CN111901032A - An integrated spaceborne optical sensor system - Google Patents
An integrated spaceborne optical sensor system Download PDFInfo
- Publication number
- CN111901032A CN111901032A CN202010864350.8A CN202010864350A CN111901032A CN 111901032 A CN111901032 A CN 111901032A CN 202010864350 A CN202010864350 A CN 202010864350A CN 111901032 A CN111901032 A CN 111901032A
- Authority
- CN
- China
- Prior art keywords
- laser
- star
- communication
- visible
- detection module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 42
- 238000004891 communication Methods 0.000 claims abstract description 70
- 238000001514 detection method Methods 0.000 claims abstract description 41
- 230000006855 networking Effects 0.000 claims abstract description 12
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 108091092878 Microsatellite Proteins 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18521—Systems of inter linked satellites, i.e. inter satellite service
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/24—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Astronomy & Astrophysics (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开一种一体化星载光学传感器系统,包括可见光子系统、激光通信子系统以及控制中心。其中,可见光子系统与激光通信子系统共用传感器镜头。同时,可见光子系统与控制中心的星敏探测模块以及空间目标探测模块可通信地连接,以实现星敏定姿以及空间目标态势感知,激光通信子系统与控制中心的跟瞄控制模块以及激光通信模块可通信地连接,根据可见光子系统的输出信息,实现激光通信组网。
The invention discloses an integrated spaceborne optical sensor system, comprising a visible photon system, a laser communication subsystem and a control center. Among them, the visible photonic system and the laser communication subsystem share the sensor lens. At the same time, the visible photon system is communicatively connected to the star-sensing detection module and space target detection module of the control center to achieve star-sensing attitude determination and space target situational awareness, and the laser communication subsystem is connected to the tracking control module and laser communication of the control center. The modules are communicatively connected, and the laser communication networking is realized according to the output information of the visible photonic system.
Description
技术领域technical field
本发明涉及航空航天技术领域,特别涉及一种一体化星载光学传感器系统。The invention relates to the technical field of aerospace, in particular to an integrated spaceborne optical sensor system.
背景技术Background technique
随着卫星技术水平的飞速提升,商业航天及微小卫星的应用越来越广泛,同时,为了实现一些特定的空间任务,往往还需要将一群卫星按一定规律布置,以形成卫星星座。低轨小星座组网应用成为目前微小卫星的发展趋势。With the rapid improvement of satellite technology, commercial aerospace and microsatellites have become more and more widely used. At the same time, in order to achieve some specific space missions, it is often necessary to arrange a group of satellites according to certain rules to form a satellite constellation. The low-orbit small constellation networking application has become the current development trend of microsatellites.
对于卫星星座而言,其组网采用的卫星系统需要满足网络化、智能化以及低成本集成化的要求。这就要求卫星所搭载的传感器及其它设备也向着小型化、集成化发展。For a satellite constellation, the satellite system used in its networking needs to meet the requirements of networking, intelligence and low-cost integration. This requires that the sensors and other equipment carried by satellites are also developing towards miniaturization and integration.
高精度的姿态测量以及星座间的通信是卫星星座完成任务的基础。卫星姿态测量最常用的一种传感器为星敏感器,而激光通信由于其通信频带宽、抗电磁干扰能力强的优点也成为了星间通信的热门研究领域。但是现有的高精度星敏感器及激光通信装置的体积、重量较大,难以满足小型化、低成本化的要求。High-precision attitude measurement and communication between constellations are the basis for satellite constellations to complete their tasks. One of the most commonly used sensors for satellite attitude measurement is the star sensor, and laser communication has also become a popular research field of inter-satellite communication due to its communication frequency bandwidth and strong anti-electromagnetic interference ability. However, the existing high-precision star sensors and laser communication devices are large in size and weight, and are difficult to meet the requirements of miniaturization and cost reduction.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的部分或全部问题,本发明提供一种一体化星载光学传感器系统,包括:Aiming at some or all of the problems in the prior art, the present invention provides an integrated spaceborne optical sensor system, including:
共用光路单元,包括传感器镜头以及分光光路单元;Shared optical path unit, including sensor lens and light splitting optical path unit;
可见光子系统,包括CMOS探测器,所述可见光子系统用于接收经由所述分光光路单元进入的可见光,并将可见光信号转换为数字图像;a visible photonic system, including a CMOS detector, the visible photonic system is configured to receive the visible light entering through the light splitting light path unit, and convert the visible light signal into a digital image;
激光通信子系统,包括跟瞄系统以及激光器,所述跟瞄系统与所述激光器可通信地连接,用于控制所述激光器的角度,所述激光器用于发射激光;以及a laser communication subsystem, including a tracking system and a laser, the tracking system is communicatively connected to the laser for controlling the angle of the laser, and the laser is used for emitting laser light; and
控制中心,包括:Control Center, including:
星敏探测模块,内置恒星星表图,且所述星敏探测模块与所述可见光子系统可通信地连接,用于确定卫星姿态;a star-sensing detection module, with a built-in star table map, and the star-sensing detection module is communicatively connected with the visible photon system for determining the attitude of the satellite;
空间目标探测模块,与所述可见光子系统及星敏探测模块可通信地连接,用于空间目标探测并测定所述空间目标的相对方位;a space target detection module, connected communicatively with the visible photon system and the star-sensing detection module, for detecting the space target and determining the relative orientation of the space target;
跟瞄控制模块,与所述星敏探测模块、所述空间目标探测模块以及所述跟瞄系统可通信地连接,用于根据所述卫星姿态、相对方位信息,计算激光发射角度信息,并将所述角度信息发送给所述跟The tracking control module is communicatively connected with the star-sensing detection module, the space target detection module and the tracking system, and is used to calculate the laser emission angle information according to the satellite attitude and relative orientation information, and to The angle information is sent to the tracker
瞄系统;aiming system;
激光通信模块,用于对激光信号的处理,进而实现激光通信组网。The laser communication module is used to process the laser signal, and then realize the laser communication networking.
进一步地,所述控制中心为集成芯片。Further, the control center is an integrated chip.
进一步地,所述可见光子系统还包括第一光路单元,所述第一光路单元位于所述共用光路单元与所述CMOS探测器之间,用于将经由所述共用光路单元进入的可见光聚焦于所述CMOS探测器的靶面上。Further, the visible photonic system further includes a first optical path unit, the first optical path unit is located between the common optical path unit and the CMOS detector, and is used for focusing the visible light entering through the common optical path unit on a on the target surface of the CMOS detector.
进一步地,所述可见光子系统采用凝视成像模式,以实现对大范围的空间目标以及空间碎片探测。Further, the visible photon system adopts a staring imaging mode, so as to realize the detection of a wide range of space targets and space debris.
进一步地,所述激光通信模块包括通信接收装置、通信发射装置以及标定装置,其中:Further, the laser communication module includes a communication receiving device, a communication transmitting device and a calibration device, wherein:
通信接收装置接收对方通信端机发射来的调制通信信号;The communication receiving device receives the modulated communication signal transmitted by the counterpart communication terminal;
通信发射装置对要传递的信息进行调制编码,形成通信光;以及The communication transmitting device modulates and encodes the information to be transmitted to form communication light; and
标定装置对发射通道和接收通道的方向一致性进行校准,使二者一致。The calibration device calibrates the direction consistency of the transmitting channel and the receiving channel, so that the two are consistent.
本发明提供的一种一体化星载光学传感器系统,利用小型化结构融合了被动可见光成像技术和主动激光通信技术。其包括可见光子系统,所述可见光子系统通过在轨暗弱运动目标高时相关联探测技术,可以实现较低的信噪比下空间碎片的实时探测,根据数值计算和地面验证,所述UK额监管子系统可以在信噪比为5dB条件下探测空间目标,从而将探测星等值提升至10等星@30ms曝光时间,获得视场内空间目标信息,具备视场内空间目标态势感知能力,且所述系统的控制中心内置有恒星星表图,能够实现星敏功能,进行卫星姿态的确定,同时,所述系统还包括激光通信子系统,其能够根据所述可见光子系统获得的卫星姿态信息以及目标星的相关方位信息,实现星间激光通信组网,进行精准跟瞄与通信。在结构方面,所述可见光子系统以及激光通信子系统共用传感器镜头,实现了多星载光学设备的融合,有效降低了卫星载荷的体积及重量,实现了卫星传感器的高集成化。The invention provides an integrated spaceborne optical sensor system, which integrates passive visible light imaging technology and active laser communication technology by using a miniaturized structure. It includes a visible photon system, which can realize real-time detection of space debris at a low signal-to-noise ratio through the associated detection technology when the on-orbit dim and weak moving target is high. According to numerical calculation and ground verification, the UK amount The supervision subsystem can detect space targets with a signal-to-noise ratio of 5dB, thereby increasing the detection star magnitude to 10th magnitude star @ 30ms exposure time, obtaining space target information in the field of view, and possessing the ability of situational awareness of space targets in the field of view. And the control center of the system has a built-in star table map, which can realize the star-sensing function and determine the satellite attitude. At the same time, the system also includes a laser communication subsystem, which can obtain satellite attitude information according to the visible photon system. And the relevant azimuth information of the target star, realize the inter-satellite laser communication networking, and carry out accurate tracking and communication. In terms of structure, the visible photonic system and the laser communication subsystem share the sensor lens, which realizes the fusion of multi-satellite optical equipment, effectively reduces the volume and weight of the satellite payload, and realizes the high integration of satellite sensors.
附图说明Description of drawings
为进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。In order to further clarify the above and other advantages and features of the various embodiments of the present invention, a more specific description of the various embodiments of the present invention will be presented with reference to the accompanying drawings. It is understood that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. In the drawings, the same or corresponding parts will be denoted by the same or similar numerals for clarity.
图1示出本发明一个实施例的一种一体化星载光学传感器系统的示意图;1 shows a schematic diagram of an integrated spaceborne optical sensor system according to an embodiment of the present invention;
图2示出本发明一个实施例的一种一体化星载光学传感器系统的结构示意图;2 shows a schematic structural diagram of an integrated spaceborne optical sensor system according to an embodiment of the present invention;
图3示出本发明一个实施例的一种一体化星载光学传感器系统的结构框图;以及FIG. 3 shows a structural block diagram of an integrated spaceborne optical sensor system according to an embodiment of the present invention; and
图4示出本发明一个实施例的一种一体化星载光学传感器系统的工作流程示意图。FIG. 4 shows a schematic diagram of the workflow of an integrated spaceborne optical sensor system according to an embodiment of the present invention.
具体实施方式Detailed ways
以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免模糊本发明的发明点。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明并不限于这些特定细节。此外,应理解附图中示出的各实施例是说明性表示且不一定按正确比例绘制。In the following description, the present invention is described with reference to various examples. However, one skilled in the art will recognize that the various embodiments may be practiced without one or more of the specific details or with other alternative and/or additional methods, materials or components. In other instances, well-known structures, materials, or operations are not shown or described in detail so as not to obscure the concepts of the present invention. Similarly, for purposes of explanation, specific quantities, materials and configurations are set forth in order to provide a thorough understanding of the embodiments of the invention. However, the invention is not limited to these specific details. Furthermore, it is to be understood that the various embodiments shown in the drawings are illustrative representations and have not necessarily been drawn to correct scale.
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。In this specification, reference to "one embodiment" or "the embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearances of the phrase "in one embodiment" in various places in this specification are not necessarily all referring to the same embodiment.
需要说明的是,本发明的实施例以特定顺序对工艺步骤进行描述,然而这只是为了阐述该具体实施例,而不是限定各步骤的先后顺序。相反,在本发明的不同实施例中,可根据工艺的调节来调整各步骤的先后顺序。It should be noted that the embodiments of the present invention describe the process steps in a specific order, but this is only to illustrate the specific embodiment, rather than limiting the sequence of the steps. On the contrary, in different embodiments of the present invention, the sequence of each step can be adjusted according to the adjustment of the process.
为了满足卫星小型化的发展需求,本发明提供一种一体化星载光学传感器系统,其通过一体化设计,利用小型化结构融合了被动可见光成像技术和主动激光通信技术,同时具备星敏恒星探测定姿功能、空间目标探测空间碎片预报功能以及卫星之间激光通信组网功能于一体。下面结合实施例附图,对本发明的技术方案做进一步描述。In order to meet the development needs of satellite miniaturization, the present invention provides an integrated spaceborne optical sensor system, which integrates passive visible light imaging technology and active laser communication technology through integrated design and miniaturized structure, and has star-sensitive star detection. Attitude determination function, space target detection space debris prediction function and laser communication networking function between satellites are integrated into one. The technical solutions of the present invention will be further described below with reference to the accompanying drawings of the embodiments.
一种一体化星载光学传感器系统,如图1所示,包括传感器镜头001以及传感器主体002,其中,所述传感器镜头001用于捕获光线,所述传感器主体002内布置有可见光子系统、激光通信子系统以及控制中心,用于捕获的光线进行处理,进而实现星敏定姿、碎片探测以及激光通信等功能。An integrated spaceborne optical sensor system, as shown in Figure 1, includes a
如图2所示,所述传感器镜头001包括主镜101以及次镜102,通过计算,选择符合要求的主镜及次镜,根据计算所得的安装参数组装成传感器镜头,所述传感器镜头001用于捕获包括可见光及激光在内的光线,并传输给传感器主体。As shown in FIG. 2 , the
所述传感器主体002内布置有分光光路单元201、激光通信子系统202、可见光子系统203以及控制中心204。The
所述分光光路单元201与所述传感器镜头001组成共用光路单元,光线经由所述传感器镜头001进入传感器主体002后,通过所述分光光路单元201分为两路,一路进入激光通信子系统202,另一路进入所述可见光子系统203。The light splitting
如图3所示,所述可见光子系统203包括探测器2031,所述可见光子系统203用于接收经由所述分光光路单元201进入的可见光,并将所述可见光信号进行光电转换,转换为数字图像;在本发明的一个实施例中,所述可见光子系统203还包括第一光路单元2032,所述第一光路单元2032位于所述分光光路单元201与所述探测器2031之间,所述第一光路单元2032将经由所述分光光路单元201进入的可见光聚焦于所述探测器2031的靶面上。在本发明的一个实施例中,所述探测器2031采用CMOS探测器。在本发明的一个实施例中,所述可见光子系统203采用凝视成像模式,以实现对大范围的空间目标以及空间碎片探测,其探测星等值能够达到10等星@30ms曝光时间,满足星敏定位的需求。As shown in FIG. 3 , the
所述激光通信子系统202包括跟瞄系统2021以及激光器2022,所述跟瞄系统2021与所述激光器2022可通信地连接,所述跟瞄系统2021接收所述控制中心发送的指令,控制所述激光器2022的角度,所述激光器2022接收所述控制中心计算所得的参数,形成符合要求的激光,构成通信发射装置。The
所述控制中心204,包括星敏探测模块2041、空间目标探测模块2042、跟瞄控制模块2043以及激光通信模块2044,在本发明的一个实施例中,所述控制中心204为集成芯片,布置于所述传感器主体内,与所述激光通信子系统202以及可见光子系统203可通信地连接。The
所述星敏探测模块2041及所述空间目标探测模块2042与所述可见光子系统可通信地连接,能够接收所述可见光子系统通过光电转换所得到的数字图像。The star-
所述星敏探测模块2041内置恒星星表图,其首先对所述数字图像进行初步处理,以提取图像星目标,然后读取星目标位置,结合标定参数计算星光观测矢量,运行星图匹配算法进行恒星匹配,并最终确定星光惯性矢量,根据观测矢量和惯性矢量极端惯性姿态矩阵,转化为姿态四元数,实现卫星姿态的确定。The star-
所述空间目标探测模块2042同时与所述星敏探测模块2041可通信地连接,能够接收所述星敏探测模块2041的卫星姿态参数,以及恒星匹配结果,结合所述数字图像中星目标信息,一方面能够实时感知视场内空间碎片态势,另一方面能够确定待通信的目标星的相对方位,在本发明的一个实施例中,所述相对方位包括卫星与目目标星的相对角度。The space
所述跟瞄控制模块2043以及激光通信模块2044与所述激光通信子系统202可通信地连接,共同实现激光通信组网功能。The
所述跟瞄控制模块2043与所述星敏探测模块2041、所述空间目标探测模块2042以及所述跟瞄系统2021可通信地连接,其接收所述星敏探测模块2041计算得到的卫星姿态信息,以及所述空间目标探测模块2042计算得到的与待通信的目标星的相对方位信息,计算激光发射角度信息,并将所述角度信息发送给所述跟瞄系统2021;在本发明的一个实施例中,所述角度信息包括俯仰角以及方位角。The
所述激光通信模块2044用于对激光信号的处理,进而实现激光通信组网。在本发明的一个实施例中,所述激光通信模块2044包括通信接收装置、通信发射装置以及标定装置,其中:The
通信接收装置对接收到的对方通信端机发射来的调制通信信号进行解调,获取传递的信息;The communication receiving device demodulates the received modulated communication signal transmitted by the other party's communication terminal to obtain the transmitted information;
通信发射装置对要传递的信息进行调制编码,并发送给所述激光器2022,以形成通信光;以及The communication transmitting device modulates and encodes the information to be transmitted, and sends it to the
标定装置对发射通道和接收通道的方向一致性进行校准,使二者一致。The calibration device calibrates the direction consistency of the transmitting channel and the receiving channel, so that the two are consistent.
图4给出了本发明提供的一种一体化星载光学传感器系统的工作流程示意图,包括:4 shows a schematic diagram of the workflow of an integrated spaceborne optical sensor system provided by the present invention, including:
步骤401,光线捕获。所述传感器镜头001捕获空间目标发射或反射的光线,以实现对空间目标的成像,所述空间目标包括但不限于:恒星、卫星、空间碎片等;所述光线则包括了可见光以及激光,以及其他红外、紫外等光线;所述光线经由分光光路单元后,可见光部分进入到可见光子系统203,激光则进入到所述激光通信子系统202;
步骤402,获取图像信息。通过所述可见光子系统203经由分光镜进入的可见光进行光电转换,以获取图像信息;
步骤403,卫星姿态确定。所述星敏探测模块2041根据内置的恒星星表图进行匹配,以确定卫星姿态;
步骤404,空间碎片态势感知以及确定目标性相对方位。所述空间目标探测模块2042根据所述星敏探测模块2041的恒星匹配结果,提取空间探测目标,实现空间碎片态势感知,同时,确定待通信的目标性的相对方位信息;Step 404: Awareness of the space debris situation and determining the relative orientation of the target. The space
步骤405,确定激光器角度。所述跟瞄控制模块2043根据卫星姿态信息以及待通信的目标性的相对方位信息,计算激光器的俯仰及方位角度,并发送给跟瞄系统2021,所述跟瞄系统2021根据上述信息,控制激光器2022的角度;以及
步骤406,进行激光通信。所述激光通信模块2044对要传递的信息进行调制编码,形成通信光,通过所述激光器2022发射,同时,对经由分光光路单元进入的激光进行解码,接收信息,进而实现星间激光通信组网。
本发明提供的一体化星载光学传感器系统,利用小型化结构融合了被动可见光成像技术和主动激光通信技术。其包括可见光子系统,所述可见光子系统通过在轨暗弱运动目标高时相关联探测技术,可以实现较低的信噪比下空间碎片的实时探测,根据数值计算和地面验证,所述UK额监管子系统可以在信噪比为5dB条件下探测空间目标,从而将探测星等值提升至10等星@30ms曝光时间,获得视场内空间目标信息,具备视场内空间目标态势感知能力,且所述系统的控制中心内置有恒星星表图,能够实现星敏功能,进行卫星姿态的确定,同时,所述系统还包括激光通信子系统,其能够根据所述可见光子系统获得的卫星姿态信息以及目标星的相关方位信息,实现星间激光通信组网,进行精准跟瞄与通信。在结构方面,所述可见光子系统以及激光通信子系统共用传感器镜头,实现了多星载光学设备的融合,有效降低了卫星载荷的体积及重量,实现了卫星传感器的高集成化。The integrated spaceborne optical sensor system provided by the present invention integrates passive visible light imaging technology and active laser communication technology by using a miniaturized structure. It includes a visible photon system, which can realize real-time detection of space debris at a low signal-to-noise ratio through the associated detection technology when the on-orbit dim and weak moving target is high. According to numerical calculation and ground verification, the UK amount The supervision subsystem can detect space targets under the condition of a signal-to-noise ratio of 5dB, thereby increasing the detection magnitude to 10-magnitude stars@30ms exposure time, obtaining space target information in the field of view, and possessing the ability of situational awareness of space targets in the field of view. And the control center of the system has a built-in star table map, which can realize the star-sensing function and determine the satellite attitude. At the same time, the system also includes a laser communication subsystem, which can obtain satellite attitude information according to the visible photon system. And the relevant azimuth information of the target star, realize the inter-satellite laser communication networking, and carry out accurate tracking and communication. In terms of structure, the visible photonic system and the laser communication subsystem share the sensor lens, which realizes the fusion of multi-satellite optical equipment, effectively reduces the volume and weight of the satellite payload, and realizes the high integration of satellite sensors.
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the relevant art that various combinations, modifications and changes can be made therein without departing from the spirit and scope of the present invention. Therefore, the breadth and scope of the invention disclosed herein should not be limited by the above-disclosed exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010864350.8A CN111901032B (en) | 2020-08-25 | 2020-08-25 | An integrated spaceborne optical sensor system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010864350.8A CN111901032B (en) | 2020-08-25 | 2020-08-25 | An integrated spaceborne optical sensor system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111901032A true CN111901032A (en) | 2020-11-06 |
CN111901032B CN111901032B (en) | 2021-09-07 |
Family
ID=73225390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010864350.8A Active CN111901032B (en) | 2020-08-25 | 2020-08-25 | An integrated spaceborne optical sensor system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111901032B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113483699A (en) * | 2021-09-08 | 2021-10-08 | 南京英田光学工程股份有限公司 | Ground laser terminal multi-optical-axis parallel calibration method based on star sensor |
FR3126827A1 (en) * | 2021-09-08 | 2023-03-10 | Airbus Defence And Space Sas | Method for transmitting data by a spacecraft comprising a laser emission module |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1130810A2 (en) * | 2000-02-21 | 2001-09-05 | TRW Inc. | A shared-optical satellite acquisition and tracking system |
CN1777064A (en) * | 2005-12-16 | 2006-05-24 | 北京大学 | Satellite laser communication terminal |
CN1777063A (en) * | 2005-12-16 | 2006-05-24 | 北京大学 | Acquisition System of Satellite Laser Communication Terminal |
CN101630970A (en) * | 2009-08-14 | 2010-01-20 | 中国科学院上海光学精密机械研究所 | Satellite laser communication compound axis optical tracking device and control method |
CN103616663A (en) * | 2013-12-03 | 2014-03-05 | 中国船舶重工集团公司第七一七研究所 | Non-rotating photoelectric detection and orientation device |
CN104296754A (en) * | 2014-10-10 | 2015-01-21 | 北京大学 | Autonomous navigation system and autonomous navigation method thereof based on laser space communication transceiver |
CN104977694A (en) * | 2015-07-15 | 2015-10-14 | 福建福光股份有限公司 | Visible light imaging and laser ranging optical axis-sharing lens and imaging ranging method thereof |
CN105353381A (en) * | 2015-12-05 | 2016-02-24 | 中国航空工业集团公司洛阳电光设备研究所 | Laser range finder |
CN105487082A (en) * | 2015-11-19 | 2016-04-13 | 中国空间技术研究院 | Laser radar for long-distance object detection |
WO2016145123A1 (en) * | 2015-03-09 | 2016-09-15 | Cubic Corporation | Optical sensor for range finding and wind sensing measurements |
CN109891778A (en) * | 2016-10-21 | 2019-06-14 | 空客防务与空间有限公司 | Combined imaging and laser communication system |
CN109889263A (en) * | 2018-12-29 | 2019-06-14 | 长沙天仪空间科技研究院有限公司 | A kind of capture systems based on signal light |
-
2020
- 2020-08-25 CN CN202010864350.8A patent/CN111901032B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1130810A2 (en) * | 2000-02-21 | 2001-09-05 | TRW Inc. | A shared-optical satellite acquisition and tracking system |
CN1777064A (en) * | 2005-12-16 | 2006-05-24 | 北京大学 | Satellite laser communication terminal |
CN1777063A (en) * | 2005-12-16 | 2006-05-24 | 北京大学 | Acquisition System of Satellite Laser Communication Terminal |
CN101630970A (en) * | 2009-08-14 | 2010-01-20 | 中国科学院上海光学精密机械研究所 | Satellite laser communication compound axis optical tracking device and control method |
CN103616663A (en) * | 2013-12-03 | 2014-03-05 | 中国船舶重工集团公司第七一七研究所 | Non-rotating photoelectric detection and orientation device |
CN104296754A (en) * | 2014-10-10 | 2015-01-21 | 北京大学 | Autonomous navigation system and autonomous navigation method thereof based on laser space communication transceiver |
WO2016145123A1 (en) * | 2015-03-09 | 2016-09-15 | Cubic Corporation | Optical sensor for range finding and wind sensing measurements |
CN104977694A (en) * | 2015-07-15 | 2015-10-14 | 福建福光股份有限公司 | Visible light imaging and laser ranging optical axis-sharing lens and imaging ranging method thereof |
CN105487082A (en) * | 2015-11-19 | 2016-04-13 | 中国空间技术研究院 | Laser radar for long-distance object detection |
CN105353381A (en) * | 2015-12-05 | 2016-02-24 | 中国航空工业集团公司洛阳电光设备研究所 | Laser range finder |
CN109891778A (en) * | 2016-10-21 | 2019-06-14 | 空客防务与空间有限公司 | Combined imaging and laser communication system |
CN109889263A (en) * | 2018-12-29 | 2019-06-14 | 长沙天仪空间科技研究院有限公司 | A kind of capture systems based on signal light |
Non-Patent Citations (2)
Title |
---|
DAVID: "Optical beam position active sensing and control using acoustooptic satellite beams", 《IEEE SYMPOSIUM ON ULTRASONICS》 * |
姜会林: "一点对多点同时空间激光通信光学跟瞄技术研究", 《中国激光》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113483699A (en) * | 2021-09-08 | 2021-10-08 | 南京英田光学工程股份有限公司 | Ground laser terminal multi-optical-axis parallel calibration method based on star sensor |
CN113483699B (en) * | 2021-09-08 | 2021-12-28 | 南京英田光学工程股份有限公司 | Ground laser terminal multi-optical-axis parallel calibration method based on star sensor |
FR3126827A1 (en) * | 2021-09-08 | 2023-03-10 | Airbus Defence And Space Sas | Method for transmitting data by a spacecraft comprising a laser emission module |
WO2023037067A1 (en) * | 2021-09-08 | 2023-03-16 | Airbus Defence And Space Sas | Method for transmitting data by a spacecraft comprising a laser transmission module |
US12126380B2 (en) | 2021-09-08 | 2024-10-22 | Airbus Defence And Space Sas | Method for transmitting data by a spacecraft comprising a laser transmission module |
Also Published As
Publication number | Publication date |
---|---|
CN111901032B (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11079234B2 (en) | High precision—automated celestial navigation system | |
US10761182B2 (en) | Star tracker for multiple-mode detection and tracking of dim targets | |
US20180262271A1 (en) | Celestial navigation using laser communication system | |
US7049597B2 (en) | Multi-mode optical imager | |
US7920794B1 (en) | Free space optical communication | |
Liang et al. | The navigation and terrain cameras on the Tianwen-1 Mars rover | |
CN106788763A (en) | airborne laser communication equipment and its control method | |
US20200005097A1 (en) | Compact Multi-Sensor Fusion System with Shared Aperture | |
JPH0820510B2 (en) | Optical communication system Optical system alignment adjustment system | |
CN104296754B (en) | Autonomous navigation system and its autonomous navigation method based on space laser communication terminal | |
US10197381B2 (en) | Determination of the rotational position of a sensor by means of a laser beam emitted by a satellite | |
CN1815259B (en) | Photoelectric imaging tracking system based on beam splitter prism | |
CN111901032A (en) | An integrated spaceborne optical sensor system | |
CN109945861B (en) | Alignment tracking device and method for unidirectional wireless optical communication between small unmanned aerial vehicle and ground | |
Kingsbury et al. | Design of a free-space optical communication module for small satellites | |
WO2018026147A1 (en) | Lidar device | |
CN103024307A (en) | Space borne laser communication ATP system spot detecting camera and detecting method | |
US20220368822A1 (en) | Night Vision Apparatus | |
Cao et al. | An all-day attitude sensor integrating stars and sun measurement based on extended pixel response of CMOS APS imager | |
JPH04343010A (en) | Apparatus for determining attitude of celestial- body orbit spacecraft of artificial satellite with respect to clestial body | |
US8153978B1 (en) | Dual color/dual function focal plane | |
Yan et al. | Progress on the development of the optical communications demonstrator | |
Dey et al. | EOTS: the journey and beyond | |
CN220368714U (en) | System for manufacturing quantum satellite ground station pointing model | |
Ferrat et al. | Ultra-miniature omni-directional camera for an autonomous flying micro-robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |