgt aacctccttt ccgttgctta caagaatgcg 300

gtcggcgctc gcagagccag ctggcgcatc atctcctctg ttgagcagaa ggagctcagc 360gtcggcgctc gcagagccag ctggcgcatc atctcctctg ttgagcagaa ggagctcagc 360

aaacagcaca tgcagaacaa ggcccttgct gcggagtacc ggcaaaaggt tgaggaggag 420aaacagcaca tgcagaacaa ggcccttgct gcggagtacc ggcaaaaggt tgaggaggag 420

ttgaacaaga tttgccacga cattcttcag cttctcaccg acaagctgat tccaaagaca 480ttgaacaaga tttgccacga cattcttcag cttctcaccg acaagctgat tccaaagaca 480

tcggacagcg agagtaaggt gttctactac aagatgaagg gagactacta ccgctacatc 540tcggacagcg agagtaaggt gttctactac aagatgaagg gagactacta ccgctacatc 540

tcggagttca gtggcgagga gggaaagaag caggcggctg accaggcaca ggagtcgtac 600tcggagttca gtggcgagga gggaaagaag caggcggctg accaggcaca ggagtcgtac 600

cagaaggcga cggaaaccgc ggaggctgaa ctcccctcaa ctcaccctat tcgtctcggc 660cagaaggcga cggaaaccgc ggaggctgaa ctcccctcaa ctcaccctat tcgtctcggc 660

cttgccttga actactctgt cttcttctac gagatcctca acttgccgca gcaggcctgc 720cttgccttga actactctgt cttcttctac gagatcctca acttgccgca gcaggcctgc 720

gagatggcaa agagagcctt tgatgatgcg atcactgagt ttgacaatgt cagcgaggac 780gagatggcaa agagagcctt tgatgatgcg atcactgagt ttgacaatgt cagcgaggac 780

tcgtacaagg acagcactct catcatgcag cttctgcgtg acaatttgac tctgtggacc 840tcgtacaagg acagcactct catcatgcag cttctgcgtg acaatttgac tctgtggacc 840

tcggatctgc aagcggacca gcaacagcaa gaaggtggcg agaagcccgc agaacaagct 900tcggatctgc aagcggacca gcaacagcaa gaaggtggcg agaagcccgc agaacaagct 900

gatcagtaa 909gatcagtaa 909

<210> 3<210> 3

<211> 150<211> 150

<212> PRT<212> PRT

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val ProMet Gly Ser Ser His His His His His His Ser Ser Ser Gly Leu Val Pro

1 5 10 151 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly ArgArg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg

20 25 30 20 25 30

Gly Ser Met Pro Lys Cys Met Ile Phe Cys Pro Val Ala Ala Thr ProGly Ser Met Pro Lys Cys Met Ile Phe Cys Pro Val Ala Ala Thr Pro

35 40 45 35 40 45

Ala Gln Gln Asp Ala Leu Leu Lys Asp Ala Glu Lys Ala Val Ala AspAla Gln Gln Asp Ala Leu Leu Lys Asp Ala Glu Lys Ala Val Ala Asp

50 55 60 50 55 60

Ala Leu Gly Lys Pro Leu Ser Tyr Val Met Val Gly Tyr Ser Gln ThrAla Leu Gly Lys Pro Leu Ser Tyr Val Met Val Gly Tyr Ser Gln Thr

65 70 75 8065 70 75 80

Gly Gln Met Arg Phe Gly Gly Ser Ser Asp Pro Cys Ala Phe Ile ArgGly Gln Met Arg Phe Gly Gly Ser Ser Asp Pro Cys Ala Phe Ile Arg

85 90 95 85 90 95

Val Ala Ser Ile Gly Gly Ile Thr Ser Ser Thr Asn Cys Lys Ile AlaVal Ala Ser Ile Gly Gly Ile Thr Ser Ser Thr Asn Cys Lys Ile Ala

100 105 110 100 105 110

Ala Ala Leu Ser Ala Ala Cys Glu Arg His Leu Gly Val Pro Lys AsnAla Ala Leu Ser Ala Ala Cys Glu Arg His Leu Gly Val Pro Lys Asn

115 120 125 115 120 125

Arg Ile Tyr Thr Thr Phe Thr Asn Lys Ser Pro Ser Glu Trp Ala MetArg Ile Tyr Thr Thr Phe Thr Asn Lys Ser Pro Ser Glu Trp Ala Met

130 135 140 130 135 140

Gly Asp Arg Thr Phe GlyGly Asp Arg Thr Phe Gly

145 150145 150

<210> 4<210> 4

<211> 453<211> 453

<212> DNA<212> DNA

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60

atggctagca tgactggtgg acagcaaatg ggtcgcggat ccatgcccaa gtgcatgatc 120atggctagca tgactggtgg acagcaaatg ggtcgcggat ccatgcccaa gtgcatgatc 120

ttttgccccg tcgcggcgac gccggcgcag caggacgccc tcttgaagga cgccgaaaaa 180ttttgccccg tcgcggcgac gccggcgcag caggacgccc tcttgaagga cgccgaaaaa 180

gccgtcgcag acgctctggg gaagcctctg agctacgtca tggtgggata ctcgcagacc 240gccgtcgcag acgctctggg gaagcctctg agctacgtca tggtgggata ctcgcagacc 240

gggcagatgc gtttcggcgg gagcagcgac ccgtgtgcgt tcattcgcgt tgcttccatt 300gggcagatgc gtttcggcgg gagcagcgac ccgtgtgcgt tcattcgcgt tgcttccatt 300

ggaggcatca ccagttccac gaactgcaaa atcgccgctg ctctctccgc tgcatgcgaa 360ggaggcatca ccagttccac gaactgcaaa atcgccgctg ctctctccgc tgcatgcgaa 360

cgccacctgg gcgtccccaa gaaccgcatc tacacgacat tcacaaacaa gagcccctct 420cgccacctgg gcgtccccaa gaaccgcatc tacacgacat tcacaaacaa gagcccctct 420

gagtgggcca tgggcgaccg aactttcggc tga 453gagtgggcca tgggcgaccg aactttcggc tga 453

<210> 5<210> 5

<211> 571<211> 571

<212> PRT<212> PRT

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

Met Gly Ser Ser His His His His His His Ser Ser Gly Leu Val ProMet Gly Ser Ser His His His His His His Ser Ser Ser Gly Leu Val Pro

1 5 10 151 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly ArgArg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg

20 25 30 20 25 30

Gly Ser Met Gly Cys Val His Ser Lys Asn Pro His Ser Lys His AlaGly Ser Met Gly Cys Val His Ser Lys Asn Pro His Ser Lys His Ala

35 40 45 35 40 45

Gly Ala Ala Gly Glu Lys Pro Asp Ala Ser Leu Glu Lys Gly Gly GlnGly Ala Ala Gly Glu Lys Pro Asp Ala Ser Leu Glu Lys Gly Gly Gln

50 55 60 50 55 60

Ser Lys Gly Ser Ala Pro Ser Ser Gly Thr Gly Asp Ser Gly Lys GlySer Lys Gly Ser Ala Pro Ser Ser Gly Thr Gly Asp Ser Gly Lys Gly

65 70 75 8065 70 75 80

Thr Gly Ser Pro Asp Thr Lys Arg Asp Ser Met Pro Met Thr Pro GlyThr Gly Ser Pro Asp Thr Lys Arg Asp Ser Met Pro Met Thr Pro Gly

85 90 95 85 90 95

Met Tyr Ile Thr Gln Gln Lys Ala His Leu Ser Asp Arg Tyr Gln ArgMet Tyr Ile Thr Gln Gln Lys Ala His Leu Ser Asp Arg Tyr Gln Arg

100 105 110 100 105 110

Val Lys Lys Leu Gly Ser Gly Ala Tyr Gly Glu Val Leu Leu Cys LysVal Lys Lys Leu Gly Ser Gly Ala Tyr Gly Glu Val Leu Leu Cys Lys

115 120 125 115 120 125

Asp Lys Leu Thr Gly Ala Glu Arg Ala Ile Lys Ile Ile Lys Lys SerAsp Lys Leu Thr Gly Ala Glu Arg Ala Ile Lys Ile Ile Lys Lys Ser

130 135 140 130 135 140

Ser Val Thr Thr Thr Ser Asn Ser Gly Ala Leu Leu Asp Glu Val AlaSer Val Thr Thr Thr Ser Asn Ser Gly Ala Leu Leu Asp Glu Val Ala

145 150 155 160145 150 155 160

Val Leu Lys Gln Leu Asp His Pro Asn Ile Met Lys Leu Tyr Glu PheVal Leu Lys Gln Leu Asp His Pro Asn Ile Met Lys Leu Tyr Glu Phe

165 170 175 165 170 175

Phe Glu Asp Lys Arg Asn Tyr Tyr Leu Val Met Glu Val Tyr Arg GlyPhe Glu Asp Lys Arg Asn Tyr Tyr Leu Val Met Glu Val Tyr Arg Gly

180 185 190 180 185 190

Gly Glu Leu Phe Asp Glu Ile Ile Leu Arg Gln Lys Phe Ser Glu ValGly Glu Leu Phe Asp Glu Ile Ile Leu Arg Gln Lys Phe Ser Glu Val

195 200 205 195 200 205

Asp Ala Ala Val Ile Met Lys Gln Val Leu Ser Gly Thr Thr Tyr LeuAsp Ala Ala Val Ile Met Lys Gln Val Leu Ser Gly Thr Thr Tyr Leu

210 215 220 210 215 220

His Lys His Asn Ile Val His Arg Asp Leu Lys Pro Glu Asn Leu LeuHis Lys His Asn Ile Val His Arg Asp Leu Lys Pro Glu Asn Leu Leu

225 230 235 240225 230 235 240

Leu Glu Ser Lys Ser Arg Asp Ala Leu Ile Lys Ile Val Asp Phe GlyLeu Glu Ser Lys Ser Arg Asp Ala Leu Ile Lys Ile Val Asp Phe Gly

245 250 255 245 250 255

Leu Ser Ala His Phe Glu Val Gly Gly Lys Met Lys Glu Arg Leu GlyLeu Ser Ala His Phe Glu Val Gly Gly Lys Met Lys Glu Arg Leu Gly

260 265 270 260 265 270

Thr Ala Tyr Tyr Ile Ala Pro Glu Val Leu Arg Lys Lys Tyr Asp GluThr Ala Tyr Tyr Ile Ala Pro Glu Val Leu Arg Lys Lys Tyr Asp Glu

275 280 285 275 280 285

Lys Cys Asp Val Trp Ser Cys Gly Val Ile Leu Tyr Ile Leu Leu CysLys Cys Asp Val Trp Ser Cys Gly Val Ile Leu Tyr Ile Leu Leu Cys

290 295 300 290 295 300

Gly Tyr Pro Pro Phe Gly Gly Gln Thr Asp Gln Glu Ile Leu Lys ArgGly Tyr Pro Pro Phe Gly Gly Gln Thr Asp Gln Glu Ile Leu Lys Arg

305 310 315 320305 310 315 320

Val Glu Lys Gly Lys Phe Ser Phe Asp Pro Pro Asp Trp Thr Gln ValVal Glu Lys Gly Lys Phe Ser Phe Asp Pro Pro Asp Trp Thr Gln Val

325 330 335 325 330 335

Ser Asp Glu Ala Lys Gln Leu Val Lys Leu Met Leu Thr Tyr Glu ProSer Asp Glu Ala Lys Gln Leu Val Lys Leu Met Leu Thr Tyr Glu Pro

340 345 350 340 345 350

Ser Lys Arg Ile Ser Ala Glu Glu Ala Leu Asn His Pro Trp Ile ValSer Lys Arg Ile Ser Ala Glu Glu Ala Leu Asn His Pro Trp Ile Val

355 360 365 355 360 365

Lys Phe Cys Ser Gln Lys His Thr Asp Val Gly Lys His Ala Leu ThrLys Phe Cys Ser Gln Lys His Thr Asp Val Gly Lys His Ala Leu Thr

370 375 380 370 375 380

Gly Ala Leu Gly Asn Met Lys Lys Phe Gln Ser Ser Gln Lys Leu AlaGly Ala Leu Gly Asn Met Lys Lys Phe Gln Ser Ser Gln Lys Leu Ala

385 390 395 400385 390 395 400

Gln Ala Ala Met Leu Phe Met Gly Ser Lys Leu Thr Thr Leu Glu GluGln Ala Ala Met Leu Phe Met Gly Ser Lys Leu Thr Thr Leu Glu Glu

405 410 415 405 410 415

Thr Lys Glu Leu Thr Gln Ile Phe Arg Gln Leu Asp Asn Asn Gly AspThr Lys Glu Leu Thr Gln Ile Phe Arg Gln Leu Asp Asn Asn Gly Asp

420 425 430 420 425 430

Gly Gln Leu Asp Arg Lys Glu Leu Ile Glu Gly Tyr Arg Lys Leu MetGly Gln Leu Asp Arg Lys Glu Leu Ile Glu Gly Tyr Arg Lys Leu Met

435 440 445 435 440 445

Gln Trp Lys Gly Asp Thr Val Ser Asp Leu Asp Ser Ser Gln Ile GluGln Trp Lys Gly Asp Thr Val Ser Asp Leu Asp Ser Ser Gln Ile Glu

450 455 460 450 455 460

Ala Glu Val Asp His Ile Leu Gln Ser Val Asp Phe Asp Arg Asn GlyAla Glu Val Asp His Ile Leu Gln Ser Val Asp Phe Asp Arg Asn Gly

465 470 475 480465 470 475 480

Tyr Ile Glu Tyr Ser Glu Phe Val Thr Val Cys Met Asp Lys Gln LeuTyr Ile Glu Tyr Ser Glu Phe Val Thr Val Cys Met Asp Lys Gln Leu

485 490 495 485 490 495

Leu Leu Ser Arg Glu Arg Leu Leu Ala Ala Phe Gln Gln Phe Asp SerLeu Leu Ser Arg Glu Arg Leu Leu Ala Ala Phe Gln Gln Phe Asp Ser

500 505 510 500 505 510

Asp Gly Ser Gly Lys Ile Thr Asn Glu Glu Leu Gly Arg Leu Phe GlyAsp Gly Ser Gly Lys Ile Thr Asn Glu Glu Leu Gly Arg Leu Phe Gly

515 520 525 515 520 525

Val Thr Glu Val Asp Asp Glu Thr Trp His Gln Val Leu Gln Glu CysVal Thr Glu Val Asp Asp Glu Thr Trp His Gln Val Leu Gln Glu Cys

530 535 540 530 535 540

Asp Lys Asn Asn Asp Gly Glu Val Asp Phe Glu Glu Phe Val Glu MetAsp Lys Asn Asn Asp Gly Glu Val Asp Phe Glu Glu Phe Val Glu Met

545 550 555 560545 550 555 560

Met Gln Lys Ile Cys Asp Val Lys Val Lys HisMet Gln Lys Ile Cys Asp Val Lys Val Lys His

565 570 565 570

<210> 6<210> 6

<211> 1716<211> 1716

<212> DNA<212> DNA

<213> 人工合成(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 60

atggctagca tgactggtgg acagcaaatg ggtcgcggat ccatggggtg cgtccactcc 120atggctagca tgactggtgg acagcaaatg ggtcgcggat ccatggggtg cgtccactcc 120

aagaatcccc actccaagca tgcaggcgca gctggagaaa aacccgacgc cagcctcgaa 180aagaatcccc actccaagca tgcaggcgca gctggagaaa aacccgacgc cagcctcgaa 180

aaggggggcc agagcaaggg gagcgcgccg tcgtcgggga ccggcgacag cggaaaagga 240aaggggggcc agagcaaggg gagcgcgccg tcgtcgggga ccggcgacag cggaaaagga 240

actgggtctc ccgacaccaa gagagactcc atgcccatga ctccaggcat gtacatcacg 300actgggtctc ccgacaccaa gagagactcc atgcccatga ctccaggcat gtacatcacg 300

cagcagaagg cccatttgtc tgaccgctac cagcgcgtga agaagctcgg aagcggtgct 360cagcagaagg cccatttgtc tgaccgctac cagcgcgtga agaagctcgg aagcggtgct 360

tacggcgagg tgctgctgtg caaggacaaa ctgacaggcg cagagcgagc aatcaaaatc 420tacggcgagg tgctgctgtg caaggacaaa ctgacaggcg cagagcgagc aatcaaaatc 420

atcaaaaagt cttctgtcac gaccacgagc aacagcgggg ctctcctcga cgaagtcgcc 480atcaaaaagt cttctgtcac gaccacgagc aacagcgggg ctctcctcga cgaagtcgcc 480

gtgctgaaac agctcgacca cccgaacatc atgaagctct acgagttctt cgaggacaag 540gtgctgaaac agctcgacca cccgaacatc atgaagctct acgagttctt cgaggacaag 540

cgcaactact accttgtcat ggaggtgtac cgaggaggcg agttgtttga cgaaatcatt 600cgcaactact accttgtcat ggaggtgtac cgaggaggcg agttgtttga cgaaatcatt 600

cttcgtcaga agttcagcga agtggacgcc gctgtcatca tgaaacaggt gctctctggc 660cttcgtcaga agttcagcga agtggacgcc gctgtcatca tgaaacaggt gctctctggc 660

accacttacc tgcacaaaca caacattgtg catcgcgacc tgaagcccga aaaccttctt 720accacttacc tgcacaaaca caacattgtg catcgcgacc tgaagcccga aaaccttctt 720

ctcgagtcga agagccggga cgctcttatc aagatcgtcg actttggtct ctctgcgcac 780ctcgagtcga agagccggga cgctcttatc aagatcgtcg actttggtct ctctgcgcac 780

tttgaagtcg gcggaaagat gaaggagcgc cttggcacag cctactacat tgccccagaa 840tttgaagtcg gcggaaagat gaaggagcgc cttggcacag cctactacat tgccccagaa 840

gttctgagaa agaagtacga cgaaaaatgc gatgtctggt cttgcggcgt tatcctctac 900gttctgagaa agaagtacga cgaaaaatgc gatgtctggt cttgcggcgt tatcctctac 900

attctccttt gcggctaccc gcccttcgga ggtcaaaccg accaggagat cctcaagagg 960attctccttt gcggctaccc gcccttcgga ggtcaaaccg accaggat cctcaagagg 960

gtcgagaaag gaaagttttc cttcgacccg cctgactgga ctcaagtgtc ggacgaggcg 1020gtcgagaaag gaaagttttc cttcgacccg cctgactgga ctcaagtgtc ggacgaggcg 1020

aagcagctgg tcaagctgat gctgacctac gagccttcga agagaatttc tgctgaggag 1080aagcagctgg tcaagctgat gctgacctac gagccttcga agagaatttc tgctgaggag 1080

gcgctgaatc atccgtggat cgtcaagttc tgctcccaga aacacaccga cgtcggcaaa 1140gcgctgaatc atccgtggat cgtcaagttc tgctcccaga aacacaccga cgtcggcaaa 1140

cacgctctca cgggcgccct gggcaacatg aagaaattcc agtcctcaca gaagctggcg 1200cacgctctca cgggcgccct gggcaacatg aagaaattcc agtcctcaca gaagctggcg 1200

caagcggcca tgctgtttat ggggagcaag ctgacgactc tggaggagac gaaggagctg 1260caagcggcca tgctgtttat ggggagcaag ctgacgactc tggaggagac gaaggagctg 1260

actcagatct ttcgtcaact tgacaacaac ggggacggcc aactggatcg caaggaacta 1320actcagatct ttcgtcaact tgacaacaac ggggacggcc aactggatcg caaggaacta 1320

attgaaggtt acagaaagct catgcagtgg aagggcgaca ccgtatctga cttggacagc 1380attgaaggtt acagaaagct catgcagtgg aagggcgaca ccgtatctga cttggacagc 1380

agccagatag aggcagaggt ggatcacatt ctccaatctg tcgactttga cagaaatgga 1440agccagatag aggcagaggt ggatcacatt ctccaatctg tcgactttga cagaaatgga 1440

tacattgagt actctgaatt tgtgactgtg tgcatggaca agcagcttct gctgtcgcgc 1500tacattgagt actctgaatt tgtgactgtg tgcatggaca agcagcttct gctgtcgcgc 1500

gagcgacttc ttgctgcctt ccaacagttc gacagcgacg gctcaggaaa aatcacgaat 1560gagcgacttc ttgctgcctt ccaacagttc gacagcgacg gctcaggaaa aatcacgaat 1560

gaggaactcg gcagactctt tggtgtgacg gaagtcgacg acgaaacgtg gcaccaggtt 1620gaggaactcg gcagactctt tggtgtgacg gaagtcgacg acgaaacgtg gcaccaggtt 1620

ctgcaagagt gcgacaagaa caacgatgga gaggtcgact ttgaggagtt tgtggaaatg 1680ctgcaagagt gcgacaagaa caacgatgga gaggtcgact ttgaggagtt tgtggaaatg 1680

atgcagaaga tctgcgacgt caaagtgaag cactga 1716atgcagaaga tctgcgacgt caaagtgaag cactga 1716

Claims (7)

1. An immunogenic composition, characterized by: the immunogenic composition is immunogenic composition A or immunogenic composition B;
the active ingredients of the immunogenic composition A consist of recombinant protein 14-3-3 of toxoplasma, recombinant protein MIF of toxoplasma and recombinant protein CDPK3 of toxoplasma;
the active ingredients of the immunogenic composition B consist of the recombinant protein 14-3-3 of the toxoplasma gondii and the recombinant protein CDPK3 of the toxoplasma gondii;
the recombinant protein 14-3-3 of the toxoplasma gondii is a protein of A1) or A2) as follows:
A1) the amino acid sequence is protein of a sequence 1 in a sequence table,
A2) the amino acid sequence is protein at 37 th-302 th site of sequence 1 in the sequence table;
the Toxoplasma gondii recombinant protein MIF is the protein of the following B1) or B2):
B1) the amino acid sequence is the protein of the sequence 3in the sequence table,
B2) the amino acid sequence is protein at 35 th to 150 th site of the sequence 3in the sequence table;
the toxoplasma recombinant protein TgCDPK3 protein is the protein of the following C1) or C2):
C1) the amino acid sequence is protein of a sequence 5 in a sequence table,
C2) the amino acid sequence is protein at 35-571 th site of sequence 5 in the sequence table; in the immunogenic composition A, the mass ratio of the recombinant protein 14-3-3 of the toxoplasma gondii, the recombinant protein MIF of the toxoplasma gondii and the recombinant protein CDPK3 of the toxoplasma gondii is 1:1: 1;
in the immunogenic composition B, the mass ratio of the recombinant protein 14-3-3 of the toxoplasma gondii to the recombinant protein CDPK3 of the toxoplasma gondii is 1: 1.
2. The immunogenic composition of claim 1, wherein: the immunogenic composition is any one of the following products:
f1, products for the treatment and/or prevention and/or co-treatment of toxoplasma infection;
f2, a product for enhancing the immune response of a host after Toxoplasma gondii infection;
f3, a product for reducing host mortality caused by Toxoplasma gondii infection;
f4, reducing the production of host brain encapsulation caused by Toxoplasma gondii infection.
3. The immunogenic composition of claim 2, wherein: the product for treating and/or preventing and/or assisting in treating the Toxoplasma gondii infection is a vaccine for preventing the Toxoplasma gondii infection, and the vaccine for preventing the Toxoplasma gondii infection contains an adjuvant.
4. A process for the preparation of the immunogenic composition of any one of claims 1-3 comprising the steps of: preparing the recombinant protein 14-3-3 of the toxoplasma gondii, the recombinant protein MIF of the toxoplasma gondii and the recombinant protein CDPK3 of the toxoplasma gondii, and mixing the recombinant protein 14-3-3 of the toxoplasma gondii, the recombinant protein MIF of the toxoplasma gondii and the recombinant protein CDPK3 of the toxoplasma gondii as active ingredients of the immunogenic composition to obtain the immunogenic composition;
the recombinant protein 14-3-3 of the Toxoplasma gondii is prepared according to the method comprising the following steps: expressing the coding gene of the recombinant protein 14-3-3 of the toxoplasma gondii in prokaryotic microorganisms to obtain the recombinant protein 14-3-3 of the toxoplasma gondii;
the recombinant protein MIF of the toxoplasma gondii is prepared according to the method comprising the following steps: expressing the encoding gene of the recombinant protein MIF of the toxoplasma gondii in prokaryotic microorganisms to obtain the recombinant protein MIF of the toxoplasma gondii;
the recombinant protein CDPK3 of the Toxoplasma gondii is prepared according to the method comprising the following steps: expressing the encoding gene of the recombinant protein CDPK3 of the toxoplasma in prokaryotic microorganisms to obtain the recombinant protein CDPK3 of the toxoplasma.
5. The method of claim 4, wherein: the coding gene of the recombinant protein 14-3-3 of the toxoplasma is the gene shown in a1) or a 2):
a1) the coding sequence of the coding strand is a DNA molecule shown in a sequence 2;
a2) the coding sequence of the coding strand is the DNA molecule shown in the 109-909 position of the sequence 2;
the coding gene of the recombinant protein MIF of the toxoplasma is the gene shown in the following b1) or b 2):
b1) the coding sequence of the coding strand is a DNA molecule shown in a sequence 4;
b2) the coding sequence of the coding strand is a DNA molecule shown in the 103-453 th position of the sequence 4;
the encoding gene of the recombinant protein CDPK3 of the Toxoplasma gondii is the gene shown in the following c1) or c 2):
c1) the coding sequence of the coding strand is a DNA molecule shown in sequence 6;
c2) the coding sequence of the coding strand is the DNA molecule shown in position 103-1716 of the sequence 6.
6. The method of claim 4, wherein: the coding gene of the recombinant protein 14-3-3 of the toxoplasma gondii is expressed in prokaryotic microorganisms, and the coding gene of the recombinant protein 14-3-3 of the toxoplasma gondii is introduced into receptor escherichia coli to obtain recombinant escherichia coli for expressing the recombinant protein 14-3-3 of the toxoplasma gondii, and the recombinant escherichia coli is cultured and expressed to obtain the recombinant protein 14-3-3 of the toxoplasma gondii;
the method comprises the following steps of expressing the coding gene of the recombinant protein MIF of the toxoplasma gondii in prokaryotic microorganisms, wherein the coding gene of the recombinant protein MIF of the toxoplasma gondii is introduced into receptor escherichia coli to obtain recombinant escherichia coli expressing the recombinant protein MIF of the toxoplasma gondii, and the recombinant escherichia coli is cultured and expressed to obtain the recombinant protein MIF of the toxoplasma gondii;
the method comprises the steps of enabling the coding gene of the recombinant protein CDPK3 of the toxoplasma to be expressed in prokaryotic microorganisms, introducing the coding gene of the recombinant protein CDPK3 of the toxoplasma into receptor escherichia coli to obtain the recombinant escherichia coli expressing the recombinant protein CDPK3 of the toxoplasma, culturing the recombinant escherichia coli, and expressing to obtain the recombinant protein CDPK3 of the toxoplasma.
7. The method of claim 6, wherein: the recombinant Escherichia coli for expressing the recombinant protein 14-3-3 of the toxoplasma is a recombinant microorganism which is obtained by introducing pET-28a-Tg14-3-3 into Escherichia coli BL21(DE3) and expresses the recombinant protein 14-3-3 of the toxoplasma with an amino acid sequence of sequence 1, the recombinant microorganism is named as BL21(DE3)/pET-28a-Tg14-3-3, and the pET-28a-Tg14-3-3 is a vector pET-28a (+) (see)EcoR I andXho a small segment between the I recognition sites is replaced by a DNA segment shown by the 109-909 site of the sequence 2 to obtain a recombinant vector;
the recombinant Escherichia coli for expressing the recombinant protein MIF of the toxoplasma is a recombinant microorganism of the recombinant protein MIF of the toxoplasma, the expression amino acid sequence of which is sequence 3 and is obtained by introducing pET-28a-TgMIF into Escherichia coli BL21(DE3), the recombinant microorganism is named as BL21(DE3)/pET-28a-TgMIF, and the pET-28a-TgMIF is a carrier pET-28a (+) (Bacillus subtilis)BamHI andXho a small segment between the I recognition sites is replaced by a DNA segment shown in the 103 th-453 th site of the sequence 4 to obtain a recombinant vector;
the recombinant escherichia coli expressing the recombinant protein CDPK3 of the toxoplasma is a recombinant microorganism which is obtained by introducing pET-28a-TgCDPK3 into escherichia coli BL21(DE3) and expresses the recombinant protein CDPK3 of the toxoplasma, the amino acid sequence of the recombinant microorganism is sequence 5, the recombinant microorganism is named as BL21(DE3)/pET-28a-TgCDPK3, and the pET-28a-TgCDPK3 is a recombinant microorganism which is obtained by introducing a vector pET-28a-TgCDPK3 into escherichia coli BL21(DE3), and the recombinant microorganism is named as BL21(DE3)/pET-28a-TgCDPK3BamHI andXho a small segment between I recognition sites is replaced by a DNA segment shown in the 103 th 1716 th site of the sequence 6 to obtain a recombinant vector.
CN202010835868.9A 2020-08-19 2020-08-19 A protein mixed vaccine for preventing human and animal toxoplasmosis Active CN111939247B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010835868.9A CN111939247B (en) 2020-08-19 2020-08-19 A protein mixed vaccine for preventing human and animal toxoplasmosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010835868.9A CN111939247B (en) 2020-08-19 2020-08-19 A protein mixed vaccine for preventing human and animal toxoplasmosis

Publications (2)

Publication Number Publication Date
CN111939247A CN111939247A (en) 2020-11-17
CN111939247B true CN111939247B (en) 2022-09-06

Family

ID=73342887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010835868.9A Active CN111939247B (en) 2020-08-19 2020-08-19 A protein mixed vaccine for preventing human and animal toxoplasmosis

Country Status (1)

Country Link
CN (1) CN111939247B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575005A (en) * 2021-01-04 2021-03-30 昆明理工大学 Method for improving heavy metal cadmium stress resistance of tobacco and reducing cadmium enrichment
CN113876809A (en) * 2021-10-28 2022-01-04 安徽医科大学 Application of macrophages expressing TgMIF protein in preparation of medicines for treating hepatic fibrosis
CN114569711B (en) * 2022-03-24 2024-04-19 安徽医科大学 A ME49Δcdpk3 attenuated live vaccine for preventing toxoplasmosis and its preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830850A (en) * 2015-05-08 2015-08-12 中国农业科学院兰州兽医研究所 Nucleotide sequence for preventing infection of toxoplasmas and application of nucleotide sequence
WO2015144732A2 (en) * 2014-03-25 2015-10-01 Yale University Uses of parasite macrophage migration inhibitory factors
CN105169387A (en) * 2015-08-31 2015-12-23 中国农业科学院兰州兽医研究所 Immune vaccine for preventing toxoplasma gondii infection
CN107281477A (en) * 2017-06-30 2017-10-24 中国农业科学院兰州兽医研究所 A kind of attenuated live vaccine and its application for being used to prevent arch insect infection
CN109679929A (en) * 2019-01-08 2019-04-26 安徽医科大学 A kind of recombined adhenovirus, preparation method, application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472647B2 (en) * 2012-12-21 2019-11-12 The Administrators Of The Tulane Educational Fund Primary mesenchymal stem cells as a vaccine platform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015144732A2 (en) * 2014-03-25 2015-10-01 Yale University Uses of parasite macrophage migration inhibitory factors
CN104830850A (en) * 2015-05-08 2015-08-12 中国农业科学院兰州兽医研究所 Nucleotide sequence for preventing infection of toxoplasmas and application of nucleotide sequence
CN105169387A (en) * 2015-08-31 2015-12-23 中国农业科学院兰州兽医研究所 Immune vaccine for preventing toxoplasma gondii infection
CN107281477A (en) * 2017-06-30 2017-10-24 中国农业科学院兰州兽医研究所 A kind of attenuated live vaccine and its application for being used to prevent arch insect infection
CN109679929A (en) * 2019-01-08 2019-04-26 安徽医科大学 A kind of recombined adhenovirus, preparation method, application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis;Minmin Wu et al.;《Acta Tropica》;20190816;第199卷;第1-8页 *
弓形虫MIF蛋白疫苗对BALB/c小鼠免疫保护作用的研究;刘康;《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》;20190915(第9期);第E059-164页 *
弓形虫信号转导蛋白14-3-3基因的克隆与表达;都建 等;《中国寄生虫学与寄生虫病杂志》;20031031;第21卷(第5期);第279-281页 *

Also Published As

Publication number Publication date
CN111939247A (en) 2020-11-17

Similar Documents

Publication Publication Date Title
CN111939247B (en) A protein mixed vaccine for preventing human and animal toxoplasmosis
US20030170263A1 (en) Expression system
NO332500B1 (en) Immunogenic polypeptides, polynucleotides encoding them, pharmaceutical composition, expression vector, host cell, vaccine composition, use and method for preparing the polypeptide
WO2007079684A1 (en) A mycobacterium tuberculosis fusion protein and uses thereof
NO20120234L (en) Fusion proteins from mycobacterium tuberculosis and their uses
CN113677799A (en) Genetically modified lactobacillus and application thereof
KR102415204B1 (en) Vaccine composition for african swine fever
Parsons et al. Antigenic variation in African trypanosomes: DNA rearrangements program immune evasion
KR20150056540A (en) Clostridium difficile polypeptides as vaccine
KR102224897B1 (en) Novel Polypeptide and Antibiotics against Gram-Negative Bacteria Comprising the Polypeptide
AU739641B2 (en) Nucleic acid and amino acid sequences relating to helicobacter pylori and vaccine compositions thereof
CA2402285A1 (en) Nimr compositions and their methods of use
WO2017113050A1 (en) Method of preparing porcine circovirus type 2 capsid protein and pharmaceutical composition comprising same
Sciutto et al. Brucella spp. lumazine synthase: a novel antigen delivery system
JP5055522B2 (en) A novel protein derived from polychaete
Bolhassani et al. Leishmania major: Protective capacity of DNA vaccine using amastin fused to HSV-1 VP22 and EGFP in BALB/c mice model
EP2763694B1 (en) Production of a cysteine rich protein
US20040219585A1 (en) Nontypeable haemophilus influenzae virulence factors
CN108671227B (en) A broad-spectrum polysubunit vaccine for the prevention of Streptococcus suis infection
CN111748020B (en) FimHEdApplication of bacillus subtilis spore vector-based fish targeted oral vaccine
WO2019059817A1 (en) Vaccine based on fusion protein and plasmid dna
US6254869B1 (en) Cryptopain vaccines, antibodies, proteins, peptides, DNA and RNA for prophylaxis, treatment and diagnosis and for detection of cryptosporidium species
KR0152245B1 (en) Ameria Tenella Waxin
JP2002262891A (en) Two-component signal transduction system protein derived from staphylococcus aureus
WO1997019098A9 (en) Nucleic acid and amino acid sequences relating to helicobacter pylori for diagnostics and therapeutics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant