CN111908917A - Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof - Google Patents
Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof Download PDFInfo
- Publication number
- CN111908917A CN111908917A CN201910373628.9A CN201910373628A CN111908917A CN 111908917 A CN111908917 A CN 111908917A CN 201910373628 A CN201910373628 A CN 201910373628A CN 111908917 A CN111908917 A CN 111908917A
- Authority
- CN
- China
- Prior art keywords
- sodium niobate
- bismuth
- sodium
- based ceramic
- potassium sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 title claims description 6
- 229910052712 strontium Inorganic materials 0.000 title claims description 5
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title claims description 5
- 239000000919 ceramic Substances 0.000 claims abstract description 81
- XPXCLKDJWMSNJG-UHFFFAOYSA-N [Na].[Bi].[Sr] Chemical compound [Na].[Bi].[Sr] XPXCLKDJWMSNJG-UHFFFAOYSA-N 0.000 claims abstract description 54
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052709 silver Inorganic materials 0.000 claims abstract description 13
- 239000004332 silver Substances 0.000 claims abstract description 13
- 239000011734 sodium Substances 0.000 claims description 22
- 230000010287 polarization Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000002612 dispersion medium Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 239000011230 binding agent Substances 0.000 claims 1
- 230000001680 brushing effect Effects 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000003921 oil Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 238000005469 granulation Methods 0.000 abstract description 6
- 230000003179 granulation Effects 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 abstract description 2
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 description 14
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 13
- 229910052700 potassium Inorganic materials 0.000 description 13
- 239000011591 potassium Substances 0.000 description 13
- 239000010955 niobium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- FFQALBCXGPYQGT-UHFFFAOYSA-N 2,4-difluoro-5-(trifluoromethyl)aniline Chemical compound NC1=CC(C(F)(F)F)=C(F)C=C1F FFQALBCXGPYQGT-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 5
- 229920002545 silicone oil Polymers 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 bismuth sodium strontium cerium Chemical compound 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5116—Ag or Au
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/092—Forming composite materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/852—Composite materials, e.g. having 1-3 or 2-2 type connectivity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法,其特点是该方法是采用固相法制备锆酸铋钠锶掺杂铌酸钾钠(KNN)基陶瓷粉体材料;再通过造粒压片、排胶、烧结和被银测试等电子陶瓷制备工艺制备锆酸铋钠锶掺杂KNN基陶瓷。通过组元Sr(BiNa)ZrO3掺杂大大提高了KNN压电及介电性能,并具有较好的温度稳定性,可望制备压电器件。
The invention discloses a bismuth sodium strontium zirconate doped potassium sodium niobate based piezoelectric ceramic material and a preparation method thereof. KNN)-based ceramic powder materials; then bismuth sodium strontium zirconate doped KNN-based ceramics were prepared by electronic ceramic preparation processes such as granulation and tableting, debinding, sintering, and silver testing. The piezoelectric and dielectric properties of KNN are greatly improved by the doping of the component Sr(BiNa)ZrO 3 , and the KNN has good temperature stability, which is expected to prepare piezoelectric devices.
Description
技术领域technical field
本发明涉及一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法,具体地说,是在铌酸钾钠基材料的制备过程中同时掺入一定含量的锆酸铋钠锶,通过特定的极化方法以获得高压电性能。本发明属于材料科学与工程领域。The invention relates to a bismuth, sodium and strontium zirconate doped potassium and sodium niobate-based piezoelectric ceramic material and a preparation method thereof. Specifically, a certain content of zirconic acid is simultaneously mixed in the preparation process of the potassium and sodium niobate-based material. Bismuth sodium strontium, through specific polarization methods to obtain high-voltage electrical properties. The invention belongs to the field of material science and engineering.
背景技术Background technique
压电陶瓷因其性能优异、制备工艺简单,成本低,被广泛应用于传感器、驱动器、超声换能器、谐振器、滤波器等各种电子元器件。目前,市场上大量使用的含铅压电陶瓷不利于人类及生态环境的可持续发展。高性能无铅压电陶瓷,特别是具有钙钛矿结构高性能无铅压电陶瓷,因其优异的压电性能成为近年来国际上研究的热点和重点。Piezoelectric ceramics are widely used in various electronic components such as sensors, drivers, ultrasonic transducers, resonators, filters, etc. due to their excellent performance, simple preparation process and low cost. At present, lead-containing piezoelectric ceramics widely used in the market are not conducive to the sustainable development of human beings and the ecological environment. High-performance lead-free piezoelectric ceramics, especially high-performance lead-free piezoelectric ceramics with perovskite structure, have become the focus and focus of international research in recent years because of their excellent piezoelectric properties.
铌酸钾钠(K,Na)NbO3 是一种具有钙钛矿结构的压电材料,普通烧结工艺制备的纯铌酸钾钠陶瓷的压电常数d 33仅为80 pC/N左右。有学者采用放电等离子烧结或热压烧结制备的铌酸钾钠基压电陶瓷其d 33可达到~250pC/N,可提高材料本身的机械力学性能,具有较高的致密度,但是材料稳定性欠佳,尺寸受限制,并且工艺设备较为昂贵,不适宜工业化生产。铌酸钾钠基陶瓷中进行化学掺杂可以有效地改善陶瓷的烧结特性, 获得高致密度的陶瓷体,可以显著提高其压电性能(200~400pC/N)。经过掺杂改性的铌酸钾钠基陶瓷,即使采用传统制备工艺也可以具有相对较高的压电性能。目前未有对铌酸钾钠基陶瓷掺杂锆酸铋钠锶的报道。Potassium sodium niobate (K,Na)NbO 3 is a piezoelectric material with perovskite structure. The piezoelectric constant d 33 of pure potassium sodium niobate ceramics prepared by ordinary sintering process is only about 80 pC/N. Some scholars use spark plasma sintering or hot pressing sintering to prepare potassium sodium niobate-based piezoelectric ceramics, the d 33 can reach ~250pC/N, which can improve the mechanical properties of the material itself, and has a high density, but the material stability Poor, the size is limited, and the process equipment is relatively expensive, not suitable for industrial production. Chemical doping in potassium sodium niobate-based ceramics can effectively improve the sintering properties of the ceramics, obtain high-density ceramic bodies, and significantly improve their piezoelectric properties (200~400pC/N). The doping-modified potassium and sodium niobate-based ceramics can have relatively high piezoelectric properties even with traditional preparation techniques. There is no report on potassium sodium niobate-based ceramics doped with sodium strontium bismuth zirconate.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对现有技术不足提供一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料。其特点是通过化学掺杂进行铌酸钾钠基陶瓷掺杂改性,以构建室温下多相共存陶瓷体系。该方法大大提高了铌酸钾钠陶瓷的压电性能及介电性能。The purpose of the present invention is to provide a kind of bismuth sodium strontium zirconate doped potassium sodium niobate based piezoelectric ceramic material for the deficiencies of the prior art. It is characterized by the doping modification of potassium and sodium niobate-based ceramics by chemical doping to construct a multiphase coexisting ceramic system at room temperature. The method greatly improves the piezoelectric properties and dielectric properties of potassium sodium niobate ceramics.
一种锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料,其特征在于制备工艺如以下步骤:A kind of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic material, characterized in that the preparation process is as follows:
(1)固相法制备铌酸钾钠基陶瓷粉体(1) Preparation of potassium sodium niobate-based ceramic powder by solid-phase method
将原料分别按通式(K0.48Na0.52)(Nb0.97Sb0.03)O3-0.05Sr x (Bi0.5Na0.5)(1-x)ZrO3-0.0015Fe2O3(其中x表示Sr取代Bi0.5Na0.5的摩尔分数,数值的范围是:0.0 ≤ x≤ 0.3;掺杂元素以氧化物或碳酸盐为原料加入)进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨8~24小时后,转速为150~250rpm,在烘灯下烘烤1到2小时,然后在程序控温箱式炉中升温至850℃,保温6小时,得到铌酸钾钠基陶瓷粉体。The raw materials are respectively according to the general formula (K 0.48 Na 0.52 )(Nb 0.97 Sb 0.03 )O 3 -0.05Sr x (Bi 0.5 Na 0.5 ) (1- x ) ZrO 3 -0.0015Fe 2 O 3 (wherein x represents that Sr replaces Bi The molar fraction of 0.5 Na 0.5 , the range of values is: 0.0 ≤ x ≤ 0.3; doping elements are added with oxides or carbonates), weighed and batched, placed in a polyurethane ball mill, and anhydrous ethanol was used as the The dispersion medium is milled with a planetary ball mill for 8 to 24 hours at a rotational speed of 150 to 250 rpm, baked under a drying lamp for 1 to 2 hours, then heated to 850°C in a programmed temperature box furnace, and kept for 6 hours to obtain niobium. Potassium-sodium-based ceramic powder.
(2) 造粒压片(2) Granulation and tableting
在上述烘干的粉体中加入浓度为5~10wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10~15 MPa下压制成直径10~12 mm、厚度为0.8~1.2mm的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。A polyvinyl alcohol solution with a concentration of 5~10wt% is added to the above-mentioned dried powder, and it is fully mixed, and then granulated, and then pressed to a diameter of 10~12 mm and a thickness of 0.8~1.2mm under the pressure of 10~15 MPa. bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic discs.
(3) 排胶烧结(3) Debinding and sintering
将上述铌酸钾钠基陶瓷圆片在温度800~900℃排胶,然后在温度1050℃~1150℃烧结3~5小时制成锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。The above-mentioned potassium and sodium niobate-based ceramic discs are degummed at a temperature of 800-900 DEG C, and then sintered at a temperature of 1050-1150 DEG C for 3-5 hours to prepare bismuth sodium strontium zirconate-doped potassium sodium niobate-based ceramic discs.
(4) 被银极化(4) Polarized by silver
将上述烧结后获得的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片刷上浓度为5~15wt%的银浆,然后在温度600~700℃烧结10~15分钟制成样品。将样品在20~80℃的硅油浴中进行极化,极化场强为3~5 kV/mm,保压时间为5~30min,制成锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷。The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc obtained after sintering is brushed with silver paste with a concentration of 5-15wt%, and then sintered at a temperature of 600-700°C for 10-15 minutes to prepare a sample. The sample was polarized in a silicone oil bath at 20-80 °C, the polarization field strength was 3-5 kV/mm, and the pressure holding time was 5-30 min, to prepare bismuth sodium strontium zirconate doped potassium sodium niobate base voltage. Electric ceramics.
锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料制备得到的锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷,其压电性能为: 压电常数d 33 : 370~475 pC/N,机电耦合系数k p : 0.47~0.56,剩余极化强度P r : 19~24 μC/cm2,矫顽场E c : 7.5~9.0 kV/cm。The bismuth, sodium and strontium zirconate doped potassium and sodium niobate-based piezoelectric ceramics are prepared from bismuth, sodium and strontium zirconate doped potassium and sodium niobate, and their piezoelectric properties are: Piezoelectric constant d 33 : 370~475 pC/ N, electromechanical coupling coefficient k p : 0.47~0.56, remanent polarization Pr : 19~24 μC/cm 2 , coercive field E c : 7.5~9.0 kV/cm.
所述锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料作为无铅压电陶瓷材料的应用。The application of the bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic material as a lead-free piezoelectric ceramic material.
结构表征与性能测试:Structural characterization and performance testing:
1利用X射线衍射仪(XRD,DX-2700)对锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片进行了物相结构分析;详见图1所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷为单一钙钛矿结构,室温下呈现多相共存晶体结构;1 The phase structure of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc was analyzed by X-ray diffractometer (XRD, DX-2700); see Figure 1 for details. The results show that the bismuth sodium strontium zirconate doped potassium sodium niobate based piezoelectric ceramics is a single perovskite structure, showing a multiphase coexisting crystal structure at room temperature;
2利用电子显微镜(SEM,S-3400N)观察了锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片的表面形貌;详见图2所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷晶粒尺寸不均一,小晶粒分布于晶界处,大晶粒尺寸可达50μm,晶粒较为致密;2 The surface morphology of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc was observed by electron microscope (SEM, S-3400N); see Figure 2 for details. The results show that the grain size of potassium sodium niobate based piezoelectric ceramics doped with bismuth sodium strontium zirconate is not uniform.
3利用压电力显微镜(PFM,Asylum Research)观察了锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片的畴结构,详见图3所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基陶瓷具有无规则纳米畴且畴尺寸接近1μm,亚微米畴提升其压电性能;3 The domain structure of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic discs was observed by piezoelectric force microscope (PFM, Asylum Research), as shown in Fig. 3 for details. The results show that the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic has random nano-domains with a domain size close to 1 μm, and the sub-micron domains improve its piezoelectric performance;
4利用d 33 压电测试仪(ZJ-3A) 和阻抗分析仪(HP 4294A) 测试了锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片的d 33 和K p ;详见图4所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷具有较为优异的压电常数以及优异的机电耦合系数;4 The d 33 and K p of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic wafers were tested by d 33 piezoelectric tester (ZJ-3A) and impedance analyzer (HP 4294A); see Fig. 4 for details. Show. The results show that: bismuth sodium strontium zirconate doped potassium sodium niobate-based piezoelectric ceramics have relatively excellent piezoelectric constant and excellent electromechanical coupling coefficient;
5利用LCR分析仪(HP 4980,TH2816A)分别测试了锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片的高温介温曲线和低温介温曲线;详见图5,图6所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷具有较高的居里温度,该陶瓷在室温下构建出三方-正交-四方相界,提高其压电性能;5 The high temperature and low temperature dielectric temperature curves of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic wafers were tested by LCR analyzer (HP 4980, TH2816A); see Figure 5 and Figure 6 for details. The results show that the bismuth sodium strontium zirconate doped potassium sodium niobate-based piezoelectric ceramic has a higher Curie temperature, and the ceramic builds a trigonal-orthogonal-tetragonal phase boundary at room temperature to improve its piezoelectric performance;
6利用铁电分析仪(aixACCT TF Analyzer 1000)测试了锆酸铋钠锶铈掺杂铌酸钾钠基陶瓷圆片的电滞回线和单轴应变曲线,详见图7,图8所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基陶瓷具有较为优异的剩余极化强度以及矫顽场,且具有较高的应变值以及逆压电常数;6 Using a ferroelectric analyzer (aixACCT TF Analyzer 1000), the hysteresis loop and uniaxial strain curve of the bismuth sodium strontium cerium doped potassium sodium niobate-based ceramic wafer were tested, as shown in Figure 7 and Figure 8. . The results show that the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramics have excellent remanent polarization and coercive field, as well as high strain value and inverse piezoelectric constant;
7利用d 33压电测试仪(ZJ-3A) 测试了锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片的退火曲线,详见图9所示。结果表明:锆酸铋钠锶掺杂铌酸钾钠基陶瓷具有较为优异的热力学稳定性;7 The annealing curve of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic wafer was tested by the d 33 piezoelectric tester (ZJ-3A), as shown in Figure 9. The results show that: bismuth sodium strontium zirconate doped potassium sodium niobate ceramics have excellent thermodynamic stability;
利用本发明的方法制备的锆酸铋钠锶掺杂铌酸钾钠基陶瓷由于晶粒比较致密且晶粒尺寸较大,提高了烧结活性,烧结效果更好。在较低的烧结温度(~1090℃)下锆酸铋钠锶掺杂铌酸钾钠基陶瓷的致密性更高。锆酸铋钠锶掺杂铌酸钾钠基陶瓷具有较高的压电常数d 33和机电耦合系数k p,其最高压电常数d 33为470pC/N,最高机电耦合系数k p为0.56。The bismuth, sodium and strontium zirconate doped potassium and sodium niobate-based ceramics prepared by the method of the present invention have relatively dense crystal grains and larger crystal grain sizes, so that the sintering activity is improved and the sintering effect is better. The density of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramics is higher at lower sintering temperature (~1090 °C). The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic has high piezoelectric constant d 33 and electromechanical coupling coefficient k p , the highest piezoelectric constant d 33 is 470pC/N, and the highest electromechanical coupling coefficient k p is 0.56.
本发明与现有的技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料,有效提高了铌酸钾钠基材料的压电性能及介电性能;1 The bismuth, sodium and strontium zirconate doped potassium and sodium niobate-based ceramic materials can effectively improve the piezoelectric properties and dielectric properties of the potassium and sodium niobate-based materials;
2在较低温度下极化,有利于锆酸铋钠锶掺杂铌酸钾钠基陶瓷充分极化,最大程度地提高其压电性能及介电性能,适应工业化生产需求。2. Polarization at a lower temperature is conducive to full polarization of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramics, maximizing its piezoelectric properties and dielectric properties, and meeting the needs of industrial production.
附图说明Description of drawings
图1为实施例1~4中具有不同含量的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的X射线衍射图谱。FIG. 1 is the X-ray diffraction pattern of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic materials with different contents in Examples 1-4.
图2为实施例2样品的锆酸铋钠锶掺杂铌酸钾钠基陶瓷的扫描电镜照片(SEM)。FIG. 2 is a scanning electron microscope (SEM) photograph of the sodium bismuth zirconate strontium doped potassium sodium niobate-based ceramic of the sample of Example 2. FIG.
图3为实施例2样品的锆酸铋钠锶掺杂铌酸钾钠基陶瓷的压电力显微镜照片(PFM)。FIG. 3 is a piezoelectric force microscope (PFM) photograph of the sodium bismuth zirconate doped potassium sodium niobate-based ceramic of the sample of Example 2. FIG.
图4为实施例1~4具有不同含量的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的d 33 和K p 。4 shows the d 33 and K p of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic materials with different contents in Examples 1-4.
图5为实施例1~4具有不同含量的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的高温介温曲线。5 is the high temperature dielectric temperature curves of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic materials with different contents in Examples 1-4.
图6为实施例1~4具有不同含量的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的低温介温曲线。6 is the low temperature dielectric temperature curves of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic materials with different contents in Examples 1-4.
图7为实施例2样品的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的电滞回线图。FIG. 7 is a hysteresis loop diagram of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic material of the sample of Example 2. FIG.
图8为实施例2样品的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的单轴应变曲线图。FIG. 8 is a uniaxial strain curve diagram of the bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic material of the sample of Example 2. FIG.
图9为实施例1~4中具有不同含量的锆酸铋钠锶掺杂铌酸钾钠基陶瓷材料的退火曲线图。FIG. 9 is an annealing curve diagram of bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic materials with different contents in Examples 1-4.
具体实施方式Detailed ways
下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进和调整。The present invention will be specifically described by the following examples. It is necessary to point out that this example is only used to further illustrate the present invention, and should not be construed as a limitation on the protection scope of the present invention. Those skilled in the art can Some non-essential improvements and adjustments are made to the content of the invention.
实施例1:Example 1:
(1)固相法制备铌酸钾钠基陶瓷粉体(1) Preparation of potassium sodium niobate-based ceramic powder by solid-phase method
将原料分别按通式(K0.48Na0.52)(Nb0.97Sb0.03)O3-0.05(Bi0.5Na0.5)ZrO3 The raw materials were divided according to the general formula (K 0.48 Na 0.52 )(Nb 0.97 Sb 0.03 )O 3 -0.05(Bi 0.5 Na 0.5 )ZrO 3
-0.0015Fe2O3(x=0.0,编号1#),进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨8~24小时后,转速为150~250rpm,在烘灯下烘烤1到2小时,然后在程序控温箱式炉中升温至850℃,保温6小时,得到铌酸钾钠基陶瓷粉体。-0.0015Fe 2 O 3 ( x = 0.0, No. 1 # ), weighed and batched, placed in a urethane ball mill jar, used anhydrous ethanol as the dispersing medium, and ball-milled with a planetary ball mill for 8 to 24 hours at a rotational speed of 150 At ~250rpm, bake for 1 to 2 hours under a baking lamp, then heat up to 850°C in a programmed temperature box furnace, and keep the temperature for 6 hours to obtain potassium sodium niobate-based ceramic powder.
(2) 造粒压片(2) Granulation and tableting
在上述烘干的粉体中加入浓度为5~10wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10~15 MPa下压制成直径10~12 mm、厚度为0.8~1.2mm的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。A polyvinyl alcohol solution with a concentration of 5~10wt% is added to the above-mentioned dried powder, and it is fully mixed, and then granulated, and then pressed to a diameter of 10~12 mm and a thickness of 0.8~1.2mm under the pressure of 10~15 MPa. bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic discs.
(3) 排胶烧结(3) Debinding and sintering
将上述铌酸钾钠基陶瓷圆片在温度800~900℃排胶,然后在温度1050℃~1150℃烧结3~5小时制成锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。The above-mentioned potassium and sodium niobate-based ceramic discs are degummed at a temperature of 800-900 DEG C, and then sintered at a temperature of 1050-1150 DEG C for 3-5 hours to prepare bismuth sodium strontium zirconate-doped potassium sodium niobate-based ceramic discs.
(4) 被银极化(4) Polarized by silver
将上述烧结后获得的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片刷上浓度为5~15wt%的银浆,然后在温度600~700℃烧结10~15分钟制成样品。将样品在20~80℃的硅油浴中进行极化,极化场强为3~5 kV/mm,保压时间为5~30min,制成1# 锆酸铋钠锶掺杂铌酸钾钠基陶瓷。The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc obtained after sintering is brushed with silver paste with a concentration of 5-15wt%, and then sintered at a temperature of 600-700°C for 10-15 minutes to prepare a sample. The sample was polarized in a silicone oil bath at 20~80℃, the polarization field strength was 3~5 kV/mm, and the pressure holding time was 5~30min, to make 1 # bismuth sodium strontium zirconate doped potassium sodium niobate base ceramics.
实施例2:Example 2:
(1)固相法制备铌酸钾钠基陶瓷粉体(1) Preparation of potassium sodium niobate-based ceramic powder by solid-phase method
将原料按通式(K0.48Na0.52)(Nb0.97Sb0.03)O3-0.05Sr0.1(Bi0.5Na0.5)0.9ZrO3 The raw materials were prepared according to the general formula (K 0.48 Na 0.52 )(Nb 0.97 Sb 0.03 )O 3 -0.05Sr 0.1 (Bi 0.5 Na 0.5 ) 0.9 ZrO 3
-0.0015Fe2O3(x=0.1,编号2#)进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨8~24小时后,转速为150~250rpm,在烘灯下烘烤1到2小时,然后在程序控温箱式炉中升温至850℃,保温6小时,得到铌酸钾钠基陶瓷粉体。-0.0015Fe 2 O 3 ( x = 0.1, No. 2 # ) was weighed and batched, placed in a polyurethane ball mill, and anhydrous ethanol was used as the dispersion medium, and after 8~24 hours of ball milling with a planetary ball mill, the rotational speed was 150~ Bake at 250 rpm for 1 to 2 hours under a baking lamp, and then heat up to 850° C. in a programmed temperature box furnace, and keep the temperature for 6 hours to obtain potassium sodium niobate-based ceramic powder.
(2) 造粒压片(2) Granulation and tableting
在上述烘干的粉体中加入浓度为5~10wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10~15 MPa下压制成直径10~12 mm、厚度为0.8~1.2mm的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。A polyvinyl alcohol solution with a concentration of 5~10wt% is added to the above-mentioned dried powder, and it is fully mixed, and then granulated, and then pressed to a diameter of 10~12 mm and a thickness of 0.8~1.2mm under the pressure of 10~15 MPa. bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic discs.
(3) 排胶烧结(3) Debinding and sintering
将上述铌酸钾钠基陶瓷圆片在温度800~900℃排胶,然后在温度1050℃~1150℃烧结3~5小时制成锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。The above-mentioned potassium and sodium niobate-based ceramic discs are degummed at a temperature of 800-900 DEG C, and then sintered at a temperature of 1050-1150 DEG C for 3-5 hours to prepare bismuth sodium strontium zirconate-doped potassium sodium niobate-based ceramic discs.
(4) 被银极化(4) Polarized by silver
将上述烧结后获得的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片刷上浓度为5~15wt%的银浆,然后在温度600~700℃烧结10~15分钟制成样品。将样品在20~80℃的硅油浴中进行极化,极化场强为3~5 kV/mm,保压时间为5~30min,制成2# 锆酸铋钠锶掺杂铌酸钾钠基陶瓷。The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc obtained after sintering is brushed with silver paste with a concentration of 5-15wt%, and then sintered at a temperature of 600-700°C for 10-15 minutes to prepare a sample. The sample was polarized in a silicone oil bath at 20-80 °C, the polarization field strength was 3-5 kV/mm, and the pressure holding time was 5-30 min to prepare 2 # bismuth sodium strontium zirconate doped potassium sodium niobate base ceramics.
实施例3:Example 3:
(1)固相法制备铌酸钾钠基陶瓷粉体(1) Preparation of potassium sodium niobate-based ceramic powder by solid-phase method
将原料按通式(K0.48Na0.52)(Nb0.97Sb0.03)O3-0.05Sr0.15(Bi0.5Na0.5)0.85ZrO3 The raw materials were prepared according to the general formula (K 0.48 Na 0.52 )(Nb 0.97 Sb 0.03 )O 3 -0.05Sr 0.15 (Bi 0.5 Na 0.5 ) 0.85 ZrO 3
-0.0015Fe2O3(x=0.15,编号3#)进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨8~24小时后,转速为150~250rpm,在烘灯下烘烤1到2小时,然后在程序控温箱式炉中升温至850℃,保温6小时,得到铌酸钾钠基陶瓷粉体。-0.0015Fe 2 O 3 ( x = 0.15, No. 3 # ) was weighed and batched, placed in a urethane ball mill tank, and anhydrous ethanol was used as the dispersion medium, and after 8~24 hours of ball milling with a planetary ball mill, the rotational speed was 150~ Bake at 250 rpm for 1 to 2 hours under a baking lamp, and then heat up to 850° C. in a programmed temperature box furnace, and keep the temperature for 6 hours to obtain potassium sodium niobate-based ceramic powder.
(2) 造粒压片(2) Granulation and tableting
在上述烘干的粉体中加入浓度为5~10wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10~15 MPa下压制成直径10~12 mm、厚度为0.8~1.2mm的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。A polyvinyl alcohol solution with a concentration of 5~10wt% is added to the above-mentioned dried powder, and it is fully mixed, and then granulated, and then pressed to a diameter of 10~12 mm and a thickness of 0.8~1.2mm under the pressure of 10~15 MPa. bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic discs.
(3) 排胶烧结(3) Debinding and sintering
将上述铌酸钾钠基陶瓷圆片在温度800~900℃排胶,然后在温度1050℃~1150℃烧结3~5小时制成锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。The above-mentioned potassium and sodium niobate-based ceramic discs are degummed at a temperature of 800-900 DEG C, and then sintered at a temperature of 1050-1150 DEG C for 3-5 hours to prepare bismuth sodium strontium zirconate-doped potassium sodium niobate-based ceramic discs.
(4) 被银极化(4) Polarized by silver
将上述烧结后获得的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片刷上浓度为5~15wt%的银浆,然后在温度600~700℃烧结10~15分钟制成样品。将样品在20~80℃的硅油浴中进行极化,极化场强为3~5 kV/mm,保压时间为5~30min,制成3# 锆酸铋钠锶掺杂铌酸钾钠基陶瓷。The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc obtained after sintering is brushed with silver paste with a concentration of 5-15wt%, and then sintered at a temperature of 600-700°C for 10-15 minutes to prepare a sample. The sample was polarized in a silicone oil bath at 20-80 °C, the polarization field strength was 3-5 kV/mm, and the pressure holding time was 5-30 min to prepare 3 # bismuth sodium strontium zirconate doped potassium sodium niobate base ceramics.
实施例4:Example 4:
(1)固相法制备铌酸钾钠基陶瓷粉体(1) Preparation of potassium sodium niobate-based ceramic powder by solid-phase method
将原料按通式(K0.48Na0.52)(Nb0.97Sb0.03)O3-0.05Sr0.3(Bi0.5Na0.5)0.7ZrO3 The raw materials were prepared according to the general formula (K 0.48 Na 0.52 )(Nb 0.97 Sb 0.03 )O 3 -0.05Sr 0.3 (Bi 0.5 Na 0.5 ) 0.7 ZrO 3
-0.0015Fe2O3(x=0.3,编号4#)进行称量、配料,放于聚氨酯球磨罐中,以无水乙醇为分散介质,用行星球磨机球磨8~24小时后,转速为150~250rpm,在烘灯下烘烤1到2小时,然后在程序控温箱式炉中升温至850℃,保温6小时,得到铌酸钾钠基陶瓷粉体。-0.0015Fe 2 O 3 ( x = 0.3, No. 4 # ) was weighed and batched, placed in a polyurethane ball mill tank, and anhydrous ethanol was used as the dispersion medium, and after 8~24 hours of ball milling with a planetary ball mill, the rotational speed was 150~ Bake at 250 rpm for 1 to 2 hours under a baking lamp, and then heat up to 850° C. in a programmed temperature box furnace, and keep the temperature for 6 hours to obtain potassium sodium niobate-based ceramic powder.
(2) 造粒压片(2) Granulation and tableting
在上述烘干的粉体中加入浓度为5~10wt%的聚乙烯醇溶液充分混合后进行造粒,然后在压强为10~15 MPa下压制成直径10~12 mm、厚度为0.8~1.2mm的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。A polyvinyl alcohol solution with a concentration of 5~10wt% is added to the above-mentioned dried powder, and it is fully mixed, and then granulated, and then pressed to a diameter of 10~12 mm and a thickness of 0.8~1.2mm under the pressure of 10~15 MPa. bismuth sodium strontium zirconate doped potassium sodium niobate based ceramic discs.
(3) 排胶烧结(3) Debinding and sintering
将上述铌酸钾钠基陶瓷圆片在温度800~900℃排胶,然后在温度1050℃~1150℃烧结3~5小时制成锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片。The above-mentioned potassium and sodium niobate-based ceramic discs are degummed at a temperature of 800-900 DEG C, and then sintered at a temperature of 1050-1150 DEG C for 3-5 hours to prepare bismuth sodium strontium zirconate-doped potassium sodium niobate-based ceramic discs.
(4) 被银极化(4) Polarized by silver
将上述烧结后获得的锆酸铋钠锶掺杂铌酸钾钠基陶瓷圆片刷上浓度为5~15wt%的银浆,然后在温度600~700℃烧结10~15分钟制成样品。将样品在20~80℃的硅油浴中进行极化,极化场强为3~5 kV/mm,保压时间为5~30min,制成4# 锆酸铋钠锶掺杂铌酸钾钠基陶瓷。The bismuth sodium strontium zirconate doped potassium sodium niobate-based ceramic disc obtained after sintering is brushed with silver paste with a concentration of 5-15wt%, and then sintered at a temperature of 600-700°C for 10-15 minutes to prepare a sample. The sample was polarized in a silicone oil bath at 20-80 °C, the polarization field strength was 3-5 kV/mm, and the pressure holding time was 5-30 min to prepare 4 # bismuth sodium zirconate strontium doped potassium sodium niobate base ceramics.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910373628.9A CN111908917A (en) | 2019-05-07 | 2019-05-07 | Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910373628.9A CN111908917A (en) | 2019-05-07 | 2019-05-07 | Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111908917A true CN111908917A (en) | 2020-11-10 |
Family
ID=73241622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910373628.9A Pending CN111908917A (en) | 2019-05-07 | 2019-05-07 | Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111908917A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114409401A (en) * | 2022-01-21 | 2022-04-29 | 广东奥迪威传感科技股份有限公司 | Potassium-sodium niobate piezoelectric ceramic, preparation method thereof and electronic equipment |
CN115286386A (en) * | 2022-08-27 | 2022-11-04 | 四川大学 | Non-stoichiometric Nb 5+ Niobium tantalum zirconium potassium ferrite sodium bismuth ceramic and preparation method thereof |
CN115572165A (en) * | 2021-06-21 | 2023-01-06 | 四川大学 | Niobium zirconium acid bismuth potassium sodium copper iron leadless piezoelectric ceramic with high mechanical quality factor |
CN116715522A (en) * | 2023-06-14 | 2023-09-08 | 广东奥迪威传感科技股份有限公司 | Potassium sodium niobate-based piezoelectric ceramics and preparation methods and applications thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103482977A (en) * | 2013-09-02 | 2014-01-01 | 四川大学 | Niobium sodium potassium antimonate-potassium sodium bismuth zirconate leadless piezoelectric ceramic with high piezoelectric constant and preparation method thereof |
CN105198417A (en) * | 2015-09-08 | 2015-12-30 | 四川大学 | Preparation method of zirconic acid sodium bismuthide lithium cerium doped potassium-sodium niobate based ceramic material |
US20170141293A1 (en) * | 2014-04-11 | 2017-05-18 | Ngk Spark Plug Co., Ltd. | Lead-free piezoelectric ceramic composition, piezoelectric element using the same, and method of manufacturing lead-free piezoelectric ceramic composition |
CN107382318A (en) * | 2017-09-01 | 2017-11-24 | 湖北大学 | A kind of high mechanical properties sodium potassium niobate base leadless piezoelectric ceramics material and its preparation method and application |
CN107512908A (en) * | 2017-08-21 | 2017-12-26 | 昆明理工大学 | A kind of preparation method of potassium sodium niobate piezoelectric ceramics |
CN108623303A (en) * | 2017-03-15 | 2018-10-09 | 清华大学 | Anti- reduction potassium niobate sodium-based leadless piezoelectric ceramic of one kind and preparation method thereof |
-
2019
- 2019-05-07 CN CN201910373628.9A patent/CN111908917A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103482977A (en) * | 2013-09-02 | 2014-01-01 | 四川大学 | Niobium sodium potassium antimonate-potassium sodium bismuth zirconate leadless piezoelectric ceramic with high piezoelectric constant and preparation method thereof |
US20170141293A1 (en) * | 2014-04-11 | 2017-05-18 | Ngk Spark Plug Co., Ltd. | Lead-free piezoelectric ceramic composition, piezoelectric element using the same, and method of manufacturing lead-free piezoelectric ceramic composition |
CN105198417A (en) * | 2015-09-08 | 2015-12-30 | 四川大学 | Preparation method of zirconic acid sodium bismuthide lithium cerium doped potassium-sodium niobate based ceramic material |
CN108623303A (en) * | 2017-03-15 | 2018-10-09 | 清华大学 | Anti- reduction potassium niobate sodium-based leadless piezoelectric ceramic of one kind and preparation method thereof |
CN107512908A (en) * | 2017-08-21 | 2017-12-26 | 昆明理工大学 | A kind of preparation method of potassium sodium niobate piezoelectric ceramics |
CN107382318A (en) * | 2017-09-01 | 2017-11-24 | 湖北大学 | A kind of high mechanical properties sodium potassium niobate base leadless piezoelectric ceramics material and its preparation method and application |
Non-Patent Citations (3)
Title |
---|
INDRANI COONDOO ET AL.: ""Improved piezoelectric and energy harvesting characteristics in lead-free Fe2O3 modified KNN ceramics"", 《JOURNAL OF ELECTROCERAMICS》 * |
XIANG LV ET AL.: ""Effects of a phase engineering strategy on the strain properties in KNN-based ceramics"", 《JOURNAL OF MATERIALS CHEMISTRY C》 * |
ZHI TAN ET AL.: ""Effects of Mo2/3Bi1/3 doping on the phase structure, microstructure,and piezoelectric properties of KNNS–BNZ ceramics"", 《CERAMICS INTERNATIONAL》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115572165A (en) * | 2021-06-21 | 2023-01-06 | 四川大学 | Niobium zirconium acid bismuth potassium sodium copper iron leadless piezoelectric ceramic with high mechanical quality factor |
CN115572165B (en) * | 2021-06-21 | 2023-08-29 | 四川大学 | Bismuth-Nobium-Zirconate Potassium-Sodium-Copper-Fe Piezoelectric Ceramics with High Mechanical Quality Factor |
CN114409401A (en) * | 2022-01-21 | 2022-04-29 | 广东奥迪威传感科技股份有限公司 | Potassium-sodium niobate piezoelectric ceramic, preparation method thereof and electronic equipment |
CN115286386A (en) * | 2022-08-27 | 2022-11-04 | 四川大学 | Non-stoichiometric Nb 5+ Niobium tantalum zirconium potassium ferrite sodium bismuth ceramic and preparation method thereof |
CN115286386B (en) * | 2022-08-27 | 2023-07-18 | 四川大学 | Non-stoichiometric Nb 5+ Potassium sodium bismuth niobate tantalum zirconium iron acid ceramic and preparation method thereof |
US11958781B2 (en) | 2022-08-27 | 2024-04-16 | Sichuan University | Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor |
CN116715522A (en) * | 2023-06-14 | 2023-09-08 | 广东奥迪威传感科技股份有限公司 | Potassium sodium niobate-based piezoelectric ceramics and preparation methods and applications thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111302797B (en) | Potassium-sodium niobate-based leadless piezoelectric ceramic and preparation method thereof | |
CN100386291C (en) | Potassium sodium niobate lead-free piezoelectric ceramics and preparation method thereof | |
CN111908917A (en) | Sodium bismuth zirconate strontium doped potassium sodium niobate based piezoelectric ceramic material and preparation method thereof | |
CN105198417B (en) | A kind of preparation method of zirconic acid bismuth sodium lithium cerium dopping potassium-sodium niobate base ceramic material | |
CN102311266A (en) | Preparation method of (K05Na05) NbO3 (KNN) lead-free piezoelectric ceramic material | |
CN101462875A (en) | Bismuth sodium titanate based leadless piezoelectric ceramic and preparation technique thereof | |
CN109734447B (en) | Lead-free textured ceramics with excellent temperature stability and preparation method thereof | |
CN113461419A (en) | Bismuth ferrite-barium titanate lead-free piezoelectric ceramic and preparation method and application thereof | |
CN104876567A (en) | High-piezoelectric coefficient potassium-sodium niobate based leadless piezoelectric ceramics and preparation method thereof | |
CN101913868A (en) | Preparation method of potassium sodium niobate textured ceramics and potassium sodium niobate single crystal | |
CN115385689A (en) | Lead magnesium niobate-lead zirconate titanate based piezoelectric ceramic material and preparation method thereof | |
CN104529446A (en) | Copper oxide doped potassium-sodium niobate electrostrictive strain ceramic and preparation method thereof | |
CN105837200A (en) | Manganese-doped cerium lithium calcium titanoniobate-based ceramic material and preparation method thereof | |
CN115636667A (en) | A kind of lanthanum-doped scandium lead tantalate lead titanate piezoelectric ceramic and its preparation method and application | |
CN112552048B (en) | Preparation method of potassium-sodium niobate ceramic with high piezoelectric property and high remanent polarization | |
CN101337814B (en) | Low temperature sintering lithium antimonite doped quinary system piezoelectric ceramics material and method for preparing same | |
CN113979748A (en) | A kind of sodium potassium niobate-based lead-free piezoelectric ceramic and preparation method thereof | |
CN103467096A (en) | Novel potassium sodium niobate-based leadless piezoelectric ceramics and preparation method thereof | |
CN115385683B (en) | A piezoelectric ceramic material with high Curie temperature and piezoelectric coefficient and preparation method thereof | |
CN111333413A (en) | Bismuth ferrite-lead titanate-barium titanate ternary system high temperature piezoelectric ceramic material and preparation method thereof | |
CN113603482A (en) | Potassium-sodium niobate-based leadless piezoelectric ceramic and preparation method thereof | |
CN115010483B (en) | Piezoelectric ceramic material insensitive to strain and components, and preparation method and application thereof | |
CN103524129B (en) | Piezoceramic material for ultrasonic emission-type transducers and preparation method | |
CN102351535A (en) | Low-loss sodium potassium niobate-based lead-free piezoelectric ceramic material and preparation method thereof | |
CN102584230B (en) | Piezoceramic material with high piezoelectric modulus and high electrostriction under low temperature sintering and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |