CN111934438A - New energy micro-grid composite energy storage system and method - Google Patents
New energy micro-grid composite energy storage system and method Download PDFInfo
- Publication number
- CN111934438A CN111934438A CN202010561619.5A CN202010561619A CN111934438A CN 111934438 A CN111934438 A CN 111934438A CN 202010561619 A CN202010561619 A CN 202010561619A CN 111934438 A CN111934438 A CN 111934438A
- Authority
- CN
- China
- Prior art keywords
- energy storage
- microgrid
- module
- energy
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 145
- 239000002131 composite material Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims description 30
- 230000004044 response Effects 0.000 claims description 13
- 230000005611 electricity Effects 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 230000002457 bidirectional effect Effects 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000035515 penetration Effects 0.000 abstract description 4
- 230000002452 interceptive effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 8
- 238000010248 power generation Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012983 electrochemical energy storage Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J15/00—Systems for storing electric energy
- H02J15/006—Systems for storing electric energy in the form of pneumatic energy, e.g. compressed air energy storage [CAES]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/50—Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明提供了一种新能源微电网复合储能系统及方法,在维持微网内部源‑荷平衡的同时,通过对微电网与大电网间的交互控制,实现微电网集群的电源、负荷、储能等资源的共享,从而在保证微电网安全稳定运行的同时实现高效的能源管理。为了实现上述目的,本发明采用以下技术方案:包括压缩空气储能模块、超级电容模块、双向逆变器及微网复合储能控制模块,所述压缩空气储能模块与超级电容模块并联输入输出,而微网复合储能控制模块则分别与超级电容模块控制单元、压缩空气储能模块控制单元以及新能源微电网的并网控制单元连接。本发明通过微电网集群控制可以更好地满足基于高渗透比的可再生能源分布式发电的新型电力系统发展需求。
The invention provides a new energy microgrid composite energy storage system and method. While maintaining the internal source-load balance of the microgrid, through the interactive control between the microgrid and the large grid, the power supply, load, power supply, and load of the microgrid cluster can be realized. Energy storage and other resources are shared, so as to achieve efficient energy management while ensuring the safe and stable operation of the microgrid. In order to achieve the above purpose, the present invention adopts the following technical solutions: including a compressed air energy storage module, a super capacitor module, a two-way inverter and a microgrid composite energy storage control module, the compressed air energy storage module and the super capacitor module are connected in parallel for input and output , and the microgrid composite energy storage control module is respectively connected with the supercapacitor module control unit, the compressed air energy storage module control unit and the grid-connected control unit of the new energy microgrid. The invention can better meet the development requirements of the new power system based on the distributed generation of renewable energy based on the high penetration ratio through the control of the microgrid cluster.
Description
技术领域technical field
本发明涉及储能技术领域,特别是一种新能源微电网复合储能系统及运行方法。The invention relates to the technical field of energy storage, in particular to a new energy microgrid composite energy storage system and an operation method.
背景技术Background technique
为了满足不断增长的能源消耗需求,解决传统石化燃料燃烧带来的不可忽视的环境污染问题,清洁可再生能源得越来越多的重视和快速的发展。由于风电、光伏等主要可再生能源发电具有随机性和波动性大的缺点,直接并网利用会对电力系统的稳定性造成冲击,同时以燃煤发电为主的传统电源结构导致我国电网的调节能力不足,上述情况严重限制了可再生能源发电的大规模发展和有效利用。In order to meet the ever-increasing demand for energy consumption and solve the non-negligible environmental pollution caused by the combustion of traditional fossil fuels, more and more attention and rapid development of clean and renewable energy are required. Because wind power, photovoltaic and other major renewable energy power generation have the disadvantages of randomness and large fluctuation, direct grid-connected utilization will have an impact on the stability of the power system. Insufficient capacity, the above situation seriously limits the large-scale development and effective utilization of renewable energy power generation.
新能源微电网通过对分布式可再生能源发电、储能及区域用能的综合控制,可彻底消除“弃风弃光”现象,从而降低化石能源消耗,改善电力系统结构。未来,电力系统将向着更加坚强、更加智能、更加开放的新能源微电网及微电网集群方向发展。储能系统是实现新能源微电网高效能量管理的关键。当前主要储能技术的特点如下:常规的抽水蓄能,只适合大规模储能,受地理条件约束很大,不适合微电网场景;热门的电化学储能,存在成本过高、污染等问题未得到很好的解决,也不是新能源微电网的绿色、经济选择。压缩空气储能(Compressed Air Energy Storage,CAES)是近年来得到较快发展的一种储能技术,以压缩空气作为储能介质,储能成本低,可靠性高,而且主流的绝热CAES结合了储热技术以克服燃料燃烧的依赖,具有清洁、高效的特点。相比抽水蓄能、电化学储能,CAES还具有实现能量综合利用(冷热电联产)的独特优势,因此是新能源微电网储能的理想选择。Through the comprehensive control of distributed renewable energy power generation, energy storage and regional energy consumption, the new energy microgrid can completely eliminate the phenomenon of "abandoning wind and abandoning light", thereby reducing the consumption of fossil energy and improving the structure of the power system. In the future, the power system will develop towards a stronger, smarter and more open new energy microgrid and microgrid cluster. The energy storage system is the key to realize the efficient energy management of the new energy microgrid. The characteristics of the current main energy storage technologies are as follows: conventional pumped hydro storage is only suitable for large-scale energy storage, which is greatly restricted by geographical conditions and is not suitable for microgrid scenarios; the popular electrochemical energy storage has problems such as high cost and pollution It is not well resolved, nor is it a green and economical choice for new energy microgrids. Compressed Air Energy Storage (CAES) is an energy storage technology that has developed rapidly in recent years. Using compressed air as the energy storage medium, the energy storage cost is low and the reliability is high. Heat storage technology to overcome the dependence of fuel combustion, has the characteristics of clean and efficient. Compared with pumped hydro energy storage and electrochemical energy storage, CAES also has the unique advantage of realizing comprehensive utilization of energy (cogeneration of cooling, heating and power), so it is an ideal choice for new energy microgrid energy storage.
由于CAES采用压缩机组和膨胀机组实现电能的存储和转化,而机械系统惯性的存在导致CAES启动需要一定的时间(分钟级),无法独立满足对微电网中电源和负荷变化的实时响应需求。超级电容的功率密度高,响应时间在毫秒级,可很好地弥补CAES实时响应能力的不足。此外,超级电容内部电化学反应的可逆性很好,有远多于常规蓄电池的充放电循环寿命;结构简单,维护成本低;产品原材料构成、生产、使用、储存以及拆解过程均没有污染,同样属于理想的绿色环保储能技术。综上,以压缩空气储能系统作为新能源微电网的能量型储能单元,超级电容作为功率型储能单元,组成的复合储能系统具有低成本、无污染、灵活布置以及快速响应等优点,可以很好满足新能源微电网的储能需求。Since CAES uses compressor units and expansion units to store and convert electrical energy, and the inertia of the mechanical system causes CAES to take a certain amount of time (minutes) to start, it cannot independently meet the real-time response requirements to power and load changes in the microgrid. Supercapacitors have high power density and response time in milliseconds, which can well make up for the lack of CAES real-time response capabilities. In addition, the reversibility of the internal electrochemical reaction of the supercapacitor is very good, and the charge-discharge cycle life is much longer than that of the conventional battery; the structure is simple and the maintenance cost is low; the raw material composition, production, use, storage and disassembly of the product are all pollution-free. It is also an ideal green energy storage technology. To sum up, the composite energy storage system composed of compressed air energy storage system as the energy-based energy storage unit of the new energy microgrid and supercapacitor as the power-based energy storage unit has the advantages of low cost, no pollution, flexible layout and fast response. , which can well meet the energy storage needs of new energy microgrids.
但是,现有的技术仍存在如下不足:However, the existing technology still has the following shortcomings:
(1)现有基于压缩空气储能和超级电容耦合储能的技术方案主要针对电力系统的应急备用场景,并不能满足包含高可再生能源发电渗透率的微电网内电能高效管理和保持源-荷平衡的需求;(1) The existing technical solutions based on compressed air energy storage and supercapacitor coupled energy storage are mainly aimed at emergency backup scenarios of power systems, and cannot meet the requirements of efficient management and maintenance of electric energy in microgrids with high penetration rate of renewable energy generation- load balancing requirements;
(2)现有的复合储能技术方案以解决单一电力系统或网络的主动配电需求为核心,并没有考虑新能源微电网集群间的电能优化分配和资源共享。(2) The existing composite energy storage technology solutions focus on solving the active power distribution needs of a single power system or network, and do not consider the optimal distribution of electric energy and resource sharing among new energy microgrid clusters.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明提供了一种新能源微电网复合储能系统及方法,在维持微网内部源-荷平衡的同时,通过对微电网与大电网间的交互控制,实现微电网集群的电源、负荷、储能等资源的共享,从而在保证微电网安全稳定运行的同时实现高效的能源管理。为了实现上述目的,本发明采用以下技术方案:In order to overcome the above-mentioned deficiencies of the prior art, the present invention provides a new energy microgrid composite energy storage system and method. While maintaining the internal source-load balance of the microgrid, through the interactive control between the microgrid and the large grid, Realize the sharing of power, load, energy storage and other resources of the microgrid cluster, so as to achieve efficient energy management while ensuring the safe and stable operation of the microgrid. In order to achieve the above object, the present invention adopts the following technical solutions:
一种新能源微电网复合储能系统,其特征在于,包括压缩空气储能模块、超级电容模块、双向逆变器及微网复合储能控制模块,所述压缩空气储能模块与超级电容模块并联输入输出,而微网复合储能控制模块则分别与超级电容模块控制单元、压缩空气储能模块控制单元以及新能源微电网的并网控制单元连接。A new energy microgrid composite energy storage system, characterized in that it includes a compressed air energy storage module, a super capacitor module, a bidirectional inverter and a microgrid composite energy storage control module, the compressed air energy storage module and the super capacitor module The input and output are connected in parallel, and the microgrid composite energy storage control module is respectively connected with the supercapacitor module control unit, the compressed air energy storage module control unit and the grid-connected control unit of the new energy microgrid.
进一步地,所述压缩空气储能模块包括电动机、压缩机组、储气装置、膨胀机组以及发电机,所述压缩空气储能模块控制单元具体为发电机控制单元和电动机控制单元,其中电动机控制单元连接电动机输入端,电动机输出端连接压缩机组输入端,压缩机组输出端连接储气装置输入端,储气装置输出端连接膨胀机组输入端,膨胀机组输出端连接发电机输入端,发电机输出端连接发电机控制单元。Further, the compressed air energy storage module includes a motor, a compressor unit, an air storage device, an expansion unit and a generator, and the compressed air energy storage module control unit is specifically a generator control unit and a motor control unit, wherein the motor control unit Connect the input end of the motor, the output end of the motor is connected to the input end of the compressor unit, the output end of the compressor unit is connected to the input end of the gas storage device, the output end of the air storage device is connected to the input end of the expansion unit, the output end of the expansion unit is connected to the input end of the generator, and the output end of the generator Connect the generator control unit.
进一步地,所述超级电容模块由多个超级电容单体串并联组成,并通过双向逆变器接入复合储能系统主电路。Further, the supercapacitor module is composed of a plurality of supercapacitor cells in series and parallel, and is connected to the main circuit of the composite energy storage system through a bidirectional inverter.
进一步地,所述微网复合储能控制模块通过有线或者无线的方式与压缩空气储能模块控制单元、超级电容模块控制单元以及新能源微电网的并网控制单元进行通信,以控制不同储能模块之间电能的协调分配、新能源微电网与大电网之间的电能交互。Further, the microgrid composite energy storage control module communicates with the compressed air energy storage module control unit, the supercapacitor module control unit and the grid-connected control unit of the new energy microgrid through wired or wireless means to control different energy storages. Coordinated distribution of electrical energy between modules, and electrical energy interaction between new energy microgrids and large grids.
一种新能源微电网复合储能方法,适用于上述新能源微电网复合储能系统,其特征在于,采用压缩空气储能模块与超级电容模块组合的方式对新能源微电网内部波动、不稳定的电力供应和用电负荷之间的差异进行实时动态调节,维持微网内部的源-荷平衡。A new energy microgrid composite energy storage method, which is suitable for the above-mentioned new energy microgrid composite energy storage system, is characterized in that a combination of a compressed air energy storage module and a supercapacitor module is used to prevent internal fluctuations and instability of the new energy microgrid. The difference between the power supply and the power load is dynamically adjusted in real time to maintain the source-load balance within the microgrid.
进一步地,根据不同储能模块的特点,压缩空气储能模块作为能量型储能单元,主要负责对微电网内电能需求变化的持续响应;超级电容模块作为功率型储能单元,主要负责对微电网内供电功率和复合功率差异变化的快速响应;由微网复合储能控制模块负责协调储能模块之间的电能分配,执行以下操作:Further, according to the characteristics of different energy storage modules, the compressed air energy storage module, as an energy-type energy storage unit, is mainly responsible for the continuous response to changes in electric energy demand in the microgrid; the supercapacitor module, as a power-type energy storage unit, is mainly responsible for Quick response to changes in power supply and composite power differences in the grid; the microgrid composite energy storage control module is responsible for coordinating the distribution of electrical energy between energy storage modules, and performs the following operations:
当系统监测到新能源微电网内的发电量大于负荷需求时,微网复合储能控制模块控制复合储能系统吸收多余的电能,启动并控制压缩机组运转使压缩空气储能模块工作在负荷状态,将电能转化为压缩空气内能存储在储气装置中;When the system detects that the power generation in the new energy microgrid is greater than the load demand, the microgrid composite energy storage control module controls the composite energy storage system to absorb excess energy, starts and controls the operation of the compressor unit to make the compressed air energy storage module work in the load state , convert the electrical energy into compressed air and store it in the gas storage device;
当系统监测到新能源微电网内的发电量小于负荷需求时,微网复合储能控制模块控制复合储能系统输出电能弥补微网内的供电不足,控制储气装置释放高压空气进入膨胀机组驱动发电机发电,使压缩空气储能模块工作在电源状态;When the system detects that the power generation in the new energy microgrid is less than the load demand, the microgrid composite energy storage control module controls the composite energy storage system to output electric energy to make up for the lack of power supply in the microgrid, and controls the gas storage device to release high-pressure air into the expansion unit to drive The generator generates electricity, so that the compressed air energy storage module works in the power state;
同时,微网复合储能控制模块控制超级电容模块进行灵活的充放电操作,对压缩空气储能模块由于机械系统惯性导致的延时响应部分的源-荷-储瞬时功率差和短时电能差进行实时平抑,辅助维持微网内部的源-荷平衡。At the same time, the microgrid composite energy storage control module controls the supercapacitor module to perform flexible charging and discharging operations, and responds to the source-load-storage instantaneous power difference and short-term electric energy difference of the delayed response part of the compressed air energy storage module due to the inertia of the mechanical system. Perform real-time stabilization to assist in maintaining the source-load balance within the microgrid.
进一步地,在大电网内设置微电网集群控制中心,当系统监测到新能源微电网内的源-荷差异超过复合储能系统调节极限时,微网复合储能控制模块自动向大电网发出调度请求,根据微电网集群控制中心的反馈控制不同微电网之间的电能交互,实现大电网内微电网集群的源-荷-储资源共享,从而在保证各微电网安全稳定运行的同时实现高效的能源管理。Further, a microgrid cluster control center is set up in the large power grid. When the system monitors that the source-load difference in the new energy microgrid exceeds the adjustment limit of the composite energy storage system, the microgrid composite energy storage control module automatically sends dispatches to the large power grid. request, according to the feedback from the microgrid cluster control center, control the power interaction between different microgrids, and realize the source-load-storage resource sharing of the microgrid cluster in the large grid, so as to ensure the safe and stable operation of each microgrid while achieving high efficiency. energy management.
本发明具有如下有益效果:The present invention has the following beneficial effects:
(1)针对高渗透比可再生能源的微电网内部电能管理需求,提出的以储能成本低、可靠性高、使用寿命长的压缩空气储能为主,功率密度大、循环寿命高、响应速度快的超级电容储能为辅的复合储能技术方案,可以充分发挥不同储能技术的优势,从而在满足维持源-荷平衡需求的同时显著提高复合储能系统的技术经济性;(1) In view of the internal power management requirements of the microgrid with high penetration ratio of renewable energy, the proposed compressed air energy storage with low energy storage cost, high reliability and long service life, high power density, high cycle life, responsive The composite energy storage technology solution supplemented by the fast supercapacitor energy storage can give full play to the advantages of different energy storage technologies, thereby significantly improving the technical economy of the composite energy storage system while meeting the needs of maintaining source-load balance;
(2)针对包含大规模可再生能源分布式发电的新型电力系统发展需求,提出的基于微电网内储能调节和微电网集群间源-荷-储资源共享的运行方法,可以充分利用有限的储能投入对电能的生产、输送以及消费全过程进行优化,从而实现能源的高效管理和利用。(2) In response to the development needs of new power systems including large-scale renewable energy distributed generation, the proposed operation method based on energy storage regulation within microgrids and source-load-storage resource sharing among microgrid clusters can make full use of limited The energy storage investment optimizes the whole process of electric energy production, transmission and consumption, so as to realize the efficient management and utilization of energy.
因此,与现有技术相比,本发明具有适应性强、成本低、安全可靠、绿色环保等优点,通过微电网集群控制可以更好地满足基于高渗透比的可再生能源分布式发电的新型电力系统发展需求。Therefore, compared with the prior art, the present invention has the advantages of strong adaptability, low cost, safety and reliability, green environmental protection, etc., and can better satisfy the new type of distributed generation of renewable energy based on high penetration ratio through the control of microgrid cluster. power system development needs.
附图说明Description of drawings
图1为本发明提供的新能源微电网复合储能系统的结构示意图;1 is a schematic structural diagram of a new energy microgrid composite energy storage system provided by the present invention;
图2为本发明提供的基于复合储能系统的微电网集群交互示意图。FIG. 2 is a schematic diagram of the interaction of the microgrid cluster based on the composite energy storage system provided by the present invention.
图中:1、新能源微电网,2、复合储能系统,3、压缩空气储能模块,4、大电网,101、分布式电源,102、负荷,103、变压器,104、并网控制单元,201、微网复合储能控制模块,202、超级电容模块,203、双向逆变器,204、超级电容模块控制单元,301、电动机控制单元,302、电动机,303、压缩机组,304、储气装置,305、膨胀机组,306、发电机,307发电机控制单元。In the figure: 1. New energy microgrid, 2. Composite energy storage system, 3. Compressed air energy storage module, 4. Large power grid, 101, Distributed power supply, 102, Load, 103, Transformer, 104, Grid-connected control unit , 201, microgrid composite energy storage control module, 202, super capacitor module, 203, bidirectional inverter, 204, super capacitor module control unit, 301, motor control unit, 302, motor, 303, compressor unit, 304, storage Gas device, 305, expansion unit, 306, generator, 307 generator control unit.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
如图1、图2所示的实施例中,一种新能源微电网复合储能系统,包括压缩空气储能模块3、超级电容模块202、双向逆变器203及微网复合储能控制模块201,所述压缩空气储能模块3与超级电容模块202并联输入输出,而微网复合储能控制模块201则分别与超级电容模块控制单元204、压缩空气储能模块3控制单元以及新能源微电网1的并网控制单元104连接。In the embodiment shown in Figures 1 and 2, a new energy microgrid composite energy storage system includes a compressed air energy storage module 3, a
上述压缩空气储能模块包括电动机302、压缩机组303、储气装置304、膨胀机组305以及发电机306,所述压缩空气储能模块控制单元具体为发电机控制单元301和电动机控制单元307,其中电动机控制单元301连接电动机302输入端,电动机302输出端连接压缩机组303输入端,压缩机组303输出端连接储气装置304输入端,储气装置304输出端连接膨胀机组305输入端,膨胀机组305输出端连接发电机306输入端,发电机306输出端连接发电机控制单元307。当压缩空气储能模块3工作在负荷状态时,电动机302驱动压缩机组303将电能转化为压缩空气压力能存储在储气装置304中,发电机306待机;当压缩空气储能模块3工作在电源状态时,将储气装置304中存储的高压空气释放进入膨胀机组305做功,驱动发电机306组进行发电,电动机302组待机。The above-mentioned compressed air energy storage module includes a
上述超级电容模块202由若干超级电容单体串并联组成以及包括超级电容控制单元204,并通过双向逆变器203接入复合储能系统2主电路。实现超级电容模块202内部的直流电与外部交流电之间的相互转换。设置均衡电路对超级电容堆组进行管理,以提高超级电容单体的性能和寿命。The above-mentioned
所述微网复合储能控制模块201通过有线或者无线的方式与压缩空气储能模块3控制单元、超级电容模块控制单元204以及新能源微电网1的并网控制单元104进行通信,以控制不同储能模块之间电能的协调分配、新能源微电网1与大电网4之间的电能交互。当新能源微电网1属于中高压电时,通过设置变压器将复合储能系统2的低压电转换为中高压电接入新能源微电网1。其中,电动机302和压缩机组303组成储能子系统,在电力供应过剩时由电动机302驱动压缩机组303将电能转化为压缩空气压力能存储在储气装置304中;膨胀机组和发电机组成释能子系统,在电力供应不足时从储气装置304中释放压缩空气进入膨胀机组305做功,驱动发电机306组进行发电;压缩机组303和膨胀机组305采用多级串联的形式,以实现高压比的空气压缩和膨胀;储能子系统和释能子系统分时运行,以保持储气装置304内部的相对稳定。The microgrid composite energy
新能源微电网复合储能方法如下:The new energy microgrid composite energy storage method is as follows:
采用压缩空气储能模块与超级电容模块组合的方式对新能源微电网内部波动、不稳定的电力供应和用电负荷之间的差异进行实时动态调节,维持微网内部的源-荷平衡。The combination of compressed air energy storage module and supercapacitor module is used to dynamically adjust the internal fluctuations of the new energy microgrid, the difference between unstable power supply and electricity load in real time, and maintain the source-load balance within the microgrid.
根据不同储能模块的特点,压缩空气储能模块作为能量型储能单元,主要负责对微电网内电能需求变化的持续响应;超级电容模块作为功率型储能单元,主要负责对微电网内供电功率和复合功率差异变化的快速响应;由微网复合储能控制模块负责协调储能模块之间的电能分配,执行以下操作:According to the characteristics of different energy storage modules, the compressed air energy storage module, as an energy-type energy storage unit, is mainly responsible for the continuous response to changes in electric energy demand in the microgrid; as a power-type energy storage unit, the supercapacitor module is mainly responsible for supplying power to the microgrid. Quick response to changes in power and composite power differences; the microgrid composite energy storage control module is responsible for coordinating the distribution of electrical energy between energy storage modules, performing the following operations:
当系统监测到新能源微电网内的发电量大于负荷需求时,微网复合储能控制模块控制复合储能系统吸收多余的电能,启动并控制压缩机组运转使压缩空气储能模块工作在负荷状态,将电能转化为压缩空气内能存储在储气装置中;When the system detects that the power generation in the new energy microgrid is greater than the load demand, the microgrid composite energy storage control module controls the composite energy storage system to absorb excess energy, starts and controls the operation of the compressor unit to make the compressed air energy storage module work in the load state , convert the electrical energy into compressed air and store it in the gas storage device;
当系统监测到新能源微电网内的发电量小于负荷需求时,微网复合储能控制模块控制复合储能系统输出电能弥补微网内的供电不足,控制储气装置释放高压空气进入膨胀机组驱动发电机发电,使压缩空气储能模块工作在电源状态;When the system detects that the power generation in the new energy microgrid is less than the load demand, the microgrid composite energy storage control module controls the composite energy storage system to output electric energy to make up for the lack of power supply in the microgrid, and controls the gas storage device to release high-pressure air into the expansion unit to drive The generator generates electricity, so that the compressed air energy storage module works in the power state;
同时,微网复合储能控制模块控制超级电容模块进行灵活的充放电操作,对压缩空气储能模块由于机械系统惯性导致的延时响应部分的源-荷-储瞬时功率差和短时电能差进行实时平抑,辅助维持微网内部的源-荷平衡。At the same time, the microgrid composite energy storage control module controls the supercapacitor module to perform flexible charging and discharging operations, and responds to the source-load-storage instantaneous power difference and short-term electric energy difference of the delayed response part of the compressed air energy storage module due to the inertia of the mechanical system. Perform real-time stabilization to assist in maintaining the source-load balance within the microgrid.
在大电网内设置微电网集群控制中心,当系统监测到新能源微电网内的源-荷差异超过复合储能系统调节极限时,微网复合储能控制模块自动向大电网发出调度请求,根据微电网集群控制中心的反馈控制不同微电网之间的电能交互,实现大电网内微电网集群的源-荷-储资源共享,从而在保证各微电网安全稳定运行的同时实现高效的能源管理。A microgrid cluster control center is set up in the large power grid. When the system detects that the source-load difference in the new energy microgrid exceeds the adjustment limit of the composite energy storage system, the microgrid composite energy storage control module automatically sends a dispatch request to the large power grid. The feedback of the microgrid cluster control center controls the electric energy interaction between different microgrids, and realizes the source-load-storage resource sharing of the microgrid cluster in the large grid, so as to ensure the safe and stable operation of each microgrid while achieving efficient energy management.
上述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。The foregoing embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that the foregoing embodiments can still be used for The recorded technical solutions are modified, or some or all of the technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010561619.5A CN111934438A (en) | 2020-06-18 | 2020-06-18 | New energy micro-grid composite energy storage system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010561619.5A CN111934438A (en) | 2020-06-18 | 2020-06-18 | New energy micro-grid composite energy storage system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111934438A true CN111934438A (en) | 2020-11-13 |
Family
ID=73317516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010561619.5A Pending CN111934438A (en) | 2020-06-18 | 2020-06-18 | New energy micro-grid composite energy storage system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111934438A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112838600A (en) * | 2021-02-24 | 2021-05-25 | 上海甸康信息技术中心 | Power Balance System Based on Distributed Generation System |
CN113346626A (en) * | 2021-05-17 | 2021-09-03 | 西安交通大学 | Compressed air energy storage system with quick response module and operation method thereof |
CN116979575A (en) * | 2023-04-21 | 2023-10-31 | 长江勘测规划设计研究有限责任公司 | Power grid energy storage regulation and control method, recording medium and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202435048U (en) * | 2011-12-20 | 2012-09-12 | 国网电力科学研究院 | Micro-grid system based on various distributed power supplies and energy storage units |
CN203257492U (en) * | 2013-04-28 | 2013-10-30 | 中国科学院工程热物理研究所 | Compressed air electric power energy storage system |
CN106385042A (en) * | 2016-10-09 | 2017-02-08 | 江苏现代能源微网系统有限公司 | Network type energy storage system applied to microgrid and operation control method thereof |
US20180238304A1 (en) * | 2015-02-16 | 2018-08-23 | Eronini Iheanyi UMEZ-ERONINI | Distributed compressed air energy storage with heat network |
-
2020
- 2020-06-18 CN CN202010561619.5A patent/CN111934438A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202435048U (en) * | 2011-12-20 | 2012-09-12 | 国网电力科学研究院 | Micro-grid system based on various distributed power supplies and energy storage units |
CN203257492U (en) * | 2013-04-28 | 2013-10-30 | 中国科学院工程热物理研究所 | Compressed air electric power energy storage system |
US20180238304A1 (en) * | 2015-02-16 | 2018-08-23 | Eronini Iheanyi UMEZ-ERONINI | Distributed compressed air energy storage with heat network |
CN106385042A (en) * | 2016-10-09 | 2017-02-08 | 江苏现代能源微网系统有限公司 | Network type energy storage system applied to microgrid and operation control method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112838600A (en) * | 2021-02-24 | 2021-05-25 | 上海甸康信息技术中心 | Power Balance System Based on Distributed Generation System |
CN113346626A (en) * | 2021-05-17 | 2021-09-03 | 西安交通大学 | Compressed air energy storage system with quick response module and operation method thereof |
CN116979575A (en) * | 2023-04-21 | 2023-10-31 | 长江勘测规划设计研究有限责任公司 | Power grid energy storage regulation and control method, recording medium and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106786693B (en) | Energy storage device system for primary frequency modulation and AGC auxiliary adjustment technology | |
CN102368620B (en) | Wind-energy/ solar-energy/ storage/ ocean-current-energy new-energy isolated network stabilization operation integration control system and method thereof | |
CN201323453Y (en) | Renewable energy micro-grid | |
CN104836254B (en) | A kind of power grid"black-start" system and the method for photovoltaic plant participation power grid"black-start" | |
CN205429725U (en) | Many generating lines residential block power supply system based on little electric wire netting of direct current | |
CN204497747U (en) | A kind of micro-grid system based on hybrid energy-storing and fault current limiter | |
CN105186660A (en) | Off-grid type wind power hydrogen production conversion system | |
CN110797894A (en) | System for performing thermal power frequency modulation by combining super capacitor with lithium battery energy storage | |
CN112329259A (en) | A multi-energy complementary cooling, heating and power cogeneration microgrid framework and its modeling method | |
CN109301861B (en) | Black start system for photovoltaic and photo-thermal system coordinated power generation and recovery method thereof | |
CN111934438A (en) | New energy micro-grid composite energy storage system and method | |
CN105932704A (en) | Photovoltaic direct current side energy storage based power grid intelligent regulation and control system | |
CN112467773A (en) | Power frequency modulation system and method for super capacitor coupling lithium battery | |
CN104795845B (en) | Independent micro-grid hybrid control method and system based on combination of peer-to-peer control and centralized control | |
CN110991735B (en) | Optimal scheduling method of combined heat and power system considering AA-CAES | |
CN204905882U (en) | Double -fed aerogenerator exciting arrangement based on mix energy storage | |
CN112769161A (en) | Multi-mode energy storage micro-grid system | |
CN117477611A (en) | A control method for distributed hybrid energy storage to participate in system frequency modulation | |
CN202997585U (en) | Household solar energy grid connected generation system | |
CN117526459A (en) | Reactive power-voltage regulation optimization control strategy system and method for new energy station | |
CN114039345A (en) | Wind-solar-storage direct-current side coupling configuration method applied to wind power plant | |
TW201325003A (en) | Expandable integrated micro electric grid dedicated to electricity storage | |
CN113315158B (en) | New energy power generation combined battery and gravity energy storage system and method | |
CN206894253U (en) | A kind of power network intelligent control system based on the energy storage of photovoltaic DC side | |
Honghai et al. | Research of super capacitor energy storage system based on DG connected to power grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201113 |