CN111917350A - A multi-parameter identification method for a permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage - Google Patents
A multi-parameter identification method for a permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage Download PDFInfo
- Publication number
- CN111917350A CN111917350A CN202010572541.7A CN202010572541A CN111917350A CN 111917350 A CN111917350 A CN 111917350A CN 202010572541 A CN202010572541 A CN 202010572541A CN 111917350 A CN111917350 A CN 111917350A
- Authority
- CN
- China
- Prior art keywords
- flux linkage
- frequency
- permanent magnet
- direct
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/20—Estimation of torque
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
- H02P25/026—Synchronous motors controlled by supply frequency thereby detecting the rotor position
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
- H02P25/098—Arrangements for reducing torque ripple
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/34—Modelling or simulation for control purposes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种磁链可调永磁辅助同步磁阻电机的多参数辨识方法,在转矩磁链控制算法的配合下,本发明提出的参数辨识方法主要分为四个步骤:步骤A是基于离线有限元电磁场分析建立的静态电感数据表以及铁损电流数据表;步骤B是基于高频分量的高频等效电阻和动态电感辨识;步骤C是基于基频分量的定子电阻和永磁磁链辨识;步骤D是不同矫顽力磁链分离以及转子温度辨识。本发明方法不仅可以实现磁链可调永磁辅助同步磁阻电机的静/动态电感,定子电阻,永磁磁链,转子温度等多物理参数的在线辨识,而且还能实现低矫顽力永磁磁链的动态分离。
The invention discloses a multi-parameter identification method of a permanent magnet assisted synchronous reluctance motor with adjustable flux linkage. With the cooperation of a torque flux linkage control algorithm, the parameter identification method proposed by the present invention is mainly divided into four steps: Step A It is a static inductance data table and iron loss current data table established based on off-line finite element electromagnetic field analysis; step B is based on the high-frequency component of high-frequency equivalent resistance and dynamic inductance identification; step C is based on the fundamental frequency component of the stator resistance and permanent Magnetic flux linkage identification; Step D is the separation of different coercive force flux linkages and rotor temperature identification. The method of the invention can not only realize the on-line identification of multiple physical parameters such as static/dynamic inductance, stator resistance, permanent magnetic flux linkage, rotor temperature, etc. Dynamic separation of magnetic flux linkages.
Description
技术领域technical field
本发明涉及一种磁链可调永磁辅助同步磁阻电机的多参数辨识方法,属于电机参数辨识技术领域。The invention relates to a multi-parameter identification method of a permanent magnet auxiliary synchronous reluctance motor with adjustable flux linkage, and belongs to the technical field of motor parameter identification.
背景技术Background technique
磁链可调永磁辅助同步磁阻电机采用永磁和直轴电流混合励磁方式,采用永磁转矩辅助磁阻转矩,转子无铜耗,且转子中引入了磁链可调的低矫顽力永磁体,因此该类电机在转矩密度、功率因数、效率、调磁能力、容错方面具有良好的综合电机性能。磁链可调永磁辅助同步磁阻电机的高性能控制和提升转矩性能离不开电机模型参数的在线识别。The permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage adopts the hybrid excitation mode of permanent magnet and direct-axis current, and adopts permanent magnet torque to assist the reluctance torque. Coercive permanent magnets, so this type of motor has good comprehensive motor performance in terms of torque density, power factor, efficiency, magnetic adjustment capability, and fault tolerance. The high-performance control and improved torque performance of the permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage are inseparable from the online identification of the motor model parameters.
现有永磁同步电机的参数辨识主要分为以下几类:1)基于电机基频分量的电机参数辨识方法。一般而言电机状态方程数常少于需要辨识的参数量,需要采用了部分参数额定值设定,扰动注入等方法解决这种电机参数辨识的欠秩问题。2)基于电机高频电压和电流信号模型的电机参数辨识方法。通过向电机注入高频电压信号或磁链激励信号,提取高频电压或电流响应信号,进而根据电机的高频信号数学模型实时观测电机电感等参数。3)基于电阻、磁链等参数温度物理特性的电机参数辨识方法。通过反电势法和高频信号注入方法,结合温度物理特性对定子电阻和永磁磁链参数进行在线辨识。The parameter identification of the existing permanent magnet synchronous motor is mainly divided into the following categories: 1) The motor parameter identification method based on the fundamental frequency component of the motor. Generally speaking, the number of state equations of the motor is often less than the number of parameters to be identified. It is necessary to adopt some parameter rated value setting, disturbance injection and other methods to solve the under-rank problem of the motor parameter identification. 2) The motor parameter identification method based on the high frequency voltage and current signal model of the motor. By injecting high-frequency voltage signal or flux linkage excitation signal into the motor, the high-frequency voltage or current response signal is extracted, and then parameters such as motor inductance are observed in real time according to the mathematical model of the motor's high-frequency signal. 3) The motor parameter identification method based on the temperature physical characteristics of parameters such as resistance and flux linkage. The stator resistance and permanent magnet flux linkage parameters are identified online by the back EMF method and the high frequency signal injection method combined with the physical characteristics of temperature.
与传统的永磁同步电机不同,磁链可调永磁辅助同步磁阻电机具有磁场空间谐波丰富、交/直轴电流耦合紧密、转子凸极性强、参数非线性时变的固有特点,因此给电机的参数在线辨识带来了难题。在稳定控制转矩的前提下,如何实现磁链可调永磁辅助同步磁阻电机的多参数辨识成为电机高性能控制以及广泛工业应用亟待解决的问题。Different from the traditional permanent magnet synchronous motor, the permanent magnet assisted synchronous reluctance motor with adjustable flux linkage has the inherent characteristics of rich magnetic field space harmonics, tight AC/DC current coupling, strong rotor saliency, and nonlinear time-varying parameters. Therefore, it brings difficulties to the online identification of motor parameters. Under the premise of stable control of torque, how to realize multi-parameter identification of permanent magnet-assisted synchronous reluctance motors with adjustable flux linkage has become an urgent problem to be solved in high-performance motor control and wide industrial applications.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:提供一种磁链可调永磁辅助同步磁阻电机的多参数辨识方法,将参数辨识方法与离线有限元电磁场分析、数据存储、数据拟合相结合,综合考虑了空间磁场谐波、磁饱和、交/直轴耦合、温度变化等多因素对电机模型的影响,实现参数辨识期间转矩无脉动。The technical problem to be solved by the present invention is: to provide a multi-parameter identification method for a permanent magnet assisted synchronous reluctance motor with adjustable flux linkage, which combines the parameter identification method with offline finite element electromagnetic field analysis, data storage, and data fitting. The influence of multiple factors such as space magnetic field harmonics, magnetic saturation, AC/DC axis coupling, and temperature changes on the motor model is considered, and the torque is free from pulsation during parameter identification.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the above-mentioned technical problems:
一种磁链可调永磁辅助同步磁阻电机的多参数辨识方法,包括以下步骤:A multi-parameter identification method for a permanent magnet assisted synchronous reluctance motor with adjustable flux linkage, comprising the following steps:
步骤1,基于离线有限元电磁场分析建立静态电感数据库以及损耗数据库;
步骤2,当磁链可调永磁辅助同步磁阻电机处于磁链转矩控制时,设置高频脉振磁链信号的频率,分别向直轴、交轴注入高频脉振磁链信号,并基于此对动态电感和高频等效电阻进行辨识;
步骤3,停止高频脉振磁链信号的注入,基于基频分量、静态电感数据库以及损耗数据库对定子电阻和永磁磁链进行辨识;
步骤4,结合步骤2辨识的高频等效电阻以及步骤3辨识的定子电阻对转子温度进行辨识,基于转子温度对不同矫顽力的永磁磁链进行分离。In
作为本发明的一种优选方案,所述步骤2的具体过程如下:As a preferred version of the present invention, the specific process of the
步骤2.1,当磁链可调永磁辅助同步磁阻电机处于磁链转矩控制时,设置高频脉振磁链信号的频率ωh1,分别从直轴、交轴注入高频脉振磁链信号,获取直轴注入时稳态情况下脉振磁链幅值|λsh|、直轴电流id1,获取交轴注入时稳态情况下脉振磁链幅值|λsh|、交轴电流iq1;Step 2.1, when the adjustable flux linkage permanent magnet assisted synchronous reluctance motor is in flux linkage torque control, set the frequency ω h1 of the high-frequency pulsed flux linkage signal, and inject the high-frequency pulsed flux linkage from the direct axis and the quadrature axis respectively. signal, obtain the pulsed flux linkage amplitude |λ sh | and the direct-axis current i d1 in the steady state of the straight-axis injection, and obtain the pulsed flux linkage amplitude |λ sh | current i q1 ;
步骤2.2,利用离散傅里叶分析方法分析直轴电流id1和交轴电流iq1,得到直轴电流高频分量幅值Idh1和交轴电流高频分量幅值Iqh1,结合此时高频脉振磁链信号的幅值|λsh|,计算直轴动态电感和交轴动态电感 Step 2.2, using the discrete Fourier analysis method to analyze the direct-axis current i d1 and the quadrature-axis current i q1 to obtain the high-frequency component amplitude I dh1 of the direct-axis current and the high-frequency component amplitude I qh1 of the quadrature-axis current. The amplitude of the frequency pulsed flux linkage signal |λ sh |, the direct-axis dynamic inductance is calculated and quadrature dynamic inductance
步骤2.3,当磁链可调永磁辅助同步磁阻电机处于磁链转矩控制时,设置高频脉振磁链信号的频率ωh2,从直轴注入高频脉振磁链信号获取稳态情况下直轴电压ud2、直轴电流id2;Step 2.3, when the adjustable flux linkage permanent magnet assisted synchronous reluctance motor is in flux linkage torque control, set the frequency ω h2 of the high-frequency pulsed flux linkage signal, and inject the high-frequency pulsed flux linkage signal from the direct axis to obtain a steady state In the case of direct axis voltage u d2 , direct axis current i d2 ;
步骤2.4,利用离散傅里叶分析方法分析直轴电压ud2和直轴电流id2,得到直轴电压高频分量幅值Udh2和直轴电流高频分量幅值Idh2,结合此时高频脉振磁链信号的频率ωh2计算高频等效电阻Reqh。Step 2.4, using the discrete Fourier analysis method to analyze the direct-axis voltage u d2 and the direct-axis current i d2 to obtain the direct-axis voltage high-frequency component amplitude U dh2 and the direct-axis current high-frequency component amplitude I dh2 , combined with the current high The frequency ω h2 of the frequency pulsed flux linkage signal calculates the high frequency equivalent resistance R eqh .
作为本发明的一种优选方案,所述直轴动态电感和交轴动态电感计算公式如下:As a preferred solution of the present invention, the direct-axis dynamic inductor and quadrature dynamic inductance Calculated as follows:
高频等效电阻Reqh计算公式如下:The formula for calculating the high frequency equivalent resistance R eqh is as follows:
其中,N为采样点数,ωs为系统采样角频率,j表示虚数单位,id1(k)、iq1(k)分别为第k次采样的直轴电流、交轴电流,id2(k)、ud2(k)分别为第k次采样的直轴电流、直轴电压。Among them, N is the number of sampling points, ω s is the sampling angular frequency of the system, j is the imaginary unit, i d1 (k), i q1 (k) are the direct-axis current and quadrature-axis current of the kth sampling, respectively, i d2 (k ) and u d2 (k) are the direct-axis current and direct-axis voltage of the kth sampling, respectively.
作为本发明的一种优选方案,所述步骤3的具体过程如下:As a preferred solution of the present invention, the specific process of the
步骤3.1,停止高频脉振磁链信号的注入,设置永磁磁链初始值λpm(i=0);Step 3.1, stop the injection of the high-frequency pulsed flux linkage signal, and set the initial value of the permanent magnetic flux linkage λ pm (i=0);
步骤3.2,获取稳态情况下的定子直轴电压ud、交轴电压uq,定子直轴电流id、交轴电流iq,以及转速ωr;Step 3.2, obtaining the stator direct-axis voltage ud , the quadrature-axis voltage u q , the stator direct-axis current id , the quadrature-axis current i q , and the rotational speed ω r in a steady state;
步骤3.3,根据步骤1建立的静态电感数据库,利用当前永磁磁链λpm(i)和定子直轴电流id、交轴电流iq获得直、交轴静态电感Ld、Lq;Step 3.3, according to the static inductance database established in
步骤3.4,根据步骤1建立的损耗数据库,利用当前永磁磁链λpm(i)和定子直轴电流id、交轴电流iq获得直、交轴损耗电流idF、iqF;Step 3.4, according to the loss database established in
步骤3.5,根据直、交轴损耗电流idF、iqF,定子直轴电压ud、交轴电压uq,定子直轴电流id、交轴电流iq,以及转速ωr,计算定子电阻Rs和永磁磁链λpm;Step 3.5, according to the direct and quadrature axis loss currents i dF , i qF , the stator direct axis voltage ud , the quadrature axis voltage u q , the stator direct axis current id , the quadrature axis current i q , and the rotational speed ω r , calculate the stator resistance R s and permanent magnetic flux linkage λ pm ;
步骤3.6,将当前永磁磁链λpm(i)与步骤3.5计算得到的永磁磁链λpm进行对比,当误差|λpm(i)-λpm|小于等于设定容许范围λΔ时,执行步骤3.9;当误差|λpm(i)-λpm|大于设定容许范围λΔ时,执行步骤3.7;Step 3.6, compare the current permanent magnetic flux linkage λ pm (i) with the permanent magnetic flux linkage λ pm calculated in step 3.5, when the error |λ pm (i)-λ pm | is less than or equal to the set allowable range λ Δ , go to step 3.9; when the error |λ pm (i)-λ pm | is greater than the set allowable range λ Δ , go to step 3.7;
步骤3.7,增加迭代计数i=i+1;Step 3.7, increase the iteration count i=i+1;
步骤3.8,将永磁磁链设置为计算值λpm(i)=λpm,返回步骤3.2;Step 3.8, set the permanent magnetic flux linkage to the calculated value λ pm (i)=λ pm , and return to step 3.2;
步骤3.9,结束迭代过程,定子电阻和永磁磁链的计算值。Step 3.9, end the iterative process, the calculated values of stator resistance and permanent magnet flux linkage.
作为本发明的一种优选方案,所述定子电阻Rs计算公式如下:As a preferred solution of the present invention, the calculation formula of the stator resistance R s is as follows:
永磁磁链λpm计算公式如下:The formula for calculating the permanent magnetic flux linkage λ pm is as follows:
作为本发明的一种优选方案,所述步骤4的具体过程如下:As a preferred solution of the present invention, the specific process of the
步骤4.1,获取不同矫顽力永磁体的温度物理特性,建立其永磁磁链与温度的数据表格λ=LUT_T(T);Step 4.1, obtain the temperature physical properties of the permanent magnets with different coercivity, and establish a data table λ=LUT_T(T) of its permanent magnet flux linkage and temperature;
步骤4.2,在工作前测定定子绕组温度T0,结合步骤2提供的初始时刻高频等效电阻Reqh(0)以及步骤3提供的初始时刻定子电阻Rs(0),获得转子等效电阻初始值Rreqh(0)和转子温度初始值Tr0;Step 4.2: Measure the stator winding temperature T 0 before operation, and combine the high-frequency equivalent resistance R eqh (0) at the initial moment provided by
Rreqh(0)=Reqh(0)-Rs(0)R reqh (0)=R eqh (0)-R s (0)
Tr0=T0 T r0 =T 0
步骤4.3,结合步骤2提供的t时刻高频等效电阻Reqh(t)以及步骤3提供的t时刻定子电阻Rs(t),计算高频信号注入下转子等效电阻Rreqh(t)及转子温度Tr;Step 4.3, combining the high-frequency equivalent resistance R eqh (t) at time t provided in
Rreqh(t)=Reqh(t)-Rs(t)R reqh (t)=R eqh (t)-R s (t)
其中,α为转子等效电阻的温度系数;Among them, α is the temperature coefficient of the rotor equivalent resistance;
步骤4.4,根据高矫顽力永磁体的温度特性,结合步骤4.3提供的转子温度计算其永磁磁链λHCF=LUT_T(Tr);Step 4.4, according to the temperature characteristics of the high-coercivity permanent magnet and in combination with the rotor temperature provided in step 4.3, calculate its permanent magnetic flux linkage λ HCF =LUT_T(T r );
步骤4.5,根据高矫顽力的永磁磁链λHCF分离出低矫顽力的永磁磁链λLCF:Step 4.5, separate the permanent magnetic flux linkage λ LCF of low coercivity according to the permanent magnetic flux linkage λ HCF of high coercivity:
λLCF=λpm-λHCF λ LCF = λ pm - λ HCF
其中,λpm为永磁磁链。Among them, λ pm is the permanent magnet flux linkage.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme, and has the following technical effects:
1、本发明将电机参数辨识方法和电机离线有限元电磁场分析、数据存储、数据拟合相结合,电机控制模型综合考虑了空间磁场谐波、磁饱和、交/直轴耦合、温度变化等多因素影响,因此用于磁链可调永磁辅助同步磁阻电机多参数辨识的电机数学模型更加准确。1. The present invention combines the motor parameter identification method with the motor offline finite element electromagnetic field analysis, data storage, and data fitting, and the motor control model comprehensively considers space magnetic field harmonics, magnetic saturation, AC/DC coupling, and temperature changes. Therefore, the motor mathematical model used for multi-parameter identification of the permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage is more accurate.
2、本发明采用了不同频率段的高频磁链信号注入,在稳定控制电机转矩前提下,可同时实现电机动态电感和电机高频电阻的在线辨识,并为电机的温度观测提供依据。2. The present invention adopts the injection of high-frequency flux linkage signals in different frequency bands, and under the premise of stably controlling the motor torque, it can simultaneously realize the online identification of the motor dynamic inductance and the motor high-frequency resistance, and provide a basis for the temperature observation of the motor.
3、本发明依据不同永磁体的不同温度特性,结合电机转子温度辨识,可实现不同矫顽力永磁体的磁链进行了分离,为磁链可调永磁辅助同步磁阻电机系统的低矫顽力永磁体在线充/去磁提供永磁磁链的磁化状态。3. According to the different temperature characteristics of different permanent magnets and combined with the temperature identification of the motor rotor, the present invention can realize the separation of the flux linkages of the permanent magnets with different coercive forces, which is a low-coercive method for the adjustable flux linkage permanent magnet auxiliary synchronous reluctance motor system. Coercive permanent magnets are charged/demagnetized online to provide the magnetization state of the permanent magnet flux linkage.
4、本发明充分利用有限元离线电磁场分析、高频信号注入及状态观测、基频状态方程观测、永磁体温度物理特性多信息融合的方式,相互提供支撑信息,有效且准确实现了磁链可调永磁辅助同步磁阻电机的静/动态电感,定子电阻,永磁磁链,转子温度等多物理参数的在线辨识。4. The present invention makes full use of the finite element offline electromagnetic field analysis, high-frequency signal injection and state observation, fundamental frequency state equation observation, and multi-information fusion of permanent magnet temperature physical characteristics to provide mutual support information, effectively and accurately realize the flux linkage. Online identification of multiple physical parameters such as static/dynamic inductance, stator resistance, permanent magnet flux linkage, rotor temperature, etc. of the permanent magnet-assisted synchronous reluctance motor.
附图说明Description of drawings
图1是基于磁链转矩控制磁链可调永磁辅助同步磁阻电机的多参数辨识控制框图。Figure 1 is a multi-parameter identification control block diagram of a flux linkage adjustable permanent magnet assisted synchronous reluctance motor based on flux linkage torque control.
图2是本发明一种磁链可调永磁辅助同步磁阻电机的多参数辨识方法流程图。FIG. 2 is a flow chart of a multi-parameter identification method of a permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage according to the present invention.
图3是基于高频分量的高频等效电阻和电感辨识流程图。Figure 3 is a flowchart of high-frequency equivalent resistance and inductance identification based on high-frequency components.
图4是基于基频分量的定子电阻和永磁磁链辨识流程图。Figure 4 is a flow chart of stator resistance and permanent magnet flux linkage identification based on fundamental frequency components.
图5是不同矫顽力磁链分离以及转子温度辨识流程图。FIG. 5 is a flowchart of the separation of flux linkages with different coercive forces and the identification of rotor temperature.
具体实施方式Detailed ways
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.
如图1、图2所示,在转矩磁链控制算法的配合下,一方面由转矩磁链控制算法实施高频磁链信号的注入,另一方面由转矩磁链控制算法提供磁链可调永磁辅助同步磁阻电机稳态时的高频磁链λsh,转速ωr,定子温度T0,交、直轴电压udq和电流idq。As shown in Figure 1 and Figure 2, with the cooperation of the torque flux linkage control algorithm, on the one hand, the torque flux linkage control algorithm implements the injection of high-frequency flux linkage signals, and on the other hand, the torque flux linkage control algorithm provides the magnetic flux High frequency flux linkage λ sh , rotational speed ω r , stator temperature T 0 , AC and direct axis voltage udq and current i dq in steady state of the adjustable permanent magnet assisted synchronous reluctance motor.
基于此,本发明提出的参数辨识方法主要分为四个步骤:Based on this, the parameter identification method proposed by the present invention is mainly divided into four steps:
步骤A是基于离线有限元电磁场分析建立的静态电感数据表格以及铁损电流数据表格;Step A is the static inductance data table and the iron loss current data table established based on the off-line finite element electromagnetic field analysis;
步骤B是基于高频分量的高频等效电阻和动态电感辨识,具体步骤如图3所示:Step B is based on the high-frequency equivalent resistance and dynamic inductance identification of high-frequency components, and the specific steps are shown in Figure 3:
步骤B.1:当磁链可调永磁辅助同步磁阻电机处于磁链转矩控制,设置高频脉振磁链信号的频率ωh1,其频率满足以下关系式:Step B.1: When the adjustable flux linkage permanent magnet-assisted synchronous reluctance motor is in flux linkage torque control, set the frequency ω h1 of the high-frequency pulsed flux linkage signal, and its frequency satisfies the following relationship:
其中ωs为系统采样角频率,不妨设置为 where ω s is the sampling angular frequency of the system, which may be set as
直轴注入脉振磁链信号,其表达式如下:The pulsed flux linkage signal is injected into the direct axis, and its expression is as follows:
然后获取直轴注入时稳态数据,包括脉振磁链幅值|λsh|、直轴电流id1。Then, the steady-state data during direct-axis injection are obtained, including the pulsed flux linkage amplitude |λ sh | and the direct-axis current i d1 .
交轴注入脉振磁链信号,其表达式如下:The quadrature axis injects the pulsed flux linkage signal, and its expression is as follows:
然后获取交轴注入时稳态数据,包括脉振磁链幅值|λsh|、交轴电流iq1。Then, the steady-state data during quadrature-axis injection are obtained, including the amplitude of the pulsed flux |λ sh | and the quadrature-axis current i q1 .
步骤B.2:利用离散傅里叶分析(Discrete Fourier Transform,DFT)分析直轴电流id1和交轴电流iq1,可以得到直轴电流高频分量幅值Idh1和交轴电流高频分量幅值Iqh1,其公式如下:Step B.2: Using Discrete Fourier Transform (DFT) to analyze the direct-axis current i d1 and the quadrature-axis current i q1 , the amplitude I dh1 of the high-frequency component of the direct-axis current and the high-frequency component of the quadrature-axis current can be obtained Amplitude I qh1 , its formula is as follows:
其中N为采样点数,ωs为系统采样角频率,id1(k),iq1(k)分别为第k次采样的直轴电流和交轴电流。结合此时高频脉振磁链信号的幅值|λsh|,最后计算出直轴动态电感和交轴动态电感 Among them, N is the number of sampling points, ω s is the sampling angular frequency of the system, and i d1 (k) and i q1 (k) are the direct-axis current and quadrature-axis current of the kth sampling, respectively. Combined with the amplitude |λ sh | of the high-frequency pulsed flux linkage signal at this time, the direct-axis dynamic inductance is finally calculated. and quadrature dynamic inductance
步骤B.3:当磁链可调永磁辅助同步磁阻电机处于基于磁链转矩控制,设置高频脉振磁链信号的频率ωh2,其频率满足以下关系式:Step B.3: When the adjustable flux linkage permanent magnet assisted synchronous reluctance motor is in flux linkage torque control, set the frequency ω h2 of the high frequency pulsed flux linkage signal, and its frequency satisfies the following relationship:
其中ωh1为步骤B.1设置的高频磁链频率,不妨设置为则此时高频脉振磁链信号表达式如下:Where ω h1 is the high-frequency flux linkage frequency set in step B.1, it may be set as Then the high-frequency pulsed flux linkage signal expression is as follows:
然后获取稳态数据,包括直轴电压ud2、直轴电流id2。Then obtain steady-state data, including direct-axis voltage ud2 and direct-axis current i d2 .
步骤B.4:利用DFT分析直轴电压ud2和直轴电流id2可以得到直轴电流高频分量幅值Idh2和直轴电压高频分量幅值Udh2:Step B.4: Using DFT to analyze the direct-axis voltage u d2 and the direct-axis current i d2 , the direct-axis current high-frequency component amplitude I dh2 and the direct-axis voltage high-frequency component amplitude U dh2 can be obtained:
其中N为采样点数,ωs为系统采样角频率,id2(k)、ud2(k)分别为第k次采样的直轴电流和直轴电压。然后结合此时高频脉振磁链信号的频率ωh2计算高频等效电阻Reqh。Among them, N is the number of sampling points, ω s is the sampling angular frequency of the system, and i d2 (k) and u d2 (k) are the direct-axis current and direct-axis voltage of the kth sampling, respectively. Then, the high-frequency equivalent resistance Re eqh is calculated in combination with the frequency ω h2 of the high-frequency pulsed flux linkage signal at this time.
步骤C是基于基频分量的定子电阻和永磁磁链辨识,具体步骤如图4所示:Step C is based on the stator resistance and permanent magnet flux linkage identification based on the fundamental frequency component, and the specific steps are shown in Figure 4:
步骤C.1:停止高频磁链信号注入,设置永磁磁链初始值λpm(i=0)。Step C.1: Stop the injection of the high-frequency flux linkage signal, and set the initial value of the permanent magnet flux linkage λ pm (i=0).
步骤C.2:为获取稳态数据,包括定子电压udq(包括ud和uq)和电流idq(包括id和iq),转速ωr。Step C.2: In order to obtain steady-state data, including stator voltage udq (including ud and u q ), current idq (including id and i q ), and rotational speed ω r .
步骤C.3:根据步骤A提供的静态电感数据库LUT_L(λpm(i),id,iq),利用当前永磁磁链λpm(i)和定子电流idq获得静态电感Ld,Lq。Step C.3: According to the static inductance database LUT_L(λ pm (i), i d , i q ) provided in step A, use the current permanent magnet flux linkage λ pm (i) and the stator current id dq to obtain the static inductance L d , Lq .
步骤C.4:根据步骤A提供的损耗数据库LUT_F(λpm(i),id,iq),利用当前永磁磁链λpm(i)和定子电流idq获得损耗电流idF,iqF。Step C.4: According to the loss database LUT_F (λ pm (i), id , i q ) provided in step A, use the current permanent magnet flux linkage λ pm (i) and the stator current id q to obtain the loss current idF , i qF .
步骤C.5:根据损耗电流idF,iqF,定子电压udq和电流idq,转速ωr等计算定子电阻Rs和永磁磁链λpm。Step C.5: Calculate the stator resistance R s and the permanent magnetic flux linkage λ pm according to the loss current i dF , i qF , the stator voltage udq and the current i dq , the rotational speed ω r and so on.
步骤C.6:误差比较模块,将设置的永磁磁链λpm(i)与计算的永磁磁链λpm进行对比,当误差|λpm(i)-λpm|小于等于设定容许范围λΔ,则执行步骤C.9。如果误差|λpm(i)-λpm|大于设定容许范围λΔ,则执行步骤C.7。Step C.6: The error comparison module compares the set permanent magnetic flux linkage λ pm (i) with the calculated permanent magnetic flux linkage λ pm . When the error |λ pm (i)-λ pm | is less than or equal to the setting allowable range λ Δ , then go to step C.9. If the error |λ pm (i)-λ pm | is larger than the set allowable range λ Δ , go to step C.7.
步骤C.7:增加迭代计数i=i+1。Step C.7: Increment the iteration count i=i+1.
步骤C.8:将永磁磁链设置为计算值λpm(i)=λpm,返回步骤C.2。Step C.8: Set the permanent magnetic flux linkage to the calculated value λ pm (i)=λ pm , and return to step C.2.
步骤C.9:结束迭代过程,保存计算数值,便可以得到定子电阻Rs和永磁磁λpm链。Step C.9: End the iterative process and save the calculated values, then the stator resistance R s and the permanent magnet magnetic λ pm chain can be obtained.
其中定子电阻计算公式如下:The formula for calculating the stator resistance is as follows:
从而永磁磁链计算公式如下:Therefore, the calculation formula of permanent magnetic flux linkage is as follows:
步骤D是不同矫顽力磁链分离以及转子温度辨识,具体步骤如图5所示:Step D is the separation of flux linkages with different coercive forces and the identification of rotor temperature. The specific steps are shown in Figure 5:
步骤D.1:获取不同矫顽力永磁体的温度物理特性,建立其永磁磁链与温度的数据表格λ=LUT_T(T)。Step D.1: Obtain the temperature physical properties of permanent magnets with different coercivity, and establish a data table λ=LUT_T(T) of their permanent magnet flux linkage and temperature.
步骤D.2:首先在工作前测定定子绕组温度T0,结合步骤B提供的高频等效电阻Reqh(0)以及步骤C提供的定子绕组电阻Rs(0),从而获得转子等效电阻初始值Rreqh(0)和转子温度初始值Tr0。Step D.2: First measure the stator winding temperature T 0 before working, and combine the high-frequency equivalent resistance R eqh (0) provided by step B and the stator winding resistance R s (0) provided by step C, so as to obtain the rotor equivalent The resistance initial value R reqh (0) and the rotor temperature initial value T r0 .
Rreqh(0)=Reqh(0)-Rs(0) (12)R reqh (0)=R eqh (0)-R s (0) (12)
Tr0=T0 (13)T r0 =T 0 (13)
步骤D.3:结合步骤B提供的高频等效电阻Reqh(t)以及步骤C提供的定子绕组电阻Rs(t),可以计算出高频信号注入下转子等效电阻Rreqh(t),从而获得转子温度Tr。Step D.3: Combined with the high-frequency equivalent resistance R eqh (t) provided in step B and the stator winding resistance R s (t) provided in step C, the rotor equivalent resistance R reqh (t) under the high-frequency signal injection can be calculated. ) to obtain the rotor temperature Tr .
Rreqh(t)=Reqh(t)-Rs(t) (14)R reqh (t) = R eqh (t) - R s (t) (14)
其中系数α为转子等效电阻的温度系数。The coefficient α is the temperature coefficient of the rotor equivalent resistance.
步骤D.4:根据高矫顽力永磁体(钕铁硼永磁体)的温度特性,结合步骤D.3提供的转子温度计算其永磁磁链λHCF=LUT_T(Tr)。Step D.4: Calculate its permanent magnetic flux linkage λ HCF = LUT_T (Tr ) according to the temperature characteristics of the high coercivity permanent magnet (NdFeB permanent magnet) combined with the rotor temperature provided in Step D.3.
步骤D.5:根据这两组数据可以分离出低矫顽力(低矫顽力永磁体,如铝镍钴、钐钴等永磁体)的永磁磁链λLCF,如下式所示:Step D.5: According to these two sets of data, the permanent magnetic flux linkage λ LCF of low coercivity (low coercivity permanent magnets, such as AlNiCo, Samarium Cobalt and other permanent magnets) can be separated, as shown in the following formula:
λLCF=λpm-λHCF (16)λ LCF = λ pm - λ HCF (16)
其中LUT_T为高矫顽力永磁体的永磁磁链随温度变化的数据表格。Where LUT_T is the data table of the permanent magnet flux linkage of the high coercivity permanent magnet with temperature.
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。The above embodiments are only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any modification made on the basis of the technical solution according to the technical idea proposed by the present invention falls within the protection scope of the present invention. Inside.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010572541.7A CN111917350B (en) | 2020-06-22 | 2020-06-22 | Multi-parameter identification method for flux linkage adjustable permanent magnet auxiliary synchronous reluctance motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010572541.7A CN111917350B (en) | 2020-06-22 | 2020-06-22 | Multi-parameter identification method for flux linkage adjustable permanent magnet auxiliary synchronous reluctance motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111917350A true CN111917350A (en) | 2020-11-10 |
CN111917350B CN111917350B (en) | 2022-03-11 |
Family
ID=73226272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010572541.7A Active CN111917350B (en) | 2020-06-22 | 2020-06-22 | Multi-parameter identification method for flux linkage adjustable permanent magnet auxiliary synchronous reluctance motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111917350B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113938081A (en) * | 2021-11-02 | 2022-01-14 | 上海交通大学 | Temperature prediction-based permanent magnet synchronous motor self-adaptive online control method and system |
CN115566951A (en) * | 2022-08-22 | 2023-01-03 | 哈尔滨工业大学 | Self-learning method for flux linkage of synchronous reluctance motor with resistance error compensation |
CN115833673A (en) * | 2022-12-19 | 2023-03-21 | 哈尔滨工业大学 | An off-line self-learning method of synchronous reluctance motor flux linkage based on current injection |
CN116317791A (en) * | 2023-05-17 | 2023-06-23 | 国网山西省电力公司太原供电公司 | Method and device for identifying inductance of synchronous reluctance motor without position sensor |
US11933849B2 (en) | 2022-01-18 | 2024-03-19 | Delta Electronics, Inc. | Inductance detection method of reluctance motor and motor detection device |
EP4412080A1 (en) * | 2023-02-06 | 2024-08-07 | IFP Energies nouvelles | Method for real-time determination of the temperature of a rotor of an electric machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825522A (en) * | 2014-02-27 | 2014-05-28 | 株洲南车时代电气股份有限公司 | Method for online computing motor optimal operating point |
US20150381092A1 (en) * | 2014-06-26 | 2015-12-31 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Controller for power converter |
CN106026820A (en) * | 2015-03-16 | 2016-10-12 | 迪尔公司 | Methods of auto tuning machine parameters and systems thereof |
CN106357184A (en) * | 2016-11-01 | 2017-01-25 | 安徽大学 | Temperature compensation method for output torque of permanent magnet synchronous motor for vehicle based on neural network |
CN107681858A (en) * | 2017-09-18 | 2018-02-09 | 东南大学 | A kind of concentrated magnetic magnetic resistance offset motor |
-
2020
- 2020-06-22 CN CN202010572541.7A patent/CN111917350B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825522A (en) * | 2014-02-27 | 2014-05-28 | 株洲南车时代电气股份有限公司 | Method for online computing motor optimal operating point |
US20150381092A1 (en) * | 2014-06-26 | 2015-12-31 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Controller for power converter |
CN106026820A (en) * | 2015-03-16 | 2016-10-12 | 迪尔公司 | Methods of auto tuning machine parameters and systems thereof |
CN106357184A (en) * | 2016-11-01 | 2017-01-25 | 安徽大学 | Temperature compensation method for output torque of permanent magnet synchronous motor for vehicle based on neural network |
CN107681858A (en) * | 2017-09-18 | 2018-02-09 | 东南大学 | A kind of concentrated magnetic magnetic resistance offset motor |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113938081A (en) * | 2021-11-02 | 2022-01-14 | 上海交通大学 | Temperature prediction-based permanent magnet synchronous motor self-adaptive online control method and system |
CN113938081B (en) * | 2021-11-02 | 2024-01-30 | 上海交通大学 | Adaptive online control method and system for permanent magnet synchronous motor based on temperature prediction |
US11933849B2 (en) | 2022-01-18 | 2024-03-19 | Delta Electronics, Inc. | Inductance detection method of reluctance motor and motor detection device |
CN115566951A (en) * | 2022-08-22 | 2023-01-03 | 哈尔滨工业大学 | Self-learning method for flux linkage of synchronous reluctance motor with resistance error compensation |
CN115566951B (en) * | 2022-08-22 | 2023-03-21 | 哈尔滨工业大学 | Self-learning method for flux linkage of synchronous reluctance motor with resistance error compensation |
CN115833673A (en) * | 2022-12-19 | 2023-03-21 | 哈尔滨工业大学 | An off-line self-learning method of synchronous reluctance motor flux linkage based on current injection |
CN115833673B (en) * | 2022-12-19 | 2023-07-14 | 哈尔滨工业大学 | Current injection-based off-line self-learning method for flux linkage of synchronous reluctance motor |
EP4412080A1 (en) * | 2023-02-06 | 2024-08-07 | IFP Energies nouvelles | Method for real-time determination of the temperature of a rotor of an electric machine |
FR3145612A1 (en) * | 2023-02-06 | 2024-08-09 | IFP Energies Nouvelles | Method for determining in real time the temperature of a rotor of an electric machine |
CN116317791A (en) * | 2023-05-17 | 2023-06-23 | 国网山西省电力公司太原供电公司 | Method and device for identifying inductance of synchronous reluctance motor without position sensor |
CN116317791B (en) * | 2023-05-17 | 2023-08-15 | 国网山西省电力公司太原供电公司 | Method and device for identifying inductance of synchronous reluctance motor without position sensor |
Also Published As
Publication number | Publication date |
---|---|
CN111917350B (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111917350A (en) | A multi-parameter identification method for a permanent magnet-assisted synchronous reluctance motor with adjustable flux linkage | |
CN108183648B (en) | Permanent magnet synchronous motor parameter identification method based on inverter nonlinear compensation | |
Odhano et al. | Self-commissioning of interior permanent-magnet synchronous motor drives with high-frequency current injection | |
CN100570391C (en) | Real-time detection and analysis method and device for permanent magnet magnetic field distortion of permanent magnet synchronous motor | |
CN111914442B (en) | Modeling method of flux linkage adjustable permanent magnet synchronous reluctance motor | |
CN110198150A (en) | A kind of permanent magnet synchronous motor multi-parameter on-line identification method | |
CN106841901B (en) | A kind of transducer drive IPM synchronous motor interturn in stator windings short trouble diagnostic method | |
CN105680755B (en) | The model-free current control device and method of a kind of permagnetic synchronous motor | |
CN104811115A (en) | Quasi-proportional resonance control-based permanent magnet synchronous motor parameter identification system and method | |
CN107800344B (en) | Synchronous Motor Maximum Torque-to-Current Ratio Control Method Based on Virtual Signal Injection | |
CN113300647B (en) | Static AC-DC axis inductance identification method for permanent magnet synchronous motor | |
CN108964544B (en) | A dual-time-scale sliding mode control system and method for a permanent magnet linear synchronous motor | |
CN111342728A (en) | Parameter identification method of permanent magnet synchronous motor based on variable-step NLMS algorithm | |
CN103701395A (en) | Positive and negative sequence harmonic injection-based motor rotor primary position estimation method | |
Pengcheng et al. | Offline parameter identification strategy of permanent magnet synchronous motor considering the inverter nonlinearities | |
CN114844414B (en) | Permanent magnet synchronous motor inductance online identification method and system | |
CN116388622A (en) | Permanent magnet synchronous motor modeling method and system based on vector magnetic circuit theory | |
CN104836501B (en) | A kind of method of permasyn morot on-line parameter identification | |
CN107482978B (en) | A kind of permanent magnet synchronous motor on-line parameter discrimination method based on finite time algorithm | |
Jin et al. | Analysis of rotor anisotropy and position tracking error prediction for surface-mounted PMSM under high frequency signal injection | |
CN114553087A (en) | Temperature rise estimation method and system for rotor permanent magnet of six-phase motor | |
CN113141140B (en) | Online identification method for parameters of surface-mounted permanent magnet synchronous motor | |
CN110504882A (en) | Direct shaft judgment method of permanent magnet synchronous motor | |
CN115528952A (en) | Permanent magnet synchronous motor resistance online identification method under no-speed control and application | |
Qiao et al. | The design of flux linkage measurement for switched reluctance motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |